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By combining the theory of mixtures with continuous diversity with Liu’s method
of Lagrange multipliers, a thermodynamically consistent constitutive theory is de-
rived for large polycrystalline masses made up of transversely isotropic crystal-
lites. The media under study are supposed to be incompressible and subjected to
strain-induced anisotropy and recrystallization effects. Owing to the fabric (tex-
ture) changes caused by lattice rotation and polygonization, the polycrystal and its
composing grains are modelled as polar media. Among other results of the theory,
the existence of a dislocation potential is inferred, which represents for polycrystals
the counterpart to the chemical potential of physical chemistry. Furthermore, ex-
ploitation of the dissipation inequality gives rise to the notion of a driving pressure

for grain boundary migration. Besides, the vanishing of the Voigt couple stress is
analysed together with the existence of internal stresses and couples responsible for
the bending/twisting of crystallites by polygonization and heterogeneous strain.
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1. Introduction

When students are introduced to continuum mechanics, they learn that most con-
stitutive theories are based on two fundamental assumptions: isotropy and homo-

geneity (Truesdell & Noll 1965; Liu 2002). Although these assumptions may be
justified in many situations, they represent in several other instances just a crude
approximation to reality. A typical example is provided by polycrystals. Their het-
erogeneity stems from a ‘cellular’ structure of crystalline domains called crystallites,
or grains. On the other hand, the polycrystalline anisotropy (also named texture, or
fabric†) has its roots in peculiar symmetries of the crystalline lattice, which tends

† Dedicated to I-Shih Liu on the occasion of his 60th birthday.
† Following Part I (Faria 2005a), the terms texture and fabric are considered here synonyms to

the preferred orientations of the lattice. No special word is used in regard to grain sizes and shapes.
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2 S. H. Faria, G. M. Kremer & K. Hutter

to orient itself towards some preferred directions established in each grain by the
deformation process. This means that the anisotropy of polycrystals can be induced
by strain. Further, if the material is exposed to high temperatures, both proper-
ties (anisotropy and heterogeneity) may be affected also by energetic processes of
recovery and recrystallization (Poirier 1985; Humphreys & Hatherly 2004).

Induced anisotropy and recrystallization have since long been recognized as sci-
entifically and technologically relevant. While engineers and materials scientists aim
at improving their knowledge of the mechanical properties of processed metals and
ceramics, geophysicists wish to understand the slow geomorphological dynamics of
rocks and minerals, with characteristic times ranging from hundreds to thousands
of years. Now, whereas various (thermo-)mechanical models have been proposed for
the plasticity of single- and polycrystalline specimens (see Svendsen 2002; Wenk &
Van Houtte 2004; and references therein), there was until recently no adequate,
thermodynamically consistent approach to creep, evolving anisotropy, and recrys-
tallization of large† polycrystalline masses. In order to revert this situation, a gen-
eral continuum theory has been advanced in Part I of this series (Faria 2005a).

The objective of this work is to employ the mentioned continuum approach of
Part I to derive a constitutive theory suited to a whole class of polycrystals. The
materials in focus are large masses of incompressible, polycrystalline media made of

transversely isotropic grains. Seeing that most of the polycrystals included in this
category belong to the hexagonal crystal system, the symmetry axis of transverse
isotropy of the crystallites is for convenience called the c axis.

The notation follows the guidelines prescribed in Appendix A of Part I (Faria
2005a). Moreover, when some reference to an equation from Part I is needed, then
the superscript ‘i’ will be added to the respective equation tag, in order to make
evident that this particular equation does not pertain to the present work. For
instance, (3.2)I refers to the second equation of the third section of Part I.

2. Fundamentals

Most of the concepts underlying the present theory rest on the notion of a mixture
with continuous diversity, in the manner already discussed in Part I. Consequently,
this section acts chiefly as a link between the general fundamentals put forward in
Part I and the constitutive theory to be developed in the ensuing sections.

(a) Thermodynamic processes in polycrystals

When a scientist attempts to model the dynamics of a large polycrystalline mass,
his primary goal usually consists in determining the fields of mass density ̺, velocity
vi and temperature T , at every point xj and instant t. Frequently, the mass density
can be excluded beforehand by imposing ̺ = const., which implies via (3.11)I that
the incompressibility condition ∂vi/∂xi = 0 holds. Hence, the number of basic fields
is reduced to four: the temperature and the three components of the velocity.

On the other hand, it is widely acknowledged that the high-temperature creep of
polycrystals is very sensitive to their fabrics. In the particular case of transversely
isotropic grains, this means: sensitive to the orientational distribution of c axes.
The fabric induces a complex anisotropic material behaviour, which evolves in time
mainly through lattice rotations, but is simultaneously affected by diverse other

† By ‘large’ we mean ‘on a geological size scale’. See also the comments in Faria (2005a).
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Creep and recrystallization of polycrystals – II. constitutive theory 3

mechanisms subsumed into the generic term recrystallization, notably polygoniza-

tion, nucleation and grain boundary migration (Humphreys & Hatherly 2004).
From the reasoning above it follows that a thermodynamic process in a poly-

crystal undergoing recrystallization can be characterized by nine basic fields of

̺∗(xi, t, nj) mass density,

ρ∗
D
(xi, t, nj) dislocation density,

s∗i (xj , t, nk) c-axis spin velocity,

vi(xj , t) translational velocity,

T (xi, t) absolute temperature.

(2.1)

Notice that the first five scalar fields depend not only on position and time, but
also on c-axis orientation, the latter denoted by the unit orientation vector ni (see
§2b,c of Part I). Such orientation-dependent fields, identified by the superscript ‘∗’,
describe the microstructure of the medium. In particular, the orientation-dependent
mass density ̺∗ portrays the fabric, i.e. the amount of crystalline mass, in a unit
volume of the polycrystal, with c axes oriented parallel to ni. The rotation rate of
the lattice is measured by the c-axis spin velocity s∗i , which is necessarily dependent
on ni, otherwise all c axes in a particle would rotate with the same spin velocity and
the fabric would not evolve. Further, recrystallization is modelled by the internal
variable ρ∗

D
, which is related to the stored energy of deformation. The interpretation

of ρ∗
D
as the total length of dislocations found in those grains with c axes oriented to-

wards ni and enclosed in a unit volume of the polycrystal is motivated by statistical
arguments (Faria et al. 2003, and references therein) as well as by results of §3d. Fi-
nally, the fields vi and T describe the ordinary thermomechanics of the polycrystal,
in the manner outlined at the beginning of this section. As explained in remark 3.2
of Part I, the assumption of negligible grain shifting, viz. v∗i (xj , t, nk) ≡ vi(xj , t),
is valid as long as the material does not flow in a superplastic regime; it has no

relation at all to any kind of ‘Taylor-type’ hypothesis: the deformation of every
grain remains unconstrained (cf. remark 2.1 of Part III).

Following the terminology introduced in Part I, crystallites possessing the same
c-axis orientation constitute what is called a species. Slightly misoriented crystallites
and subgrains are said to belong to familiar species. Low-angle interactions are
interpreted as interactions between familiar species, i.e. interspecies interactions.
Accordingly, orientation-dependent fields are also named species fields.

(b) Fabric description

Before relating (2.1) to experimental data, it should be noticed that, in the
same manner as a material particle at xi ∈ R

3 actually refers to an infinitesimal
volume centred at xi, so does also a lattice orientation at ni ∈ S2 to an infinitesi-

mal normalized solid angle† d2n containing ni. Therefore, density fields bearing the
superscript ‘∗’ are, rigorously, distribution densities with respect to a unit hypervol-
ume in R

3 × S2 (cf. Aris & Gavalas 1966). In practice, this means that observable
species densities in R

3 —called spatial species densities— are expressed by the
products of the infinitesimal solid angle d2n with their respective densities. For

† As explained in Part I, if θ and ϕ denote the polar and azimuthal angles of a spherical
coordinate system, then the infinitesimal normalized solid angle reads d2n = sin θ dϕ dθ/4π.
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4 S. H. Faria, G. M. Kremer & K. Hutter

Figure 1. Fabric description. Left : any c-axis orientation is specified by two Euler angles
(ϕ, θ) representing the spherical coordinates of the unit orientation vector ni (Faria 2005a).
Centre: the fore–aft symmetry of c axes (ni ↔ −ni, see §3a) allows us to construct fabric
diagrams by projecting each c axis onto the equatorial plane of S2. The figure shows two
diagrams, corresponding to the isotropic distribution (t = t0) and the single-maximum
fabric (t = t′> t0) discussed in the text. Right : schematic histogram of the spatial species
mass density ̺∗d2n versus the colatitude θ, for ϕ = ϕ′ = 43◦. Angular distributions of
mass for the isotropic (light gray) and the single maximum (dark gray) fabrics are shown.

instance, the product ̺∗d2n stands for the spatial species density of mass, which
plays an important role in the description of fabrics, as outlined below.

