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REGULARITY THEOREMS AND ENERGY IDENTITIES FOR
DIRAC-HARMONIC MAPS

QUN CHEN, JURGEN JOST, JIAYU LI, GUOFANG WANG

ABSTRACT. We study Dirac-harmonic maps from a Riemann surface to a sphere
S™. We show that a weakly Dirac-harmonic map is in fact smooth, and prove that
the energy identity holds during the blow-up process.

1. INTRODUCTION

Let M be a compact spin Riemann surface, M the spinor bundle over M and
N a compact Riemannian manifold. Let ¢ be a map from M to N, ¥ a section
of the bundle XM ® ¢ 'T'N. Let V be the connection induced from those on SM
and ¢"'TN. The Dirac operator D along the map ¢ is defined by I := e, - Ve ),
where €1, e5 is an orthonormal basis on M. We consider the functional

L(6,9) = /M 14612 + (6, Pb)sararn].

The critical points (¢, ) are called Dirac-harmonic maps from M to N (these maps
were first introduced in our companion paper [3] were also further background and
motivation are provided). When ¢ vanishes, we obtain the standard energy func-
tional whose minimizers ¢ are harmonic maps. In other words, here we are gen-
eralizing that setting by coupling the map with a spinor field with values in the
pull-back tangent bundle. The important point is that this generalization preserves
a fundamental property of the energy functional on Riemann surfaces, namely its
conformal invariance. In fact, our functional is nothing but the action functional
for the non-linear supersymmetric sigma model from quantum field theory, with
the only difference that here all fields are real valued instead of having Grassmann
coefficients. This brings us back into the framework of the calculus of variations.
Since the construction is geometrically quite natural, one should expect that this
class of maps can yield new geometric invariants of N. Before one can address
that issue, however, one needs to do the basic analytic work. As a first step, we
should derive a compactness theorem. To begin this program, we consider in this
paper the case that the target is a sphere S”, that is, in the terminology of quantum
field theory, we consider the O(n + 1) sigma model. Suppose that (¢, 1) is a
sequence of Dirac-harmonic maps from M to S™ with uniformly bounded energy
E(¢w, i) = [3;(|dowl* + |k|*), then there is a subsequence which we also denote
by (¢r, ) such that ¢, — ¢ weakly in W2 and 1, — ¢ weakly in L?, and
outside a finite set of points S = {p1, pa, - -+, pr} which we call the blow-up set, the
convergence is strong on compact sets. So (¢,%) is smooth in M \ S, and it is a
weakly Dirac-harmonic map. We show first in this paper that any weakly Dirac-
harmonic map is smooth, and so also the present limit is smooth. At every blow-up
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point p;, by Sacks-Uhlenbeck’s blow-up, one gets a finite number of Dirac-harmonic
spheres (0!, &l). The regularity of weakly harmonic maps was proved by Helein [6]

and [7]. Another main purpose of this paper is to show the so-called energy identity:
limy oo B(dr) = E(9) + Bi%E(0));  limg oo E(yy) = E(Y) + L5 E(E)).

The energy identity for a min-max sequence for the energy was proved by Jost [10],
for Palais-Smale sequences with uniformly L?-bounded tension fields by Ding-Tian
[4]. For related results see [13], [18], [14], [15] and [11].

2. REGULARITY THEOREMS FOR DIRAC-HARMONIC MAPS

Let (M, hoz) be a compact two-dimensional Riemannian manifold with a fixed
spin structure, XM the spinor bundle. For any X € I'(T'M), £ € I'(XM), denote
by X - ¢ the Clifford multiplication, which satisfies the following skew-adjointness
relation:

(X -&mysm = —(§ X -n)eum

for any X € (T M), &,n € I'(XM), where (-, -)sps denotes the metric on ¥M in-
duced by the Riemannian metric h,g). Choosing a local orthonormal basis {e,, @ =
1,2} on M, the usual Dirac operator is defined as: @ := e, - V., where V stands for
the spin connection on XM (here and in the sequel, we use the Einstein summation
convention). (A good reference for the spin geometry tools used in this paper is
12].)

Let ¢ be a smooth map from M to another compact Riemannian manifold (NN, g)
of dimension n > 2. Let ¢~'T'N be the pull-back bundle of TN by ¢ and consider
the twisted bundle XM ® ¢ 'TN. On XM ® ¢~'TN there is a metric (-, )siyorn
induced from the metrics on XM and ¢~ 'TN. Also we have a natural connection
V on ¥M ® ¢ 'TN induced from those on ¥M and ¢~ 'T'N. In local coordinates,
the section 1) of XM ® ¢ 'T'N is written as

w = W ® ayj((b)a

where each 97 is a usual spinor on M and {d,;} is the natural local basis on N. \Y
becomes

Vi = V' @ 9,:(0) + (T3, V6")0" @ 0:(9)
where the T, are the Christoffel symbols of the Levi-Civita connection of N.
We define the Dirac operator along the map ¢ as

Dy = ey ﬁeaw
= ' ©0,i(0) + ([ Vead)(Ca - V") @ Dyi(0).
It is easy to verify that ) is formally self-adjoint, i.e.,

