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Abstract

We study the interaction of a singularly perturbed multiwell energy (with an anisotropic nonlocal
regularizing term of H1/2 type) and a pinning condition. This functional arises in a phase field
model for dislocations which was recently proposed by Koslowski, Cuitiño and Ortiz but is also
of broader mathematical interest. In the context of the dislocation model we identify the Γ-limit
of the energy in all scaling regimes for the number Nε of obstacles. The most interesting regime
is Nε ≈ | ln ε|/ε, where ε is a nondimensional length scale related to the size of the crystal lattice.
In this case the limiting model is of line tension type. One important feature of our model is
that the set of energy wells is periodic and hence not compact. A key ingredient in the proof
is thus a compactness estimate (up to a single translation) for finite energy sequences, which
generalizes earlier results of Alberti, Bouchitté and Seppecher for the two-well problem with an
H1/2 regularization.
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1 Introduction

We study the functional

Eε(u) =
1
ε

∫
Q

W (u) dx+
∫ ∫

Q×Q

Kν(x− y)|u(x) − u(y)|2 dx dy, (1)

subject to the pinning condition

u = 0 on B(xi
ε, Rε) = Bi

Rε, for i = 1, . . . , Nε. (2)

1
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Here Q = (−1/2, 1/2)2 is the unit square, W is one-periodic, non-negative and vanishes exactly on
the integers Z, a typical choice being

W (u) = dist2(u,Z), (3)

and the nonlocal part of the energy behaves like the H1/2 norm, i.e. Kν(z) ≈ |z|−3. Finally ε > 0 is a
small parameter and we study the limit ε→ 0 (after suitable rescaling).

The above functional with the choice (3) has recently been proposed by Koslowski, Cuitiño and
Ortiz as a phase-field model for dislocations. In this setting ε is the ratio of the spacing of the lattice
planes and the size of the physical domain under consideration. In this context our main achievement
is that we identify the relevant scaling regimes for the number of obstacles Nε and the corresponding
Γ-limits of the (suitably scaled) energy Eε. Specifically if Nε ≈ ε−1| log ε| we show that the limit of
Eε/(εNε) is the so called line-tension limit, i.e. the limit functional is defined on the space BV (Q;Z),
and is given by

∫
Su
γ(n) dH1 +

∫
Q
Dν(u,BR) dx, where Su is the jump set of u, with normal n, and

Dν(u,BR) represents the limiting contribution of the obstacles Bi
Rε (see Theorem 10 below for a

precise statement). If Nε � ε−1| log ε| the line energy contribution dominates, only constant functions
u ≡ a, with a ∈ Z, are admissible in the limit and their energy is given by D(a,BR). If Nε � ε−1| log ε|
then the line energy becomes negligible, finite energy sequences may only converge weakly and the
limit energy is given by the convex envelope

∫
Q
D∗∗(u,BR) dx, where u may now take values in R,

see Corollary 11 below for a precise statement.
From a more general mathematical point of view the problem we consider combines two features

which have been very extensively studied in the last years. The first one is the interaction of singularly
perturbed multiwell energies and higher order regularisations. Beginning with the work of Modica and
Mortola [14, 15] a large body of work has concentrated on multiwell energies with a compact set of
energy minimizing states and a local regularization given by the Dirichlet integral (see e.g. [13, 9, 7, 5]
and the extensive list of references therein).

The more delicate case of a regularizing term which corresponds to the H1/2 norm and which
requires a logarithmic rescaling was studied by Alberti, Bouchitté and Seppecher [3]. For nonlocal
terms with general anisotropic, but regular, kernels see [2, 1].

The second feature is the interaction of a pinning condition like (2) and Dirichlet-type energies.
Since the work of Marchenko and Kruslov [12] and of Cioranescu and Murat [4] this interaction has
attracted a lot of attention (see for instance [6] for many further references). Roughly speaking, a
general theme of this large body of work is that for well separated obstacles the limiting problem has
no constraint like (2) but involves an extra energy contribution of the form

∫
a(x)|u|2 dx where a(x)

can be viewed as a local ’capacity density’ (and where the appropriate notion of ’capacity’ is related to
the Dirichlet-type energy). Of course a may be singular or degenerate and instead of a(x)dx one may
obtain more general measures which are no longer absolutely continuous with respect to Lebesgue
measure.

Our problem combines both features. We show that the contributions of the singular perturbation
(leading to a line energy) and of the pinning constraint are essentially additive. The interaction
of pinning and the multiwell structure is reflected in the structure of the limiting pinning energy∫

Q Dν(u,BR) dx which is no longer a quadratic expression in u.
Compared with most previous work on singularly perturbed multiwell problems our problem in-

volves an important additional difficulty. The set of wells, i.e. the zero set of W is no longer compact.
Hence it is not clear that sequences with finite (rescaled) energy are bounded in L1. One crucial
ingredient in our analysis is a uniform L2 estimate (up to translation by integers) for sequences for
which the rescaled energy Eε/| log ε| is bounded (see Theorems 12 and 13 below).

1.1 A quick review of the phase field theory of Koslowski, Cuitiño and
Ortiz

Here we briefly discuss the interpretation of the different terms in (1) and the pinning condition. We
refer to [10] for a detailed discussion of the model and to [8] for a discussion of the non-dimensional
version of the energy (1). The setting is that of continuum crystal elasticity, with small strains.



Garroni, Müller: A variational model for dislocations in the line tension limit 3

Consider the displacement field U : R3 → R3 of an infinity elastic crystal. A specific assumption of
the model in [10] is that one allows crystal slip only along the single plane x3 = 0. Moreover one
assumes that only a single slip system is active, i.e. the jump [U ] of the displacement U across the
slip plane is of the form

[U ](x1, x2) = u(x1, x2)be, (4)

where b = |b| is the length of the Burgers vector b of the active slip system and e = b/b its direction.
We choose coordinates such that e is the first coordinate direction. Given u the associated elastic
energy is obtained by minimizing the usual linear elastic energy away from the slip plane, i.e. by
minimizing ∫

R3\{x3=0}
µ |e(U)|2 +

λ

2
|tr e(U)|2 dx1dx2dx3, (5)

where e(U) = 1
2 (∇U + ∇UT ) is the symmetrized displacement gradient. We now suppose that u :

R2 → R is periodic with periodic cell Q = (−1/2, 1/2)2 so that u can be viewed as a function on the
torus T 2. Then the elastic energy per period is obtained by minimizing∫

T 2×R

µ |e(U)|2 +
λ

2
|tr e(U)|2 dx1dx2dx3 .

This minimization can be carried out by considering the Fourier series of u

u(x) =
∑

k∈(2πZ)2

û(k)eik·x, û(k) =
∫

T 2
u(x)e−ik·x dx

and this yields

Eelastic(u) =
µb2

4

∑
k∈(2πZ)2

mν(k)|û(k)|2,

wheremν(k) = k2
2

|k|+
1

1−ν
k2
1

|k| and where ν ∈ (−1, 1/2) is the Poisson’s ratio which is given by ν = λ
2(λ+µ) .

In real space we have

Eelastic(u) =
µb2

2

∫
T 2

∫
T 2
Kν(x− y)|u(x) − u(y)|2 dxdy, (6)

and the kernel Kν is given by the Fourier series with coefficients − 1
4mν(k).

Now we turn to the local contribution in Eε. If u is a (constant) integer then the jump [U ] is a
lattice vector and hence the crystal lattice is not perturbed in the immediate neighbourhood of the
slip plane. If u is not an integer there is an additional distorsion of the lattice near the slip plane and
in the Peierls-Nabarro theory one models this by an extra energy contribution

EPeierls(u) =
∫

T 2
W (u) dx,

where W is a one-periodic, non-negative functions which vanishes exactly on Z. If one fixes a specific
form of W , e.g. W (u) = Adist2(u,Z), or W = A

π2 sin2(πu) one can relate the coefficent A to the shear
modulus µ and the properties of the crystal lattice by considering very small shear deformations. This
line of reasoning leads to the expression A = µb2/(2d), where d is distance between two neighbouring
slip planes.

Dividing the sum of EPeierls and Eelastic by µb2/2 we arrive to the energy Eε in (1) with W given
by (3) and ε = d. Thus ε is proportional to the lattice spacing. If one starts more generally from
the situation where u is periodic with periodic cell (−l/2, l/2)2 and rescales to the unit cell one finds
similarly that ε = d/l. Instead of periodic boundary conditions for u one can also consider other
boundary conditions, see also the next subsection.

The regions Bi
Rε represent obstacles (e.g. inclusions of another material) which restrain slip. The

condition (2) represents the limiting case of infinitely strong obstacles which permit no slip at all.
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One can also consider obstacles of finite strength where slip is only possible under sufficiently strong
loading. In this case one drops the condition (2) and instead adds an additional term

Eobstacle =
∑

i

∫
λ0

1
ε
ψ(
x− xi

ε

ε
)|u| dx (7)

to the energy (see Section 4.3 of [10], and the Appendix of [8] for further details). In [8] we have shown
(in the dilute limit) that the consideration of obstacles of finite strength leads to a Γ-limit which has
exactly the same form as for infinitely strong obstacles. The difference is that now the limiting pinning
energy density Dν(a,BR) no longer has quadratic growth in a, but only grows linear in a, the limiting
slope being related to the effective strength.

Finally one can easily include a forcing term

−
∫

T 2
Sεu dx

in the energy, where Sε is the resolved shear stress. In view of the results in Section 3 a natural scaling
assumption on the applied force is

1
εNε

Sε → S in L2(T 2).

In this case the corresponding Γ-limit simply contains the additional term − ∫
T 2 Su dx. If Sε � εNε

then the applied force disappears in the limit. If Sε � εNε then the applied force dominates in the
limit. In the case εNε � | log ε| there can still be an interesting interaction between the applied force
an the line tension term in the limit, at least if the total applied force

∫
T 2 S

ε dx vanishes or converges
to zero sufficiently fast as ε→ 0.

1.2 Possible generalizations

For the rest of this paper we consider the functional (1) with the specific choice W (u) = dist2(u,Z),
the specific periodic kernel (6) discussed in the previous subsection and the hard pinning condition
(2). Many of the results can, however, easily be extended to a more general setting. We briefly discuss
some possible generalizations, roughly in the order of increasing difficulty.

• More general local functions W . The results can easily be extended to general periodic continuous
functions W which are minimized exactly on Z. For the crucial compactness result one can
even allow certain nonperiodic W as long as their minimizers remain discrete and W does not
degenerate too much near ±∞. As discussed in Remark 8 below the limiting energy does not
depend on W but just on the spacing of its zeroes.

• Other boundary conditions, other kernels K. The results can be extended to other boundary
conditions (for a sufficiently smooth bounded domain Ω ⊂ R2). The corresponding three-
dimensional elastic energy in the cylinder Ω × R has the same singular behaviour as in the
periodic case. For Neumann (natural) boundary conditions one obtains e.g. the expression∫
Ω

∫
ΩK(x, y)|u(x) − u(y)|2 dxdy where the kernel K(x, y) is smooth and behaves asymptoti-

cally for y → x as Γν , i.e. K(x, y) ≈ Γν(x − y). One can also consider abstract (sufficiently
smooth) kernels K(x, y) as long as they behave like L(x − y) for y → x, where L is a positive
function which is homogeneous of degree −3.

• General dimensions. We focus on the case n = 2 because it arises naturally in the dislocation
model which motivated this work. The results can, however, easily be extended to general dimen-
sions, using a kernel which behaves like the kernel of the H1/2 norm, i.e. K(x, y) ≈ |x− y|−n−1.
In this case the compactness result gives an estimate in Ln/(n−1) (for n ≥ 2). The case n = 1
was studied by Kurzke [11]. In this case the optimal estimate is in the Orlicz space eL.
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• Soft pinning. As discussed in the previous subsection one can replace the ’hard’ pinning condition
(2) by a penalty term (7). For the subcritical scaling this is discussed in the appendix of [8] and
the argument can be extended to the general setting.