By regarding lattice orientations as species, we can interpret fabric formation as
the predominance of better-suited species for the current conditions. Clearly, such a
thermomechanical selection is manifested by changes in ̺∗. Figure 1 illustrates this
notion through the classic example of a single-maximum fabric. Initially (t = t0),
a material particle located at xi = xi0 is isotropic, i.e. its species mass density
corresponds to an homogeneous distribution of c axes: ̺∗(xi0, t0, nj) ≡ ̺(xi0, t0).
Accordingly, the spatial species mass density ̺∗(xi0, t0, nj) d

2n has the same small
value for every ni. During deformation, most c axes tend to rotate towards a pre-
ferred direction, under the action of localized, strain-induced torques. At a later time
t′ ≫ t0, the same material particle is found at xi = x′i and it may have developed
a sharp single-maximum fabric at θ′ = 31◦, ϕ′ = 43◦ (say). Hence, its species mass
density reads now ̺∗(x′i, t

′, nj) = ̺(x′i, t
′)δ(nj − n′

j) = ̺(x′i, t
′)δ(θ − θ′)δ(ϕ − ϕ′),

where δ(·) is the so-called Dirac delta function. In such a situation, the spatial
species mass density ̺∗(x′i, t

′, nj) d
2n vanishes everywhere in S2, except for ni = n′

i.
Besides lattice rotations, also recrystallization does affect the species mass den-

sity ̺∗. Indeed, ̺∗ expresses not only the number of grains with a certain c-axis
orientation, but also their volume fraction, seing that ̺∗ is a mass density and the
mass of an incompressible grain is proportional to its size. It should be noticed,
though, that ̺∗ cannot distinguish between an aggregate of few large crystallites
and a corresponding one with a greater number of smaller grains.† However, it does
detect changes in the relative size and number of grains, like those produced by
recrystallization (see figure 2). The effect is akin to changes in the concentrations
of chemical substances in a reactive mixture: instead of ‘chemical substances’ there

† This distinction would require a more intricate theory, in which the polycrystal is regarded
as a mixture not only of lattice orientations, but also of grain sizes. Attempts to construct such a
theory have been made (Placidi & Hutter 2005) but are beyond the scope of this work.
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= =

= =

Figure 2. Sketches of two groups of equivalent particles. Dark and light blocks represent
grains of two species. Upper row : no matter how the species are distributed, all three poly-
crystalline particles possess the same ̺∗, and consequently the same fabric. Lower row : like-
wise, these three polycrystalline particles share the same fabric, being in this sense indis-
tinguishable. However, they are different from the particles in the upper row (̺∗up 6= ̺∗low).
Thus, changes in the grain size distribution do indeed affect ̺∗ and the fabric.

are crystallites with distinct lattice orientations, while the ‘reaction fronts’ are re-
placed by moving grain boundaries. The increase in the mass density of one species
(with growing grains) is then supported by the decrease in the mass densities of
other species (with shrinking grains). In this manner, the species mass density ̺∗

reveals fabric changes by recrystallization, without any rotation of the lattice.

(c) Balance equations and the need of a constitutive theory

In order to determine the basic fields (2.1) we need an appropriate system of dif-
ferential equations, so-called field equations, the solution of which defines an admis-

sible thermodynamic process. In continuum thermodynamics, the derivation of such
field equations usually evolves through two steps. First, the evolution of the basic
fields is related to general transport phenomena, like heat flux, stress, etc., through
balance equations. Then, in a second step, these general transport phenomena are
represented as functions of the basic fields (2.1) by means of constitutive relations,
which epitomize the peculiar properties of a given material. The derivation of such
relations establishes what is called a constitutive theory. It is through the combi-
nation of the balance equations —which are fairly general in character— with the
particular constitutive relations, that we finally obtain a closed set of field equations,
that can (hopefully) be solved as part of a given initial/boundary-value problem.

In the specific case considered here, nine differential equations are necessary in
order to determine the nine scalar fields listed in (2.1). To derive such a set of field
equations, we start with the following balance equations of (cf. §3b of Part I)

• mass
˙̺∗ + ∂i (̺

∗u∗i ) = ̺∗Γ ∗ , (2.2)

• dislocations
ρ̇∗

D
+ ∂i (ρ

∗
D
u∗i + j∗

D i) = Π∗
D
, (2.3)

• spin momentum (angular momentum)

(̺∗Is∗i )̇ −
∂m∗

ij

∂xj
+ ∂j

(
̺∗Is∗i u

∗
j −̟∗

ij

)
− ̺∗c∗i = ǫijkt

∗
kj + ̺∗ν∗i , (2.4)
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6 S. H. Faria, G. M. Kremer & K. Hutter

• linear momentum

(̺∗vi)̇ −
∂t∗ij
∂xj

+ ∂j
(
̺∗vi u

∗
j − τ∗ij

)
− ̺∗g∗i = ̺∗κ∗i , (2.5)

• internal energy

(̺∗e∗)̇ +
∂q∗i
∂xi

+ ∂i (̺
∗e∗u∗i + ξ∗i )− ̺∗r∗

= ǫijks
∗
i t

∗
jk + t∗ij

∂vi
∂xj

+m∗
ij

∂s∗i
∂xj

+̟∗
ij∂js

∗
i + ̺∗ε∗ ,

(2.6)

where the incompressibility condition ∂vi/∂xi = 0 has already been taken into
account. For brevity, all fields occurring in the equations above have been defined
in Appendix A of Part I (Faria 2005a). Moreover, the differential operators

( )̇ :=
∂

∂t
+ vi

∂

∂xi
and ∂i :=

∂

∂ni

− ninj

∂

∂nj

(2.7)

denote, respectively, the material time derivative and the orientational differential

operator. The peculiar form of the latter results from the normalization condi-
tion nknk = 1 (cf. (3.4)I). A further consequence of this condition is the identity
niu

∗
i = 0, which allows us to rewrite the transition rate u∗i as (cf. (3.2)I and (3.3)I)

u∗i := ǫijks
∗
jnk = S∗

iknk . (2.8)

Finally, the second law of thermodynamics is expressed by the entropy inequality

(̺∗η∗)̇ +
∂φ∗i
∂xi

+ ∂i (̺
∗η∗u∗i + ϕ∗

i )− ̺∗s∗ = ̺∗ς∗ ≥ ̺∗δ∗ , (2.9)

(see §3c of Part I). For further reference, we recall also the tangentiality conditions

ni̟
∗
ij = niτ

∗
ij = niξ

∗
i = niϕ

∗
i = nij

∗
D i = 0 , (2.10)

which state that interspecies fluxes and stresses should be tangential to the spherical
surface of S2 (Faria 2001; Faria & Hutter 2002; cf. proposition 3.2 of Part I).

As already explained, the establishment of appropriate balance equations is just
the first step towards the determination of the basic fields (2.1). Indeed, inspection
of the balance equations proposed so far reveals that, in order to close the system
(2.2)–(2.9), constitutive relations are required for the fields

F
∗
σ =

{
j∗
D i, t

∗
ij , τ

∗
ij , κ

∗
i ,m

∗
ij , ̟

∗
ij , ν

∗
i , e

∗, q∗i , ξ
∗
i , ε

∗, η∗, φ∗i , ϕ
∗
i , δ

∗, Γ ∗, Π∗
D

}
, (2.11)

with σ = 1, 2, . . . , 63. In other words, these quantities must be expressed as func-
tionals of the basic fields (2.1) and their derivatives. Clearly, the explicit forms
of these functionals should depend on the material constitution, and are therefore
determined by means of a constitutive theory.

3. Constitutive theory for a class of polycrystalline media

We are now prepared to embark on the central objective of this work: the deriva-
tion of a thermodynamically-consistent constitutive theory for large polycrystalline
masses made of incompressible, transversely isotropic crystallites.

