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Abstract

Binary black hole spacetimes with a helical Killing vector, which are discussed as
an approximation for the early stage of a binary system, are studied in a projection
formalism. In this setting the four dimensional Einstein equations are equivalent to a
three dimensional gravitational theory with a SL(2, C)/SO(1, 1) sigma model as the
material source. The sigma model is determined by a complex Ernst equation. 2+1
decompositions of the 3-metric are used to establish the field equations on the orbit
space of the Killing vector. The two Killing horizons of spherical topology which
characterize the black holes, the cylinder of light where the Killing vector changes
from timelike to spacelike, and infinity are singular points of the equations. The
horizon and the light cylinder are shown to be regular singularities, i.e. the metric
functions can be expanded in a formal power series in the vicinity. The behavior
of the metric at spatial infinity is studied in terms of formal series solutions to the
linearized Einstein equations. It is shown that the spacetime is not asymptotically
flat in the strong sense to have a smooth null infinity under the assumption that
the metric tends asymptotically to the Minkowski metric. In this case the metric
functions have an oscillatory behavior in the radial coordinate in a non-axisymmetric
setting, the asymptotic multipoles are not defined. The asymptotic behavior of the
Weyl tensor near infinity shows that there is no smooth null infinity.

1 Introduction

Binary black hole systems in the last stage before coalescence are the most promising
sources of gravitational radiation to be detected with the first generation of gravitational
wave detectors. From a theoretical point of view this is a difficult relativistic problem
which can possibly only be solved numerically since there are no symmetries. The ad-
vantage of black hole systems is that no matter is involved and that only the vacuum
equations have to be studied. It is generally expected that binary systems will have an
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early stage of quasi-circular motion for large separation of the binaries. Radiation damp-
ing will lead to almost circular orbits with the radius decreasing in time due to the emitted
radiation. For smaller distances of the binaries this motion is expected to be followed by
a rapid inspiral. The end result will be a single black hole which will settle to a stationary
hole in a ring down phase which can be described by black hole perturbation theory. For a
given binary system an important characteristic quantity is the innermost stable circular
orbit (ISCO), the last almost circular orbit before the final inspiral. In general there is
no unique definition of the ISCO, but it should be possible to define a characteristic scale
where the quasi-stationary early phase of the binary system comes to an end.

In the case of the binary motion of two oppositely charged particles, Schönberg [1] and
Schild [2] considered an approximation to the quasi-stationary phase of the system. The
quasi-circular motion is approximated by a sequence of exactly circular orbits which are
obtained by exactly compensating the outgoing radiation by ingoing radiation. The bind-
ing energy of the system as defined in [2] decreases with the distance of the charges up to
some minimal value which can be taken as the definition of the ISCO: for smaller values
of the distance, more and more incoming radiation is needed to stabilize the circular mo-
tion. The approximation thus predicts its own breakdown and allows for an unambiguous
definition of the ISCO. The quasi-stationary approximation corresponds to a so-called
helical Killing vector ξ of the system which is in standard Minkowski coordinates given
by ξ = ∂t + Ω∂φ. The main features of such a vector can already be inferred from this
case: the vector becomes null at the so-called light cylinder given by ρ = 1/Ω where the
observer rotating with the angular velocity Ω rotates with the velocity of light. In the
interior of the light cylinder, the Killing vector is timelike, in the exterior spacelike. In a
general spacetime with a helical Killing vector, the light cylinder will be deformed, but
will still have cylindrical topology.

Detweiler [3, 4, 5] suggested to use this concept to describe the quasi-circular regime of
binary black holes which corresponds to studying spacetimes with a helical Killing vector.
Since Einstein’s theory is a nonlinear theory, the incoming radiation will lead to a space-
time which is not asymptotically flat in a strong sense (mass and angular momentum can-
not be defined in the usual way asymptotically). It was shown in [6] that spacetimes with
a helical Killing vector cannot have a smooth null infinity if there is no additional station-
ary Killing vector close to I, see also [7]. Though the Arnowitt-Deser-Misner(ADM)-mass
cannot be defined, Friedman et al. [8] could show that a thermodynamical treatment as in
the single black hole case is possible and that there exists a first law. With the help of the
first law, the ISCO can be defined for asymptotically flat spacetimes (which are possible
for instance in the case of the first post-Newtonian order) as in the Maxwell case as the
minimum of the binding energy which also marks the onset of dynamical instability. It
is not clear how this result can be generalized to non-asymptotically flat spacetimes in
full general relativity. An important conceptional advantage of spacetimes with a helical
Killing vector is the fact shown in [8] that spatially compact Killing horizons are event
horizons. This allows for a local characterization of the event horizons in these models.
It is thus not necessary to use local concepts as an apparent horizon or the concepts
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developed in [9].

In the study of binary black hole system, mainly approximative and numerical methods
have been used so far. Post-Newtonian calculations have been carried out up to the
third post-Newtonian order including resummation techniques (see [10, 11, 12, 13, 14]).
Within this approximation the determination of the ISCO appears to be self-consistent
since corrections to its value due to higher order terms can be shown to be negligible.
The post-Newtonian metric, however, cannot be used close to the horizons since black
holes are the strongest relativistic objects known. Numerical calculations so far have
been mainly performed within the Isenberg-Wilson-Matthews (IWM) theory [15, 16], an
alternative theory of gravitation without radiation. It follows from the Einstein equa-
tions in a standard 3 + 1-splitting for a conformally flat spatial metric on the t = const
hypersurfaces. Only the trace of the 6 time evolution equations is considered. By con-
struction the theory coincides with the Einstein theory for spacetimes with conformally
flat spatial slices and thus reproduces exactly the first post-Newtonian approximation. It
has to be noted that the Kerr solution does not allow conformally flat spatial hypersur-
faces, see [17]. In [18, 19, 20] initial values were constructed from the constraint equations
via so called Bowen-York initial data by solving the Lichnerowicz equation numerically.
This resulted in a significant discrepancy with post-Newtonian results for the ISCO. In
[21, 22], complete IWM binary black hole spacetimes with a helical Killing vector were
constructed numerically. The results were in good agreement with post-Newtonian re-
sults, but suffered from an inconsistency in the model in the form of non-regular horizons.
This non-regularity appears to be unavoidable for IWM spacetimes. To answer the ques-
tion whether the Einstein equations allow for binary black hole spacetimes with smooth
disconnected horizons in the presence of a helical Killing vector, it therefore appears nec-
essary to study the fully relativistic situation. In [23] the constraint equations are solved
in the presence of an approximate helical Killing vector on a background which is the
superposition of two Kerr-Schild metrics.