• Different obstacles and varying obstacle densities. It is not necessary to assume that the ob-
stacles have all the same size Rε (or the same strength in the case of soft obstacles). Instead
one can consider obstacles of varying size Bi = B(xi, Riε). Also the density of obstacles need
not be constant. In this case we expect that the penalty term due to pinning is of the form
Λ(x)Dν(u(x), B1) where Λ(x) represents the local ’capacity density’ (appropriately scaled with
Nε). This is briefly discussed in Remark 13 in [8]. Such extensions are well known in the context
of competition between pinning and a local Dirichlet energy. To identify the precise assumptions
for such a result to hold in the present context, including a suitable weakening of the condition
on equipartition, will require some technical work.

1.3 Outline

In Section 2 we briefly review some known results, in particular the properties of the periodic kernel
Kν and its relation with a similar −3 homogeneous kernel Γν , the convergence result in the dilute case
Nε ≤ C/ε and the definition of the dislocation capacity Dν(a,BR), and finally the results of Alberti,
Bouchitté and Seppecher for the competition between a two-well energy and the H1/2 norm under
logarithmic rescaling, leading to a line tension limit.

In Section 3 we describe our main results. To emphasize the underlying mathematical structure
we state them separately for the functional with and without pinning. The next three sections are
devoted to the proof of the result in the critical scaling regime. The central compactness estimate is
discussed in Section 4 and the upper and lower bound are discussed in Sections 5 and 6, respectively.
In the last section we sketch how the result can be extended to the sub- and supercritical scaling.
While the argument in the subcritical scaling is a straightforward extension of the results in the dilute
case [8] using the compactness estimate, the lower bound in the supercritical case requires some care.
We no longer have compactness but we can still show that the oscillation of u is small on a scale which
is large compared to the typical spacing of the pinning sites and this suffices to conclude.

2 Review of some known results

2.1 Properties of the anisotropic kernel

Here we review some properties of the nonlocal term in the energy, see [10, 8] for further details and
proofs. We start from the expression∫ ∫

T 2×T 2
Kν(x− y)|u(x) − u(y)|2 dx dy .

for the (suitably normalized) elastic energy introduced above. The Fourier coefficients of the kernel
Kν are given by

−1
4

(
k2
2

|k| +
1

1 − ν

k2
1

|k|
)
,

where −1 < ν < 1
2 is the Poisson’s ratio. Since the Fourier coefficents of Kν(t) are bounded from

above and below by a multiple of |k| the kernel is equivalent to the H
1
2 -kernel, i.e.

1
2
[u]

H
1
2 (T 2)

≤
∫ ∫

T 2×T 2
Kν(x− y)|u(x) − u(y)|2 dx dy ≤ [u]

H
1
2 (T 2)

, (8)

where [u]
H

1
2 (T 2)

denotes the H
1
2 (T 2) seminorm defined by

[u]2
H

1
2 (T 2)

=
∑

k∈(2πZ)2

|k||û(k)|2 . (9)
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In real space this seminorm can be written as

1
2
[u]2

H
1
2 (T 2)

=
∫ ∫

T 2×T 2
K(x− y)|u(x) − u(y)|2 dx dy , (10)

where the kernel K(t) is defined by K̂(k) = − 1
4 |k| and satisfies the following properties:

i) K(t) = O(|t|−3) as |t| → 0,

ii) K(t) is periodic, i.e. is defined in T 2.

The kernel Kν(t) also satisfies properties i) and ii). For small t the term Kν(t) is well approximated
by the homogeneous and positive kernel

Γν(t) =
1

8π(1 − ν)|t|3
(
ν + 1 − 3ν

t22
|t|2

)
, (11)

which is the inverse Fourier transform of − 1
4

(
λ2
2

|λ| + 1
1−ν

λ2
1

|λ|
)
. The following precise relation between

Kν and Γν can be easily established by the Poisson summation formula.

Proposition 1 There exists a constant C > 0 such that

|Γν(t) −Kν(t)| ≤ C

on {t ∈ R2 : |ti| ≤ 3/4}. Moreover Kν is positive.

Remark 2 By Proposition 1 using the homogeneity of Γν we deduce that for every δ > 0

lim
ε→0

ε3Kν(εt) = Γν(t)

uniformly on {t ∈ R2 : |t| ≤ δ}.

Remark 3 All the results proved here and in [8] are still true for a more general positive kernel K(t)
equivalent to the H

1
2 kernel satisfying (i) and Proposition 1, Γ being the homogeneous function of

degree −3 defined by Γ(t) = limε→0 ε
3K(εt).

Since [·]
H

1
2

is a trace seminorm we can deduce a Poincaré type inequality for functions in H
1
2 (T 2)

(see [8], Proposition 3).

Proposition 4 There exists a constant C0 such that for every u ∈ H
1
2 (T 2), with u = 0 on E ⊆ T 2,

we have ∫
T 2

|u|2dx ≤ C0

(
1 +

1
Cap(E × {0})

)
[u]2

H
1
2 (T 2)

, (12)

where Cap(E × {0}) denote the harmonic capacity of E × {0} as a subset of R3.

Remark 5 Given an arbitrary H
1
2 (Q) function we can extend it by reflection to a periodic function

on the square of size 2, Q2, and applying the above inequality we get that there exists a constant C1

such that ∫
Q

|u|2dx ≤ C1

(
1 +

1
Cap(E × {0})

) ∫ ∫
Q×Q

|u(x) − u(y)|2
|x− y|3 dx dy . (13)
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2.2 Subcritical density of obstacles and the dislocation capacity

In [8] we studied the Γ-convergence of the variational model described in the introduction for the
dilute case, i.e. in the regime εNε ≈ 1 (we will see in Corollary 11 below that the results actually
hold as long as εNε � | log ε|). We will always assume that the obstacles Bi

Rε in (2) are uniformly
distributed and well separated in the following sense. For every subset E of (− 1

2 ,
1
2 )2 we denote by

Iε(E) := {i ∈ Iε : xε
i ∈ E} and we require the following.

• (Uniform distribution) There exists a constant L > 0 such that

|#(Iε(Q′)) −Nε|Q′|| ≤ L (14)

for every open square Q′ ⊂ (− 1
2 ,

1
2 )2;

• (Separation) There exists β < 1 such that

dist(xi
ε, x

j
ε) > 6εβ (15)

for every i, j ∈ Iε, i = j, and for every ε ∈ (0, ε0);

In [8] we proved that there exists a function defined on integers and denoted by Dν(a,BR) such
that the following result holds.

Theorem 6 Assume εNε → Λ and that the discs Bi
Rε are uniformly distributed and well separated.

Then the functional Fε(u) := Eε(u)/Nεε, i.e.

Fε(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Nεε2

∫
T 2

dist2(u,Z) dx +
1
Nεε

∫ ∫
T 2×T 2
Kν(x− y)|u(x) − u(y)|2 dx dy if u ∈ H

1
2 (T 2) ,

u = 0 on
⋃

iB
i
Rε

+∞ otherwise ,

Γ-converges, with respect to the strong L2 topology, to the functional

F(u) =

⎧⎨⎩
Dν(u,BR) if u = const. ∈ Z ,

+∞ otherwise .
(16)

The limit Dν(u,BR) can be characterized by means of the following cell problem formula

Dν(a,BR) := inf

{∫
R2

dist2(ζ,Z) dx +
∫ ∫

R2×R2
Γν(x− y)|ζ(x) − ζ(y)|2 dx dy : (17)

ζ = a on BR , ζ ∈ L4(R2)

}

More generally for every integer a and for every open bounded set Ω we can define a set function that
we call the H

1
2 -dislocation capacity of an open set E with respect to Ω at the integer level a ∈ Z, as

follows

Dν(a,E,Ω) := inf

{∫
R2

dist2(ζ,Z) dx +
∫ ∫

R2×R2
Γν(x− y)|ζ(x) − ζ(y)|2 dx dy : (18)

ζ = a on E , ζ = 0 on R2 \ Ω

}

where E is an open subset of Ω. In (17) and (18) the infimum is attained and the minimum is called
the H

1
2 -dislocation capacitary potential of E.
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In [8] we proved that Dν(a, ·) (and Dν(a, ·,Ω)) is actually a Choquet capacity and moreover it is
quadratic in a, as a goes to infinity. More precisely, for every bounded open set E there exist two
constants, C1 and C2, such that

C1a
2 ≤ Dν(a,E) ≤ C1(a2 + 2a3/2) + C2a (19)

(see [8], Proposition 8). Another fact which is crucial in using Dν(a,BR) as a cell-problem formula in
the study of the asymptotic behaviour of Fε is the following convergence property

lim
T→∞

Dν(a,E,BT ) = Dν(a,E) . (20)

2.3 The H1/2 regularisation and logarithmic rescaling

Alberti, Bouchitté and Seppecher studied the functional Eε (without the pinning condition) for a
two-well potential W and the H1/2 nonlocal energy.

Theorem 7 ([3]) The functional

Jε(u) =

⎧⎪⎪⎨⎪⎪⎩
1

| log ε|ε
∫

Q

dist2(u, {0, 1}) dx+
1

| log ε|
∫ ∫

Q×Q

|u(x) − u(y)|2
|x− y|3 dx dy if u ∈ H

1
2 (Q) ,

+∞ otherwise .

(21)

Γ-converges to the functional

J(u) =

⎧⎨⎩
4PerQ({u = 0}) if u ∈ BV (Q, {0, 1}) ,

+∞ otherwise ,
(22)

where PerQ({u = 0}) denotes the perimeter of the set {u = 0} relative to the set Q.

Remark 8 We have stated the result for the special two-well energy dist2(u, {0, 1}) to emphasize the
similarities and differences with the choice (3). The result in [3] is proved for a general local energy W
with W (0) = W (1) = 0, W > 0 otherwise and W (u) ≥ c|u|2 −C. Interestingly, and in contrast to the
situation with regularizing energy of Dirichlet type [14, 15, 13], the Γ-limit does not depend on the
shape of W , but just on the position of its zeros. This is an effect of the logarithmic rescaling. In fact
in the proof of the upper bound in the verification of the Γ-limit one has a large amount of freedom.
The precise choice of the transition profile by which one approximates a jump does not matter, as
long as the length scale of the transition is chosen correctly. We will also exploit this fact in Section 6.

Comparing the above result with Theorem 6 it is natural to conjecture that the critical scaling
regime for the number of obstacles Nε which leads to an interaction of the line energy in the result
above and the pinning energy discussed earlier is given by Nε ≈ ε−1| log ε|. This is what we will
establish in the next section. As a byproduct we also obtain the limiting energy functionals in the
subcritical regime Nε � ε−1| log ε| and the supercritical regime Nε � ε−1| log ε|.

3 Main results

We establish compactness and Γ-convergence results for the energy functionals Eε(u), both with and
without the pinning condition. We first describe the behaviour of the functionals Iε(u) = Eε(u)/| log ε|,
thus extending the results of [3] to energies with infinitely many wells (and to an anisotropic kernel).
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Theorem 9 The functional

Iε(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

| log ε|ε
∫

T 2
dist2(u,Z) dx+

1
| log ε|

∫ ∫
T 2×T 2

Kν(x− y)|u(x) − u(y)|2 dx dy
if u ∈ H

1
2 (T 2) ,

+∞ otherwise ,

(23)

Γ-converges to the functional

I(u) =

⎧⎪⎪⎨⎪⎪⎩
∫

Su

γ(n)|[u]|dH1 if u ∈ BV (T 2,Z) ,

+∞ otherwise ,

(24)

where n denotes the normal on the jump set Su of u and the anisotropic line energy density γ(n) is
defined, for any n ∈ S1, by

γ(n) := 2
∫

x·n=1

Γν(x)dH1 = 2 lim
δ→0

δ2
∫

x·n=δ

Kν(x)dH1, (25)

where Γν is given by (11). More precisely

i) Every sequence {uε} such that supε Iε(uε) <∞ is bounded in L2(T 2), up to a translation, and is
pre-compact in Lq(T 2) for every q < 2. Every cluster point u of the translated sequence belongs
to BV (T 2,Z) and satisfies ∫

T 2
|Du| ≤ C lim inf

ε→0
Iε(uε) .

ii) Every sequence {uε} strongly converging in L1(T 2) to some function u satisfies

lim inf
ε→0

Iε(uε) ≥ I(u) .

iii) For every u ∈ BV (T 2,Z) there exists a sequence {uε} strongly converging in Lq(T 2), for all
q < 2, to u such that

lim
ε→0

Iε(uε) = I(u) .

