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This work sets forth the first thermodynamically consistent constitutive theory for
ice sheets undergoing strain-induced anisotropy, polygonization and recrystalliza-
tion effects. It is based on the notion of a mixture with continuous diversity, by
picturing the ice sheet as a ‘mixture of lattice orientations’. The fabric (texture)
is described by an orientation-dependent field of mass density which is sensitive
not only to lattice spin, but also to grain boundary migration. No constraint is
imposed on stress or strain of individual crystallites, aside from the assumption
that basal slip is the dominant deformation mechanism on the grain scale. In spite
of the fact that individual ice crystallites are regarded as micropolar media, it is
inferred that couples on distinct grains counteract each other, so that the ice sheet
behaves on a large scale as an ordinary (non-polar) continuum. Several concepts
from materials science are translated to the language of continuum theory, like e.g.
lattice distortion energy, grain boundary mobility and Schmid tensor, as well as
some fabric (texture) parameters like the so-called degree of orientation and spher-
ical aperture. After choosing suitable expressions for the stored energy and entropy
of dislocations, it is shown that the driving pressure for grain boundary migration
can be associated to differences in the dislocation potentials (viz. the Gibbs free en-
ergies due to dislocations) of crystallites with distinct c-axis orientations. Finally,
the generic representation derived for the Cauchy stress is compared with former
generalizations of Glen’s flow law, namely the Svendsen–Gödert–Hutter stress law
and the Azuma–Goto-Azuma flow law.

Keywords: ice; thermodynamics; mechanics; continuous diversity;

recrystallization; polygonization

1. Motivation

Ice sheets are huge ice masses of continental size. Presently there exist only two
of them on the poles, covering Antarctica and Greenland, but there are indis-
putable evidences for the past existence of other equally large ice sheets cover-
ing extensive regions of North America, Europe and Asia about 100–20 thousand
years ago (Siegert 2001). By the time of maximal volume, these ice sheets might
have contained more than three times the actual amount of ice found on Earth.
Clearly, the withdrawal of such a gigantic mass of ice cannot be explained simply

† Dedicated to Kolumban Hutter on the occasion of his 65th birthday.
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2 S. H. Faria

by melting —the ice had to have flowed away towards the ocean, under the action
of its own weight, creeping like a viscous fluid along the millennia. And it continues
to flow from the remaining ice sheets, at a pace ranging from a few up to some
hundreds of metres per year.

Among the greatest complications in the modelling of ice sheet dynamics are
the huge time scales and the relatively high temperatures involved in the creeping
process, which permit a ceaseless changing of the ice microstructure by flow-induced
anisotropy and recrystallization phenomena. Such microstructural changes may en-
hance the ice flow rate by three fold or more (Budd & Jacka 1989). In spite of the
fact that recrystallization phenomena have essentially a thermodynamic character,
most polycrystalline ice sheet models proposed so far have been based on ad hoc
theories, without corroboration of a rigorous thermodynamic analysis (e.g. Van der
Veen & Whillans 1994; Castelnau et al. 1997; Staroszczyk & Morland 2001). The
objective of the present study is to fill this gap, by setting forth a novel approach to
the thermomechanics of polycrystalline ice sheets, based on the continuum theory
of polycrystalline media described in Parts I and II of this series (Faria 2006; Faria
et al. 2006). The cornerstone of the current approach is the characterization of the
polycrystal as a mixture with continuous diversity (Faria 2001), more precisely a
‘mixture of lattice orientations’. Details of this characterization and its fundamental
equations have already been discussed in Parts I and II. Therefore, for conciseness,
they will not be repeated here.

The notation follows the scheme outlined in Appendix A of Part I. In particular,
when some reference to equations from the parts I and II is needed, the superscripts
‘i’ and ‘ii’ will be added to the respective equation tags: e.g. (3.1)II refers to the
first equation of the third section of Part II.

2. Basic assumptions

From a thermomechanical point of view, polar ice grains manifest transversely
isotropic response (figure 1), which stems from a combination of their lattice symme-
try (hexagonal system, dihexagonal dipyramidal class) with the peculiar behaviour
of dislocations in ice (Hobbs 1974; Hondoh 2000). Consequently, in thermomechani-
cal applications just one crystallographic axis, called c-axis, completely describes the
orientation of the ice lattice. By adopting this characterization, we are in practice
conforming with the standard belief that the deformation of polar ice is dominated
by basal slip (Duval 2000; Faria & Kipfstuhl 2004), i.e. by dislocation glide along
planes orthogonal to the local c-axis direction. These facts indicate that the consti-
tutive theory developed in Part II is well-suited for ice sheets. However, to yield a
tractable theory we need to introduce appropriate simplifying assumptions.

(a) Thermodynamic processes in polycrystalline ice sheets

In the simplest description of an ice sheet as a cold,† amorphous, isotropic and
incompressible medium (Hutter 1983), a thermodynamic process is determined by
the specification of four scalar fields, viz. the temperature T (xi, t) and the three
components of the velocity vector vi(xj , t), at every point xj and time instant t.

† As usual, ‘cold ice’ means ice without melt water. The modelling of ice with melt water (viz.
‘temperate ice’) would require a multiphase theory which is out of the scope of this work.
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Creep and recrystallization of polycrystals – III. ice sheets 3

Figure 1. Left : crystallographic planes of ice drawn by Nordenskjöld (1861). Basal planes,
denoted by ‘c’, lie orthogonal to the main symmetry axis of the lattice, the c-axis. Slip
activity in polar ice is believed to be concentrated in such planes. Further planes identified
in the drawing are the prismatic (denoted by ‘m’) and the pyramidal (inclined, denoted by
‘r’, ‘s’, ‘t’). Centre: Sketch of the basal plane and principal crystallographic axes. Right : ice
crystallite in an Antarctic sample from 1156 m depth of the EPICA–DML ice core. Basal
planes are visible in series of slip bands (faint fringes) formed during in situ deformation.

Nevertheless, the high-temperature creep of ice sheets is in fact very sensitive to the
fabric (or texture‡) of the material, i.e. to the orientational distribution of c-axes.
Hence, a precise description of the ice sheet dynamics requires the consideration
of evolving anisotropy, which results from changes in the microstructure via lattice

rotation, recovery and recrystallization. All these effects have already been consid-
ered in the general constitutive theory for polycrystals developed in Part II (Faria
et al. 2006), so that we may follow the same scheme here by supposing that a ther-

modynamic process in a polycrystalline ice sheet is characterized by the nine basic
fields of

̺∗(xi, t, nj) mass density,

ρ∗
D
(xi, t, nj) dislocation density,

s∗i (xj , t, nk) c-axis spin velocity,

vi(xj , t) translational velocity,

T (xi, t) absolute temperature,

(2.1)

where the superscript ‘∗’ tags those fields that depend not only on position and time,
but also on c-axis orientation. The latter is denoted by the unit orientation vector

ni ∈ S2, which is the counterpart of the position vector xi ∈ R
3 in the orientation

space S2 (see §2c of Part I). Following the terminology of Parts I and II, orientation-
dependent fields are also named species fields. On this account, the species mass
density ̺∗ portrays the fabric by standing for the net mass of all crystallites whose
c-axes are parallel to ni, within a unit polycrystalline volume. The rotation rate of
the lattice is measured by the c-axis spin velocity s∗i , while ρ

∗
D
represents the total

length of dislocations, per unit polycrystalline volume, found in those grains with
c-axes directed to ni. Finally, the fields of velocity vi and temperature T describe
the ordinary thermomechanics of the ice sheet, already mentioned.