In general relativity, a helical Killing vector will lead to Einstein equations which are
of a mixed type, i.e. elliptic in the interior of the light cylinder and hyperbolic in the
exterior. Such equations are studied in aerodynamics [24] in the case of transonic flows.
For a review on mixed problems arising in gravitation, see [25]. It was shown by Torre
[26] that the resulting equations can be written in the form of a first order differential
system which belongs to the symmetric positive systems of Friedrichs [27] and Lax and
Phillips [28]. Classes of boundary conditions compatible with these equations are given
in [26]. Numerical studies of two-dimensional equations of this type were performed in
[29, 30]. Three-dimensional toy models for the helically reduced Einstein equations were
considered numerically in [31].

The purpose of this paper is to study the Einstein equations in the presence of a helical
Killing vector for a vacuum spacetime with two disconnected Killing horizons of spherical
topology. The idea is to derive a set of equations which is well suited for a numerical
treatment by taking full advantage of the Killing vector. In the vicinity of the critical
points of the equations as the black hole horizons, the metric functions will be given in

3



terms of formal power series which should be useful for the numerical implementation.
The approach is similar as in the study of cosmological singularities, see e.g. [32] and
references therein. These methods are purely local and do not imply an existence proof
for a spacetime with a helical Killing vector and two regular horizons. The use of so-called
Fuchsian methods (see [33]) in the context of cosmological singularities would not change
the situation since even an existence proof for one regular horizon would not imply the
existence of the second regular horizon one is interested in here. Therefore we will not
discuss the question of existence and convergence radii of the formal series solutions in
this paper, to show global existence different methods will have to be applied. Function
counting, i.e. the identification of free functions in the formal series solutions indicates,
however, that spacetimes with a helical Killing vector and two regular horizons could
exist: the series in the vicinity of the horizon contains two free functions which could
be fixed in a way to allow for two regular horizons. Such an approach is suitable for a
numerical treatment which could give – if successful – a strong indication of the existence
for corresponding solutions to the Einstein equations. Though formal expansions do
not provide existence proofs for solutions, they proved to be very useful and reliable to
establish the behavior of cosmological solutions near singularities and served as a guide
to prove existence and uniqueness, see [32, 33].

To establish the Einstein equations in the presence of a helical Killing vector we use a
projection formalism [34, 35] which leads to equations of 3-dimensional gravity with a
sigma model as material source. The sigma model is determined by a generalized Ernst
equation. The equations are discussed on the space of orbits of the Killing vector in a
2 + 1-decomposition of the 3-space. The fixed points of the Killing vector, the horizons
and the light cylinder where the Killing vector changes from being timelike to spacelike
are singular points of the equations. They will be studied in terms of formal expansions of
the metric functions in a chosen gauge. In this approach the horizons are regular horizons
as in the case of the Kerr metric, but the series solutions contain two free functions which
cannot be fixed locally. At the light cylinder the metric shows a similar behavior as at
an ergosphere. If the constraints in the 2 + 1-approach are satisfied by the regularity
conditions, the only equations to be solved are the two Ernst equations and the three
‘evolution’ (with respect to the radial coordinate) equations.

The behavior at infinity for spacetimes with a helical Killing vector is not yet well under-
stood. There are indications from spherically symmetric models with equal amounts of
ingoing and outgoing null dust [36], which can be seen as a spherically symmetric analog
to a helically symmetric spacetime, that the spacetime is not even asymptotically flat
in the weak sense that the metric tends asymptotically to the Minkowski metric. So far
the only rigorous result due to Gibbons and Stewart [6] is that there can be no smooth
null infinity unless there is an additional axial Killing vector. Here we show that this
is already case under the possibly too strong assumption that the spacetime tends to
Minkowski spacetime asymptotically. Considering the Einstein equations in the presence
of a helical Killing vector for large values of the radial coordinate, we show by using for-
mal expansions of the metric that the spacetime is not asymptotically flat in the strong
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sense that mass and angular momentum can be defined unless there is an additional axial
Killing vector. The Weyl scalars behave asymptotically as 1/r, but the coefficients of the
1/r terms have an oscillatory dependence on r. Thus there is no smooth I and no peeling
in accordance with [6]. In asymptotically flat spacetimes for a stationary Killing vector,
the Komar integral can be used to determine a conserved quantity via a surface integral
calculated at finite radius, for which then the limit of an infinite radius is taken. We show
that this limit is not defined under the above assumptions unless there is an additional
axial Killing vector.

The paper is organized as follows: In section 2 we use the projection formalism for the
vacuum Einstein equations in the presence of a helical Killing vector. We discuss the
resulting equations for the example of Minkowski spacetime. In section 3 we use 2 + 1-
decompositions of the 3-space to study the singularities of the equations, the Killing
horizons and the light cylinder. We use a formal expansion of the metric functions in
local coordinates adapted to the singularities. In section 4 we study the linearized Einstein
equations on a Minkowski background asymptotically in terms of formal expansions of
the metric. We discuss the Weyl tensor and the Komar integral. In section 5 we add some
concluding remarks.

2 Quotient space metrics and Ernst equations

The existence of a Killing vector can be used to establish a simplified version of the field
equations by dividing out the group action. These quotient space metrics were first used
in [34], see also [35]; here we will follow [37]. We use adapted coordinates in which the
Killing vector ξ is given by ξ = ∂t where t is not necessarily a timelike coordinate. The
norm of the Killing vector will be denoted by f . The decomposition we are using is
not defined at the fixed points of the group action, i.e. the zeros of f , and the resulting
equations will be singular at the set of zeros of f . The behavior of the solutions at these
singular points will be discussed in the following section by studying formal expansions
of the metric in the vicinity of the fixed points.

In contrast to a standard 3 + 1-decomposition, the metric is written in this approach in
the form

ds2 = −f(dt + kadxa)(dt + kbdxb) +
1

f
habdxadxb; (1)

latin indices always take the values 1, 2, 3 corresponding to the spatial coordinate. The
Einstein equations in vacuum imply a Maxwell-type equation for what corresponds to the
momentum constraint in a standard 3 + 1-decomposition (see [37])

1

2
Da(f

2kab) = 0, (2)

where kab = kb,a − ka,b (Da denotes the covariant derivative with respect to hab). Notice
that all indices here are raised and lowered with hab. If we define the twist potential b via
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(εabc is the tensor density with ε123 = 1/
√

h)

kab =
1√
hf 2

εabcb,c, (3)

where h is the determinant of hab, then equation (2) is identically satisfied. The potentials
f and b can be combined to the complex Ernst potential E = f +ib [38]. The equations for
f and the integrability condition for b can then be combined to the generalized complex
Ernst equation (the Ernst equation was originally obtained for the stationary axisymmet-
ric case in [38])

fDaD
aE = DaEDaE . (4)

The 4 constraint equations in the standard 3 + 1-decomposition are thus replaced by a
single scalar complex equation which is an advantage both for the analytical and the
numerical treatment.

The equations for the metric hab can be written in the form

Rab =
1

2f 2
�(E,aĒ,b), (5)

where Rab is the three-dimensional Ricci tensor corresponding to hab. Equations (5)
describe three-dimensional gravitation with some matter model which turns out to be
a SL(2, C)/SO(1, 1) sigma model, see [39]. It is obvious that zeros of the norm of the
Killing vector are singular points of the equations.