The proof of the result above will be obtained as a consequence of a compactness theorem (Theo-
rem 12 in Section 4) a lower bound given in Section 5 (Theorem 17), and an upper bound proved in
Section 6 (Theorem 24).

The asymptotic analysis for the functional with the pinning condition in the critical scaling Nε ≈
ε−1| log ε| is summarized in the following theorem.

Theorem 10 Assume Nεε/| log ε| → Λ, 0 < Λ <∞, and that the discs Bi
Rε are uniformly distributed

and well separated. Then the functional

Fε(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
| log ε|ε

∫
T 2

dist2(u,Z) dx+
1

| log ε|
∫ ∫

T 2×T 2
Kν(x − y)|u(x) − u(y)|2 dx dy

if u ∈ H
1
2 (T 2) , and u = 0 on

⋃
iB

i
Rε

+∞ otherwise ,

(26)

Γ-converges to the functional

F (u) =

⎧⎪⎪⎨⎪⎪⎩
∫

Su

γ(n)|[u]|dH1 + Λ
∫

T 2
Dν(u,BR) dx if u ∈ BV (T 2,Z) ∩ L2(T 2,Z) ,

+∞ otherwise .

(27)

More precisely
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i) Every sequence {uε} such that supε Fε(uε) < ∞ is bounded in L2(T 2) and is pre-compact in
Lq(T 2), for every q < 2. Every cluster point u belongs to BV (T 2,Z) ∩ L2(T 2,Z) and satisfies∫

T 2
|Du| ≤ C lim inf

ε→0
Iε(uε) .

ii) Every sequence {uε} strongly converging in L1(T 2) to some function u satisfies

lim inf
ε→0

Fε(uε) ≥ F (u) .

iii) For every u ∈ BV (T 2,Z)∩L2(T 2,Z) there exists a sequence {uε} strongly converging in Lq(T 2),
for any q < 2, to u such that

lim
ε→0

Fε(uε) = F (u) .

Theorem 10 follows from the compactness result obtained in Section 4 (Proposition 16) and the
lower and the upper bounds obtained in Section 5 (Theorem 21) and Section 6 (Theorem 27), respec-
tively.

Finally we extend the result to the subcritical and supercritical scaling, which correspond to Λ = 0
and Λ = ∞, respectively. If we consider the rescaling Eε/(Nεε), then formally the limit is given by
dividing (27) by Λ. Thus for Λ = 0 we expect the line energy to dominate, leading to the constraint
u = const, while for Λ = ∞ the line energy becomes negligible so we can no longer expect compactness
in L1 and the limiting energy density functional has to be replaced by its relaxation, given by the
convex hull D∗∗

ν (u,BR). More precisely

u �→ D∗∗
ν (u,BR) is the convex hull of the function D̃, where

D̃(u) = Dν(u,BR), if u ∈ Z, D̃(u) = ∞ otherwise. (28)

Corollary 11 Assume that the discs Bi
Rε are uniformly distributed and well separated. Consider the

functional

Fε(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ε2Nε

∫
T 2

dist2(u,Z) dx+
1
εNε

∫ ∫
T 2×T 2
Kν(x− y)|u(x) − u(y)|2 dx dy

if u ∈ H
1
2 (T 2) , and u = 0 on

⋃
i B

i
Rε,

+∞ otherwise.

(29)

(i) If Nε → ∞ and εNε/| log ε| → 0 then Fε Γ-converges (with respect to the strong L2 topology) to
the functional

F(u) =

⎧⎨⎩
Dν(a,BR) dx if u ≡ a, a ∈ Z,

+∞ otherwise .
(30)

(ii) If εNε/| log ε| → ∞ then Fε Γ-converges (with respect to the weak L2 topology) to the functional

F(u) =
∫

T 2
D∗∗

ν (u,BR) dx. (31)

The proof of Corollary 11 follows closely that of Theorems 9 and 10. In Section 7 we sketch the
necessary modifications in the argument. The main difficulty is that in the supercritical case one no
longer has L1 compactness. Nonetheless we will show that on a scale which is large compared to
the typical particle separation 1/

√
Nε the L2 oscillation of a finite energy sequence uε can still be

controlled. This will allow us to locally estimate the energy from below essentially in the same way as
in the presence of strong convergence.
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4 Compactness

In this section we establish the following compactness result.

Theorem 12 Let {uε} be such that

lim inf
ε→0

Iε(uε) < +∞ ,

then there exists a sequence {aε} such that the sequence {uε − aε} is bounded in L2 and relatively
compact in Lq(Q), for every q < 2. Every cluster point u of {uε − aε} belongs to BV (T 2,Z) and
satisfies ∫

Q

|Du| ≤ C lim inf
ε→0

Iε(uε) . (32)

The main difference with the result of Alberti, Bouchitté and Seppecher [3] is that the local part
of the energy dist2(u,Z) is not coercive. Hence the crucial point of the proof consists in the derivation
of a uniform L2 bound on uε (up to a translation). Pointwise convergence can then be deduced for [3]
by a truncation argument.

4.1 The L2-bound

Theorem 13 Let {uε} such that

Iε(uε) ≤M ∀ε > 0 (33)

and assume that |{uε > 0}| > 1
2 |Q| and |{uε < 1}| > 1

2 |Q|. Let Q′ ⊂⊂ Q be a square centered in zero.
Then there exists a constant C(Q′) such that∫

Q′
|uε|2dx ≤ C(Q′) .

Remarks

1. The bound is optimal, since the embedding of BV into L2 is optimal. Indeed if Iε(uε) ≤ M
would imply a uniform Lp

loc bound for p > 2 then, by Theorem 9, every function in BV (Q,Z)
would be Lp

loc(Q), which is false.

2. If one considers the analogue of the functional Iε in n dimensions (n ≥ 2), with kernel K(z) ≈
|z|−(n+1) the argument below gives an L

n
n−1
loc bound, which is again optimal. For n = 1 Kurzke

[11] showed that the optimal bound corresponds to the Orliz space eL.

The idea of the proof of Theorem 13 is simple. From Theorem 9 we expect that Iε(uε) behaves
asymptotically similar to the BV seminorm. Comparing the super- level sets {uε > k} and {uε > k−1}
we thus expect that the perimeter of {uε > k} is controlled by Iε(Tk−1uε), where Tk−1uε is given
by uε ∨ (k − 1) ∧ k. In combination with the isoperimetric inequality we would get |{uε > k}| 12 ≤
CIε(Tk−1uε), and from this the assertion would already follow (see (49) and (50) below).

Unfortunately Iε does not really control the perimeter of the level sets uniformly in ε. Instead we
will establish directly a bound of the form

|Aε
k|

1
2 = |Q′ ∩ {uε > k + 1 − σ}| 12 ≤ CIε(Tkuε) , (34)

for a fixed σ ∈ (0, 1
4 ). To prove this we first replace the singular kernel by a regular kernel and drop the

logarithmic rescaling. Then we bound the singular kernel 1
|t|3 from below by a dyadic sum of scaled

regular kernels and with a covering argument we get an estimate like (34) at least if |Aε
k| is not too

small, see (46) below.
If |Aε

k| is very small then a scaling argument shows that the term dist2(uε,Z) becomes negligible
and we directly use the embedding of H

1
2 in L4 and conclude after a short calculation.

We begin with the relevant estimates for the regular kernels.
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Proposition 14 Fix ϕ ∈ C∞
c (B1(0)), with

∫
ϕ(x)dx = 1 and ϕ > 0 in B 1

2
(0). For every λ ∈ (0, 1)

there exists a constant c(λ) such that for every subset A of Q with λ ≤ |A| ≤ 1+λ
2 we have

γδ(A,Q) :=
1
δ

∫
A

∫
Q\A

ϕδ(x− x′) dx dx′ ≥ c(λ) ∀ δ ∈ (0, 1) , (35)

where ϕδ(x) = 1
δ2ϕ

(
x
δ

)
.

Proof. Fix λ. Assume by contradiction that there exists a sequence of sets {Ak} such that

λ ≤ |Ak| ≤ 1 + λ

2
(36)

and a sequence {δk}, such that

lim
k→∞

γδk
(Ak, Q) = 0 . (37)

We may assume that δk converges to some δ and the characteristic function χAk
(x) of Ak converges

to θ(x) weak∗ in L∞ as k → ∞. If δ = 0, then from (37) we get∫ ∫
Q×Q

θ(x)(1 − θ(x′))ϕδ(x− x′) dx dx′ = 0 .

This implies either θ = 0 a.e. in Q or θ = 1 a.e. in Q, which is impossible, since (36) implies
λ ≤ ∫

Q θ(x) dx ≤ 1+λ
2 . If δ = 0, we can rewrite γδk

(Ak) as follows

1
δk

∫
Ak

∫
Q\Ak

ϕδk
(x− x′) dx dx′ =

1
2δk

∫
Q

∫
Q

ϕδk
(x− x′)|χAk

(x) − χAk
(x′)|2 dx dx′

=
1

2δk

∫
Q

∫
Q

ϕδk
(x− x′)|χAk

(x) − χAk
(x′)|2 dx dx′ +

1
2δk

∫
Q

dist2(χAk
, {0, 1})dx =:

1
2
Φδk

(χAk
)

The asymptotics of the functional Φδ has been studied by Alberti and Bellettini in [1]. By their
compactness result we get that there exists a set A with finite perimeter such that, up to a subsequence,
the sequence χAk

strongly converges to χA in L1. Moreover applying [1], Theorem 1.4, we obtain that
there exists a positive constant C such that

lim inf
k→∞

γδk
(Ak, Q) ≥ CPerQ(A) .

By (37) we get PerQ(A) = 0, but this again contradicts (36). ©

Lemma 15 Let Q′ ⊂⊂ Q. There exist two constants C1 and C2, depending on Q′, such that for every
A ⊆ Q and B ⊆ Q with A ∩B = ∅ disjoint the following inequality holds (with E = Q \ (A ∪B))∫

A∩Q′

∫
B∩Q′

1
|x− y|3 dx dy ≥ C1|A ∩Q′| 12 log

C2|A ∩Q′|
|E| . (38)

Proof. We first prove the equivalent of (35) for the singular kernel 1
|t|3 , i.e. we prove that if A ⊆ Q

satisfies
λ ≤ |A| ≤ λ+ 1

2
,

then there exists a constant C(λ) such that∫
A

∫
B

1
|x− y|3 dx dy ≥ C(λ) log

c(λ)
2|E| , (39)
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c(λ) being the constant given by Lemma 14. Clearly we may assume that |E| = |Q \ (A ∪B)| < c(λ)
2 .

Since A ∪B ∪ E = Q, by Lemma 14 it is easy to see that

1
δ

∫
A

∫
B

ϕδ(x− y) dx dy ≥ c(λ) − |E|
δ

≥ c(λ)
2

as long as
2|E|
c(λ)

< δ < 1 . (40)

We will get (39) by estimating the singular kernel with a dyadic sum of regular kernels. Take m ∈ IN

such that 2−m ≤ 2|E|
c(λ) ≤ 2−m+1, hence m ≥ log(c(λ)/2|E|)/ log 2. Then take δi = 2−i for i = 0, ...,m.

By the definition of ϕδ and taking into account that ϕδ(x− y) = 0 if |x− y| > δ, we have

1
|x− y|3 ≥ 1

δ supϕ
ϕδ(x − y) ∀x, y ∈ Q .