Remark 2.1. The current theory may be classified as a ‘macroscopic’ continuum
model, in which the deformation of individual grains is neither controlled nor deter-

mined. Indeed, each ice-sheet particle should by definition contain a huge number
of grains (cf. footnote 2 in §1 of Part I), so that inhomogeneities on the grain

‡ As in the former parts of this series, the terms texture and fabric are used as synonyms to
the preferred orientations of the lattice. No particular word is adopted for grain sizes and shapes.

Article submitted to Royal Society



4 S. H. Faria

scale are smeared out within every particle and are therefore irrelevant for the
large-scale description. In this regard, the assumption of negligible grain shifting,
v∗i (xj , t, nk) ≡ vi(xj , t), has no relation at all to any kind of ‘Taylor-type’ constraint
on the deformation of individual grains, seeing that v∗i is just a ‘macroscopic’ av-

erage (over an ice-sheet particle) of the velocities of all grains with c-axes in the
ni-direction. Rather, the assumption v∗i = vi simply states that ice grains do not
permeate through the polycrystalline matrix, which is certainly valid for polar ice
sheets as long as they do not flow in a superplastic regime (cf. remark 3.5 of Part I;
Duval 2000; Duval & Montagnat 2002; Faria et al. 2003).

(b) Thermomechanical simplifications

In order to determine the basic fields (2.1) we need suitable field equations. In
principle, such equations should stem from a combination of the balance equations
(2.2)II–(2.6)II with the constitutive relations (3.61)II–(3.64)II presented in Part II.
Nevertheless, in spite of the fact that the constitutive relations (3.61)II–(3.64)II are
quite general and rigorous, they are definitely too complex to be adopted in practical
applications. For instance, there is an abundance of transport coefficients —many
of them tensor-valued— the explicit forms of which can hardly be determined by
experiments or guesswork. Further simplifications are still needed, fortunately many
are sensible for ice sheet flow, as described below.

1. Negligible c-axis inertia. This is not particular to ice, but rather a general feature
of all crystalline solids: crystallographic axes do not continue rotating after cessation
of the couples acting on them. Hence, we may set I = 0 in (2.2)II–(2.6)II.

2. On external supplies. In ice-sheet dynamics, relevant body supplies are due to
gravity and solar/geothermal radiation. It is obvious that gravity acts equally upon
all grains, regardless of c-axis orientation. Likewise, the absorption of radiation
energy by polar ice can be considered (for the purposes of this theory) virtually
independent of the fabric (Hobbs 1974; Faria et al. 2003). Consequently, the external
supplies appearing in (2.2)II–(2.6)II and (2.9)II reduce to c∗i = 0 , g∗i = gi, and r

∗ = r,
with an entropy supply in the ordinary form s∗ = s = r/ T .

3. Conservation of species linear momentum. As explained in §3b of Part I, the
vectors κ∗i and ∂jτ

∗
ij appearing in (3.23)I and (2.5)II can be interpreted as pro-

duction rates of linear momentum associated to high- and low-angle interactions,
respectively. Such productions should play an important role when grain shifting is
relevant, viz. v∗i 6= vi. However, for ice sheets this is not the case (cf. remark 2.1) and
therefore the relevance of κ∗i and τ∗ij becomes doubtful. Furthermore, from (3.63)II13
and (3.64)II5 we realize that —in the absence of grain shifting— the constitutive
equations for κ∗i and τ∗ij are demoted to productions of linear momentum by gradi-
ents of temperature: a kind of thermomechanical coupling irrelevant for ice sheets.
On these grounds it makes sense to impose κ∗i = τ∗ij = 0 .

4. Non-linearity of dislocation production by straining. As stated in remark 3.3 of
Part II, the production of dislocations by straining along the c-axis direction should
be strongly dependent on the slip activity in pyramidal planes, so that it is expected
to vanish in materials whose pyramidal slip systems are hardly active, like polar ice
(Hondoh 2000). Thus, for ice sheets we may set Π∗(2)

D = 0 in (3.64)II2 .

5. On interspecies fluxes. The interspecies fluxes ξ∗i and ϕ∗
i appearing in (2.6)II

and (2.9)II should describe the transport of energy and entropy by dislocations
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Creep and recrystallization of polycrystals – III. ice sheets 5

moving along bent crystallites and through subgrain boundaries, i.e. they should
be proportional to the interspecies flux of dislocations j∗

D i (cf. (2.3)
II). In ice sheets,

bent crystallites and subgrain boundaries may indeed be found throughout (Faria
& Kipfstuhl 2004), but most dislocations are expected to be geometrically necessary

(Montagnat et al. 2003) and consequently not freely mobile. Thus, it seems fair to
suppose that j∗

D i = ξ∗i = ϕ∗
i = ι∗i = 0 holds for polar ice. As a consequence, it

follows from (3.63)II12 that πij = 0.

6. Exclusion of crossed products of non-equilibrium variables. Even after all the sim-
plifications discussed so far, the set of field equations derived from (2.2)II–(2.6)II,
(2.9)II and (3.61)II–(3.64)II is still formidable. The reason is the presence of crossed
products like D〈ij〉H

∗
jk, D〈ij〉T,j , etc. Such products are difficult to interpret phys-

ically and make the mathematics quite involved. Therefore, for practical reasons
it is advisable to discard crossed terms from all constitutive equations listed in
(3.61)II–(3.64)II. It should be noticed that this exclusion does not remove entirely
the couplings between the field equations. Moreover, the non-linearity of the con-
stitutive functions remains in self-products like D〈ik〉D〈kj〉, (Γ

∗)2/3, etc.

3. A simple continuum theory for polycrystalline ice sheets

The simplifications discussed in the last section are listed in reversed order of gen-
erality: the first ones are quite obvious and general, whereas the last ones are some-
what more restrictive and specialized. In particular, the last assumption applied to
(3.60)II yields conspicuous restrictions upon the constitutive relations for σ∗

ij , t
∗
[ij],

q∗i and P ∗, since crossed products of non-equilibrium variables are excluded from
(3.60)II. The results of these simplifications are listed below.