To illustrate the above equations in the presence of a helical Killing vector, it is instructive
to consider Minkowski spacetime in a rotating frame. In an asymptotically non-rotating
frame, the Minkowski metric in standard cylindrical coordinates is in the above formalism
for the stationary Killing vector given by f = 1, b = 0 and hab = diag(1, 1, ρ2). In a
rotating coordinate system where φ′ = φ−Ωt with constant Ω, we get for a helical Killing
vector ξ = ∂t + Ω∂φ (notice that there is a helical Killing vector in Minkowski spacetime
for arbitrary Ω)

f ′ = 1 − Ω2ρ2, b′ = −2Ωz, (6)

where we have put a physically irrelevant constant in the definition of the twist potential
equal to zero. Since the spatial metric hab in (1) is rescaled by f , we have h′

ab = f ′hab

except for h′
φφ which is invariant under a transformation to a rotating frame. The light

cylinder where the rotating observers corresponding to the vector ξ move with the velocity
of light is given in this case by ρ = 1/Ω. In the interior of this cylinder, the Killing vector
is timelike and f is thus positive, in the exterior it is spacelike. At the cylinder the
signature of the metric hab changes from +3 to −1. In the four-dimensional picture there
is no change in the signature of the metric but t and φ change roles at the light cylinder,
φ being a timelike coordinate in the exterior of the cylinder.

The Ernst equation takes in non-rotating coordinates the simple form

f∆E = (∇E)2, (7)
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where ∆ and ∇ are the standard differential operators in cylindrical coordinates. In the
rotating frame, the Laplace operator is replaced with the linear operator L defined by

L := ∂ρρ +
1

ρ
∂ρ + ∂zz + (1 − Ω2ρ2)

1

ρ2
∂φφ, (8)

which is just the helically reduced flat d’Alembert operator in a rotating frame. In the
axisymmetric case (no φ-dependence) L reduces to the flat Laplace operator. In the non-
axisymmetric case solutions to the equation LE = 0 behave for small ρ like solutions to the
Laplace equation and for large ρ like solutions to a hyperbolic equation. Separating the
angular dependence in spherical coordinates in a standard way via spherical harmonics,
E =

∑
lm Rlm(r)Ylm(θ, φ), one recognizes that the solutions of LE = 0 behave close to

the origin as rl like solutions to the Laplace equation and for r → ∞ as eiΩr/r. One
has thus to expect an oscillatory behavior for large r. Numerical studies of this type
of equations have been carried out in [29, 30, 31] and [4, 5]. In general, Sommerfeld
conditions (outgoing wave condition at finite values of r) have been used. Existence and
uniqueness of solutions to boundary value problems for these equations were studied in
[26] using the theory of symmetric positive systems.

In the stationary axisymmetric case the above equations can be further simplified. It can
be shown (see e.g. [40]) that the spatial metric can be written in this case in the form
hab = diag(e2k, e2k, ρ2). In this case the Ernst equation decouples from the equations for
the metric function k and takes the form (7) for a φ-independent Ernst potential. The
metric function k follows for a given Ernst potential in terms of a line integral. In this
formalism the Kerr solution for a single black hole with mass m and angular momentum
J = m2 sin ϕ takes a particularly simple form,

E =
e−iϕr+ + eiϕr− − 2m cos ϕ

e−iϕr+ + eiϕr− + 2m cos ϕ
, (9)

where r± =
√

(z − m cos ϕ)2 + ρ2, and where the horizon is given by ρ = 0 and |z| ≤
m cos ϕ.

Here we consider spacetimes with a single helical Killing vector. We adopt the definition
of Friedman et al. [8] that the Killing vector can be written in the form ξ = ∂t′ + Ω∂φ′

where ∂φ′ is a spacelike vector with circular orbits of length 2π unless it vanishes. The
vector ∂t′ is timelike outside the history of some sphere, Ω is a constant, see [8] for details.
This vector generalizes the helical Killing vector of Minkowski spacetime discussed above.
It corresponds to the introduction of observers corotating with the binary system. Close
to the black holes this vector will be timelike, but it will become null if these observers
rotate with the velocity of light which determines the so-called light cylinder.

3 2 + 1-decomposition, horizons and light cylinder

In this work we are interested in spacetimes with a helical Killing vector that contain
binary black holes. Since it was shown in [8] that spatially compact Killing horizons in
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this case are event horizons, we are interested in spacetimes with two disconnected Killing
horizons of spherical topology.

With this assumption it seems convenient to introduce two systems of spherical coordi-
nates adapted to the horizons in a way that one of them is given by r = R = const.
We assume that the spacetime can be globally foliated by spheres which is not necessary
for the analysis below but for the planned numerical implementation. Since equations
(5) describe a model of three-dimensional gravity, it seems natural to use a 2 + 1 de-
composition of the 3-space with respect to the radial coordinate. Let Na = (A, 0, 0) and
N a = (1,−Bα)/A be the unit normal to the r = const surfaces; greek indices take the
values 2 and 3. Denoting the metric of the r = const surfaces with sαβ, we can write the
metric hab in the form

habdxadxb = sαβ(dxα + Bαdr)(dxβ + Bβdr) + A2dr2. (10)

The Ricci tensor splits in the standard way (see e.g. [41]) in 3 ‘evolution’ equations which
contain second derivatives with respect to r,

Rαβ = ∇(αṄβ) + 2KαγKγ
β − ṄαṄβ + £NKαβ + R

(2)
αβ −KαβK (11)

and 3 ‘constraint’ equations below which have at most first derivatives with respect to r.
Here Kαβ is the exterior curvature of the r = const surfaces given by

Kαβ =
1

A
(
∇(αBβ) − 1

2
sαβ,r

)
, (12)

where ∇α denotes the covariant derivative associated to sαβ. The Lie derivative of Kαβ

in the direction of N is denoted by £NKαβ ,

£NKαβ = Kαβ,r
1

A −Kαβ,γ
Bγ

A −Kαγ

(Bγ

A
)

,β

−Kβγ

(Bγ

A
)

,α

, (13)

and Ṅα = −(lnA),α. The two equations corresponding to the momentum constraint in
the standard 3 + 1-decomposition read

−RaαN a = ∇βKβ
α −∇αKβ

β , (14)

the Hamiltonian constraint is given by

RabN aN b − sαβRαβ = K2 −KαβKαβ − R(2). (15)

where K = Kα
α and R(2) = sαβR

(2)
αβ . In the above equations, greek indices are raised and

lowered with sαβ and its inverse.