More generally we have that there exists a constant C, depending on ϕ, such that

1
|x− y|3 ≥ C

m∑
i=0

1
δi
ϕδi(x− y) (41)

for all x, y ∈ Q. Indeed

m∑
i=0

1
δi
ϕδi(x− y) ≤ supϕ

m∑
i=0

1
δ3i

≤ 24 supϕ
1

δ3m−1

,

and this, by the definition of δm−1, implies immediately that (41) holds if |x− y| < 2|E|/c(λ). On the
other hand since suppϕ ⊆ B1(0), for any i0 ∈ {0, 1, . . . ,m− 1} and δi0+1 ≤ |x− y| ≤ δi0 , we get

m∑
i=0

1
δi
ϕδi(x− y) ≤ supϕ

i0+1∑
i=0

1
δ3i

≤ 24(supϕ)
1
δ3i0

which gives (41) for every x, y ∈ Q. Thus (39) follows by (41) and (40).
The proof of the result can be now obtained with a covering argument. Indeed by scaling (39) we

get that for every r > 0 and for every A ⊆ Q such that

λ ≤ |A ∩Qr|
|Qr| ≤ λ+ 1

2
,

we have ∫
A∩Qr

∫
B∩Qr

1
|x− y|3 dx dy ≥ Cr log

c(λ)r2

2|E ∩Qr| , (42)

where Qr denotes a square of size r. Fix Q′ ⊂⊂ Q, let d = dist(∂Q,Q′). We claim that there exists a
constant λ = λ(d) such that for every x ∈ A ∩ Q′ there exists a square Qrx(x) centered in x and of
size rx such that

λ ≤ |A ∩Q′ ∩Qrx(x)|
|Qrx(x)| ≤ 1 + λ

2
. (43)

Indeed on the one hand a.e. x ∈ A ∩Q′ has density 1 and on the other hand for every r

min
r : Qr(x)⊂⊂Q

|A ∩Q′ ∩Qr(x)|
|Qr(x)| ≤ max

x∈Q′
min

r : Qr(x)⊂⊂Q

|Q′ ∩Qr(x)|
|Qr(x)| =: λ(d) .

By the continuity of |A∩Q′∩Qr(x)|
|Qr(x)| with respect to r we get (43). By the Besicovitch Covering Theorem

we obtain a family of disjoint squares Qri(xi), i ∈ I, satisfying (43) such that∑
i∈I

r2i =
∑
i∈I

|Qri(xi)| ≥ c̃|A ∩Q′| ,
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where c̃ is a universal constant. From this family of disjoint squares we can extract a family of indices
J such that

|E ∩Qri(xi)|
r2i

<
2
c̃

|E|
|A ∩Q′| ∀ i ∈ J . (44)

We have∑
i∈J

r2i =
∑
i∈I

r2i −
∑
i�∈J

r2i > c̃|A ∩Q′| − c̃

2

∑
i�∈J

|E ∩Qri(xi)|
|E| |A ∩Q′| > c̃

2
|A ∩Q′| . (45)

Finally by (42) and (44) we get∫
A∩Q′

∫
B∩Q′

1
|x− y|3 dx dy ≥

∑
i∈J

∫
A∩Qri

(xi)

∫
B∩Qri

(xi)

1
|x− y|3 dx dy

≥
∑
i∈J

Cri log
c(λ)r2i

2|E ∩Qri(xi)| ≥ C

(∑
i

r2i

) 1
2

log
c(λ)c̃|A ∩Q′|

4|E| .

which concludes the proof together with (45). ©

Proof of Theorem 13. Fix σ ∈ (0, 1
4 ) and k ∈ Z. Denote by Aε

k and Bε
k the following two super

and sub-level sets

Aε
k = {x ∈ Q′ : uε > k + 1 − σ} and Bε

k = {x ∈ Q′ : uε < k + σ} .

We will give the proof in several steps. Assume that uε > 0. The idea is to get an estimate for the
super-level sets of the following type

∞∑
k=0

|Aε
k|

1
2 ≤ C ,

in order to deduce the L2 estimate.
Step 1. Fix α < 1, then there exists a constant C depending on α and Q′ such that∫

Aε
k

∫
Bε

k

Kν(x − y) dx dy ≥ C| log ε||Aε
k|

1
2 (46)

whenever |Aε
k|

1
2 > εα.

Denote by Eε
k the set {x ∈ Q′ : k + σ ≤ uε ≤ k + 1 − σ}. By (33) we deduce that |Eε

k| ≤ M
σ2 ε| log ε|.

Then we may assume |Eε
k| ≤ εα. Thus, by Lemma 15 and the fact that Kν(t) ≤ C1/|t|3, we get∫

Aε
k

∫
Bε

k

Kν(x− y) dx dy ≥ C|Aε
k|

1
2 log

C2ε
2α

εα

which gives (46).
Step 2. Let α be as in Step 1 and assume |Aε

k|
1
2 ≤ εα. Fix γ ∈ (1, 2). Then there exists a positive

constant C such that

|Aε
k|

1
2 ≤ C

(k − σ)γ
. (47)

By the Sobolev inequality and the fact that |{uε < 1}| ≥ 1
2 |Q|, we have

‖(uε − 1)+‖L4(Q) ≤ C[(uε − 1)+]
H

1
2
≤ C(| log ε|Iε(uε))

1
2 .
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Thus by Hölder’s inequality we get

|Aε
k|(k − σ) ≤

∫
Aε

k

|(uε − 1)+|dx

≤ |Aε
k|

3
4 ‖(uε − 1)+‖L4(Q) ≤ C|Aε

k|
3
4 (| log ε|Iε(uε))

1
2 .

Hence
|Aε

k|
1
4 ≤ C

1
(k − σ)

(| log ε|Iε(uε))
1
2 , .

Since |Aε
k|

1
2 ≤ εα, this implies that

|Aε
k|

1
2γ ≤ C

1
(k − σ)

(Iε(uε))
1
2

and (47) follows by raising the last inequality to the power γ.
Step 3. There exists a positive constant C such that

∞∑
k=0

|Aε
k|

1
2 ≤ C . (48)

This is a consequence of Step 1 and Step 2. Indeed if |Aε
k|

1
2 > εα, then we apply Step 1 and we get

|Aε
k|

1
2 ≤ CIε(Tkuε) ,

where Tkuε = (uε ∨ k) ∧ (k + 1). If |Aε
k|

1
2 ≤ εα, then we apply Step 2. Thus we get

∞∑
k=1

|Aε
k|

1
2 ≤ C

∞∑
k=1

1
(k − σ)γ

+ Iε(Tkuε) ≤ C(1 + Iε(uε))

and this gives (48).
Step 4. We conclude the proof by noting that for any decreasing sequence ak of positive numbers we
have

∞∑
k=1

kak ≤ sup
k≥1

(ka
1
2
k )

∞∑
k=1

a
1
2
k ≤

( ∞∑
k=1

a
1
2
k

)2

. (49)

We apply this inequality with ak = |Aε
k−2| and using Step 3, we get∫ ∞

0

t|{x ∈ Q′; uε > t}| dt ≤
∞∑

k=1

k|{x ∈ Q′; uε > k − 1}| ≤
∞∑

k=1

k|Aε
k−2| ≤ C . (50)

Hence ∫
Q′∩{uε>0}

|uε|2dx =
∫ ∞

0

t|{x ∈ Q′; uε > t}| dt ≤ C .

The conclusion follows by arguing in a similar way for the negative part of uε.
©

4.2 Compactness

Proof of Theorem 12. We may assume that |{uε ≥ 0}| ≥ 1
2 |Q| and |{uε ≤ 1}| ≥ 1

2 |Q|, since
othewise we may replace {uε} with {uε − aε}, where

aε = max{a ∈ Z : |{uε − a > 0}| ≥ 1
2
|Q|} . (51)



Garroni, Müller: A variational model for dislocations in the line tension limit 16

Furthermore we may suppose that Iε(uε) ≤ C1 and by passage to a subsequence lim infε→0 Iε(uε) =
limε→0 Iε(uε).

Theorem 13 shows that uε is uniformly bounded in L2(Q′) for every compactly contained concentric
subsquare Q′ ⊂⊂ Q. Since uε is periodic and since we can apply Theorem 13 also to a translation
of uε we easily see that uε is bounded in L2(T 2). Hence there exists u ∈ L2(T 2) such that, up a
subsequence,

uε ⇀ u in L2(T 2) . (52)

To obtain strong convergence in L1 we consider again the truncation operator Tau = (u∨a)∧ (a+1),
for all a ∈ Z. Clearly by (8)

1
| log ε|

(
[Tauε]2

H
1
2 (Q)

+
1
ε

∫
Q

dist2(Tauε, {a, a+ 1}) dx
)

≤ 2Iε(Tauε) ≤ 2Iε(uε) ≤ C .

By [3], Theorem 4.7, (see also [2]) we have that, up to a subsequence, for every a ∈ Z, there exists an
L1 function ua ∈ BV (Q, {a, a+ 1}) such that

Tauε → ua in L1(T 2) (53)

and ∫
T 2

|Dua| ≤ C lim inf
ε→0

Iε(Tauε) . (54)

Now consider M ∈ IN and the truncation operator TMu = (u ∨ −M) ∧M . By (53) there exists
uM ∈ BV (T 2,Z) such that

TMuε → uM in L1(T 2) .

Since |{|uε| > M}| 12 ≤ ‖uε‖L2/M , weak lower semi-continuity of the L1 norm and the L2 bound yield

‖uM − u‖L1(T 2) ≤ lim inf
ε→0

‖TMuε − uε‖L1(T 2) ≤ lim inf
ε→0

2
∫
{|uε|>M}

|uε| dx ≤ C

M
.

Now uε − u = uε − TMuε + TMuε − uM + uM − u and thus

lim sup
ε→0

‖uε − uε‖L1(T 2) ≤ 2C
M

.

Since M was arbitrary this shows that uε → u in L1(T 2) (and hence in all Lq(T 2), for q < 2) and
thus ua = Tau. It is easy to verify that∑

a∈Z

∫ ∫
Q×Q

Kν(x − y)|Tavε(x) − Tavε(y)|2 dx dy ≤
∫ ∫

Q×Q

Kν(x − y)|uε(x) − uε(y)|2 dx dy .

Hence (54) yields (32), after summation over a.
©

4.3 The effect of the pinning

Theorem 12 gives compactness up to translation by integers of any sequences {uε} which satisfies
lim infε→0 Iε(uε) < ∞. If in addition uε is also subject to the pinning condition, this eliminates
the translation invariance of the problem and yields, via a Poincaré’s inequality, an L2 bound and
compactness of the sequence uε.
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Proposition 16 Let uε such that
lim inf

ε→0
Fε(uε) < +∞ ,

then uε is bounded in L2(T 2) and relatively compact in Lq(T 2), for every q < 2. Every cluster point
u belongs to BV (T 2,Z) and satisfies∫

T 2
|Du| ≤ C lim inf

ε→0
Fε(uε) . (55)

Proof. Without loss of generality, by (8) we may assume that

[uε]2
H

1
2 (T 2)

≤ C| log ε| . (56)

By Theorem 12 we know that for every ε there exists an integer number aε such that {uε − aε} is
bounded in L2(T 2), relatively compact in Lq(T 2), for q < 2, and every cluster point satisfies (55). In
order to conclude it is enough to have an L2 bound for {uε} which yields that the sequence {aε} is

bounded. This can be obtained through the Poincaré inequality. Fix ρε =
√

(L+1)ε
| log ε| (L is the constant

given by (14)). With a little abuse of notation we denote by Qj
ρε

the squares of a lattice on Q of size
approximately ρε. Applying the Poincaré inequality (13), scaled to the square Qj

ρε
, we get

∫
Qj

ρε

|uε|2dx ≤ C1ρε

(
1 +

ρε

Cap(({uε = 0} ∩Qj
ρε) × {0})

)
[uε]2

H
1
2 (Qj

ρε )
. (57)

By our choice of ρε and assumption (14) we have

1 ≤ #(Iε(Qj
ρε

)) ≤ 2L+ 1

and then Cap(({uε = 0} ∩Qj
ρε

) × {0}) > C′Rε. Taking the sum over all j in (57), by (56), we get∫
Q

|uε|2dx ≤
∑

j

C1ρε

(
1 +

ρε

C′Rε

)
[u]2

H
1
2 (Qj

ρε )
≤ Cρε

(
1 +

ρε

C′Rε

)
| log ε| ≤ C

which concludes the proof. ©

5 Lower bound

Theorem 17 Let {uε} be a sequence such that lim infε→0 Iε(uε) < +∞. Assume that {uε} converges
strongly in L1(T 2) to some function u, then u ∈ BV (T 2,Z) and∫

T 2
γ

(
Du

|Du|
)
|Du| =

∫
Su

γ(n)|[u]|dH1 ≤ lim inf
ε→0

Iε(uε) , (58)

where the anisotropic line energy density γ(n) is defined by (25)

The proof of Theorem 17 is based on a blow-up argument. Let n ∈ S1 and denote by Qn a square
centered at 0, with size 1 and parallel to n. We now estimate from below the energy of a function
on Qn which is close to the characteristic function of the half plane {n · x > 0}. We denote the latter
function by un

0 = χ{n·x>0}.