(a) Constitutive equations for polycrystalline ice sheets

From the simplifications put forward in the last section, we conclude that
(3.61)II–(3.64)II reduce to (see also Appendix A of Part I)

⇛ fundamental scalar relations:

e∗ = e∗(̺∗, ρ∗
D
, T ) , η∗ = η∗(̺∗, ρ∗

D
, T ) , ψ∗ := e∗− Tη∗ ,

c∗
D
:=

ρ∗
D

̺∗
, Ψ∗(̺∗, c∗

D
, T ) := ψ∗(̺∗, ̺∗c∗

D
, T ) , η∗ = −∂Ψ

∗

∂T
= −∂ψ

∗

∂T
,

p∗ = ̺∗2
∂Ψ∗

∂̺∗
= ̺∗

(
̺∗
∂ψ∗

∂̺∗
+ ρ∗

D

∂ψ∗

∂ρ∗
D

)
, µ∗

D
:= c∗

D

∂Ψ∗

∂c∗
D

= ρ∗
D

∂ψ∗

∂ρ∗
D

, (3.1)

h∗ := e∗+ p∗/̺∗ , g∗ := h∗− Tη∗ =
∂̺∗ψ∗

∂̺∗
+ µ∗

D
,

dη∗ =
1

T

(
de∗ − p∗

̺∗2
d̺∗ − µ∗

D

c∗
D

dc∗
D

)
,

⇛ dislocation parameter:

γ∗ = γ∗(nkns; ̺
∗, ρ∗

D
, β∗
�, Γ ∗, H∗

lm;T,D〈pq〉, T,r ) , (3.2)
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6 S. H. Faria

⇛ fluxes and stresses:

t∗ij = −p∗δij + σ∗
ij + t∗[ij] , σ∗

ij = µ∗
ijklD〈kl〉 , t∗[ij] = θ∗ijklH

∗
kl ,

m∗
ij = ϕ∗

i = ξ∗i = j∗
D i = τ∗ij = 0 ,

φ∗i =
q∗i
T
, q∗i = −k∗ij

∂T

∂xj
, ̟∗

ij = p∗ǫijknk ,

(3.3)

⇛ production rate terms:

ε∗ = h∗Γ ∗ + ε∗NL , Π∗
D
= ρ∗

D
Γ ∗ +Π∗

D NL
, δ∗ = η∗Γ ∗ + δ∗NL ,

̺∗
(
ε∗
NL

− Tδ∗
NL

− µ∗
D

ρ∗
D

Π∗
D NL

)
= P ∗Γ ∗ ,

κ∗i = 0 , ν∗i = ǫijkν
∗(1)

lj H∗
kl+N∗

i , N∗
i := ǫijkν

∗(2)

lj D〈kl〉 ,

(3.4)

where e∗, η∗, ψ∗, c∗
D
, µ∗

D
, h∗ and g∗ are the specific species fields of internal energy,

entropy, Helmholtz free energy, concentration of dislocations, dislocation poten-
tial, free enthalpy and Gibbs free energy, respectively. Further, t∗ij , p

∗, σ∗
ij , m

∗
ij ,

φ∗i and q∗i stand for the species fields of Cauchy stress, thermodynamic pressure,
symmetric dissipative stress, Voigt couple stress, entropy and heat fluxes, while
D〈ij〉 is the strain rate. Interspecies fluxes of entropy, heat, dislocations, linear and
angular momenta are given by ϕ∗

i , ξ
∗
i , j

∗
D i, τ

∗
ij and ̟∗

ij , respectively, while ε
∗, Γ ∗,

Π∗
D
, δ∗, κ∗i and ν∗i denote the specific production rates of internal energy, mass,

dislocations, entropy, linear and angular momenta, with (·)NL indicating strictly
non-linear dependence on dissipative variables. Finally, P ∗ is the driving pressure
for recrystallization. (cf. Part II).

By combining condition 6 of §2b with (3.60)II, (3.3) and (3.4) we infer
{
µ∗
ijkl , ν

∗(2)

ij

}
= Mχ

(
̺∗, ρ∗

D
, β∗
�, T,D〈ij〉, ninj

)
, χ = 1, 2, . . .90 , (3.5)

{
θ∗ijkl , k

∗
ij , ν

∗(1)

ij

}
= Nλ (̺

∗, ρ∗
D
, β∗
�, T, ninj) , λ = 1, 2, . . . 99 . (3.6)

From (3.6) follow the explicit representations

θ∗ijkl = 2 θ∗(1)δkiδjl + θ∗(2)nkn[iδj]l ,

k∗ij = k∗(1)δij + k∗(2)ninj , ν∗(1)

lj = ν∗(1,1)δlj + ν∗(1,2)nlnj ,
(3.7)

where the scalar coefficients θ∗(ζ), k∗(ζ), ν∗(1,ζ) (ζ = 1, 2) depend solely on ̺∗, ρ∗
D
,

β∗
�, and T . In contrast, explicit expressions for µ∗

ijkl and ν
∗(2)

ij are in general quite
intricate, owing to their non-linear dependence on D〈ij〉 and ni, so that they are
useful only in specialized cases (cf. §4). Instead, it is often simpler to work with the
dissipative stress σ∗

ij and the interaction couple N∗
i , which from (3.3)2, (3.4)7 and

(3.5) have the general representations (cf. Liu 2002)

σ∗
ij = σ∗(1)δij + σ∗(2)n〈inj〉 + σ∗(3)D〈ij〉

+ σ∗(4)D〈ik〉D〈kj〉 + σ∗(5)n〈kn(i〉D〈j)k〉 + σ∗(6)D〈ik〉D〈jl〉n〈knl〉 ,
(3.8)

with σ∗(1)|
E
= σ∗(2)|

E
= 0, and

N∗
k =N∗(1)ǫijk niD〈jl〉nl

+N∗(2)ǫijk niD〈jl〉D〈lp〉np +N∗(3)ǫijk nqD〈qi〉D〈jl〉D〈lp〉np ,
(3.9)
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where all scalar coefficients, viz. σ∗(τ) (τ = 1, . . . , 6) and N∗(ξ) (ξ = 1, 2, 3), are func-
tions of ̺∗, ρ∗

D
, β∗

�, T and the invariantsD〈ij〉D〈ji〉, D〈ij〉D〈jk〉D〈ki〉, D〈ij〉n〈inj〉 and
D〈ij〉D〈jk〉n〈kni〉. Additionally, by introducing the species grain boundary mobility

M∗, defined in Appendix B, we conclude that the recrystallization pressure P ∗ can
be written as

P ∗ = (f∗)
1
3
Nb

3M∗
Γ ∗ , with M∗ =M∗(̺∗, ρ∗

D
, β∗
�, T ;Γ ∗) , (3.10)

where f∗ := ̺∗/̺ is the species mass fraction, b = 0.452 nm is the magnitude of the
Burgers vector of ice (Frost & Ashby 1982; Hondoh 2000) and N ≈ 2.21× 109 (in
SI units) is the number of Burgers vectors needed to form a unit length.