For concrete calculations one has to fix a gauge. Since we are considering horizons of
spherical topology and an adapted coordinate system, a natural choice of the metric sαβ

would be the standard metric of the 2-sphere. This is in general possible for smooth
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metrics which we are interested in here since we are looking for regular horizons. Due to
the fact that the spatial metric hab is rescaled by the norm of the Killing vector which
vanishes at the horizon, the metric hab is expected to vanish there as well. A possible
choice would then be a metric conformal to the metric of the 2-sphere,

sαβ = fr2diag(1, sin2 θ). (16)

This gauge will be convenient in the vicinity of the horizon. As the considerations for
Minkowski spacetime in the previous section have shown, this choice is not possible across
the light cylinder because of the signature change of the spatial metric there. Since we
are interested in setting up equations suited for numerical treatment, we are looking for
a system of coordinates which is able to cover the whole spacetime in the exterior of the
horizon with a single coordinate patch. This could be possible with coordinates in which
the angular part gαβ of the four-dimensional metric is the standard metric of the 2-sphere
as in Schwarzschild coordinates. The latter would imply however the explicit inclusion of
the vector ka in the equations which is contrary to the philosophy of the present approach
to work only with its dual, the scalar twist potential b.

Therefore we choose here a generalized Weyl gauge which we call ‘quasi-isotropic’. We
write

sαβ = diag(r2A2, C). (17)

A possible choice for C is C = r2 sin2 θ(1 − R2/r2)2. This corresponds to standard Weyl
coordinates in which the horizon of a Kerr black hole is a sphere of radius R. These
coordinates are related to the coordinates (9) via ρ = (r − R2/r) sin θ and z = (r +
R2/r) cos θ. The quasi-isotropic gauge thus reduces to the standard Weyl coordinates in
the axisymmetric case. It can be used in principle throughout the light cylinder, but it
remains to be shown whether it can be used globally. Due to the divergence structure of
the Ernst equation (4) which can be written free of covariant derivatives in the form

f(hab
√

hE,a),b = hab
√

hE,aE,b, (18)

the equation has in this gauge the standard terms of the Laplace operator for the rr and
θθ derivatives. This helps in the numerical treatment of the equations since standardized
differential operators can be numerically inverted. In this gauge we have the non-vanishing
Christoffel symbols corresponding to sαβ

Γ2
22 = (lnA),θ, Γ

2
23 = (lnA),φ, Γ

2
33 = − 1

A2
(1 − R2/r2)2 sin θ cos θ, (19)

and

Γ3
22 = − AA,φ

(1 − R2/r2)2 sin2 θ
, Γ3

23 = cot θ. (20)

The components of the Ricci tensor read R
(2)
23 = 0 and

−R
(2)
22 = − A2

(1 − R2/r2)2 sin2 θ
R

(2)
33 =

AA,φφ

(1 − R2/r2)2 sin2 θ
− 1 − cot θ(lnA),θ. (21)
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The equations for Rab can be treated as in the case of a 3 + 1-decomposition: if the
constraints are satisfied for some value of r, this will be the case for solutions to the
evolution equations for all values of r. Since the horizon is a singularity for the equations,
one has to give boundary conditions there which are compatible with the constraints
and the evolution equations. With these boundary conditions one has to solve the Ernst
equation which corresponds to two real equations and the three evolution equations (11)1.
Thus one has to solve in total 5 equations as in the case of the IWM problem in [22]. The
difference is here that the equations are not elliptic in the exterior of the light cylinder in
contrast to the IWM equations and that the spacetime will not be asymptotically flat as
discussed in the following section.

To study the behavior of the metric at the horizon, we use formal power series in the local
coordinate y = r − R. As in the case of ordinary differential equations, we adopt for a
function F (r, θ, φ) the ansatz

F (r, θ, φ) = ynF

∞∑
j=0

Fj(θ, φ)yj, (22)

but here with coefficients Fj(θ, φ) depending on θ and φ. The question is whether there
are formal solutions to the Einstein equations of this form with vanishing norm f of the
Killing vector for y = 0 which are more general than the Kerr solution for a single black
hole. Here we are only interested in providing formal solutions intended for the use in the
numerical treatment. Therefore we do neither discuss the convergence of the series nor
global questions. We get (again we ignore a physically irrelevant constant in the definition
of b)

Proposition 3.1. In the gauge (17), the equations (4) and (5) have formal solutions of
the form (22) with

f = f0(θ, φ)y2+f1(θ, φ)y3+f2(θ, φ)y4+ . . . , b = b0(θ, φ)y4+b1(θ, φ)y5+b2(θ, φ)y6+ . . . ,
(23)

and

A = A0(θ, φ)y+A1(θ, φ)y2+A2(θ, φ)y3+. . . , B2 = Θ0(θ, φ)y3+. . . , B3 = Φ0(θ, φ)y3+. . . .
(24)

The functions f0(θ, φ) and b0(θ, φ) are free functions of θ and φ with f0,φ(0, φ) = 0. All
other coefficient functions in the expansions (23) and (24) can be expressed in dependence
of f0(θ, φ) and b0(θ, φ), the leading order terms being

A0(θ, φ) = κf0(θ, φ),
A1

A0

= − 3

2R
, f1 = −f0

R
, b1 = −2b0

R
, (25)

where the constant κ is given by κ = 2/(Rf0(0, 0)).
1As in [42], a fully constraint approach can be used alternatively in the sense that only the constraint

equations instead of the evolution equations are solved.
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The constant κ in the relation between A0 and f0 indicates a freedom in the choice of
f0(0, 0). This freedom is due to the fact that a scale in the norm of the Killing vector is
not fixed, after multiplication with some constant, ξ is still a Killing vector.

Proof:
With (23) and (24), we get for the exterior curvature (12) by using (19) and (20)

K22 = −A0(R
2 + 3Ry + 2y2) −A1(2R

2y + 5Ry2) − 3R2A2y
2

+(Θ0,θ − (lnA0),θΘ0)
y2

A0
+

R2A0,φΦ0

4 sin2 θ
y2 + 0(y3),

K23 =

(
1

2
Θ0,φ − (lnA0),φΘ0

)
y2

A0
+

(
1

2
Φ0,θ − cot θΦ0

)
y2

A0
+ 0(y3),

K33 = − 4

A0
sin2 θ

(
1 − 3

2R
y +

5y2

2R2
− A1

A0
y

(
1 − 3y

2R

)
+

A2
1

A2
0

y2 − A2

A0
y2

)

+Φ0,φ
y2

A0
+

4 sin θ cos θ

R2A3
0

Θ0y
2 + 0(y3). (26)

It is straight forward to check that the Hamiltonian constraint (15) is satisfied to leading
order (which is 1/y4). The momentum constraint (14) leads in lowest order to

(lnA0),α = (ln f0),α. (27)

Thus we have A0 = κf0 with κ = const.