Lemma 18 Fix 0 < δ < 1
2 and 1

2 < α < 1. Then there exist δ0 > 0 and ε0 > 0 such that for every
n ∈ S1, for every ε ∈ (0, ε0) and for every u ∈ L1(Q) satisfying∫

Qn

|u− un
0 | dx ≤ δ0 (59)
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and ∫
Qn

dist2(u,Z) dx ≤ εα for some , (60)

we have ∫ ∫
Qn×Qn

Γν(x− y)|u(x) − u(y)|2dx dy ≥ γ(n)α(1 − δ)| log ε| , (61)

where γ(n) is defined by (25).

Proof. After rotation we can easily restrict our analysis to the case n = e1, in which the square Qn

reduces to Q = (− 1
2 ,

1
2 )2. It then suffices to prove the statement with γ(n) = γ(e1) and we write from

now u0 instead of ue1
0 . By scaling we may also assume that γ(e1) = 2. Since Γν is homogeneous of

degree −3 we have then

Γ1
ν(x1) :=

∫
R

Γν(x1, x2) dx2 =
1
x2

1

, . (62)

We also assume that 0 ≤ u ≤ 1 (otherwise we truncate the function by 0 and 1). Let us consider the
following sub and super-level sets

A =
{
u <

δ

8

}
and B =

{
u > 1 − δ

8

}
.

Then ∫ ∫
Q×Q

Γν(x− y)|u(x) − u(y)|2dx dy ≥ 2
(

1 − δ

4

)2 ∫
A

∫
B

Γν(x− y) dx dy .

Hence it is sufficient to show that∫
A

∫
B

Γν(x − y) dx dy ≥ α

(
1 − δ

2

)
| log ε| . (63)

Using the change of variables, y = x+ z, we get∫
A

∫
B

Γν(x− y) dx dy =
∫
R2

Γν(−z)
(∫

A∩(B−z)

dx

)
dz =

∫
R2

Γν(z)|A ∩ (B − z)| dz . (64)

Let 1
2 < σ < α. By (60) we know that for ε0 small enough the set E = Q \ (A ∪B) satisfies

|E| ≤ εσ . (65)

If the function u is independent of x2 and E is a simple strip, then |A ∩ (B − z)| ≥ z1 − εσ and
the result can be obtained from (64) by an explicit computation. In general these conditions are not
satisfied, but the idea is that they are approximatively satisfied. In order to deal with the general case
let us estimate the difference between χB and the characteristic function of {x1 > 0}, i.e. u0. If x1 > 0
and x ∈ A, then |u− u0| ≥ 1

2 . Thus

|χB − u0| = |χB − 1| ≤ χE + χA ≤ χE + 2|u− u0| .
Similarly, if x1 < 0 and x ∈ B, then |u − u0| ≥ 1

2 . Hence

|χB − u0| ≤ χE + 2|u− u0| in Q . (66)

Now consider a concentric subsquare Q′ of Q, i.e. Q′ = ρQ with ρ < 1. By (65) we have

|A ∩Q′| + |B ∩Q′| ≥ |Q′| − εσ (67)
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Suppose that z satisfies |z|∞ = max(|z1|, |z2|) < (1−ρ)/2 and z1 > 0. Since |(B−z)∩Q′| = |B∩(Q′+z)|,
we have

|(B − z) ∩Q′| − |B ∩Q′| ≥
∫

Q′+z

u0 dx−
∫

Q′
u0 dx−

∫
(Q′+z)
Q′

|χB − u0| dx

≥ ρz1 −
∫

U

|χB − u0| dx ,

where U is the annulus U = (ρ+ |z|∞)Q \ (ρ− |z|∞)Q and (Q′ + z)�Q′ ⊂ U . Together with (67) this
yields

m(z) := |A ∩ (B − z)| ≥ |A ∩ (B − z) ∩Q′| ≥ |A ∩Q′| + |(B − z) ∩Q′| − |Q′| (68)

≥ z1ρ− εσ −
∫

U

|χB − u0| dx .

We now must choose ρ and U properly in order to get in (68) the right hand side large enough.
We fix δ2 > 0 and ρ0 = 1 − δ2 and we cover Q \ ρ0Q with annuli of thickness 2|z|∞, i.e. we take
ρi = ρ0 + 2i|z|∞, Ui = ρiQ \ ρi−1Q, with i = 1, ..., k and k < δ2/4|z|∞ ≤ k + 1 ≤ 2k. We apply (68)
with ρ = ρi and U = Ui, we sum all the inequalities for i from 1 to k, we divide by k and we get

m(z) ≥ z1ρ0 − εσ − 1
k

∫
Q

|χB − u0| dx .

This, together with (65), (66) and (59) yields

m(z) ≥ (1 − δ2)z1 − εσ − 8
δ2

|z|∞(2δ0 + εσ) ,

whenever |z|∞ ≤ δ2/2. We now assume εσ
0 ≤ 2δ0 and choose δ2 = 2

√
δ0. This gives

m(z) ≥ (1 − 2
√
δ0)z1 − εσ − 16

√
δ0|z|∞ , if |z|∞ ≤

√
δ0 . (69)

Then, in order to conclude from here together with (64) and to obtain (63), we must estimate the
following integrals:

I1 =
∫
{εσ≤z1≤1}

εσΓν(z) dz1 dz2 ≤ εσ

∫ 1

εσ

Γ1
ν(z1) dz1 ≤ 1 , (70)

where we used (62). Since |z|∞ ≤ 2|z| and
∫
R(a2 + z2

2)−1dz2 = π/|a|

I2 =
∫
{εσ≤z1≤1}

|z|∞Γν(z) dz1 dz2 ≤
∫ 1

εσ

C

|z1| dz1 ≤ Cσ| log ε| . (71)

Finally, by the definition of Γ1
ν and the fact that Γν(z) ≤ C/z2

2 , we get

I3 =
∫ δ0

εσ

∫
{|z2|≤δ0}

z1Γν(z) dz2 dz1 ≥
∫ δ0

εσ

z1(Γ1
ν(z1) − C

δ20
)dz1 (72)

≥ log
δ0
εσ

− C = σ| log ε| + log δ0 − C .

Thus by (69) - (72) we have

1
| log ε|

∫
R2
m(z)Γν(z) dz ≥ 1

| log ε|
[
(1 − 2

√
δ0)I3 − I1 − 16

√
δ0I2

]
≥ (1 − 2

√
δ0)σ − C(

√
δ0 +

1
| log ε0| )

and this proves (63) if α− σ, δ0 and ε0 are chosen sufficiently small.
©
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With the following lemma we prove that the measure defined on the product T 2 × T 2 by

µε(A×B) =
1

| log ε|
∫

A

∫
B

Kν(x− y)|uε(x) − uε(y)|2dx dy (73)

converges weakly to a measure whose support is on the diagonal and that it can be estimated from
below by a measure concentrated on the jump set of the limit function u.

Lemma 19 Let uε be a sequence which converges strongly in L1(T 2) to some function u ∈ BV (T 2,Z)
and assume 0 ≤ uε ≤ 1. Let µε be defined by (73) and let µ be its weak*-limit (for a subsequence).
Then µ is concentrated on the diagonal D = {(x, x) : x ∈ T 2}, i.e. µ(E) = 0 if E ∩D = ∅. Moreover
the measure λ on T 2 which is defined by

λ(A) = µ({(x, x) : x ∈ A}) , (74)

satisfies

λ ≥ γ(n)dH1 Su , (75)

where Su is the jump set of u.

Proof. To prove that suppµ ⊆ D it is enough to show that for any continuous nonnegative function
ϕ : T 2 × T 2 → R with suppϕ ∩D = ∅ we have

∫
ϕdµ = 0. Let δ = dist(suppϕ,D) > 0. Since uε is

bounded by 1 we have∫
T 2
ϕ(x, y) dµ = lim

ε→0

1
| log ε|

∫ ∫
T 2×T 2

ϕ(x, y)Kν(x− y)|uε(x) − uε(y)|2dx dy

≤ lim
ε→0

1
| log ε|

C

δ3

∫ ∫
T 2×T 2

ϕ(x, y)dx dy = 0 .

Thus µ is concentrated on D. Hence we can define the measure λ on T 2 by

λ(A) = µ({(x, x) : x ∈ A}) = µ(A×A) .

In order to conclude it is enough to show that for H1-a.e. x0 ∈ Su we have

lim inf
r→0

λ(Qn
r (x0))
r

= lim inf
r→0

lim
ε→0

µε(Qn
r (x0) ×Qn

r (x0))
r

≥ γ(n) , (76)

where, with a little abuse of notation, Qn
r denotes the square centered at x0 with side r parallel to

the normal n on Su at x0.
For H1-a.e. x0 ∈ Su we have

lim
r→0

∫
Qn

1

|u(rx + x0) − χ{x·n>0}| dx = 0 .

Fix such a x0 ∈ Su. We will proceed with a blow-up argument. Consider the sequence vε obtained
from uε by a rescaling, i.e. vε(x) = uε(rx + x0). By a change of variables we have

1
r
µε(Qn

r (x0) ×Qn
r (x0)) =

∫ ∫
Qn

1 ×Qn
1

Kr
ν (x− y)|vε(x) − vε(y)|2dx dy ,

where Kr
ν (t) = r3Kν(rt). From Proposition 1 and the homogeneity of Γν we have

1
r
µε(Qn

r (x0) ×Qn
r (x0)) =

∫ ∫
Qn

1 ×Qn
1

Γν(x− y)|vε(x) − vε(y)|2dx dy + o(1) , (77)
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as r goes to zero. The idea is to use Lemma 18 with the function vε. Fix 0 < δ < 1
2 and 1

2 < α < 1
and let δ0 > 0 and ε0 > 0 be the constants given by Lemma 18. For r > 0 small enough we have∫

Qn
1

|u(rx+ x0) − χ{x·n>0}| dx ≤ δ0
2

and thus, for such r, we can choose ε0 such that for every ε < ε0

1
r2

∫
Qn

r

|uε(x) − u(x)| dx ≤ δ0
2
.

We then get∫
Qn

1

|vε(x) − χ{x·n>0}| dx ≤
∫

Qn
1

|vε(x) − u(rx + x0)| dx +
∫

Qn
1

|u(rx+ x0) − χ{x·n>0}| ≤ δ0 .