(b) Energetics and arrangement of dislocations

In Part II (Faria et al. 2006), the dislocation potential µ∗
D
and the specific Gibbs

free energy g∗ have been introduced. Their difference was denoted by g∗
id
:= g∗−µ∗

D

and interpreted as the specific Gibbs free energy in the absence of dislocations, i.e.
in an aggregate of ideal crystallites. A similar decomposition can be now proposed
for other quantities, e.g. (cf. (3.1)3 and Appendix A of Part I)

ψ∗
id
+ ψ∗

D
= (e∗

id
+ e∗

D
)− T (η∗

id
+ η∗

D
) , (3.11)

in such a manner that, by definition, we may generally expect

lim
ρ∗
D
→0

( · )∗
D
= 0 and

∂( · )∗
id

∂ρ∗
D

= 0 . (3.12)

Conditions (3.12) imply that ( · )∗
id
-type quantities cannot be a function of ρ∗

D
, so

that all dislocation properties must be incorporated into ( · )∗
D
. These conclusions

motivate the equations of state presented below.
According to the elementary theory of dislocation energetics (Suzuki et al.

1991; Weertman & Weertman 1992; Humphreys & Hatherly 2004), the elastic
energy stored in a unit length of dislocation can be estimated by c̄ Gb2, where
c̄ ∼ 0.7 is a fitting constant and G(T ) is the shear modulus of ice (see e.g. Frost &
Ashby 1982). Likewise, the entropy in a unit length of dislocation is roughly evalu-
ated by b−1kB ln 5 (Weertman & Weertman 1992), where kB ≈ 1.38×10−23 J K−1 is
the Boltzmann constant. Consequently, the densities of internal energy and entropy
stored in dislocations can be estimated by the expressions

̺∗e∗
D
= c̄ ρ∗

D
Gb2 and ̺∗η∗

D
=
ρ∗

D

b
kB ln 5 , (3.13)

where the stored energy e∗
D
is in some cases called the specific lattice distortion en-

ergy (e.g. Montagnat et al. 2003). Equations (3.1)1−5 and (3.13) imply the following
form for the specific Helmholtz free energy

Ψ∗ = Ψ∗
id
+

(
c̄ Gb2 − kBT

b
ln 5

)
c∗
D
, with Ψ∗

id
= ψ∗

id
= ψ∗

id
(̺∗, T ) . (3.14)

Thus, from (3.1)8 and (3.14) we derive the dislocation potential

µ∗
D
= Ψ∗

D
=

(
c̄ Gb2 − kBT

b
ln 5

)
c∗
D
. (3.15)
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8 S. H. Faria

Evidently, the linear expressions proposed above for the dislocation energetics
are rather modest, being justified by the small energies involved in grain bound-
ary migration and recrystallization. Following these arguments, we are motivated
to describe the arrangement of dislocations within the polycrystal in the simplest
possible way as well, observing however the consistency with the fundamental prop-
erties of the dislocation parameter γ∗ (cf. §3a of Part II). Briefly, γ∗ must be a non-
dimensional field, which depends on integrals over S2 involving ρ∗

D
and occasionally

also ̺∗; further, it must obey the condition γ∗|
E
= 0 (see remark 3.4 of Part II).

One of the simplest definitions of this kind is†

γ∗ =
c∗
D
− cD
cR
D

, with cD =

∫

S2

f∗c∗
D
d2n , (3.16)

where cD(xi, t) denotes the average concentration of dislocations in the polycrystal

(cf. (3.27)I and (3.29)I) and cR
D
is simply an arbitrary dimensional constant, called

the reference concentration of dislocations, used to adjust the order of magnitude
of γ∗. Finally, from (3.15) and (3.16) we find

γ∗ =
µ∗

D
− µD

µR
D

, with µD =

∫

S2

f∗µ∗
D
d2n and µR

D
:= µ∗

D

∣∣∣
c∗
D
=cR

D

, (3.17)

where µD(xi, t) is the average dislocation potential of the polycrystal and µR
D
(T ) is

the reference dislocation potential computed by setting c∗
D
=cR

D
in (3.15).

Intuitively, we may expect from (3.17) and remark 3.4 of Part II that the dislo-
cation parameter γ∗ and the recrystallization rate Γ ∗ should be related somehow.†
In order to find such a relation, we notice that, according to current theories of
recrystallization (cf. Humphreys & Hatherly 2004), the average driving pressure for
recrystallization should be tantamount to the difference of the dislocation poten-
tials (i.e., the Gibbs free energies due to dislocations) in a given crystallite and in
its surroundings. Motivated by this interpretation, we postulate

P ∗ := ̺∗ (µD − µ∗
D
) . (3.18)

Hence, comparison of (3.2) and (3.10) with (3.17) and (3.18) yields

γ∗ = −(f∗)
1
3

Nb

3̺∗M∗µR
D

Γ ∗ . (3.19)

Relations (3.1)–(3.19) comprise the sought-after constitutive theory for poly-
crystalline ice sheets, including induced anisotropy and recrystallization in the 5-
dimensional space of positions and lattice orientations R 3 × S2. Once appropriate
forms for the κ̃ species fabric parameters β∗

� are chosen (see Appendix C), and the
equations of state for ideal crystallites e∗

id
(̺∗, T ) and η∗

id
(̺∗, T ) (or ψ∗

id
(̺∗, T )) are

† As discussed in Parts I and II, the integral (3.16)2 is intended to cover all possible c-axis
orientations, with d2n denoting the infinitesimal normalized solid angle, which is so defined as to
yield unity when integrated over the whole S2. Hence, by letting θ and ϕ denote the polar and
azimuthal angles of a spherical coordinate system, we have d2n = sin θ dϕ dθ/4π.

† Recall from §3c of Part II that Γ ∗ replaced γ∗ as independent variable, under the supposition
that Γ ∗ is invertible with respect to γ∗, and vice versa (cf. (3.2)).
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Creep and recrystallization of polycrystals – III. ice sheets 9

known, then there remain only eighteen scalar coefficients (viz. θ∗(ζ), k∗(ζ), ν∗(1,ζ),
σ∗(τ), N∗(ξ), ε∗NL, Π

∗
D NL

and M∗, with ζ = 1, 2, τ = 1, . . . , 6 and ξ = 1, 2, 3) to be
determined either pragmatically (through experiments and field measurements) or
by other means (e.g., statistical theories and numerical simulations). Thus, after
insertion of (3.1)–(3.19) into (2.2)II–(2.6)II of Part II, there arises a set of nine
field equations which can be used to determine the basic fields (2.1), while the
recrystallization rate Γ ∗ is calculated through (3.10) and (3.18).

(c) Homogenization

As commented in §3d of Part I (Faria 2006), the basic strategy of the theory of
mixtures with continuous diversity applied to polycrystals is to solve the coupled
problem of creep, evolving fabric and recrystallization on the species level, viz. the
5-dimensional space of positions and lattice orientations R

3 × S2. Then, once all
species fields are determined, the behaviour of the polycrystal in the usual Euclidean
space R

3 can be derived by accounting for the responses of all lattice orientations,
via the homogenization rules presented in Part I.