To ensure a regular axis (θ = 0) in spherical coordinates, the axis must be ‘elementary
flat’, i.e. small circles around the axis must have an invariant circumference of 2π times
the invariant radius in the limit of vanishing radius. This means for ρ = r sin θ, z = r cos θ

lim
ρ→0

∫ 2π

0

√
gφφdφ = 2π lim

ρ→0

∫ ρ

0

√
gρρ(ρ′, z, φ)dρ′. (28)

With the above relations this implies (ka is bounded at the horizon)

r sin θ

(
1 − R2

r2

)
1

2π

∫ 2π

0

1√
f(r, 0, φ)

dφ =
A(r, 0, φ)√
f(r, 0, φ)

. (29)

Expanding this relation in y and using (23), (24) and (27), we get in lowest order of y the
condition that f0(0, φ) must be independent of φ and thus be a constant. This constant
is related to κ via

κ =
2

Rf0(0, 0)
. (30)

The Ernst equation (4) is satisfied in leading order for arbitrary f0(θ, φ) and b0(θ, φ), in
the next higher order the real part implies

f1 +
f0

R
= 0, (31)
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whereas the imaginary part leads to

−8b0f1 +
2

R
b0f0 + 5b1f0 = 0. (32)

This determines f1 and b1 in dependence of f0 and b0. In order yn, the leading terms in
the real part of the Ernst equation are

(n − 2)2f0fn−2 (33)

and
n(n − 4)f0bn−4 + 8(2 − n)b0fn−2 (34)

for the imaginary part. The Ernst equation can thus be used to all orders determine fn−2

and bn−4 in dependence of quantities of lower order.

With (26) we get for the Lie derivative of the exterior curvature (13)

£NK22 = −1

y

(
3R + 2R2A1

A0

)
− 4 − 7R

A1

A0
+ 2R2A2

1

A2
0

− 6R2A2

A0

+
4Θ0,θ

A2
0

− 7(lnA0),θ
Θ0

A2
0

+
3R2(lnA0),φΦ0

4 sin2 θ
+ 0(y)

£NK23 =
1

A2
0

(2Θ0,φ − 5(lnA0),φΘ0 + 2Φ0,θ − 4 cot θΦ0 − (lnA0),θΦ0) + 0(y)

£NK33 =
4 sin2 θ

A2
0y

(
3

2R
+

A1

A0

)
− 4 sin2 θ

A2
0

(
5

R2
+

9A1

2RA0
+

3A2
1

A2
0

− 2A2

A0

)
(35)

+16 sin θ cos θ
Θ0

R2A4
0

− 4 sin2 θ(lnA0),θ
Θ0

R2A4
0

+
4Φ0,φ

A2
0

− 3(lnA0),φ
Φ0

A2
0

+ 0(y)

Since there are second order derivatives with respect to r in the the evolution equations
as in the Ernst equation, higher order terms in the expansion of the metric functions will
appear here before they do in the constraints. Therefore there are no further conditions
on the lowest order terms. In order 1/y the equation for R22 (there are no contributions
from the Ernst potential in this order) leads to

R2

y

(
3

2R
+

A1

A0

)
= 0. (36)

This implies that there are no terms of order y in the exterior curvature (26) and no terms
of order 1/y in the Lie-derivatives (35).

The leading terms in order yn−3 in the evolution equations are for n > 2 in R22

−R2(1 − n)2An−1

A0
+

1

A2
0

(nΘn−3,θ − (n + 3)(lnA0),θΘn−3 + cot θΘn−3)

+
R2

4 sin2 θ
(Φn−3,φ + (n − 1)(lnA0),φΦn−3) . (37)

12



Similarly we get for R23

1

2A2
0

((n − 1)Θn−3,φ − 2n(lnA0),φΘn−3 + (n − 1)Φn−3,θ − 2(n − 1) cot θΦn−3 − 2(lnA0),θΦn−3) ,

(38)
and for R33

4 sin2 θ

R2A4
0

(Θn−3,θ − 2(lnA0),θΘn−3 + n cot θΘn−3)

+
1

A2
0

(nΦn−3,φ − 2(lnA0),φΦn−3) . (39)

It is straight forward to solve the equations 38) and (39) for Θn−3 and Φn−3. Function
An−1 then follows from equation (37). The Ernst equations (33) and (34) determine
consequently fn−2 and bn−4. We have thus shown that the evolution equations and the
Ernst equation can be solved in this way to all orders. This completes the proof.

The fact that An−1 does not appear in the equations (38) and (39) implies that Θ and
Φ can be chosen to vanish for φ-independent f0 and b0. This leads as expected to the
Kerr solution. Note that fn−2, bn−4 and An−1 are determined algebraically by the above
equations. Just to determine Θn−1 and Φn−1, one has to integrate which leads to free
integration functions. The latter are related to the fact that the used gauge conditions
do not fix the gauge completely. There are transformations of the form

r′ = r + y3P (θ, φ) + . . . , θ′ = θ + y2S(θ, φ) + . . . , φ′ = φ + y2T (θ, φ) + . . . (40)

for non-trivial P , S and T which do not change the gauge. Since h′
rθ = hrθ + hθθ2yS and

similarly for hrφ, there are gauge modes in Θ and Φ which show up in the form of free
integration functions.

Remark 3.1. Due to the homogeneity of the Ernst equation in the Ernst potential, the
functions f0(θ, φ) and b0(θ, φ) are not determined in the above expansions in the vicinity
of a horizon. This gives hope that there might be a second regular horizon of spherical
topology in the spacetime for a suitable choice of these functions. Whereas the behavior
of the Ernst potential with respect to y is the same as in the case of a single Kerr black
hole, the functions f0 and b0 may be different.

To treat the light cylinder we use a similar approach as for the horizon. By the definition of
the Killing vector of [8] we are using here, the light cylinder will have cylindrical topology.
We assume that the spacetime can be foliated by cylindrical surfaces, and use cylindrical
coordinates in which the light cylinder is given by ρ = ρ0 = const. In an abuse of notation
we use the same symbols for the 2 + 1-decomposition as used for the spherical case,

habdxadxb = sαβ(dxα + Bαdρ)(dxβ + Bβdρ) + A2dr2. (41)

where dx2 = dz. We use again the quasi-isotropic gauge which reads in this case

sαβ = diag(A2, C). (42)
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The choice C = ρ2 is possible near the cylinder.