Since vε also satisfies (60), applying Lemma 18 we obtain

1
| log ε|

∫ ∫
Qn

1 ×Qn
1

Γν(x− y)|vε(x) − vε(y)|2dx dy ≥ γ(n)α(1 − δ) . (78)

By (77), taking the limit as ε→ 0 and then r → 0, we get

lim inf
r→0

λ(Qn
r (x0))
r

≥ γ(n)α(1 − δ)

which gives (76) since α ∈ (1
2 , 1) and δ > 0 where arbitrary. ©

Proof of Theorem 17. By the compactness result (Theorem 12) we can deduce that u ∈ BV (T 2,Z).
We obtain the result by Lemma 19 using a truncation argument. Let j ∈ Z and let us consider the
truncations Tjuε = (uε ∨ j) ∧ (j + 1). Clearly each truncation Tjuε converges to Tju and, up to a
translation, it satisfies the assumptions of Lemma 19. Thus we have that for any j ∈ Z

lim inf
ε→0

1
| log ε|

∫ ∫
T 2×T 2

Kν(x− y)|Tjuε(x) − Tjuε(y)|2dx dy ≥
∫

STju

γ(n) dH1 . (79)

Note that |uε(x) − uε(y)|2 ≥ ∑
j∈Z |Tjuε(x) − Tjuε(y)|2 for every x, y ∈ T 2, that ∪j∈ZSTju = Su

H1-a.e., and that |[u](x)| =
∑

j∈Z |[Tju](x)| H1-a.e. x ∈ Su. Hence, by (79), we have

lim inf
ε→0

1
| log ε|

∫ ∫
T 2×T 2

Kν(x− y)|uε(x) − uε(y)|2dx dy (80)

≥
∑
j∈Z

lim inf
ε→0

1
| log ε|

∫ ∫
T 2×T 2

Kν(x − y)|Tjuε(x) − Tjuε(y)|2dx dy

≥
∑
j∈Z

∫
STju

γ(n) dH1 =
∫

Su

γ(n)|[u]|(x) dH1(x) ,

which concludes the proof.
©

Remark 20 Reasoning as in the proof above we conclude that for any sequence uε converging to u
in L1 and satisfying Iε(uε) ≤ C, and for every ϕ ≥ 0 continuous function on T 2 × T 2 we get

lim inf
ε→0

1
| log ε|

∫ ∫
T 2×T 2

ϕ(x, y)Kν(x− y)|uε(x) − uε(y)|2dx dy ≥
∫

Su

ϕ(x, x)γ(n)|[u]|(x) dH1(x)

and thus λ ≥ γ(n)|[u]|H1 Su, where λ(A) = µ({(x, x) : x ∈ A}) and µ is the weak*-limit of the
measures µε defined in (73). Moreover it is easy to see that if uε is also bounded in L2, µ is concentrated
on the diagonal D, i.e. λ(A) = µ(A×A).
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Combining Theorem 17 and the results proved in [8] we now establish the following lower bound
for the Γ-limit of the functional Fε.

Theorem 21 Assume that Nεε/| log ε| → Λ and that the discs Bi
Rε are uniformly distributed and well

separated. Let uε be a sequence such that lim infε→0 Fε(uε) < +∞. Assume that uε converges strongly
in L1(T 2) to some function u, then u ∈ BV (T 2,Z) ∩ L2(T 2,Z) and∫

Su

γ(n)|[u]|dH1 + Λ
∫

T 2
Dν(u,BR) dx ≤ lim inf

ε→0
Fε(uε) , (81)

where γ(n) is defined by (25) and Dν(·, BR) is defined by (17).

The proof is also based on the following two lemmas proved in [8].

Lemma 22 Given R : R+ → R+, with R(ε) → ∞ as ε→ 0, there exists a function ω : R+ ×R+ →
R+, with ω(ε, δ) → 0 as (ε, δ) → (0, 0), such that the following statement holds. Let a ∈ Z. If
ζ ∈ H

1
2 (BR(ε)) satisfies

−
∫

BR(ε)

|ζ − a|dx ≤ δ (82)

and ζ = 0 on BR, then∫
BR(ε)

dist2(ζ,Z) dx+
∫ ∫

BR(ε)×BR(ε)

Kε(x− y)|ζ(x) − ζ(y)|2 dx dy ≥ Dν(a,BR) − ω(ε, δ) , (83)

where Kε(t) = ε3Kν(εt).

Lemma 23 There exists a positive constant C such that for every 0 < ρ < ρ̂ the following inequality
holds

−
∫

Bρ

|u| dx ≤ −
∫

B
ρ̂

|u| dx+
C√
ρ
[u]

H
1
2 (B

ρ̂
)

(84)

for all u ∈ H
1
2 (B

ρ̂
).

Proof of Theorem 21. The proof is based on a blow-up argument like the proof of Theorem 17.
Let µε be the measure defined in (73), let µ be its weak*-limit, λ defined by (74) and define ηε be the
following measure

ηε(A) =
1

ε| log ε|
∫

A

dist2(uε,Z) dx . (85)

Since ηε is bounded, it converges weakly* up to a subsequence. Let η be its weak* limit. The main
step is now to prove that

λ+ η ≥ ΛDν(u(x), BR) dx , (86)

i.e. that for a.e. x ∈ T 2 we have

lim
r→0

lim inf
ε→0

µε(Qr(x) ×Qr(x)) + ηε(Qr(x))
|Qr| ≥ ΛDν(u(x), BR) . (87)

Let us fix a ∈ Z and x0 be a Lebesgue point of u with u(x0) = a. In order to simplify the notation
assume that x0 = 0. The proof of (87) follows using Lemmas 22 and 23 and the same strategy of the
proof of the lower bound in [8] taking into account that here the domain is Qr and the regime for the
obstacles is different, i.e. Nε ≈ | log ε|/ε. We repeat it here for the convenience of the reader.
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Consider on Qr a lattice of squares, denoted by Qε
j , of size approximatively 1/

√
Nε. Let Q̂ε

j be
concentric squares of three times the size. Since each point is contained at most in 9 of the squares
Q̂ε

j we have ∑
j

∫ ∫
Q̂ε

j
×Q̂ε

j

|uε(x) − uε(y)|2
|x− y|3 dx dy ≤ C| log ε| ≈ Nεε

and ∑
j

∫
Q̂ε

j

|uε − a|dx ≤ ωr ,

where ωr → 0 as r → 0. Let θ > 0. Recall that Iε(Qr) is the set of indices i such that xi
ε ∈ Qr where

xi
ε are the center of the discs Bi

Rε. Then there exist a set of indices J ε(Qr) such that #(J ε(Qr)) ≥
(1 − θ)#(Iε(Qr)) and a constant Cθ such that∫ ∫

Q̂ε
j
×Q̂ε

j

|uε(x) − uε(y)|2
|x− y|3 dx dy ≤ Cθε

and

−
∫

Q̂ε
j

|uε − a|dx ≤ Cθωr

for all j ∈ J ε(Qr). Let 0 < δ < 1. By applying Lemma 23 with ρ = εβ, with 1
2 < β < 1, and ρ̂ = 1√

Nε
,

for each xi
ε ∈ Qε

j we also have

−
∫

Bi

εβ

|uε − a|dx ≤ δ if ε ≤ ε0(δ, θ) and r ≤ r0(θ) . (88)

Then by Lemma 22 applied with R(ε) = εβ−1 we get (after the scaling X → x/ε)

µε(Bi
εβ ×Bi

εβ ) + ηε(Bi
εβ ) ≥ ε

| log ε| (Dν(a,BR) − ω(ε, δ))

for any i such that xi
ε ∈ Qε

j . Since the points xi
ε are assumed to be well separated (see (15)), summation

over all i yields

µε(Qr ×Qr) + ηε(Qr) ≥ ε

| log ε|

⎡⎣ ∑
j∈J ε(Qr)

#(Iε(Qε
j))

⎤⎦ (Dν(a,BR) − ω(ε, δ))

The uniform distribution of the obstacles (see condition (14)) implies that∑
j∈J ε(Qr)

#(Iε(Qε
j)) = #(Iε(Qr)) −

∑
j �∈J ε(Qr)

#(Iε(Qε
j)) ≥ #(Iε(Qr)) −

∑
j �∈J ε(Qr)

(Nε|Qε
j | + L)

= #(Iε(Qr)) − (L+ 1)#({j : j ∈ J ε(Qr)}) .
Since #({j : j ∈ J ε(Qr)}) ≤ #(Iε(Qr))θ, by (14) we get

µε(Qr ×Qr) + ηε(Qr) ≥ ε#(Iε(Qr)) (1 − θ(L + 1))
| log ε| (Dν(a,BR) − ω(ε, δ))

≥ Λ|Qr| (1 − θ(L + 1)) (Dν(a,BR) − ω(ε, δ)) + o(1)

as ε goes to zero. Taking the limits ε→ 0, then r → 0, then δ → 0 and finally θ → 0, we obtain (87).
Now we conclude easily by (87) and Lemma 19 together with Remark 20 that

λ+ η ≥ ΛDν(u(x), BR) dx and λ ≥ γ(n)|[u]|H1 Su .

Since the two measures Dν(u(x), BR) dx and γ(n)|[u]|H1 Su are mutually singular, we get

λ+ η ≥ ΛDν(u(x), BR) dx + γ(n)|[u]|H1 Su

and this concludes the proof.
©
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6 Upper bound

In this section we establish an upper bound for the Γ-limit of Iε and Fε. This concludes the proof of
the Γ-convergence result in the critical scaling(see Theorems 9 and 10).

Theorem 24 For every u ∈ BV (T 2,Z) there exists a sequence {uε} converging to u in Lq(T 2), for
any q < 2, such that

lim sup
ε→0

Iε(uε) ≤
∫

Su

γ(n)|[u]|dH1 .

Proof. By a standard density argument, we can restrict our analysis to the case of u ∈ BV (T 2,Z)
such that Su is polygonal, with a finite number of sides, and |[u]| = 1 H1-a.e. on Su. We also choose
a fundamental domain Q of the torus such that |Du|(∂Q) = 0. We construct uε simply mollifying u
at the scale ε.

Fix ϕ ∈ C∞
c (B(0, 1)), ϕ ≥ 0 and

∫
ϕdx = 1, and set

uε = ϕε ∗ u where ϕε(x) = ε−2ϕ
(x
ε

)
.

Since uε = u outside an ε-neighbourhood of Su we clearly have that

1
ε

∫
Q

dist2(uε,Z) dx ≤ C . (89)

The conclusion follows if we prove that

lim
ε→0

µε(Q×Q) = lim
ε→0

1
| log ε|

∫ ∫
Q×Q

Kν(x− y)|uε(x) − uε(y)|2dx dy =
∫

Su

γ(n)|[u]|dH1 , (90)

where the measure µε is defined as in (73). We first prove that the total variation of µε is bounded.
Let A be an open subset of Q and denote by d(A) the diameter of A. Using a change the variables
z = y − x we get

µε(A×A) ≤ C

| log ε|
∫
|z|≤d(A)

1
|z|3

∫
A

|uε(x+ z) − uε(x)|2dx dz . (91)

Let us denote now by Nδ the δ-neighbourhood of Su. Since u ∈ BV (Q,Z) and Su is polygonal (with
a finite number of sides) we have

|Nδ ∩A| ≤ Cd(A)δ (92)

and, by the definition of uε, we easily deduce that uε is constant on Bδ(x) if x ∈ Nδ+ε. Thus, using
that u is bounded by a constant M , we get∫

2ε≤|z|≤d(A)

1
|z|3

∫
A

|uε(x+ z) − uε(x)|2dx dz ≤ 4M2

∫
2ε≤|z|≤d(A)

1
|z|3 |N2|z| ∩A|

≤ Cd(A)
∫

2ε≤|z|≤d(A)

1
|z|2 dz ≤ Cd(A)| log ε| .

On the other hand we have that |Duε| ≤ C/ε and hence∫
|z|≤2ε

1
|z|3

∫
A

|uε(x+ z) − uε(x)|2dx dz ≤ C

∫
|z|≤2ε

1
|z|3 |N2ε ∩A| |z|

2

ε2
dz

≤ Cd(A)
∫
|z|≤2ε

1
|z|εdz ≤ C .

By (91) we get

µε(A×A) ≤ Cd(A) + o(1) (93)
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as ε tends to zero. In particular µε is bounded and thus, up to a subsequence, converges weakly*
to a measure µ. Since uε is bounded in L∞, by Remark 20, µ is concentrated on the diagonal and
we can define as above the measure λ(A) = µ(A × A). By the definition of uε it is easy to check
that suppλ ⊆ Su. Moreover, taking the limit ε → 0 in (93) we get a similar estimate for λ, i.e.
λ(A) ≤ Cd(A). Taking the Radon-Nikodym derivative of λ with respect to H1, we deduce that

λ ≤ CH1 Su . (94)

We conclude the proof if we prove that for H1-a.e. x0 ∈ Su

lim
r→0

λ(Br(x0))
2r

≤ γ(n) . (95)

Indeed, this together with the lower bound implies (90). The latter inequality can be obtained by an
explicit calculation. Let us assume, for the sake of simplicity, that x0 = 0 and that the normal n of
Su at x0 is e1, i.e. Su is locally contained in {x1 = 0}. Then

uε(x) = ψ(
x1

ε
) , with ψ(t) =

∫
{z1≥−t}

ϕ(z) dz .