Of particular interest are the results that we can infer from (3.27)I, (3.31)I,
(3.33)I and (3.34)I. Firstly, from (3.27)I and (3.16)–(3.18) we obtain

∫

S2

̺∗γ∗ d2n = 0 ,

∫

S2

P ∗ d2n = 0 . (3.20)

Secondly, by invoking (3.3)4−6 and the assumptions I = 0 and C∗
i := v∗i − vi = 0

(cf. remark 2.1 and §2b), we conclude from (3.33)I and (3.34)I1 that

φi =
qi
T

and qi = kij
∂T

∂xj
, with kij =

∫

S2

k∗ij d
2n , (3.21)

whereas from (3.1), (3.33)I and the fact that t∗ij |E = p∗δij we derive

p =

∫

S2

p∗ d2n , =⇒ ̺ h =

∫

S2

̺∗h∗ d2n , ̺ g =

∫

S2

̺∗g∗ d2n . (3.22)

Finally, from (3.3), (3.22)1, the assumptions I = 0, c∗i = 0, C∗
i := v∗i − vi = 0 (cf.

remark 2.1 and §2b), and the rules (3.27)I, (3.31)I and (3.33)I, we can integrate the
balance equation of spin (2.4)II over S2 and deduce

∫

S2

t∗[ij] d
2n = 0 , tij = −p δij + µijklD〈kl〉 , µijkl =

∫

S2

µ∗
ijkl d

2n . (3.23)

As a result of (3.20)–(3.23), it follows that the homogenized balance equations
for ice sheets correspond to balance equations for ordinary (non-polar) continua,
viz. (3.11)I–(3.16)I. In other words, even though individual ice grains do behave as
polar media, the intercrystalline interactions are such that all couples and stress
asymmetries vanish on average, resulting in no net outcome.

Equation (3.23) is the starting point for anisotropic generalizations ofGlen’s flow

law, which is the archetypal stress–strain-rate relation for isotropic ice (Glen 1953;
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Hobbs 1974; Hutter 1983). Such generalizations depend on the explicit form of
the shear viscosity tensor µ∗

ijkl (or equivalently, of the coefficients σ∗(τ) of (3.8),
τ = 1, . . . , 6), while the fabric evolution is strongly affected by the explicit form of
the spin viscosity tensor θ∗ijkl, defined in (3.3)3 and (3.7)1. On these grounds, we
conclude that a realistic species-stress/flow law for polycrystalline ice sheets should
take into account the explicit dependencies of the viscosity tensors µ∗

ijkl and θ
∗
ijkl not

only upon temperature T , strain rate Dij , mass density ̺∗ and lattice anisotropy
ni, but also on the dislocation density ρ∗

D
and the species fabric parameters β∗

�

(κ = 1, . . . , κ̃; cf. remark 3.2 of Part II and Appendix C). The determination of
such explicit expressions is nevertheless somewhat lengthy and will therefore be left
for later parts of this series.

4. Relation to previous ice-sheet models

The results derived so far conclude the generic constitutive theory for anisotropic
ice sheets undergoing recrystallization. In this section, we explore a few elemen-
tary forms of the viscosity tensor µ∗

ijkl which, although oversimplified, give rise to
expressions comparable to known stress/flow laws for ice sheets.

(a) The Svendsen–Gödert–Hutter stress law

Consider for instance the simple choices below (cf. (3.8)):

σ∗(1) = 4
3 (µ⊥ − µ‖) f

∗D〈kl〉n〈knl〉 , σ∗(4) = 0 ,

σ∗(2) = (3µax + µ⊥ − 4µ‖) f
∗D〈kl〉n〈knl〉 , σ∗(5) = 4 (µ‖ − µ⊥) f

∗ ,

σ∗(3) = 2µ⊥f
∗ , σ∗(6) = 0 ,

(4.1)

where the viscosity coefficients µax, µ⊥ and µ‖ depend on temperature T , as well as
on the scalar invariants of strain-rate D〈ij〉 and the so-called (irreducible) structure
tensor Aij (also named orientation or alignment tensor ; see Doi & Edwards 1986;
Ehrentraut & Muschik 1998)

Aij(xk, t) :=

∫

S2

f∗n〈inj〉 d
2n . (4.2)

Clearly, (4.1) is equivalent to the following shear viscosity tensor:

µ∗
ijkl =(3µax + µ⊥ − 4µ‖) f

∗n〈inj〉n〈knl〉 + 2µ⊥f
∗δikδjl

+ 2 (µ‖ − µ⊥) f
∗
(
n〈kn(i〉δj)l + n〈ln(i〉δj)k − 2

3n〈knl〉δij
)
,

(4.3)

that can be readily integrated with the help of (3.23)3 and (A 1) to†

µijkl =(3µax + µ⊥ − 4µ‖)AijAkl + 2µ⊥δikδjl

+ 2 (µ‖ − µ⊥)
(
Ak(iδj)l +Al(iδj)k − 2

3Aklδij
)
.

(4.4)

† Equation (4.4) was derived with aid of the ‘decoupling approximation’ (Doi & Edwards 1986;
Kröger & Sellers 1995):

�
S2 f∗n〈inj〉n〈knl〉 d

2n ≈ AijAkl . Better approximations (or higher-order
tensors) could be used instead, but they would not yield the desired expression for µijkl.
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Insertion of (4.4) into (3.23) provides then

σij = 2µ⊥D〈ij〉 + (3µax + µ⊥− 4µ‖)AklD〈lk〉Aij

+4 (µ‖ − µ⊥)
(
Ak(iD〈j)k〉 − 1

3AklD〈lk〉δij
)
,

(4.5)

which is quite similar to the stress laws for anisotropic ice sheets proposed by
Svendsen & Hutter (1996) and Gödert & Hutter (1998).

Remark 4.1. In the derivation of (4.5) by Gödert & Hutter (1998) it was assumed
that stress should be the same in every grain (‘Sachs hypothesis’). In contrast,
the current derivation does not impose any constraint upon the strain/stress on
the grain scale (see remark 2.1). Further, the definition of structure tensor used by
Svendsen & Hutter (1996) and Gödert & Hutter (1998) is not identical to (4.2), since
the referred authors adopted a particular definition of orientational distribution
function that accounts only for the number of grains with a given c-axis orientation,
in contrast to the species mass fraction f∗ used here, which accounts also for the
volume fraction of each species (cf. §2b of Part II).

(b) The Azuma–Goto-Azuma flow law

Instead of (4.1), we could also make another simple choice for (3.8):

σ∗(1) = − 4
3 µ

∗D〈kl〉n〈knl〉 , σ∗(4) = 0 ,

σ∗(2) = −4µ∗D〈kl〉n〈knl〉 , σ∗(5) = 4µ∗ ,

σ∗(3) = 4
3 µ

∗ , σ∗(6) = 0 ,

(4.6)

which is equivalent to the shear viscosity tensor

µ∗
ijkl = 2µ∗

[
ninl (δjk − njnk) + njnl (δik − nink)

]
, (4.7)

where the scalar coefficient µ∗ is a function of ̺∗, ρ∗
D
, β∗

�, T , D〈ij〉, and the dyadic
ninj . Insertion of (4.7) into (3.3)2 leads to

σ∗
ij = 2µ∗

[
ni (δjk − njnk) + nj (δik − nink)

]
D〈kl〉nl , (4.8)

and consequently
σ∗
ijnj = 2µ∗(δik − nink)D〈kl〉nl

= (δik − nink)σ
∗
klnl .