Article submitted to Royal Society



Creep and recrystallization of polycrystals – II. constitutive theory 7

(a) Constitutive functionals

In order to derive appropriate constitutive relations for the quantities listed in
(2.11), we start by considering a first order gradient theory in the thermomechanical
fields vi and T . This assumption, combined with Truesdell’s rule of equipresence

(Truesdell & Noll 1965; Müller 1985; Liu 2002) allows us to propose the following
isotropic, generic form of constitutive functionals

F
∗
σ(xi, t, nj) = Fσ

(
xi, t, nj ; pk, ̺

◦, ρ◦
D
, S◦

lm; vn, T,
∂vp
∂xq

,
∂T

∂xr

)
, (3.1)

where pi ∈ S2 and Q
◦ stands for the set of values of the quantity Q

∗ in all points
of the orientation space, i.e. Q◦= {Q∗(xi, t, pj) : pj ∈ S2}. Notice that the kind of
dependence on multiple orientations proposed in (3.1) suggests that the functionals
Fσ may eventually contain intricate integrals over S2. Further, we invoke the prin-

ciple of frame indifference (also called material objectivity, Truesdell & Noll 1965;
Müller 1985; Liu 2002) to deduce via standard arguments (see e.g. Faria 2001) that
the fields F

∗
σ should not depend explicitly on xi, t, and vi. Instead, a dependence

of F∗
σ on S◦

ij and ∂vk/∂xl is permitted only in the form

F
∗
σ(xi, t, nj) = Hσ

(
nj; pk, ̺

◦, ρ◦
D
, H◦

lm;T,D〈pq〉, T,r
)
, (3.2)

H∗
ij := S∗

ij −Wij , Wij :=
∂v[i

∂xj]
, Dij :=

∂v(i

∂xj)
, D〈ij〉 := Dij −

1
3Dkkδij ,

and T,i := ∂T/∂xi (cf. Appendix A of Part I). Additionally, incompressibility
(Dkk = 0) implies Dij = D〈ij〉. Clearly, (3.2) is still too difficult to deal with.

Hypothesis 3.1. Aiming at a simpler theory, we impose on (3.2) the assumptions:

1. Fore–aft symmetry: anti-parallel c axes are assumed to be indistinguishable. This
condition applied to (2.2)–(2.6) implies that spatial fluxes are even functions of ni

(t∗ij(−nk) = t∗ij(nk), q
∗
i (−nj) = q∗i (nj), etc.) while on the other hand interspecies

fluxes are odd functions of ni (τ
∗
ij(−nk) = −τ∗ij(nk), ξ

∗
i (−nj) = −ξ∗i (nj), etc.);

2. Replacement of H◦
ij by H∗

ij in (3.2): the constitutive dependence on the relative
spin velocity of disparate c axes is negligible. This expresses the trivial fact that
the material response depends only upon the current fabric of the medium;

3. Linearization of (3.2) with respect to T,i and H
∗
ij . Notice, however, that this as-

sumption cannot be applied to the entropy deviation rate δ∗: from proposition 3.1 of
Part I it follows that δ∗ stands for a difference between entropy production rates that
must be non-linear functions of their arguments, on account of dissipative effects.

Even after the simplifications above, the generic functionals Hσ in (3.2) still
contain unknown integrals over S2 involving ̺∗, ρ∗

D
, ni, and pj ∈ S2 that are rather

difficult to determine. This intricate dependence on multiple orientations can never-
theless be simplified by constraining such integrals to have a few pre-defined forms.
Thus, after Edelen (1976) we define a set of κ̃ + 1 independent scalar† fields B∗

�

into which all such integrals are subsumed (κ = 1, 2, . . . , κ̃, κ̃ + 1):

B∗
�(xi, t, nj) :=

∫

S2

B�

(
̺∗(xk, t, pl) , ρ

∗
D
(xm, t, pq) , nr , ps

)
d2p , (3.3)

† In principle, one could introduce also tensor-valued fields, but such a generalization would
render the constitutive equations much more intricate without noticeable benefit.
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8 S. H. Faria, G. M. Kremer & K. Hutter

where the functions B� are not necessarily continuous (though integrable) with
respect to pi ∈ S2. The microstructure parameters B∗

� are dimensionless variables,
complementary to ̺∗ and ρ∗

D
, the purpose of which is to provide a rough description

of the fabric and dislocation distribution over all species within a polycrystalline
particle. Owing to this, the quantities B∗

� can be classified into two categories: the
fabric (texture) parameters, which contain integrals involving ̺∗ but not ρ∗

D
; and

the dislocation parameters, which necessarily involve ρ∗
D
(and occasionally also ̺∗).

Remark 3.1. For the sake of simplicity (see §3c), we will suppose from now on
that the set {B∗

� : κ = 1, . . . , κ̃ + 1} comprises just one dislocation parameter,
viz. B∗

�

�+1 =: γ∗. All other κ̃ elements of the set are thus fabric parameters, i.e.
{B∗

� =: β∗
� : κ = 1, . . . , κ̃}. Explicit forms of β∗

� and γ∗ are not needed in the sequel
of this work, further details are left to the third part of this series (Faria 2005b).

Under the restrictions above, (3.2) reduces to the more conventional form

F
∗
σ(xi, t, nj) = Jσ

(
nj ; ̺

∗, ρ∗
D
, β∗
�, γ∗, H∗

lm;T,D〈pq〉, T,r
)
, (3.4)

where Jσ are now constitutive functions (not functionals), free of any cumbersome
integral dependence on multiple orientations. It is this last general form of the con-
stitutive relations which will be considered in the ensuing thermodynamic analysis.

(b) Exploitation of the second law of thermodynamics

To exploit the restrictions imposed by the entropy inequality (2.9) we employ
the method of Lagrange multipliers proposed by Liu (2002), which asserts that, for
the case in hand, the following inequality must be valid for arbitrary values of the
basic fields (2.1), even when external supplies are absent† (cf. (2.2)–(2.9))

(̺∗η∗)̇ +
∂φ∗i
∂xi

+ ∂i
(
̺∗η∗S∗

ijnj + ϕ∗
i

)
− ̺∗δ∗ − Λ∗

{
˙̺∗ + ∂i

(
̺∗S∗

ijnj

)

−̺∗Γ ∗

}
− Λ∗

D

{
ρ̇∗

D
+ ∂i

(
ρ∗

D
S∗
ijnj + j∗

D i

)
−Π∗

D

}
− Λ∗

i

{
(̺∗Is∗i )̇ −

∂m∗
ij

∂xj

+ ∂j
(
̺∗Is∗iS

∗
jknk −̟∗

ij

)
+ ǫijkt

∗
jk − ̺∗ν∗i

}
− λ∗i

{
(̺∗vi)̇ −

∂t∗ij
∂xj

(3.5)

+ ∂j
(
̺∗viS

∗
jknk − τ∗ij

)
− ̺∗κ∗i

}
− λ∗

{
(̺∗e∗)̇ +

∂q∗i
∂xi

+ ∂i
(
̺∗e∗S∗

ijnj + ξ∗i
)

−t∗ij
∂vi
∂xj

−m∗
ij

∂s∗i
∂xj

−̟∗
ij∂js

∗
i + t∗ijS

∗
ij − ̺∗ε∗

}
≥ 0 .

As usual, we assume that the Lagrangemultipliers Λ∗, Λ∗
D
, Λ∗

i , λ
∗
i , λ

∗ are functions of
the same variables listed in (3.4), and in addition also of vi, S

∗
ij , andWij , since objec-

tivity of the multipliers is not taken for granted a priori (Müller 1985; Liu 2002).
After application of the chain rule to the derivatives occurring in (3.5), we obtain

an inequality that is explicitly linear in the following quantities:

† Within the frames of a constitutive theory, the neglect of external supplies is based on the as-
sumption that external sources should not influence the material response (Müller 1985; Liu 2002).
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∂vi
∂t
,
∂̺∗

∂t
,
∂ρ∗

D

∂t
,
∂β∗

�

∂t
,
∂γ∗

∂t
,
∂S∗

ij

∂t
,
∂T

∂t
,
∂2vi
∂xj∂t

,
∂2T

∂xi∂t
,
∂̺∗

∂xi
,
∂ρ∗

D

∂xi
,

∂β∗
�

∂xi
,
∂γ∗

∂xi
,
∂S∗

ij

∂xk
,

∂2vi
∂xj∂xk

,
∂2T

∂xi∂xj
, ∂i̺

∗, ∂iρ
∗
D
, ∂iβ

∗
�, ∂iγ

∗, ∂iS
∗
jk .