Hence ψ is smooth and decreasing and ψ(t) = 0 if t ≤ −1, ψ(t) = 1 if t ≥ 1. Set R = r/ε. It follows
by a change of variables, from Proposition 1, that

1
2r

∫ ∫
Br×Br

Kν(x− y)|uε(x) − uε(y)|2dx dy =
1

2R

∫ ∫
BR×BR

Γν(x− y)|ψ(x1) − ψ(y1)|2dx dy + o(1) . (96)

Now note that since Γν(t) ≥ 0 we have

1
2R

∫ R

−R

∫ R

−R

Γν(x− y) dx2 dy2 =
1

2R

∫ 2R

−2R

Γν(x1 − y1, z2)(2R− |z2|) dz2

≤
∫ ∞

−∞
Γν(x1 − y1, z2) dz2 = Γ1

ν(x1 − y1) =
γ(e1)

2|x1 − y1|2 .

Thus using the fact that, for t > 0, |ψ(x1) − ψ(x1 + t)| is zero if x1 ≤ −t − 1 or if x1 ≥ 1 and is
bounded by Lipψ t if t is small and by 1 if t is big, we deduce

1
2R

∫ ∫
BR×BR

Γν(x− y)|ψ(x1) − ψ(y1)|2dx dy ≤ γ(e1)
2

∫ R

−R

∫ R

−R

1
|x1 − y1|2 |ψ(x1) − ψ(y1)|2 dx1 dy1

= γ(e1)
∫ 2R

0

1
t2

∫ R−t

−R

|ψ(x1) − ψ(x1 + t)|2 dx1 dt

≤ γ(e1)
∫ 2R

0

1
t2

∫ 1

−t−1

|ψ(x1) − ψ(x1 + t)|2 dx1 dt

≤ γ(e1)

(∫ 1

0

(t+ 2)
t2

(Lipψ t)2dt+
∫ 2R

1

(t+ 2)
t2

dt

)
≤ γ(e1)(C + log(2R)) .

Since log(2R) = log(2r) + log 1
ε , from (96) and (89) we finally get

λ(Br(x0))
2r

≤ lim inf
ε→0

1
| log ε|

1
2r

∫ ∫
Br×Br

Kν(x− y)|uε(x) − uε(y)|2dx dy ≤ γ(e1) ,

which concludes the proof.
©
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Remark 25 Note that in the construction of the optimal sequence for the Γ-limit (Theorem 24) the
precise shape of the profile ϕ is irrelevant. It does not influence the logarithmic contribution of the
H

1
2 norm of uε but only the terms which are of order one.

Remark 26 Together with the lower bound (Theorem 17) and (89), we see that a sequence con-
structed by convolution as in the above proof is also optimal on any open subset A of Q and, up to a
subsequence, satisfies

lim
ε→0

1
| log ε|

∫
A

∫
A

Kν(x− y)|uε(x) − uε(y)|2dx dy =
∫

Su∩A

γ(n)|[u]|dH1 .

In particular we proved that the measure λ defined in (74) satisfies

λ = γ(n)dH1 Su .

With the theorem below we will give the upper bound for the Γ-convergence result stated in
Theorem 10.

Theorem 27 Assume that Nεε/| log ε| → Λ and that the discs Bi
Rε are uniformly distributed and

well separated. For every u ∈ BV (T 2,Z) ∩ L2(T 2,Z) there exists a sequence {vε} converging to u in
Lq(T 2), for any q < 2, such that vε ∈ H

1
2 (T 2), vε = 0 a.e. on ∪iB

i
Rε and

lim sup
ε→0

Fε(vε) ≤
∫

Su

γ(n)|[u]|dH1 +
∫

Q

ΛDν(u,BR) dx . (97)

Proof. The general idea of the proof is to consider the optimal sequence obtained by convolution in
Theorem 24 and to modify it in order to let it satisfy the pinning condition using the H

1
2 -dislocation

capacitary potentials as cut-off functions, as we did for the dilute case in [8]. However the presence
of the non local term in the energy makes this argument more involved. In the proof we will always
assume that the fundamental domain Q for T 2 is chosen such that |Du|(∂Q) = 0.
Step 1. The statement of the theorem holds for any u constant, u = a ∈ Z.

In this case the sequence vε can be constructed exactly as in [8] using theH
1
2 -dislocation capacitary

potentials (see Section 2.2 for the relevant definitions). We give here some details in order to fix some
notation for the following steps. Denote by ζa

ε the H
1
2 -dislocation capacitary potential of BR with

respect to Bεα−1 at the level a, where α ∈ (1, β+1
2 ) and β is given by (15). Then the sequence vε = va

ε

is given by

va
ε (x) =

⎧⎨⎩ a− ζa
ε

(
x− xi

ε

ε

)
if x ∈ ∪iB

i
εα

a otherwise

.

By µa
ε and ηa

ε we denote the following measures

µa
ε(A× B) =

1
| log ε|

∫
A

∫
B

Kν(x− y)|va
ε (x) − va

ε (y)|2dx dy (98)

and

ηa
ε (A) =

1
ε| log ε|

∫
A

dist(va
ε ,Z) dx , (99)

by µa and ηa we denote their weak∗-limit (which exist up to a subsequence) and by λa we denote
the measure such that λa(A) = µa(A × A). With this notation what we have to prove is λa + ηa ≤
ΛDν(a,BR) dx.

It is easy to check, by using the properties of the kernel Kν(t) (see Proposition 1) and a rescaling
argument that

µa
ε(Bεα ×Bεα) + ηa

ε (Bεα) ≤ ε

| log ε|Dν(a,BR, Bεα−1) . (100)
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The choice of the exponent α is motivated by the following argument that will permit us to control
the non local term in the energy and to show that long range interactions are negligible, i.e.

µa
ε((Q×Q) ∩ {|x− y| > εβ}) ≤ Ca2ε(2α−β−1)|Q| . (101)

As a consequence, in view of (100) and (20), we get

µa
ε(Q×Q) + ηa

ε (Q) ≤
∑

Iε(Q)

µa
ε(Bi

εα ×Bi
εα) + ηa

ε (Bi
εα) + o(1) ≤ ΛDν(a,BR) + o(1)

as ε goes to zero. Once (101) is shown, Step 1 is finished (see [8] for more details).
It only remains to prove (101). Indeed we will prove the following more general statement which

will be useful later.
There exists a constant C > 0 with the following property. If {wε} and {zε} are two sequences in

H
1
2 (Q) which are bounded in L∞ by a constant M and satisfy wε(x) = zε(x) = const. in Q \ ∪iB

i
εα ,

then for every r > 0

1
| log ε|

∫ ∫
Qr×Qr

|x−y|>εβ

Kν(x− y)|wε(x) − zε(y)|2dx dy ≤ CM2ε(2α−β−1)|Qr| . (102)

To show (102) it is enough to use the properties of the kernel Kν and the uniform distribution of
the obstacles (cfr. (14)). We have

1
| log ε|

∫ ∫
Qr×Qr

|x−y|>εβ

Kν(x− y) |wε(x) − zε(y)|2dx dy

≤ 2
1

| log ε|
∑

i

∫
Bi

εα

∫
Qr

χ|x−y|>εβ
Kν(x− y) |wε(x) − zε(y)|2dx dy

≤ 1
| log ε|C8M2#Iε(Qr)ε2α

∫
B4r\B

εβ

1
|y|3 dy

≤ CM2Nε|Qr|
| log ε|

ε2α

εβ
≤ CM2ε(2α−β−1)|Qr| .

Step 2. Let u ∈ BV (T 2,Z)∩L2(T 2,Z), with Su polygonal with a finite number of sides. We will prove
that for every δ > 0 there exists a sequence vδ

ε converging to u strongly in Lq, for q < 2, such that

lim sup
ε→0

Fε(vδ
ε) ≤

∫
Su

γ(n)|[u]|dH1 +
∫

T 2
(1 − χNδ

)Dν(u(x), BR) + χNδ
|u(x)|2Dν(1, BR) dx , (103)

where χNδ
denotes the characteristic function of the δ-neighbourhood of Su.

By our choice of u there exist N integer number ai, i = 1, ..., N , and N polygons Pi such that

u =
N∑

i=1

aiχPi .

From Theorem 24 we find a sequence uε, obtained by convolution, such that uε = u in Q \ Nε, where
Nε denotes an ε-neighbourhood of Su, and

lim
ε→0

µε(Q×Q) = lim
ε→0

1
| log ε|

∫ ∫
Q×Q

Kν(x− y)|uε(x) − uε(y)|2 dx dy =
∫

Su

γ(n)|[u]|dH1, .

We must modify uε in order to let it satisfy the pinning condition. Thus for any point xj
ε which is not

in Nδ we modify uε exactly as in the previous step using the H
1
2 -dislocation capacitary potential. If
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xj
ε ∈ Nδ we modify uε by multiplying it by an appropriate cut-off function, namely the scaled H

1
2 -

dislocation capacitary potential at level 1. This permits in particular to achieve the pinning condition
in Nε where uε is not constant. Precisely we define the function wδ

ε a follows

wδ
ε(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ai − ζai

ε

(
x− xj

ε

ε

)
if x ∈ Bεα(xj

ε) with xj
ε ∈ Pi \ Nδ

uε(x)
(

1 − ζ1
ε

(
x− xj

ε

ε

))
if x ∈ Bεα(xj

ε) with xj
ε ∈ Nδ

uε(x) otherwise .

(104)

Let us define again, as above, by µ̃ε and η̃ε the following measures

µ̃ε(A×B) =
1

| log ε|
∫

A

∫
B

Kν(x− y)|wδ
ε(x) − wδ

ε(y)|2dx dy (105)

and

η̃ε(A) =
1

ε| log ε|
∫

A

dist(wδ
ε ,Z) dx , (106)

and let us denote by µ̃ and η̃ their weak∗-limits and by λ̃ the measure such that λ̃(A) = µ̃(A × A).
For the sake of simplicity we drop the dependence on δ in the notation for the measures introduced
above. We shall prove that

λ̃+ µ̃ ≤ Λ[(1 − χNδ
(x))Dν(u(x), BR) + χNδ

(x)|u(x)|2Dν(1, BR)]dx + γ(n)|[u]|(x)dH1 Su . (107)

This clearly implies the assertion of Step 2.
First we prove that λ̃ + µ̃ is absolutely continuous with respect to the Lebesgue measure outside

Su. Fix x0 ∈ Q \ Su. Since for any a ∈ Z and v ∈ R we have that dist2(av,Z) ≤ a2dist2(v,Z), by the
minimality of the H

1
2 -dislocation capacitary potentials it is easy to check that

Dν(a,BR) ≤ a2Dν(1, BR)

and for all xi
ε ∈ Qr(x0) we have

µ̃ε(Bi
εα ×Bi

εα) + η̃ε(Bi
εα) ≤ |u(x0)|2

(
µ1

ε(B
i
εα ×Bi

εα) + η1
ε(Bi

εα)
)

where µ1
ε and η1

ε have been defined in Step 1 (take a = 1). Thus in view of (102), applied also for
wε = va

ε and zε = av1
ε , we have

µ̃ε(Qr(x0) ×Qr(x0)) + η̃ε(Qr(x0)) ≤ |u(x0)|2
(
µ1

ε(Qr(x0) ×Qr(x0)) + η1
ε(Qr(x0))

)
+ o(1) .

Then taking the limit as ε goes to zero and using Step 1 we see that λ̃ + η̃ is absolutely continuous
with respect to the Lebesgue measure outside Su and satisfies (107) in Nδ \Su. In the case x0 ∈ Q\Nδ

we shall prove that

λ̃(Qr(x0)) + η̃(Qr(x0)) ≤ ΛDν(u(x0), BR))|Qr| + o(1) (108)

as r goes to zero. This clearly follows as above by Step 1 and the fact that vε coincide with va
ε in a

neighbourhood of x0, where a = u(x0). For r small enough

µ̃ε(Qr(x0) ×Qr(x0)) + η̃ε(Qr(x0)) = µa
ε(Qr(x0) ×Qr(x0)) + ηa(Qr(x0)) .

Thus outside Su inequality (107) follows from Step 1.
Let now consider x0 ∈ Su. We will prove that

lim sup
r→0

λ̃(Qr(x0)) + η̃(Qr(x0))
r

≤ γ(n)|[u](x0)| . (109)
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It is easy to see that

lim
r→0

η̃(Qr(x0))
r

= 0 .