(4.9)

Hence, if we introduce the shorthands

t∗i := (δik − nink)σ
∗
klnl and d∗i := (δik − nink)D〈kl〉nl , (4.10)

we can rewrite (4.9) as
t∗i = 2µ∗ d∗i . (4.11)

The physics behind (4.6) is revealed by (4.10): the tensors σ∗ eff
ij := (δik − nink)σ

∗
kj

and D∗ eff
ij := (δik − nink)D〈kj〉 represent the effective stress and strain rate in the

crystallites with c-axes parallel to ni. Thus, neither stress nor strain rate is the
same for all species. Accordingly, the vectors t∗i and d∗i denote the resolved stress
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12 S. H. Faria

and strain rate on the basal planes of the grains with c-axes parallel to ni. In this
sense, (4.11) describes an average viscous response by basal slip.

Now, if we set

µ∗ =
(
8
5A

∗d∗kd
∗
k

)− 1
3 , with A∗ = A∗ (̺∗, ρ∗

D
, β∗
�, T ) , (4.12)

then we can perform the straightforward inversion

t∗i =
(
1
5A

∗d∗kd
∗
k

)− 1
3 d∗i ⇐⇒ d∗i = 1

5A
∗ (t∗kt

∗
k) t

∗
i . (4.13)

On the other hand, by introducing the Schmid tensor

M∗
ij :=

t∗i nj√
t∗kt

∗
k

(4.14)

we find

t∗kt
∗
k = t∗kσ

∗
klnl =

(
σ∗
klM

∗
〈kl〉

)
(t∗kt

∗
k)

1
2

=
(
σ∗
klM

∗
〈kl〉

) t∗kt
∗
k√

t∗kt
∗
k

=
(
σ∗
klM

∗
〈kl〉

)2

,
(4.15)

so that

d∗inj =
1
5A

∗
(
σ∗
klM

∗
〈kl〉

)3

M∗
ij . (4.16)

Finally, with the aid of (A 5), we compute the integral
∫

S2

d∗inj d
2n =

∫

S2

(δik − nink)D〈kl〉nlnj d
2n = 1

5D〈ij〉 , (4.17)

which implies

D〈ij〉 =

∫

S2

A∗
(
σ∗
klM

∗
〈kl〉

)3

M∗
〈ij〉 d

2n . (4.18)

This last equation is of particular importance: it resembles somewhat the flow law
proposed by Azuma & Goto-Azuma (1996), viz.

D〈ij〉 = A exp

(
− Q

kBT

)(
σklM〈kl〉

)3
M〈ij〉 , (4.19)

with Mij =

∫

S2

M∗
ij d

2n , (4.20)

where A is a material parameter and Q is an activation energy. Evidently, the flow
laws (4.18) and (4.19) are not identical in general. Nevertheless, it is possible to
derive (4.19) from (4.18) if we impose some additional conditions:

1. set A∗ = A exp (−Q/kBT );
2. take for granted the ‘Sachs hypothesis’ σ∗

ij(xi, t, nj) ≡ σij(xi, t);

3. adopt the following approximation (Thorsteinsson et al. 1999):
∫

S2

(
M∗

〈ij〉M
∗
〈kl〉M

∗
〈pq〉M

∗
〈rs〉

)
d2n ≈M〈ij〉M〈kl〉M〈pq〉M〈rs〉 .
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Remark 4.2. It must be emphasized that the additional conditions listed above
were originally not invoked by Azuma & Goto-Azuma (1996). Indeed, although the
mentioned conditions are tolerable, it is evident that (4.18) may be equivalent to
(4.19) only under very restricted circumstances.

5. Conclusion

Large-scale continuum theories for polycrystals are essential in geophysical applica-
tions, and in particular for the modelling of ice sheets. However, incorporation of re-
crystallization into continuum approaches has been a problematic task for ice sheet
modellers. In the present work, a set of constitutive relations has been established
for the thermomechanics of cold ice sheets, with consideration of strain-induced
anisotropy and recrystallization. These constitutive relations should be combined
with the balance equations put forward in Part II in order to give rise to a ther-
momechanical field theory for polycrystalline ice sheets. The cornerstone of this
theory is the characterization of the polycrystal as a mixture with continuous diver-

sity —more precisely a mixture of lattice orientations— in the manner explained
in Parts I and II (Faria 2006; Faria et al. 2006).

In contrast to former attempts to model recrystallization through artificial as-
sumptions (e.g., Van der Veen & Whillans 1994; Staroszczyk & Morland 2001),
the current approach incorporates polygonization, recovery and recrystallization
in a consequent and natural way, through the introduction of the c-axis spin ve-
locity s∗i , the polygonization tensor ̟∗

ij , the production rate of dislocations Π∗
D
,

the recrystallization pressure P ∗, the dislocation potential µ∗
D
and the recrystalliza-

tion rate Γ ∗, among other quantities (see (3.1)–(3.4)). Fabric (texture) is described
by the species mass density ̺∗(xi, t, nj), or alternatively the species mass fraction
f∗(xi, t, nj) := ̺∗/̺, which stands for the mass/volume fraction of grains with
c-axes oriented in the ni-direction. This description of fabric represents a great ad-
vantage in comparison to former ice-sheet models based on a simplified definition
of orientational distribution function that reckons simply the number of grains in
each orientation, regardless of their sizes (Meyssonnier & Philip 1996; Svendsen &
Hutter 1996; Gödert & Hutter 1998).

Furthermore, the current theory imposes no constraint at all upon the strain
or stress of individual crystallites (see remark 2.1), in contrast to most ice-sheet
models based on restrictive assumptions like Voigt–Taylor and Sachs–Reuss upper
and lower bounds (Lliboutry 1993; Van der Veen & Whillans 1994; Castelnau et

al. 1996; Gödert & Hutter 1998; Thorsteinsson et al. 1999). Indeed, the theory pre-
sented here comes from the line of large-scale (‘macroscopic’) continuum approaches
that ignore inhomogeneities on the grain scale, by regarding ice-sheet particles big
enough to encompass myriads of grains (Hutter 1983; Morland 1984; Greve 1997;
Morland & Staroszczyk 1998). Nevertheless, in contrast to the continuum approach
by Morland & Staroszczyk (1998) (the so-called ‘orthotropic ice model’, see also
Staroszczyk & Morland 2001), which is based on the simplistic hypothesis that
fabric and deformation are directly correlated,† the effects of fabric and recrys-
tallization are incorporated in the present theory by regarding the ice sheet as a

† As pointed out by Placidi et al. (2003), one of the greatest shortcomings of this hypothesis
is that it implies a ‘reversible fabric’, i.e. the fabric returns to its initial configuration when the
deformation is reversed.
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14 S. H. Faria

mixture with continuous diversity. This scheme enables us to obtain a precise de-
scription of microstructure evolution without giving up the large-scale character,
i.e. without the need to refer to the micromechanics of individual crystallites.