Since the basic fields (2.1) are arbitrary in (3.5), so are the derivatives above. Hence,
in order to preserve the inequality (3.5), their respective coefficients must vanish:

λ∗i = 0 , Λ∗
i = 0 ,

∂φ∗(i

∂T,j)
− λ∗

∂q∗(i

∂T,j)
= 0 , (3.6)

∂̺∗η∗

∂̺∗
− λ∗

∂̺∗e∗

∂̺∗
= Λ∗ ,

∂̺∗η∗

∂ρ∗
D

− λ∗
∂̺∗e∗

∂ρ∗
D

= Λ∗
D
, (3.7)

∂φ∗(i
∂D〈j)k〉

− λ∗
∂q∗(i

∂D〈j)k〉
+

∂φ∗(i
∂H∗

j)k

− λ∗
∂q∗(i
∂H∗

j)k

= 0 , (3.8)

∂φ∗i
∂H∗

jk

− λ∗
∂q∗i
∂H∗

jk

= 1
2λ

∗ǫkjlm
∗
li , (3.9)

∂ϕ∗
i

∂H∗
jk

−λ∗
∂ξ∗i
∂H∗

jk

=Λ∗
D

∂j∗
D i

∂H∗
jk

+ 1
2λ

∗ǫkjl̟
∗
li−̺

∗

(
η∗−Λ∗−λ∗e∗−Λ∗

D

ρ∗
D

̺∗

)
δi[jnk] , (3.10)

∂η∗

∂A∗
µ

− λ∗
∂e∗

∂A∗
µ

= 0 , where A
∗
µ= {β∗

�, γ∗, H∗
ij , T,D〈ij〉, T,i } , (3.11)

∂φ∗i
∂B∗

τ

− λ∗
∂q∗i
∂B∗

τ

= 0 , where B
∗
τ = {̺∗, ρ∗

D
, β∗
�, γ∗} , (3.12)

∂ϕ∗
i

∂B∗
τ

− λ∗
∂ξ∗i
∂B∗

τ

= Λ∗
D

∂j∗
D i

∂B∗
τ

, (3.13)

with µ = 1, . . . , µ̃ and τ = 1, . . . , τ̃ ; given µ̃ = 13 + κ̃ and τ̃ = 3+ κ̃.
The remainder of the inequality (3.5) reads

(
∂φ∗i
∂T

− λ∗
∂q∗i
∂T

)
∂T

∂xi
+ λ∗

(
t∗〈ij〉D〈ij〉 − t∗[ij]H

∗
ij

)
+ λ∗̺∗ε∗ − ̺∗δ∗ + Λ∗̺∗Γ ∗

+Λ∗
D
Π∗

D
+ ̺∗

(
∂̂iη

∗ − λ∗∂̂ie
∗
)
S∗
ijnj + ∂̂iϕ

∗
i − λ∗∂̂iξ

∗
i − Λ∗

D
∂̂ij

∗
D i ≥ 0 ,

(3.14)

with ∂̂i denoting the constrained orientational gradient, which acts exclusively upon
the explicit dependence on ni (in the present case, ∂̂i corresponds to the orienta-
tional gradient ∂i with ̺

∗, ρ∗
D
, β∗

�, γ∗ and H∗
kl kept constant).

As stated in hypothesis 3.1, we are interested in a linearized theory on the
gradient of temperature and the relative c-axis spin velocity. Subjected to these
constraints, the most general representations of φ∗i and q∗i read (see e.g. Liu 2002)

φ∗i = −Φ∗
ij

∂T

∂xj
, and q∗i = −k∗ij

∂T

∂xj
, (3.15)

where we have already exploited the fore–aft symmetry discussed in hypothesis 3.1
(the negative signs in (3.15) come from usual convention). The coefficients Φ∗

ij and
k∗ij are functions of ̺

∗, ρ∗
D
, β∗

�, γ∗, T , D〈ij〉, and the dyadic ninj . Supposing that λ∗
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10 S. H. Faria, G. M. Kremer & K. Hutter

cannot be merely zero, it follows from (3.9) and (3.15) that the Voigt couple stress
must vanish, viz.

m∗
ij = 0 . (3.16)

Further, (3.6)3 and (3.15) imply

λ∗ = λ∗
(
ninj ; ̺

∗, ρ∗
D
, β∗
�, γ∗, T,D〈np〉

)
and Φ∗

(ij) = λ∗k∗(ij) , (3.17)

which combined with (3.8) and (3.12) yield

k∗(li)
∂λ∗

∂D〈jk〉
+ k∗(lj)

∂λ∗

∂D〈ik〉
= 0 and k∗(ij)

∂λ∗

∂B∗
τ

= 0 , (3.18)

with B
∗
τ defined in (3.12). Equation (3.18)1 can still be simplified as follows: by

cyclic permutation of the indices i,j and k we obtain two variants of this equation,
the sum of which can be subtracted from the original form (3.18)1 to give

k∗(lk)
∂λ∗

∂D〈ij〉
= 0 , implying, together with (3.18)2, that λ∗ = λ(T ) . (3.19)

A possible dependence of λ∗ upon ninj drops out since the only scalar invariant of
ninj is nini = 1. Hence, (3.8) and (3.12) can be rewritten as

∂

∂D〈ij〉
(φ∗k − λ q∗k) = 0 and

∂

∂B∗
τ

(φ∗i − λ q∗i ) = 0 , (3.20)

where (3.20)1 is derived from (3.8) following exactly the same procedure of indices
permutation already used in the derivation of (3.19)1. From (3.15) and (3.20) we
infer that the difference Φ∗

[ij] − λk∗[ij] can be a function only of T and the dyadic
ninj, implying that Φ∗

[ij] = λk∗[ij], since it is impossible to build an absolute skew-

symmetric tensor by using solely the variables T and ninj . Hence, from (3.15),
(3.17)2 and the rationale above, we finally conclude that

φ∗i = λ q∗i . (3.21)

On the other hand, (3.11) and (3.19)2 lead to

∂(η∗ − λ e∗)

∂C∗
κ

= 0 , where C
∗
κ = {β∗

�, γ∗, H∗
ij , D〈ij〉, T,i } , (3.22)

with κ = 1, . . . , κ̃; given κ̃ = 12 + κ̃, and also

∂(η∗ − λ e∗)

∂T
= − e∗

dλ

dT
. (3.23)

Refusing the possibility that λ be a mere constant, (3.22) and (3.23) result in

e∗ = e∗(̺∗, ρ∗
D
, T ) , η∗ = η∗(̺∗, ρ∗

D
, T ) . (3.24)

In order to identify λ(T ) properly, we recall that the normal components of the
spatial fluxes of heat and entropy are continuous across an impermeable ideal wall†
separating two different materials, so that we must have

[[φi]]e
W

i = 0 , and [[qi]]e
W

i = 0 , (3.25)

† Roughly, an ideal wall is defined as a wall that does not contribute to the thermodynamic
process, e.g. the wall of a perfect thermometer (Müller 1985; Hutter & Jöhnk 2004).
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Creep and recrystallization of polycrystals – II. constitutive theory 11

where eWi is the unit normal vector of the impermeable ideal wallW , and the double
brackets denote the difference between the observed values of the enclosed quantity
on both sides of the wall (Faria & Hutter 2002). After integration of (3.21) over all
orientations we get just (cf. §3d of Part I; see also Faria 2001; Faria et al. 2003)

φi = λ(T ) qi . (3.26)

Thus, by assuming that the material at one side of the wall is precisely the polycrys-
tal under study, while the medium at the other side is any of the many materials
which obey (3.26), it follows from (3.25) and (3.26) that [[λ(T )]] = 0, i.e. λ(T ) is
continuous across the wall. Further, since the material at the other side of the wall
is left unspecified, we conclude that λ(T ) cannot be a constitutive property, i.e. it is
a universal function of the absolute temperature. Consequently, either by assuming
that the unspecified material is an ideal gas, or simply by dimensional analysis, we
identify λ(T ) as the reciprocal of the temperature, viz.