Indeed, using a change of variable and the definition of vε, in particular the fact that uε is constant
in Q \ Nε, for any r < δ, we get

η̃ε(Qr(x0)) ≤ η̃ε(Qr(x0) ∩ Nε) + η̃ε(Qr(x0) \ Nε)

≤ Cε2r
ε| log ε| +

1
ε| log ε|#Iε(Qr)ε2

∫
Bεα−1

dist2(ζa
ε ,Z) dx ≤ ΛDν(a,BR)|Qr| + o(1) ,

as ε goes to zero, where we denoted by a the maximum of |u| in Qr. Thus in order to prove (109) it
is enough to show that

lim sup
r→0

λ̃(Qr(x0))
r

≤ γ(n)|[u](x0)| . (110)

For r < δ we have Qr ⊆ Nδ. Since by definition wδ
ε(x) = uε(x)v1

ε (x) in Nδ we have, for every
σ > 0,

µ̃ε(Qr ×Qr) =
1

| log ε|
∫ ∫

Qr×Qr

Kν(x− y)|v1
ε(x)uε(x) − v1

ε(x)uε(y) + v1
ε(x)uε(y) − v1

ε(y)uε(y)|2dx dy

≤ 1
| log ε|(1 + σ)

∫ ∫
Qr×Qr

Kν(x− y)|v1
ε(x)|2|uε(x) − uε(y)|2dx dy

+
1

| log ε|
(

1 +
1
σ

) ∫ ∫
Qr×Qr

Kν(x − y)|uε(y)|2|v1
ε(x) − v1

ε(y)|2dx dy

≤ (1 + σ)µε(Qr ×Qr) + sup
Q

|u|2
(

1 +
1
σ

)
µ1

ε(Qr ×Qr) ,

where in the last inequality we used the fact that v1
ε is bounded by 1 and sup |uε| ≤ sup |u|. Then

(110) follows by the above estimate, taking the limit as ε goes to zero. Indeed, in view of Remark 26
and Step 1 we have

1
r

lim
ε→0

µ̃ε(Qr ×Qr) ≤ (1 + σ)
1
r

∫
Qr∩Su

γ(n)|[u]| dH1 +
(

1 +
1
σ

)
Λ sup

Q
|u|2Dν(1, BR)

|Qr|
r

.

After taking the limit as r goes to zero the estimate (110), and hence (107) and (109), follows by the
arbitrariness of σ.

Step 3. In this step we conclude the proof. First we can obtain the thesis of the theorem for func-
tions u ∈ BV (T 2,Z) ∩ L2(T 2,Z), with Su polygonal, with a finite number of sides by Step 2 and a
diagonalization argument.

By estimate (19) the map u �→ ∫
Q Dν(u,BR) dx is continuous in L2(Q,Z) and satisfies∫

Q

Dν(u,BR) dx ≥ C1‖u‖2
L2 .

This implies that the limit functional is continuous in BV (T 2,Z)∩L2(T 2,Z). Hence the general case
can be recovered by a density argument. ©

7 The sub-critical and super-critical regimes

In this section we will briefly discuss the asymptotic behaviour of Eε(u)/(Nεε) in the sub-critical and
in the super-critical regime. In the latter case we also assume Nε <<

1
ε2β , with β < 1, in oder to keep

the obstacles well separated (see condition (15)).
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7.1 The sub-critical regime

In the case Nε << | log ε|/ε the result can be deduced from the Theorem 10. Indeed the compactness
result given in Theorem 12 implies compactness in Lq(T 2), for q < 2, of any sequence {uε} such that
Eε(uε)

εNε
≤ C. Moreover every cluster point u ∈ BV (T 2,Z) of such a sequence must satisfy

∫
T 2 |Du| = 0

and hence is a constant a ∈ Z. Thus also in this case, as for the dilute case discussed in Theorem 6,
the effect of the pinning condition is weaker than the line tension and in a similar way one can deduce
that the Γ-limit is given by

E(u) =
{
Dν(a,BR) if u = const. ∈ Z,
+∞ otherwise.

7.2 The super-critical regime

We now consider the case | log ε|
ε << Nε <<

1
ε2 . It is easy to check that also in this case the Poincaré

inequality, as in Proposition 16, yields an L2(T 2) bound for all sequences with equibounded energy,
but in general we cannot expect more than weak convergence up to a subsequence.

The upper bound in the proof of Corollary 11 can be obtained for the class of piecewise constant
functions with integer values taking into account that in the super-critical scale the line tension effect
becomes negligible. This class is weakly dense in L2(T 2,R) and then the general case follows by an
energy density argument.

The proof of the lower bound is more delicate. By a blow-up argument it is enough to understand
the case of a sequence {uε} converging to a real constant c weakly in L2(T 2). The idea in this case is
that even if the sequence converges only weakly, it oscillates at a larger scale than the average distance
between the obstacles. Then at this scale, we still can find an integer value to which we can apply
Lemma 22 and get a local lower bound for the energy.

Proposition 28 If uε ⇀ c = const., with c ∈ R, then

lim inf
ε→0

1
εNε

Eε(uε) ≥ D∗∗
ν (c, BR) , (111)

where D∗∗
ν (·, BR) is the convex envelope of Dν(·, BR) as defined in (17).

Proof. Step 1 (Selection of good pinning sites xi
ε). We may assume that Eε(uε)

εNε
≤ C. Thus for every

θ ∈ (0, 1) we can find a set of indices Iθ
ε and a constant C(θ) such that #(Iθ

ε ) ≥ (1− θ)Nε and for all
i ∈ Iθ

ε the points xi
ε satisfy

1
ε

∫
Bi

ρε

dist2(uε,Z) dx ≤ C(θ)ε , (112)

∫ ∫
Bi

ρε
×Bi

ρε

Kν(x− y)|uε(x) − uε(y)|2dx dy ≤ C(θ)ε (113)

and

−
∫

Bi
ρε

|uε|2dx ≤ C(θ) , (114)

where Bi
ρε

denotes the disc of radius ρε = 1/
√
Nε and center xi

ε.
Step 2 (Assignment of a value ciε to each good pinning site). By the (scaling invariant) embedding of
H

1
2 into L4, there exist constants ciε such that∫

Bi
ρε

|uε − ciε|4dx ≤ C[uε]4
H

1
2 (Bi

ρε
)
≤ Cε2 .
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Thus

−
∫

Bi
ρε

|uε − ciε|4dx ≤ CNεε
2 → 0 (115)

and
−
∫

Bi
ρε

|uε − ciε| dx ≤ C(Nεε
2)

1
4 → 0 .

By the interpolation inequality, given by Lemma 23, applied to uε − ciε we have

−
∫

Bi

εβ

|uε − ciε| dx ≤ −
∫

Bi
ρε

|uε − ciε| dx+ C
ε

1
2

ε
β
2

→ 0 (116)

where β < 1 is chosen as in (15). From (115) we also deduce

−
∫

Bi
ρε

|uε − ciε|2dx ≤ C(Nεε
2)

1
2 → 0 .

Together with (114) this yields

|ciε| ≤ C . (117)

Step 3 (Lower bound for each good pinning site). We claim that there exist integers ai
ε such that

sup
i∈Iθ

ε

|ciε − ai
ε| → 0 (118)

and

1
ε2

∫
Bi

εβ

dist2(uε,Z) dx +
1
ε

∫ ∫
Bi

εβ
×Bi

εβ

Kν(x− y)|uε(x) − uε(y)|2dx dy ≥ Dν(ai
ε, BR) − o(1) . (119)

To see this we consider the scaled function ζi
ε(x) = uε(xi

ε + εx). Then (116) gives

ω1(ε) = −
∫

B
εβ−1

|ζi
ε − ciε| dx→ 0 (120)

uniformly in i ∈ Iθ
ε , and the left hand side of (119) can be written as

T i
ε :=

∫
B

εβ−1

dist2(ζi
ε,Z) dx +

∫ ∫
B

εβ−1×B
εβ−1

Kν(x− y)|ζi
ε(x) − ζi

ε(y)|2dx dy .

By (112) and (113) we know that T i
ε is bounded. Moreover by (120) the set

|{z ∈ Bεβ−1 : |ζi
ε(z) − ciε| < 2ω1(ε)}

has measure at least |Bεβ−1 |/2. Hence T i
ε can be bounded only if

dist(ciε,Z) ≤ 2ω1(ε) +
C

|Bεβ−1 | 12 → 0

This proves (118). In view of (120) we also get

−
∫

B
εβ−1

|ζi
ε − ai

ε| dx→ 0 .

Hence Lemma 22 and (117) yield
T i

ε ≥ Dν(ai
ε, BR) − o(1) .
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Summation of (119) over the good centers yields

1
εNε

Eε(uε) ≥ (1 − θ)
1

#(Iθ
ε )

∑
i∈Iθ

ε

Dν(ai
ε, BR) . (121)

Step 4 (Relation between the values ai
ε assigned to the pinning sites and the weak limit c of uε). By

(115) and (118) we see that uε is close to an (integer) constant on balls of radius 1√
Nε

centered on
‘good’ pinning sites. We now show that uε is actually nearly constant on a slightly larger scale rε.
This will allow us to exploit the uniform distribution of the pinning sites to conclude that

∫
Q uε dx ≈

1
#(Iθ

ε )

∑
i∈Iθ

ε
ai

ε. Since
∫

Q uε dx→ c

Since Nε << ε−2 there exists rε such that

1√
Nε

<< rε <<
1

ε
1
2N

3
4
ε

. (122)

We assume that 1
rε

is an integer and we cover Q by a lattice of squares Q̃j
rε

of size rε. By Q̂j
rε

we
denote the concentric squares of three times the size. Given θ we can find a set of indices J θ

ε such
that #(J θ

ε ) ≥ (1 − θ)r−2
ε and for all j ∈ J θ

ε the squares Q̂j
rε

satisfy∫ ∫
Q̂j

rε×Q̂j
rε

Kν(x − y)|uε(x) − uε(y)|2dx dy ≤ C(θ)εNεr
2
ε , (123)

∫
Q̂j

rε

|uε|2dx ≤ C(θ)r2ε . (124)

By the embedding of H
1
2 into L4, there exist constants Aj

ε such that

−
∫

Q̃j
rε

|uε −Aj
ε|4dx ≤ Cε2N2

ε r
2
ε → 0 .

Now consider a good pinning site in a good square, i.e. xi
ε ∈ Q̃j

rε
, i ∈ Iθ

ε and j ∈ J θ
ε . Then by the

interpolation inequality (applied to uε −Aj
ε) and (122)

−
∫

Bi
ρε

|uε −Aj
ε|dx ≤ −

∫
Q̃j

rε

|uε −Aj
ε| dx+ C

ε
1
2N

1
2
ε rε

N
− 1

4
ε

≤ Co(1) .

Thus in view of (115) and (118)
|ai

ε −Aj
ε| ≤ Co(1) .

Since ai
ε ∈ Z this shows that for good pinning sites in good squares ai

ε depends only on the square
Q̃j

rε
.

Using the uniform distribution of xi
ε and the fact that rε >> N

− 1
2

ε as well as (114) we deduce that∣∣∣∣∣∣∣
1
Nε

∑
i∈Iθ

ε , xi
ε∈Q̃j

rε

ai
ε −

∫
Q̃j

rε

uε dx

∣∣∣∣∣∣∣ ≤ C|Q̃j
rε
|o(1) +

#(Iε(Q̃j
rε

) \ Iθ
ε )

Nε
. (125)

Now we sum (125) over all j ∈ J θ
ε . Let Eε be the union of the squares Q̃j

rε
, with j ∈ J θ

ε . Then
|Eε| ≤ θ and by the L2 bound on uε we have

∫
Eε

|uε| dx ≤ Cθ
1
2 . Combining this with (117) and (118)

we deduce after a short calculation that

lim
θ→0

lim
ε→0

∣∣∣∣∣∣ 1
#(Iθ

ε )

∑
i∈Iθ

ε

ai
ε −

∫
Q

uε dx

∣∣∣∣∣∣ = 0

Together with (121) this finishes the proof.
©
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