Among the most relevant results of the constitutive theory, we found that the
ice sheet behaves as an ordinary (i.e., non-polar) material, since the species Voigt
couple stress m∗

ij vanishes identically (see (3.3)4) and the Cauchy stress tij of the
‘mixture’ is symmetric (cf. (3.23)). Notice however that couples may exist on the
grain scale, owing to the asymmetry of the species Cauchy stress t∗ij (see (3.3)1−3).
Additionally, bending and twisting couples associated to polygonization —modelled
by the tensor ̟∗

ij (cf. (2.4)II and §4 of Part II)— are generated by directional in-
homogeneities in the species pressure p∗, see (3.3)7. Another conclusion is that the
species fields of Cauchy stress t∗ij and heat flux q∗i do not depend directly on the
recrystallization rate Γ ∗. However, they depend upon the current fabric outlined by
the species mass density ̺∗, the species fabric parameters β∗

� (with κ = 1, . . . , κ̃),
and the c-axis orientation ni. Moreover, according to (3.13) and (3.14) the species
densities of internal energy, entropy, and Helmholtz free energy are all linearly pro-
portional to the dislocation density ρ∗

D
, implying via (3.1)8 and (3.15) that the

dislocation potential µ∗
D
is equal to the Helmholtz free energy of dislocations Ψ∗

D
.

Thus, from (3.1)9,10, (3.12), and the discussion in §3b, we conclude that the species
enthalpy of dislocations h∗

D
is identical to the stored energy e∗

D
, defined in (3.13).

Finally, from (3.18) we have that the recrystallization pressure P ∗ is linearly pro-
portional to the dislocation parameter γ∗, defined as the dimensionless difference
of the dislocation potentials, i.e. the Gibbs free energies due to dislocations, of
crystallites with distinct c-axis orientations (cf. (3.17)).

This work was commenced during the EPICA–DML 2003/04 deep-drilling expedition in
Dronning Maud Land, Antarctica, and finished in Leipzig. I am grateful to K. Hutter for
introducing me to this theme, as well as to G. M. Kremer for his help in the understand-
ing of microstructure energetics (§3b). I am also indebted to L. Placidi, S. Kipfstuhl, I.
Hamann, H. Miller and N. Azuma for discussions on the subject. Support is acknowledged
from the Alfred Wegener Institute for Polar and Marine Research (Bremerhaven) and the
Darmstadt University of Technology. This work is a contribution to the ‘European Project
for Ice Coring in Antarctica’ (EPICA), a joint ESF (European Science Foundation)/EC
scientific programme, funded by the European Commission and by national contribu-
tions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden,
Switzerland and the United Kingdom. This is EPICA publication no. xxx.

Appendix A. Useful integrals

Homogenization of species fields often involves integrals of the orientation vector
ni and the species mass fraction f∗ := ̺∗/̺. Therefore, it is helpful to have a list
of the most frequent integrals of this kind, for further reference. We start with four
elementary integrals (cf. (3.27)I1 and (3.29)I of Part I):

∫

S2

d2n = 1 ,

∫

S2

f∗ d2n = 1 ,

∫

S2

ni d
2n = 0

∫

S2

f∗ni d
2n = 0 , (A 1)

where (A 1)1 follows from the normalization of the infinitesimal solid angle d2n.
Equation (A 1)4 vanishes because of the fore–aft symmetry of the c-axis (see hy-
pothesis 3.1 of Part II), which implies that f∗ is an even function of the orientation
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vector ni. Using the same argument, we immediately conclude that

∫

S2

ninjnk d
2n =

∫

S2

nin〈jnk〉 d
2n =

∫

S2

n〈injnk〉 d
2n = 0 , (A 2)

∫

S2

f∗ninjnk d
2n =

∫

S2

f∗nin〈jnk〉 d
2n =

∫

S2

f∗n〈injnk〉 d
2n = 0 . (A 3)

Notice that the tensor n〈injnk〉 is symmetric and traceless with respect to all indices
within the angular brackets, viz. (cf. Appendix A of Part I)

n〈injnk〉 = ninjnk − 1
5 (niδjk + njδik + nkδij) . (A 4)

Evidently, (A 1)4 and (A 3) remain valid when f∗ is replaced by any other even
function of ni.

In contrast, two useful non-vanishing integrals are

∫

S2

ninj d
2n = 1

3δij and

∫

S2

ninjnknl d
2n = 1

15 (δijδkl + δikδjl + δilδjk) , (A 5)

which can be straightforwardly computed with the help of the spherical coordinates
0 6 θ < π and 0 6 ϕ < 2π, since we have in this case

n1 = sin θ cosϕ , n2 = sin θ sinϕ , n3 = cosθ , d2n =
sin θ
4π

dθ dϕ . (A 6)

The computation of more complex integrals can be found, e.g., in the works by
Hess & Köhler (1980) and Ehrentraut & Muschik (1998).

Appendix B. Grain boundary mobility

The mobility of a grain boundary can be generically defined as the ratio between
its normal speed of migration and the driving pressure acting on it (Humphreys
& Hatherly 2004). In the present theory, however, this definition must be adapted
somehow, since every material point of the continuum is supposed to contain a huge
number of crystallites, and consequently also grain boundaries. In other words, we
do not have the resolution to identify single grain boundaries. Rather, we can only
describe their average behaviour (cf. remark 2.1).

We start by recalling that polar ice is modelled as an incompressible (density-
preserving) material, so that the resultant mass of all crystallites that possess c-axes
parallel to ni, within a unit volume, is given by

m∗ := ̺∗N3b3 = ̺ V ∗ , (B 1)

where ̺ ≈ 0.920 g cm−3 is the mass density of polar ice (Thorsteinsson 1996),
b = 0.452 nm is the magnitude of the Burgers vector (Hobbs 1974; Hondoh 2000),
N ≈ 2.21× 109 (in SI units) is the number of Burgers vectors necessary to form a
unit length, and V ∗ := l∗3 is the volume occupied by these particular crystallites. On
the other hand, the product of the species mass density ̺∗ with the recrystallization
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rate Γ ∗ and the unit volume N3b3 represents just the rate of increase/decrease of
the mass m∗ by grain boundary migration†, i.e. (cf. (2.2)II of Part II)

̺∗Γ ∗N3b3 = ṁ∗ = ̺ V̇ ∗ = 3 ̺ l̇∗ l∗2 . (B 2)

Hence, division of (B 2) by (B 1) results in

Γ ∗ =
3 l̇∗

l∗
=

3 l̇∗ (f∗)
− 1

3

Nb
=⇒ l̇∗ = (f∗)

1
3
Nb

3
Γ ∗ . (B 3)