We assume that f has a zero of first order in v = ρ − ρ0 at the cylinder since the Killing
vector is supposed to change from timelike to spacelike there. Again we consider formal
expansions of the metric function of the form

F (ρ, z, φ) = vnF

∞∑
j=0

Fj(z, φ)vj , (43)

We get

Proposition 3.2. In the gauge (42) the equations (4) and (5) have formal power series
solutions of the form (43) with

f = f0(z)v + f1(z, φ)v2 + . . . , b = b0(z) + b2(z, φ)v2 + . . . ,

A = A0(z)
√

v + A1(z, φ)v
3
2 + . . . B2 = Z0(z, φ)v2 + . . . , B3 = Φ0(z, φ)v. (44)

The functions b0(z), A0(z) and f2(z, φ) are free functions of z and z, φ respectively. All
other coefficient functions in the expansion (44) can be expressed in dependence of b0, A0

and f2, the leading term being
b2
0,z = f 2

0 . (45)

Proof:
The formulas for the 2 + 1-decomposition in section 2 apply with the trivial change that
r has to be replaced by ρ. The chosen gauge is also very similar to the one used for the
horizon, the only difference being the factor r2 in the expression for s22. Therefore we
will not give explicit formulas for the Christoffel symbols and R

(2)
αβ here. For the exterior

curvature (12), we get with (44)

K22 = − A0

2
√

v
− 3

2
A1

√
v + 0(v

3
2 ),

K23 =

√
v

2A0
Φ0,z + 0(v

3
2 ),

K33 = − ρ

A0

√
v

(
1 − A1

A0

v

)
+

√
v

A0

Φ0,φ + 0(v
3
2 ). (46)

This implies for the Lie derivative of the exterior curvature

£NK22 =
1

4v2
− A1

A0v
+ 0(v0),

£NK23 =
1

4A2
0v

Φ0,z + 0(v0),

£NK33 =
ρ0

2A2
0v

2
− 1

2A2
0v

+
Φ0,φ

2A2
0v

+ 0(v0). (47)
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In lowest order, the equation for R22 then yields (45), whereas the relations for R23 and
R33 can only be satisfied in this case for

b0,φ = 0. (48)

The z-component of the momentum constraint implies

2b0,zb2 + f0,zf0 − Z0

A2
0

b2
0,z = 0, (49)

which determines b2, whereas the φ-component of the momentum constraint gives

A0,φ = 0. (50)

With condition (45) the Hamiltonian constraint is satisfied to leading order.

The real part of the Ernst equation gives no additional condition in leading order, in order
v it leads to

f1 =
f0

2ρ0

. (51)

The imaginary part gives with (45) in leading order (50). Consequently b2 and f1 are
determined in this order.

The equation for R22 reads with (11) in order 1/v

A1

A0
=

1

ρ0
. (52)

In the same order R23 is identically satisfied. R33 takes the form

0 =
2A1

A0

+
1

ρ0

Φ0,φ. (53)

This fixes Φ0 and A1. Thus the functions b0(z) and A0(z) are not determined by the
above equations. In addition Z0 is not yet fixed.

In higher orders of the expansion, the reasoning will be similar since the general structure
of the equations is the same: the Ernst equation in order vn−1 with n > 1 contains the
leading terms n(n − 3)f0fn−1 and

n(n − 3)bn + 2b0,z
Zn−2

A2
0

(54)

in the real and the imaginary part respectively. The evolution equations in order vn−2

contain the leading terms

−bn,z

b0,z

−
(

n2 − n − 1

4

) An

A0

+
1

A2
0

((
n − 1

2

)
Zn−2,z − (n − 2)(lnA0),zZn−2

)
, (55)
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−A2
0

bn,φ

b0,z

+ nZn−1,φ +

(
n − 1

2

)
Φn−1,z, (56)

and

(2n − 1)
An

A0
+

n

2ρ0
Φn−1,φ − 1

A2
0

Zn−2,z. (57)

Thus one can determine fn−1, bn, An, Zn−1 and Φn−1 from the above equations unless
n = 3. In this case the real part of the Ernst equation determines the function Z0 which
was still free, the function f2 remains undetermined. The equations in higher order fix
all expansion functions except A0, b0 and f2. Free functions in Z and Φ occurring after
integration are again related to residual gauge freedoms as was the case in the vicinity
of the horizon. Thus the series (44) provide a formal solution in the vicinity of the light
cylinder. This completes the proof.

Remark 3.2. It should be possible to apply Fuchsian methods as in [33] to prove existence
of the above solutions near the horizon and the light cylinder for some non-vanishing radius
of convergence. However this would not answer the decisive question whether there can
be two smooth horizons and a smooth light cylinder in the spacetime. Therefore we will
not apply these methods here.

4 Asymptotic behavior

The formal solutions in terms of a series in the vicinity of the two horizons and the light
cylinder in the previous section obviously do not imply global existence of a solution
describing a spacetime with a helical Killing vector and two regular Killing horizons. The
radius of convergence of these series is unknown. Therefore it is also not possible to
make precise statements on the asymptotic behavior of the metric. As shown in [6] such
spacetimes cannot be asymptotically flat in the strong sense that they have a smooth
null infinity. However this does not exclude the possibility that the spacetime is weakly
asymptotically flat in the sense that the spacetime tends to the Minkowski spacetime. This
is what we will show in this section though the assumption of an asymptotic Minkowski
metric might be too strong as indicated by the work of [36]. However the used techniques
will also be applicable for even weaker asymptotic conditions.

Since the coordinate system we were using in the previous sections is asymptotically
rotating (see the considerations for Minkowski spacetime in section 2), the Ernst potential
is expected to have the kinematic terms (6). These terms will lead to technical difficulties
if one wants to consider an expansion of the metric functions in powers of 1/r. Therefore
we will consider in this section asymptotically non-rotating coordinates (t′, r, θ, φ′) where
φ′ = φ + Ωt, t′ = t. The metric will be studied via the linearized Einstein equations on a
Minkowski background. Due to the helical symmetry the metric functions depend on t′

and φ′ only via the combination x = φ′ − Ωt′.

We assume the metric to be of the form gAB = ηAB + δAB (capital indices take the
values 0,1,2,3) for r → ∞ where ηAB = diag(−1, 1, r2, r2 sin2 θ) is the Minkowski metric
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in spherical coordinates, and where δAB gives the deviation from Minkowski spacetime
for large r. In cartesian coordinates δAB is assumed to be of order 1/r. An analysis
of the equations as in section 2 indicates however that the terms of order 1/r will have
an oscillatory dependence in r (we exclude here possible logarithmic terms in the metric
function). We will therefore consider a formal expansion of the metric functions of the
form

F (r, θ, φ) =

∞∑
j=0

Fj(r, θ, x)

rnF +j
, (58)

where the r-dependence of the Fj is to be understood to be purely oscillatory. In spherical
coordinates we expect for the algebraic dependence on r that δ00, δ01 and δ11 are of order
1/r, that δ02, δ03, δ12 and δ13 are of order r0, and that δ22, δ23 and δ33 are of order r.
We note that this ansatz for δ03 allows for a so-called Newman-Unti-Tamburini parameter
which corresponds to a magnetic monopole in electrodynamics. It is unclear whether such
terms have to be expected in the present context, and the used methods are not suited
to answer this question.