λ(T ) =
1

T
. Hence, from (3.23) we have

∂ψ∗

∂T
= −η∗, (3.27)

which is the well-known relation between the specific entropy η∗ and the derivative
of the specific Helmholtz free energy, ψ∗ := e∗ − Tη∗, with respect to temperature.

Finally, the identification of Λ∗ and Λ∗
D
follows from (3.7), viz.

Λ∗(̺∗, ρ∗
D
, T ) = −

1

T

∂̺∗ψ∗

∂̺∗
, Λ∗

D
(̺∗, ρ∗

D
, T ) = −

1

T

∂̺∗ψ∗

∂ρ∗
D

. (3.28)

Hence, by introducing the abbreviation

ι∗i := ϕ∗
i −

ξ∗i
T

+
̺∗

T

∂ψ∗

∂ρ∗
D

j∗
D i (3.29)

we obtain from (3.10), (3.13), (3.27)1, and (3.28)

∂ι∗i
∂β∗

�

=
∂ι∗i
∂γ∗

= 0 and ̟∗
ij = ̟∗ǫijknk + π∗

ij , (3.30)

with ̟∗ := ̺∗
(
̺∗
∂ψ∗

∂̺∗
+ ρ∗

D

∂ψ∗

∂ρ∗
D

)
, π∗

ij := T ǫikl
∂ι∗j
∂H∗

kl

. (3.31)

Clearly, ̟∗ = ̟∗(̺∗, ρ∗
D
, T ), while π∗

ij = π∗
ij(nk; ̺

∗, ρ∗
D
, T,D〈pq〉).

(c) Analysis of equilibrium

It is an acknowledged fact that, rigorously, real polycrystals can never achieve a
state of absolute thermodynamic equilibrium.† Indeed, dislocations could not exist
under such a state (Suzuki et al. 1991; Weertman & Weertman 1992) and there is
no three-dimensional structure of grain boundaries sufficiently stable to sustain ab-
solute equilibrium (Humphreys & Hatherly 2004; Gottstein & Shvindlerman 1999).

Notwithstanding, we can conceive a ‘steady state’ of the microstructure which
corresponds to a sort of equilibrium on the macroscale. Such a situation is not with-
out precedents in nature. For instance, when a reactive mixture achieves chemical

† By ‘absolute thermodynamic equilibrium’ we mean the usual notion of equilibrium, viz. the
state of maximum entropy achieved by the material under the conditions of: (1) rigid-body motion,
(2) rigid microstructure, (3) uniform temperature field, (4) vanishing internal productions.
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12 S. H. Faria, G. M. Kremer & K. Hutter

equilibrium, its constituents do not necessarily stop reacting: rather, the chemical
reactions must proceed at the same rate in both directions (dissociation and forma-
tion of compounds), maintaining so the concentration of each substance constant.

A similar picture can be set up for polycrystals. Roughly, we introduce the
idea of pseudo-equilibrium of a polycrystal as the thermodynamic state in which
the material satisfies the conditions of absolute thermodynamic equilibrium on the

large scale only, whereas on the grain scale there prevails a quasi-static process in
which grain boundaries still can migrate and dislocations may persist —provided
that fabric, dislocation density, and grain size distribution remain invariant within
a reasonable time interval— so that ̺∗ and ρ∗

D
can be regarded as time-independent

fields during some appreciable period. We can formalize these ideas as follows:

Hypothesis 3.2. Dissipative processes tend to drive polycrystals towards a ther-
modynamic state of pseudo-equilibrium, defined by the following steps:

1. Identification of the sources of dissipation. Despite the great variety of dissipa-
tive processes taking place in a polycrystal, their sources are limited and easily
identifiable. In this theory, the four fundamental sources of dissipation are:

(a) deformation —described by D〈ij〉 and responsible, e.g., for the production of
dislocations and viscous effects;

(b) lattice rotation —described by H∗
ij and responsible, e.g., for the bending of

crystallites and the formation of subgrain boundaries;

(c) temperature inhomogeneity —described by ∂T/∂xi and responsible, e.g., for
heat and entropy fluxes;

(d) grain boundary migration —described by Γ ∗ and responsible, e.g., for grain
growth and dynamic recrystallization.

2. Physical interpretation of production terms. We recognize that the production
of dislocations, momenta, internal energy and entropy describe non-equilibrium
processes and must therefore vanish when the sources of dissipation disappear:

lim
X∗

χ→0
{Π∗

D
, κ∗i , ν

∗
i , ε

∗, ς∗, δ∗} = 0 , X
∗
χ =

{
Γ ∗, H∗

ij , D〈kl〉, T,p
}
. (3.32)

3. Definition of pseudo-equilibrium. A state of pseudo-equilibrium is achieved when
all sources of dissipation vanish, i.e.

Γ ∗|E = H∗
ij |E = D〈ij〉|E = T,i |E = 0 , (3.33)

where |E denotes the (pseudo-)equilibrium value of the respective quantity.

Remark 3.2. The requirement that fabric, dislocation density, and grain size dis-
tribution be steady in pseudo-equilibrium imposes a stringent constraint on the
migration of grain boundaries, viz. Γ ∗|

E
= 0, which demands in turn corresponding

restrictions upon the arrangement of dislocations in the polycrystal (otherwise we
could fancy a special distribution of dislocations that violates pseudo-equilibrium).
Thus, in contrast to other scalar variables (viz. ̺∗, ρ∗

D
, β∗

�, T ), the equilibrium values
of the dislocation parameter γ∗ are strictly limited. Now, by availing ourselves of the
arbitrariness left in the definition of γ∗, we can assume from now on that γ∗|E = 0.

Conditions (3.32) and (3.33) clearly suggest that it may be advantageous taking
the recrystallization rate Γ ∗ as an independent variable, instead of a constitutive

Article submitted to Royal Society



Creep and recrystallization of polycrystals – II. constitutive theory 13

function. To accomplish this change, we explore the fact that the migration of grain
boundaries is mainly driven by a favourable arrangement of dislocations, expressed
by the parameter γ∗, as discussed in the remark above. Thus, by assuming that
Γ ∗

(
ninj ; ̺

∗, ρ∗
D
, β∗
�, γ∗, H∗

lm;T,D〈pq〉, T,r
)
is invertible with respect to γ∗, we can

perform the change of variables γ∗→ Γ ∗ and redefine the general relation (3.4) as

G
∗
σ = Kσ

(
nj; ̺

∗, ρ∗
D
, β∗
�, Γ ∗, H∗

lm;T,D〈pq〉, T,r
)
, (3.34)

where G
∗
σ is similar to F

∗
σ, defined in (2.11), but with Γ ∗ replaced by γ∗. Further,

G
∗
σ

∣∣
E
= Kσ

(
nj; ̺

∗, ρ∗
D
, β∗
�, 0 , 0 ;T, 0 , 0

)
. (3.35)

An important consequence of the pseudo-equilibrium hypothesis stated above
is that fluxes of dislocations, heat, and entropy vanish at that state, i.e.

j∗
D i|E = q∗i |E = φ∗i |E = ξ∗i |E = ϕ∗

i |E = ι∗i |E = 0 . (3.36)

Indeed, for the spatial fluxes q∗i and φ∗i this result follows immediately from (3.15)
and (3.33), whereas for the interspecies fluxes j∗

D i, ξ
∗
i , ϕ

∗
i and ι∗i we must also take

(2.10) into account: choosing ι∗i as example, the general representation of this vector
which is linear in H∗

ij and T,i reads (cf. e.g. Liu 2002)

ι∗i = ι∗ni + ι∗(1)

ij H∗
jknk + ι∗(2)

ij D〈jk〉nk . (3.37)

Owing to (3.30)1, we find that ι∗ and ι∗(ζ)

ij (with ζ = 1, 2) are functions of ̺∗, ρ∗
D
,

T , D〈pq〉, and the dyadic nknl. With the help of (2.10), we can rewrite (3.37) as

ι∗i =
[
(δik − nink) ι

∗(1)

kj

]
H∗

jlnl +
[
(δik − nink) ι

∗(2)

kj

]
D〈jl〉nl , (3.38)

which automatically satisfies (3.36). By using identical arguments we can derive
similar representations for j∗

D i, ξ
∗
i , and ϕ

∗
i , keeping in mind that these fluxes may

depend also on β∗
� and Γ ∗, since no restriction analogous to (3.30)1 applies to them.