Finally, we have by construction that l̇∗ is the average migration velocity of the
boundaries of those grains with c-axes parallel to ni. Consequently, we can now
introduce the definition of species grain boundary mobility

M∗ :=
l̇∗

P ∗
(B 4)

where P ∗ denotes the driving pressure for grain boundary migration discussed in
§3a and §3b. Hence, combination of (B 3) and (B 4) leads to (3.10),

P ∗ = (f∗)
1
3
Nb

3M∗
Γ ∗ . (B 5)

Appendix C. Species fabric parameters

Throughout this work no restriction was imposed on the explicit forms of the κ̃

species fabric (texture) parameters β∗
�. The objective of this appendix is to discuss

some possible forms of these parameters, for illustration.
Any reference to fabric parameters invariably calls to mind the notion of fabric

statistics via eigenvalues of the structure tensor Aij defined in (4.2) (Woodcock
1977; Thorsteinsson 1996; Azuma et al. 2000). Let the eigenvalues Eλ (λ = i, ii, iii)
of Aij be the scalars that satisfy the equation (no sum over repeated Greek indices)

Aija
λ
j = Eλaλi , E I ≥ E II ≥ E III , (C 1)

where aλi denote the respective eigenvectors of Aij . The largest eigenvalue, viz. E
I,

indicates the amount of crystalline mass with c-axes concentrated near the mean
direction a I

i , about which the ‘moment of inertia’ of the fabric† is minimized. This
is easily understood if we observe that the specific ‘inertia’ tensor of the fabric is
given by the integral (cf. (4.2) and (A 1))

∫

S2

f∗ (δij − ninj) d
2n = 2

3δij −Aij . (C 2)

† For the current purposes we can neglect the effect of c-axis rotation by setting u∗
i = 0.

† By ‘moment of inertia of the fabric’ it should be understood the fictitious moment of inertia
of the mass density ̺∗ distributed over S2, cf. (C 2). Admittedly, the notion of a fictitious ‘moment
of inertia’ fails to hold when the fabric has a symmetry lower than orthorhombic (e.g. monoclinic
and triclinic symmetries; Woodcock 1977), but such low-symmetric fabrics are in any case seldom
in polar ice (Thorsteinsson 1996; Azuma et al. 2000; Wang et al. 2003).
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Hence, if the c-axes are symmetrically distributed about a I
i , then E I > E II = E III

and we have a unimodal cluster texture, also named single maximum fabric. Con-
versely, the eigenvector a III

i (associated with the smallest eigenvalue E III) is related
to the largest ‘moment of inertia’ of the fabric. Hence, when E I = E II > E III the
c-axes form a girdle radially symmetric about the eigenvector a III

i (which defines
the pole of the girdle). Of course, an isotropic distribution of c-axes (so that ̺∗= ̺)
implies the equality of all eigenvalues. Finally, it is a trivial exercise to show that,
by using the Cayley–Hamilton theorem (see e.g. Liu 2002) and the properties of
the tensor Aij , the eigenvalues Eλ can be computed via‡

E I + E II + E III = 0 , E IE IIE III = 1
3AijAjkAki ,

E IE II + E IIE III + E IE III = − 1
2AijAji .

(C 3)

It should be noticed from (C 3)1 that only two eigenvalues are independent. Thus,
assuming that κ̃ = 4, a first choice of species fabric parameters may be

β∗
1 = (nia

I

i )
2
, β∗

2 = (nia
III

i )
2
, β∗

3 = E I , β∗
4 = E III, (C 4)

where the first two parameters determine the orientation of the fabric with respect
to ni (i.e., the relative orientation of the eigenbasis of Aij) while the last two
describe the fabric shape.

There are, however, alternative measures of fabric shape in the place of E I and
E III. We can employ e.g. the Woodcock parameters (Woodcock 1977)

KW :=
ln (E I/E II)

ln (E II/E III)
and CW := ln (E I/E III) , (C 5)

which measure girdle (KW → 0) and cluster (KW → ∞) shape tendencies, as well
as the fabric strength (CW = 0 for isotropic fabric). Thus, a second choice of species
fabric parameters could be

β∗
1 = (nia

I

i )
2
, β∗

2 = (nia
III

i )
2
, β∗

3 = KW , β∗
4 = CW . (C 6)

In some simple situations, in which it suffices to adopt just a coarse charac-
terization of the fabric as an axisymmetric, unimodal c-axis distribution, it turns
out that two of the eigenvalues Eλ coincide and only one eigenvector, ai, is enough
for defining the orientation of the fabric relative to the ni direction. Under such
particular conditions it might be appropriate to replace eigenvalues and Woodcock
parameters by a more straightforward description of fabric, based solely on the
relative orientation of the vectors ai and ni. Two common choices are the degree

of orientation Rg, and the spherical aperture αs (Thorsteinsson 1996; Wang et al.

2003), which can be defined in a continuum context by

Rg :=

∫

S2

{
2f∗(ninjaiaj)

1
2 − 1

}
d2n and αs := arcsin

(√
1−Rg

)
. (C 7)

‡ In the literature on structural analysis and petrography, the structure (or orientation) tensor
is often defined with normalized trace (Woodcock 1977; Thorsteinsson 1996) instead of the traceless
tensor Aij introduced in (4.2). The use of a normalized structure (orientation) tensor would modify
slightly certain relations, e.g. the right-hand side of (C 2) and (C 3), but it would not affect the
physics. Notwithstanding, the adoption in this work of the traceless structure tensor Aij is justified
by its mathematical advantages, since it is irreducible.
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Hence, two species fabric parameters are enough in this simplistic situation (i.e.
κ̃ = 2), and we can choose between the options (among others)

β∗
1 = (niai)

2 , β∗
2 = Rg , or β∗

1 = (niai)
2 , β∗

2 = αs . (C 8)

Finally, we may also attack the problem of fabric parameters from a completely
different viewpoint, by reckoning intergranular interactions. This kind of approach,
often used in polymer science to describe excluded volume effects (Doi & Edwards
1986; Faria 2001), has the advantage of subsuming into itself a rough estimate of
the energy and structure of the grain boundaries. In the simplest case, we may
choose κ̃ = 1 and propose the general expression

β∗(xi, t, nj) = W−1
iso

∫

S2

f∗(xi, t, pl)W
∗(nkpk) d

2p ,

with Wiso :=

∫

S2

W ∗(nkpk) d
2p = const. ,

(C 9)

where pi ∈ S2 is an arbitrary orientation vector, d2p is its respective infinitesimal
normalized solid angle, and f∗(xi, t, pl) denotes the species mass fraction of crys-
tallites with c-axes directed towards pi. The species field W ∗(nipi) stands for the
misorientation grain boundary energy, while Wiso denotes the total grain boundary
energy in an isotropic polycrystal such that f∗= β∗= 1 holds.

Evidently, the greatest disadvantage of (C 9) is that there is currently not enough
data for conjecturing an explicit form for W ∗(nipi).
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