To fix the gauge freedom we consider coordinate transformations of the form below which
do not change ηAB to leading order. The wanted gauge transformations can be put into
the form

t̃ = t +
T (r, θ, x) + αx

r
,

r̃ = r + β +
R(r, θ, x)

r
,

θ̃ = θ +
Q(r, θ, x) + γx

r2
,

φ̃ = φ +
P (r, θ, x)

r2
, (59)

where the r- and x-dependence of the potentials T , R, Q and P is understood as before
to be purely oscillatory, and where α, β and γ are functions of θ only. This implies for
the transformed Minkowski metric in leading order

g̃00 = −1 +
2Ω

r
(T,x + α), g̃01 = −1

r
(T,r + ΩR,x), g̃02 = −Ω(Q,x + γ),

g̃03 = −Ω sin2 θP,x, g̃11 = 1 +
2

r
R,r, g̃12 = Q,r, (60)

g̃13 = sin2 θP,r, g̃22 = r2

(
1 +

2β

r

)
, g̃23 = Q,x + sin2 θP,θ, g̃33 = r2 sin2 θ

(
1 +

2β

r

)
.

For metrics obtained by solving the linearized Einstein equations on a Minkowski back-
ground, this implies that the functions T to P in (60) can be used to establish a certain
gauge. By an appropriate choice of P , we can choose g̃23 to vanish under the made as-
sumptions. By considering higher orders of this expansion, this should be possible to all
orders. Similarly by choosing R and β we obtain g̃22 = r2g̃11. The additional freedom
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can be used to have a vanishing δ00 and g02. We assume that the gauge potentials T , R,
Q and P are of the form T =

∑
m∈Z

(T+
m(θ)eim(x+Ωr) + T−

m(θ)eim(x−Ωr)). Therefore we had
to add the functions α, β and γ depending only on θ to make sure that terms in the δAB

which are constant with respect to x can be compensated. This would lead, however, to
terms proportional to x in δ00 and δ02. Therefore we allow for a purely θ-dependent δ00

and δ02 which will not enter the linearized field equations to retain periodic potentials in
x and r. Dropping the tilde, we thus choose the gauge (which is not exactly equivalent
one used in the previous section, but close to it)

g00 = −
(

1 +
f0(θ)

r

)
, g01 =

c

r
, g03 = a, g33 = r2 sin2 θ

(
1 +

F

r

)
, (61)

and

g02 = h0(θ), g11 =
1

r2
g22 = 1 +

A

r
, g12 =

Θ

r
, g13 = Φ. (62)

The gauge is fixed up to a free function of r, φ in a, and functions of θ only in c, Θ, and
Φ, since we assume periodicity in r and x of the terms Fn(r, θ, x) in (58). There could be
a contribution in order r0 to Θ, but this must be a function of θ alone as a consequence
of the Einstein equations below and the periodicity condition in r. We put this function
equal to zero here to fix a gauge freedom. This implies in leading order for the inverse
metric

g00 = −
(

1 − f0

r

)
, g01 =

c

r
, g03 =

a

r2 sin2 θ
, g33 =

1

r2 sin2 θ

(
1 − F

r

)
, (63)

and

g02 =
h0

r2
, g11 = r2g22 = 1 − A

r
, g13 = − Φ

r2 sin2 θ
, g12 = −Θ

r3
. (64)

We obtain

Proposition 4.1. The linearized Einstein equations on a Minkowski background for the
metric (61), (62) lead to two wave equations for the functions A and a,

A,rr − Ω2A,φφ = 0, a,rr − Ω2a,φφ = 0. (65)

The remaining metric potentials follow in terms of quadratures.

Proof:
With relation

Rabcd =
1

2
(gad,bc + gbc,ad − gac,bd − gbd,ac) (66)
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for the linearized Riemann tensor we get for the Ricci tensor in lowest order in 1/r

2rR00 = −2Ωc,rφ − 2Ω2A,φφ − Ω2F,φφ

2rR01 = Ω(A + F ),rφ

2rR02 = c,rθ − ΩΘ,rφ + Ω(A + F ),φθ

2R03 = −ΩΦ,rφ − a,rr

2rR11 = 2Ωc,rφ + Ω2A,φφ − (A + F ),rr

2rR12 = Ωc,θφ − F,rθ + Ω2Θ,φφ

2R13 = Ωa,rφ + Ω2Φ,φφ

2

r
R22 = Ω2A,φφ − A,rr

2R23 = Ωa,θφ + Φ,rθ

2

r sin2 θ
R33 = Ω2F,φφ − F,rr. (67)

It is a consequence of the equations for R03 and R13 that

ΩΦ,φ + a,r = G1(θ), (68)

where G1 is a free function of θ only which is gauge invariant under transformations of
the form (59). The equation for R23 then implies

Ω2a,φφ − a,rr = G2(r, φ), (69)

where G2 is a free function of r and φ which reflects a gauge freedom and can be put
equal to zero. Equation (69) represents the first of the two wave equations. We write the
solution in the form of a Fourier series

a =
∑
m∈Z

eimφ(a+
m(θ)eiΩmr + a−

m(θ)e−iΩmr). (70)

The reality condition for a implies a±
−m = ā±

m. Thus we get for Φ

Φ = −
∑
m∈Z

eimφ(a+
m(θ)eiΩmr − a−

m(θ)e−iΩmr) + G0(θ). (71)

The equation for R01 implies

A + F = G3(θ, φ) + G6(θ, r). (72)

It is then a consequence of R22 (R33 is identically satisfied) that

A =
∑
m∈Z

eimφ(A+
m(θ)eiΩmr + A−

m(θ)e−iΩmr). (73)
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This gives the second wave equation. Again reality of A implies A±
−m = Ā±

m.

Equations R00 and R11 lead to

c = −Ω

2

∫ r

r0

A,φdr + G4(θ). (74)

These equations also determine that the right-hand side of (72) is only a function of θ if
the periodicity in r and φ is taken into account. Equations R02 and R12 then imply

Θ = −1

2

∫ r

r0

A,θdr + G5(θ). (75)

This completes the proof.

Remark 4.1. If the black holes have equal ‘mass’, i.e. equal combination of mass and
angular momentum which can be defined via the Komar integral below, the spacetime
has an additional discrete symmetry, it is invariant in a suitably defined coordinate system
under the transformation φ → −φ. This implies for (70) and (73) A+

m = Ā−
m and a+

m = ā−
m.

In this case no additional boundary conditions at infinity need to be given. A Sommerfeld
condition which is typically considered at finite radius would only allow trivial solutions
in this example if imposed at infinity.