In order to exploit properly the residual inequality (3.14) we decompose the
symmetric part of the stress tensor, t∗(ij), into three terms: one corresponding to the

negative of an equilibrium isotropic pressure, p∗(̺∗, ρ∗
D
, β∗
�;T ), another one defining

an equilibrium anisotropic stress, ϑ∗(̺∗, ρ∗
D
, β∗
�;T )ninj , and a third one which is

related to dissipative effects, σ∗
ij(nkns; ̺

∗, ρ∗
D
, β∗
�, Γ ∗, H∗

lm;T,D〈pq〉, T,r ), i.e.

t∗(ij) = −p∗δij + ϑ∗ninj + σ∗
ij with σ∗

ij = σ∗
ji and σ∗

ij |E = 0 . (3.39)

By collecting the results derived so far, the residual inequality (3.14) reduces to

̺∗ς∗P = −
q∗i
T 2

∂T

∂xi
+

1

T

(
σ∗
〈ij〉D〈ij〉 − t∗[ij]H

∗
ij + ϑ∗niD〈ij〉nj

)

+
̺∗

T

(
ε∗ − Tδ∗ − ψ∗Γ ∗ − ̺∗

∂ψ∗

∂̺∗
Γ ∗ −

∂ψ∗

∂ρ∗
D

Π∗
D

)
+ ∂̂iι

∗
i ≥ 0 ,

(3.40)

where ς∗P = ς∗ − δ∗ (see proposition 3.1 of Part I).
Another crucial outcome of (3.32) and (3.33) is that the inequality (3.40) attains

its minimum value, namely zero, at equilibrium. In other words,

ς∗P |E
(
nkns; ̺

∗,ρ∗
D
, β∗
�, Γ ∗, H∗

lm;T,D〈pq〉, T,r
)

= ς∗P
(
nkns; ̺

∗, ρ∗
D
, β∗
�, 0 , 0 , T, 0 , 0

)
= 0 .

(3.41)
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14 S. H. Faria, G. M. Kremer & K. Hutter

Necessary conditions for the occurrence of this minimum are (cf. (3.32))

∂ς∗P

∂Γ ∗

∣∣∣∣∣
E

= 0 ,
∂ς∗P

∂H∗
ij

∣∣∣∣∣
E

= 0 ,
∂ς∗P

∂D〈ij〉

∣∣∣∣∣
E

= 0 ,
∂ς∗P

∂T,i

∣∣∣∣∣
E

= 0 , (3.42)

and also that the Hessian matrix
∂2ς∗P

∂Xξ∂Xχ

∣∣∣∣∣
E

be positive semi-definite. (3.43)

In effect, (3.42) exclude those terms in (3.40) that are linear in the dissipative
variables X

∗
χ =

{
Γ ∗, H∗

ij , D〈kl〉, T,p
}
. A short analysis of (3.15) and (3.39) reveals

that all terms in the first line of (3.40) are non-linear in X
∗
χ, but the last one, which

is linear in D〈ij〉. The situation is not so trivial in the second line of (3.40), since the
identification of its linear terms depends on the explicit representations of ε∗, δ∗,
Π∗

D
and ι∗i . Concerning the latter, we observe from (3.38) that a linear dependence

of the coefficients ι∗(1)

kj and ι∗(2)

kj upon nknj is dispensable, because it is already
included in the projector tensor (δik − nink). Hence, it suffices to write (ζ = 1, 2)

ι∗(ζ)

kj = ι∗(ζ)δkj + ι∗(ζ)

kj

∣∣
6 6E
, with ι∗(ζ)

kj

∣∣
E
= ι∗(ζ)δkj , (3.44)

where ι∗(ζ)(̺∗, ρ∗
D
;T ) and ι∗(ζ)

kj

∣∣
6 6E
(ninl; ̺

∗, ρ∗
D
;T,D〈pq〉) denote, respectively, the equi-

librium and non-equilibrium parts of the tensor coefficients ι∗(ζ)

kj . By inserting (3.44)
into (3.38), the derivative in the second line of (3.40) can be computed:

∂̂iι
∗
i = −3ι∗(2)niD〈ij〉nj +

(
∂̂iι

∗
i

)
NL
, with

(
∂̂iι

∗
i

)
NL

∣∣
E
= 0 , (3.45)

where ( · )NL indicates that the respective function is strictly non-linear in the
sources of dissipation —for (3.45) this means non-linear in D〈ij〉 and its products
with H∗

ij— cf. (3.30)1 and (3.38); see also Appendix A of Part I.
Finally, since the general representations of the production rates ε∗, δ∗ and Π∗

D

have all the same form, it suffices to present here just one of them, viz.

ε∗ = ε∗(1)Γ ∗ + ε∗(2)niD〈ij〉nj + ε∗
NL
, with ε∗

NL

∣∣
E
= 0 , (3.46)

where ε∗(ζ) = ε∗(ζ)(̺∗, ρ∗
D
, β∗
�;T ), ζ = 1, 2, while ε∗NL is a function of all variables

listed in (3.34) but T,i , and it depends non-linearly on Γ ∗, H∗
ij and D〈ij〉. Identical

relations hold also for Π∗
D
and δ∗ —keeping in mind that δ∗NL may depend non-

linearly upon all dissipative variables, including T,i— cf. hypothesis 3.1.
We are now ready to exploit (3.42). From (3.15), (3.39), (3.40), (3.45) and (3.46)

we infer that (3.42)2,4 are identically satisfied, while (3.42)1,3 imply, respectively,

ε∗(1) − Tδ∗(1) −Π∗(1)

D

∂ψ∗

∂ρ∗
D

= ψ∗ + ̺∗
∂ψ∗

∂̺∗
,

ε∗(2) − Tδ∗(2) −Π∗(2)

D

∂ψ∗

∂ρ∗
D

=
3T

̺∗
ι∗(2) −

ϑ∗

̺∗
.

(3.47)

To proceed with the analysis of (3.47), we must go beyond mathematics to pos-
tulate, on physical grounds, reasonable (though restrictive) interpretations of the
coefficients ε∗(ζ), δ∗(ζ), Π∗(ζ)

D , ϑ∗ and ι∗(2) (ζ = 1, 2). This will be done in §3d. Thus,
we conclude that inequality (3.40) reduces to the form

̺∗ς∗P = −
q∗i
T 2

∂T

∂xi
+

1

T

(
σ∗
〈ij〉D〈ij〉 − t∗[ij]H

∗
ij

)

+
̺∗

T

(
ε∗
NL

− Tδ∗
NL

−
∂ψ∗

∂ρ∗
D

Π∗
D NL

)
+
(
∂̂iι

∗
i

)
NL

≥ 0 ,

(3.48)
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which is strictly non-linear in the dissipative variables Γ ∗, H∗
ij , D〈ij〉 and T,i. Once

explicit representations for all constitutive functions appearing in (3.48) are postu-
lated, the (non-)positivity of transport coefficients could be examined via (3.43). We
will refrain, however, from dwelling longer upon general non-linear representations.

(d) Gibbs equation and recrystallization pressure

Recrystallization effects modelled by Γ ∗, Π∗
D
, ε∗ and δ∗ are in practice very intri-

cate and non-linear. Nevertheless, for a modest understanding of the physics behind
(3.47) it may suffice to consider an oversimplified, hypothetical annealing process
in a polycrystalline unit volume (figure 3). We focus attention on the migration of
a single grain boundary, that moves inwards a crystallite with c axis directed to
ni. In such an artless situation, ̺∗Γ ∗< 0 represents the mass lost by the shrinking
crystallite during grain boundary migration, per unit time.† The rate of disloca-
tion loss of such a contracting grain is ρ∗

D
Γ ∗: the total length of dislocation lines,

within a unit volume, that is swept by the moving grain boundary, per unit time.
Of course, the loss of dislocations implies a corresponding loss of stored energy and
entropy, expressed by the release of latent heat. According to the first and second
laws of thermodynamics (Kittel & Krömer 2000), this latent heat can be related
to the enthalpy change, or alternatively to the product of the entropy change and
temperature. Thus, we can write the energy loss rate as ̺∗h∗Γ ∗, and the entropy
loss rate as ̺∗η∗Γ ∗, with h∗ := e∗ + p∗/̺∗ denoting the specific species enthalpy.

Owing to (3.46) and the corresponding expressions for δ∗ and Π∗
D
, the example

illustrated in figure 3 motivates the identifications

ε∗(1) = h∗ , δ∗(1) = η∗ , Π∗(1)

D
= ρ∗

D
, (3.49)

in such a way that (3.47)1 leads to the notion of species pressure

p∗ = ̺∗
(
̺∗
∂ψ∗

∂̺∗
+ ρ∗

D

∂ψ∗

∂ρ∗
D

)
. (3.50)

This result is a compelling evidence for interpreting ρ∗
D
as the species dislocation

density. Indeed, if ρ∗
D
has the meaning of a dislocation density, then c∗

D
:= ρ∗

D
/̺∗

defines the species concentration of dislocations (per unit mass, i.e. with dimension
of length/mass). Now, if we perform the change of variables ρ∗

D
→ c∗

D
and redefine

the Helmholtz free energy as Ψ∗(̺∗, c∗
D
;T ) := ψ∗(̺∗, ̺∗c∗

D
;T ), we find

p∗ = ̺∗2
∂Ψ∗

∂̺∗
, (3.51)

which is the habitual definition of pressure, as a function of ̺∗, c∗
D
, and T . Further,

using c∗
D
as variable, we can derive from (3.27)2, (3.28) and (3.51) the differential

dΨ∗ = −η∗dT +
p∗

̺∗2
d̺∗ +

µ∗
D

c∗
D

dc∗
D
, (3.52)

where

µ∗
D
:= c∗

D

∂Ψ∗

∂c∗
D

= ρ∗
D

∂ψ∗

∂ρ∗
D

(3.53)

† Certainly, crystallites surrounding the shrinking grain have a corresponding mass gain, but
we are not interested in neighbouring grains at this moment, since they belong to other species.
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Figure 3. Hypothetical annealing process. Left : unit volume containing a shrinking crystal-
lite (gray). Right : after a unit time interval, the gray crystallite has lost the mass indicated
by the dashed region, viz. ̺∗Γ ∗< 0. Accordingly, the dislocation loss is given by ρ∗DΓ

∗.

defines the orientation-dependent ‘chemical’ potential of dislocations, or shortly
the species dislocation potential. Then, returning to ρ∗

D
as variable and using the

definition ψ∗ := e∗ − Tη∗, we can rewrite (3.52) in the form of the Gibbs equation

dη∗ =
1

T

(
de∗ −

p∗

̺∗2
d̺∗ −

µ∗
D

c∗
D

dc∗
D

)
. (3.54)

Finally, from the definitions of c∗
D
and µ∗

D
it is easy to rearrange (3.50) in the form

of the specific Gibbs free energy (or free enthalpy) of a species, viz.

g∗ := h∗− Tη∗ = ψ∗+
p∗

̺∗
=

∂̺∗ψ∗

∂̺∗
+ µ∗

D
= g∗

id
+ µ∗

D
. (3.55)

In this sense, µ∗
D
can be interpreted as the part of the specific Gibbs free energy

due to dislocations, whereas g∗
id
:= g∗− µ∗

D
is the specific Gibbs free energy of ideal

crystallites, i.e. crystallites without line defects.
In contrast to (3.47)1, there is no strong motivation for a physical interpretation

of (3.47)2. There are, however, some faint hints. Firstly, we rewrite (3.47)2 as

̺∗ε∗(2) − ̺∗Tδ∗(2) + ϑ∗ − c∗
D

−1µ∗
D
Π∗(2)

D
= 3T ι∗(2) . (3.56)

According to (3.30)1 and (3.44), the left-hand side of (3.56) is expected to be a
function of ̺∗, ρ∗

D
, β∗

� and T , whereas the right-hand side of (3.56) is a function
solely of ̺∗, ρ∗

D
and T . Secondly, it is not difficult to recognize in (3.56) that its

right-hand side is related to shear along basal planes (cf. (3.38) and (3.44)), while
its left-hand side is linked to extension in the c-axis direction, i.e. orthogonal to the
basal planes. These remarks, though feeble, serve as incentive to simplify (3.56) by
supposing that its both sides are equal to the same constant, namely zero. Thus,
by assuming in addition that ϑ∗ vanishes,† we obtain

Tδ∗(2)− ε∗(2)+ ρ∗
D

−1µ∗
D
Π∗(2)

D
= 0 , ϑ∗ = 0 , ι∗(2) = 0 . (3.57)

Further, it seems reasonable to assume, in a first approximation, that the production
of internal energy by straining along the c-axis direction should be proportional to
the production of dislocations. Now, the density of energy stored in dislocations can
be estimated by c̄ρ∗

D
Gb2, where b denotes the magnitude of the Burgers vector (a

material constant), c̄ ∼ 0.7 is a fitting parameter, and G(T ) is the shear modulus of
the material (Suzuki et al. 1991; Humphreys & Hatherly 2004). Thus, we propose

ε∗(2) = c̄Gb2Π∗(2)

D
, so that δ∗(2) =

(
c̄ρ∗

D
Gb2 − µ∗

D

) Π∗(2)

D

ρ∗
D
T

. (3.58)

† A brief analysis of (3.39)1 reveals that ϑ∗ represents an equilibrium tension along the c axis
that must vanish by definition, as long as creep is concerned (i.e., vanishing yield stress).
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Remark 3.3. Clearly, the production of dislocations by straining along the c-axis
direction should be strongly dependent on the slip activity in pyramidal planes. In
this sense, the coefficient Π∗(2)

D might be relevant when considerable pyramidal slide
occurs, but it is expected to be negligibly small for materials whose pyramidal slip
systems are hardly active (which is normally the case). Therefore, in most common
situations Π∗(2)

D may be neglected, in a first approximation.

Lastly, it remains to notice that the sum of the non-linear production rates in the
second line of (3.48) can be interpreted as the time rate of a kind of ‘non-equilibrium
pressure’, which we can write as

̺∗
(
ε∗
NL

− Tδ∗
NL

−
µ∗

D

ρ∗
D

Π∗
D NL

)
= P ∗Γ ∗ , with P ∗|

E
= 0 . (3.59)

We may call P ∗(nkns; ̺
∗, ρ∗

D
, β∗
�, Γ ∗, H∗

lm;T,D〈pq〉, T,r ) the driving pressure for

grain boundary migration, or shortly the recrystallization pressure. Actually, the
quantity P ∗ expresses markedly the duality of the theory: by invoking the polycrys-
talline nature of the material, P ∗ does represent the pressure acting on the grain
boundaries due to the stored deformation energy (Gottstein & Shvindlerman 1999;
Humphreys & Hatherly 2004); on the other hand, by viewing the material as a ‘mix-
ture of crystallites’, the quantity P ∗ can be understood as the affinity of a species,
while the mass production rate Γ ∗ plays the role of a ‘reaction rate’ (Atkins 1998).
Indeed, in both interpretations P ∗ may be associated to differences in the disloca-
tion potentials (i.e., the Gibbs free energies due to dislocations) of crystallites with
distinct c-axis orientations (see Part III, Faria 2005b).

Subjected to the above simplifications, the residual inequality (3.48) reduces to

T̺∗ς∗P = −
q∗i
T

∂T

∂xi
+ σ∗

〈ij〉D〈ij〉 − t∗[ij]H
∗
ij + P ∗Γ ∗ ≥ 0 . (3.60)

(e) Résumé of the general constitutive relations

For further reference, we collect here the main results of the general constitutive
theory for a class of incompressible polycrystalline media characterized by a single
crystallographic axis (the c axis).