Remark 4.2. In case the functions a and Φ have leading terms of order 1/r, i.e. if there is
no NUT-parameter, the following equations for the Ricci tensor (67) change

2rR03 = c,rφ − ΩΦ,rφ − a,rr + 2ΩA,φφ,

2rR13 = Ωa,rφ + Ωc,φφ − A,rφ + Ω2Φ,φφ,

2rR23 = Ωa,θφ + Φ,rθ + Θ,rφ − A,θφ. (76)

These equations again imply wave equation (69) for a and

Φ = − 1

Ω

∫ φ

φ0

a,rdφ +
3

2

∫ r

r0

A,φdr + G7(θ, r). (77)

The ansatz (58) already implies that the ADM mass and additional asymptotic multipoles
cannot be defined due to the oscillatory behavior of the metric functions. We will show
that it is also not possible to use the Komar integral asymptotically in a standard way to
define a conserved quantity. This integral can be used to relate a locally calculated mass
to the ADM mass for an asymptotically flat spacetime with a stationary Killing vector.
The idea is to evaluate a surface integral at finite radius R and then to take the limit
R → ∞. Basically one uses that �dξ is an exact differential which means that one can
apply Gauss’ theorem. We get for an integration over a sphere with t = const, r = const

∫
S

ξ[A,B]g
0Ag1B√−gdθdφ = 0. (78)
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To calculate the integral near the horizon we need the inverse of the 4-dimensional metric

g00 = −1

f
+ fkak

a, g0a = −fka, gab = fhab, (79)

where spatial indices are raised and lowered with hab. In the quasi-isotropic gauge we get
with the results of section 3 for the surface integral that only the term∫

S

√−gdθdφg00g11ξ[0,1] (80)

contributes. This leads with A0 = κf0 to

1

2

∫
S

sin θdθdφ
f,r

A =
4π

κ
. (81)

For a single black hole the constant κ = 1/(2m). The Komar integral is of course only
defined up to a scaling of the helical Killing vector, see the remarks in [8].

To check whether the surface integral can be defined for r → ∞, we determine the
integral for r = r0 where r0 � R and study whether the limit r0 → ∞ exists. This could
be possible if one uses the periodicity of the functions in φ in the φ-integration over a
complete period at a finite value of r. As we will show below, this will not be the case
because of the bilinear terms in the integrand. Note that the Killing vector reads in the
used coordinates ξ = ∂t′ + Ω∂φ′ . It is readily seen that the integral can only exist if
G1 = 0, since the corresponding terms in the integrand are of order r2. If we assume that
this is the case, we get for the surface integral

1

2

∫
S

r sin θdθdφ(Ω2ΦF,φ + aΩ(2 + F,r)). (82)

The integral can only exist if these terms vanish after integration with respect to φ since
the integrand diverges as r. Writing the integrands as a Fourier series as we have done in
the proof of proposition 4.1, we get after integration with respect to φ that the integrand
is proportional to

a+
0 + a−

0 − iΩ
∑
m∈Z

m(a+
mĀ−

me2iΩmr − a−
mĀ+

me−2iΩmr). (83)

This expression can only vanish if a+
mĀ−

m + ā−
mA+

m = 0 for m > 0. In the equal mass case,
this is only possible if either am or Am vanish. If a and Φ have leading contributions in
order 1/r as in remark 4.2, the terms of order 0(r0)in the surface integral are due to (80)
and are of the form ∑

m∈Z

m(A−
mĀ+

me2iΩmr − A+
mĀ−

me−2iΩmr). (84)

The integral can only exist if the terms A+
mA−

m vanish for all m �= 0. Since there cannot
be purely ‘outgoing’ or ‘ingoing’ waves in the case of a helical Killing vector, this con-
dition will lead to the axisymmetric case. Thus the surface integral cannot be defined
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asymptotically in the presence of a helical Killing vector unless there is in addition an
asymptotically axial Killing vector. In this case the integral just gives the expected value
M + ΩJ , the combination of mass and angular momentum corresponding to a helical
Killing vector.

Gibbons and Stewart [6] showed that periodic boundary conditions are incompatible with
a smooth null infinity. This is in accordance with the ansatz (58) as can be seen from the
following consideration: We define the standard null-tetrad of Minkowski spacetime,

ka =
1√
2

(∂t′ + ∂r) , ma =
1√
2

(−∂t′ + ∂r) , ta =
1√
2r

(
∂θ +

i

sin θ
∂φ′

)
, (85)

We define the Weyl scalars as in [43] (we can use the above tetrad since we are only
considering a linearization on a Minkowski background)

C1 = 2Cabcdm
amctbtd,

C2 = −Cabcdm
atb(kcmd + t̄ctd),

C3 = 2Cabcdm
atbkct̄d,

C4 = −Cabcdk
at̄b(kcmd + t̄ctd),

C5 = 2Cabcdk
akct̄bt̄d. (86)

Determining the components of the Riemann tensor for the asymptotic metric of propo-
sition 4.1, we get for the Weyl scalars in leading order

C1 = − 1

2r
(Arr + 2ΩArφ + Ω2Aφφ),

C2 = C3 = C4 = 0,

C5 = − 1

2r
(Arr − 2ΩArφ + Ω2Aφφ). (87)

Thus the Petrov type is N. The Weyl scalars vanish for r → ∞, but this limit is in general
not defined for rCi, i = 1, . . . , 5 because of the oscillatory behavior of the metric functions.
Thus in accordance with [6], there is no smooth I and no peeling in this case even if we
assume that the metric tends asymptotically to the Minkowski metric.

5 Outlook

In the previous sections we have given a set of equations describing binary black hole
spacetimes with a helical Killing vector. The equations have regular singularities at the
Killing horizons and the light cylinder, and a non-regular singularity at infinity. This
leads to a set of five equations which could be useful for a numerical implementation. The
equations appear to be well suited for the multi-domain spectral method used in [22], see
also [44]. It is straight forward to include regular singularities in the spectral formalism
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in the adapted coordinates we used for the analytical discussion, since the formal expan-
sions we were discussing is very close to the philosophy of a spectral expansion. The main
difficulty from a numerical point of view seems to be the oscillatory behavior at infinity.
Typically a cut-off at some finite radius is used, but it is unclear which boundary condi-
tions have to be used there. A possibility would be to match the solution at some large
radius to an analytical solution of the linearized Einstein equations where it is not yet
clear on which background the equations can be linearized (the asymptotic form of the
solutions is still an open question). The main problem will be in any case the numerical
resolution of the oscillatory metric close to infinity.

From a mathematical point of view the most interesting question is whether there exist
solutions with two regular Killing horizons in a vacuum spacetime with a helical Killing
symmetry. In this paper we have only considered formal expansions of the metric in the
vicinity of the singularities. The fact that the solution close to the horizons contains
two free functions of the angular variables gives hope that such solutions might exist
globally, but this needs to be proven. In case such solutions exist, it would be interesting
to obtain the precise asymptotic behavior, whether the metric tends to the Minkowski
metric asymptotically, and whether a NUT parameter is needed. Numerical results could
give hints on how to answer these mathematical questions.

The physical relevance of the studied model is clearly to obtain fully relativistic values for
the ISCO and to get initial data for numerical calculations of the last phase of the binary
system. In a real physical situation, the helical symmetry will be only an approximate
symmetry. Therefore it would be interesting to study perturbations of a spacetime with
an exact helical Killing vector studied here. There have been activities in this direction:
in [5], the Killing symmetry holds only in a finite region of space and time, the spacetime
is asymptotically matched to a wave-zone. An approximate Killing vector was considered
in [45].
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