⇛ fundamental scalar relations:

e∗ = e∗(̺∗, ρ∗
D
, T ) , η∗ = η∗(̺∗, ρ∗

D
, T ) , ψ∗ := e∗− Tη∗ ,

c∗
D
:=

ρ∗
D

̺∗
, Ψ∗(̺∗, c∗

D
, T ) := ψ∗(̺∗, ̺∗c∗

D
, T ) , η∗ = −

∂Ψ∗

∂T
= −

∂ψ∗

∂T
,

p∗ = ̺∗2
∂Ψ∗

∂̺∗
= ̺∗

(
̺∗
∂ψ∗

∂̺∗
+ ρ∗

D

∂ψ∗

∂ρ∗
D

)
, µ∗

D
:= c∗

D

∂Ψ∗

∂c∗
D

= ρ∗
D

∂ψ∗

∂ρ∗
D

,

h∗ := e∗+ p∗/̺∗ , g∗ := h∗− Tη∗ =
∂̺∗ψ∗

∂̺∗
+ µ∗

D
,

dη∗ =
1

T

(
de∗ −

p∗

̺∗2
d̺∗ −

µ∗
D

c∗
D

dc∗
D

)
,

(3.61)

⇛ dislocation parameter:

γ∗ = γ∗(nkns; ̺
∗, ρ∗

D
, β∗
�, Γ ∗, H∗

lm;T,D〈pq〉, T,r ) , (3.62)
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⇛ fluxes and stresses:

t∗ij = −p∗δij + σ∗
ij + t∗[ij] , σ∗

ij = σ∗
ji , m∗

ij = 0 ,

φ∗i =
q∗i
T
, q∗i = −k∗ij

∂T

∂xj
, ι∗i := ϕ∗

i −
1

T

(
ξ∗i −

µ∗
D

c∗
D

j∗
D i

)
,

ϕ∗
i = (δik − nink)

(
ϕ∗(1)

kj H∗
jl + ϕ∗(2)

kj D〈jl〉

)
nl ,

ξ∗i = (δik − nink)
(
ξ∗(1)

kj H∗
jl + ξ∗(2)

kj D〈jl〉

)
nl , (3.63)

j∗
D i = (δik − nink)

(
j∗(1)

D kj H
∗
jl + j∗(2)

D kj D〈jl〉

)
nl ,

ι∗i = (δik − nink)
(
ι∗(1)

kj

∣∣
6 6E
H∗

jl + ι∗(2)

kj

∣∣
6 6E
D〈jl〉

)
nl ,

̟∗
ij = p∗ǫijknk + π∗

ij , π∗
ij := T ǫikl

∂ι∗j
∂H∗

kl

= T ǫiklnl (δjp − njnp) ι
∗(1)

pk

∣∣
6 6E
,

τ∗ij = (δik − nink)
(
τ∗(1)δjl + τ∗(2)D〈jl〉

) ∂T
∂xk

nl ,

⇛ production rate terms:

ε∗ = h∗Γ ∗+ c̄Gb2Π∗(2)

D
niD〈ij〉nj + ε∗NL ,

Π∗
D
= ρ∗

D
Γ ∗+Π∗(2)

D
niD〈ij〉nj +Π∗

D NL
,

δ∗ = η∗Γ ∗+
(
c̄ρ∗

D
Gb2 − µ∗

D

) Π∗(2)

D

ρ∗
D
T
niD〈ij〉nj + δ∗

NL
,

̺∗
(
ε∗
NL

− Tδ∗
NL

−
µ∗

D

ρ∗
D

Π∗
D NL

)
= P ∗Γ ∗ ,

κ∗i = κ∗ij
∂T

∂xj
, ν∗i = ǫijk

(
ν∗(1)

lj H∗
kl+ ν∗(2)

lj D〈kl〉

)
.

(3.64)

In the equations above,

• σ∗
ij and t∗[ij] are non-equilibrium functions of all variables listed in (3.34), with

strictly linear dependence upon H∗
ij and T,i , cf. (3.33), (3.39)3 and (3.41);

• δ∗
NL

is a non-equilibrium function of all variables listed in (3.34), with strictly
non-linear dependence upon the sources of dissipation Γ ∗, H∗

ij , D〈ij〉 and T,i ;

• P ∗ is a non-equilibrium function of all variables listed in (3.34), with eventual
non-linear dependence upon the sources of dissipation Γ ∗, H∗

ij , D〈ij〉 and T,i ;

• ε∗NL and Π∗
D NL

are non-equilibrium functions of ninj , ̺
∗, ρ∗

D
, β∗

�, T, as well as Γ ∗

and D〈ij〉, with strictly non-linear dependence upon these last two variables;

• κ∗ij and ν∗(ζ)

ij (with ζ = 1, 2) are functions of all variables listed in (3.34);

• k∗ij , ϕ
∗(ζ)

ij , ξ∗(ζ)

ij , j∗(ζ)
D kj and τ∗(ζ) (with ζ = 1, 2) are functions of ninj , ̺

∗, ρ∗
D
, β∗

�,
T , Γ ∗ and D〈ij〉 ;

• ι∗(ζ)

ij

∣∣
6 6E
(with ζ = 1, 2) are non-equilibrium functions of T , D〈ij〉 and ninj ;

• Π∗(2)

D depends solely upon ̺∗, ρ∗
D
, β∗

� and T ;

• G is simply a function of T , while b and c̄ are constants.
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Once we know the explicit forms of the microstructure parameters γ∗ and β∗
�, as

well as all quantities listed above, insertion of (3.61)–(3.64) into (2.2)–(2.6) provides
a closed set of field equations for the basic fields ̺∗, ρ∗

D
, s∗i , vi, T and Γ ∗.

4. Conclusion

By combining the theory of mixtures with continuous diversity (Faria 2001) with the
celebrated method of Lagrange multipliers (Liu 2002), we were able to derive a ther-
modynamically consistent constitutive theory for large polycrystalline masses made
of transversely isotropic grains, with regard of incompressibility, strain-induced
anisotropy and recrystallization, under the constraint of negligible grain shifting
(i.e. no ‘superplastic flow’, cf. remark 3.2 of Part I and remark 2.1 of Part III).
Owing to the fabric (texture) changes by lattice rotation, as well as the bend-
ing/twisting of crystallites by polygonization, the polycrystal and its composing
grains were modelled as polar media (Truesdell & Noll 1965; Faria & Hutter 2002).

Relevant results of the constitutive theory include the vanishing of the Voigt
couple stress m∗

ij , viz. (3.63)3, and the validity of the usual Clausius–Duhem hy-
pothesis φ∗i = q∗i /T (see (3.63)4,5) relating heat and entropy fluxes.† In contrast,
a similar hypothesis does not hold for the interspecies fluxes of heat and entropy,
ξ∗i and ϕ∗

i , cf. (3.63)6. We found also that all thermodynamic potentials, viz. e∗,
ψ∗, g∗ and h∗, depend solely on the temperature T and the species densities of
mass ̺∗ and dislocations ρ∗

D
. This is a welcome result, because it renders the con-

struction of equations of state a relatively easy task. Further, we discovered that
dislocations contribute to the Gibbs free energy of the grains through the disloca-
tion potential µ∗

D
. This quantity is for polycrystalline media the counterpart to the

chemical potential of physical chemistry (Atkins 1998), being therefore essential
for the equilibrium thermodynamics of the polycrystal, as evidenced by the Gibbs
equation (3.54). Additionally, there exists a non-equilibrium ‘pressure’ responsible
for the migration of grain boundaries, called recrystallization pressure P ∗. It is a
constitutive function, given by (3.59). Finally, polygonization is expressed by the
orientational dependence of the c-axis spin velocity s∗i (cf. (2.8); see also Faria &
Kipfstuhl 2004). Such a dependence is caused by bending and twisting torques mod-
elled by the interspecies couple stress ̟∗

ij (cf. (2.4) and §3b of Part I; see Placidi
et al. 2004). In this sense, ̟∗

ij may also be called the polygonization tensor.
The results derived so far are rather general and suit to a whole class of polycrys-

tals. Several simplifications can still be brought into effect by selecting a particular
material. An example of such simplifications is given in Part III of this series (Faria
2005b) where this constitutive theory is applied to the dynamics of ice sheets.

This work was started by KH and SHF in Darmstadt (1999). It was resumed by all three
authors in Darmstadt (2001 and 2003), by GMK and SHF in Curitiba (2003), and by
SHF during the EPICA–DML 2003/04 deep-drilling expedition in Dronning Maud Land,
Antarctica. It was completed by SHF in Leipzig (2004). The authors are grateful to L.
Placidi, S. Kipfstuhl, I. Hamann, H. Miller and N. Azuma for discussions on the topic.
Support is acknowledged from Brazil (CAPES, CNPq) and Germany (DAAD) as well

† The vanishing of the Voigt couple stress is partially caused by the neglect of a constitutive
dependence upon ∂s∗i /∂xj (cf. (3.1)), which is a reasonable assumption in a first order gradient
theory as long as the spin velocity S∗

ij is of same order as the vorticity Wij . Also the validity of

the Clausius–Duhem hypothesis is a consequence of the vanishing of grain shifting (§2a) and the
constraints assumed in hypothesis 3.1. None of these results are expected to hold in general.
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