[ Bsuery = [ 0 sworn,

for all ¢, & € C°(XM ® ¢ 'TN), the space of smooth sections of XM ® ¢~'TN,

where (¥, &)smery = gij(9) (¥, &) su, for i, e T(EM ® ¢7'TN).
Set

(2.1) X(M,N) :={(¢,%)| ¢ € C>°(M,N) and o) € C°(XM @ ¢ 'TN)}.
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We consider the following functional

L6,9) = /M (d6[2 + (&, PO)sarsrs)

0p" O , :
= /M{gz'j(@haﬁa—ia—;+gz‘j(¢)<W,1p¢J>zM}-

By a direct computation, we obtain the Euler-Lagrange equations of L:

(2.2) DY = P+ T (0)0a (ea - UF) =0, i=1,2,-- ,m,

(2.3) " (9) — % mlz'j(@(wia V¢l : W>EM =0, m=12,---,n,

where 7(¢) is the tension field of the map ¢, V@' - 17 denotes the Clifford multipli-
cation of the vector field V¢! with the spinor 47, and R";; stands for a component
of the curvature tensor of the target manifold N. Denote

1 . .
R(¢,¥) = 3 " (0, V)0,
We write equations (2.2) (2.3) in global form as
Dy =0
7(¢) = R, ¢).

Solutions (¢, ) of (2.2) and (2.3) are called Dirac-harmonic maps from M to N.
When v = 0, a solution (¢, 0) is just a harmonic map. Harmonic maps have been
extensively studied. See, for instance, two reports of Eells-Lemaire [5]. When ¢ is a
constant map, each component of ¢ is a usual harmonic spinor. Harmonic spinors
also have been well understood, see for instance [8], [12], [2] and [1]. Dirac-harmonic
maps thus are a generalization and combination of harmonic maps and harmonic
spinors. Non-trivial examples are given in [3].

Let (N', ¢’) be another Riemannian manifold and f : N — N’ a smooth map. For
amap ¢ : M — N, we have a map ¢’ = ¢ o f from M to N'. The map f naturally
induces a map from M ® ¢~ 'TN — M ® ¢/ 'T N,which is denoted by f.. Hence for
and (¢,v) € X we get (¢, fup) € X(M,N'). ¢/ := f,1) is a spinor field along the
map ¢'.

Let A be the second fundamental form of f, i.e., A(X,Y) = (Vxdf)(Y) for any
X,Y € I'(TN). It is well-known that the tension fields of ¢ and ¢’ satisfy the
following relation

(2.5) 7'(¢)) = A(dd(ea). dp(ea)) + df (1(0)).
One can also check that the Dirac operators [P and D’ corresponding to ¢ and ¢’
respectively are related by

(2.6) D' = fo() + Aldo(ea), € - ¥),

where

(2.4)

A(dp(en),ea-¥) = ¢eq ¥ @ Ay, 0,)
= (Vo' -¢?)® A(Dyi, 0y).
When f: N — N’ is an isometric immersion, then A(-,-) is the second funda-

mental form of the submanifold N in N’. We have

W= —PEX)+ VY ViY =ViY +AXY)
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VX,Y € I'(TN), £ € T(T+N), where T L N is the normal bundle, V and V’
are covariant derivatives and P(-;-) denotes the shape operator. In this case, for
simplicity of notation, we identify ¢ with ¢’ and v with ¢’. Using the equation of
Gauss, we have
mzw (W', Vo' - ) eu
= [(A(ay 7831 ) A(a 0 ')>TN/ - <A(ayk7 agﬂ)a A(ay 78?/ )>TN'
MWW Vo) s
= 2™ (A(@yr, 0y), Ay, O e (V' € 1 ) s B
+gmkR;clij (', Vo' - )sm

= 29mk<P(A(ayl’ayj>3ayi)aayk>TN<wia€a : W>2M¢L + lw<wl V(bl w]>EM,
where in the last step we used the following relation between the shape operator
P(-;-) and the second fundamental form A(-,-):

<P(€;X)7Y>TN = <A(X7 Y)7€>TN’
for any X, Y € I(TN), £ € T(T+N). Set

P(‘A(d(b(ea)a €a - 1/})7 w> = P(A(ayla ayj); ay’)<wla €a - wj>EM¢fx~

From the above calculation, we have

(2.7) R, ¢) = P(A(do(ea), €a - ¥);) + R'(¢,0)).

Therefore, using (2.6) and (2.5) and identifying ¢ with ¢’ and ¢ with ¢’, we can
rewrite (2.2) and (2.3) as follows:

(2.8) D = Aldg(ea), €a - 1),

(2.9)  T(9) = A(dd(ea),dd(ea)) + P(A(d(ea), ea - ¥); ) + R'(¢,9).

In particular, by the Nash-Moser embedding theorem, we embed N into the Eu-

clidean space N’ = RX and have )’ = § and 7/ = —A, where A is the (negative)
Laplacian. Therefore, we have

(2.10) P = A(dd(ea), eq - V),

(2.11) —A¢ = A(dg,d¢) + P(A(do(eq), ea - V)i 1)),
where ¢ : M — R with

(2.12) o(x) € N

for any x € M and ¢ = (1,42, -+ %) with the property that 1 (z) is along the
map ¢, namely,

(2.13) Z’Uﬂ/}i(x) =0, for any normal vector v = (vy,--- ,vk) at ¢(x).

Here o' € T(XM). For any vector v = (v, 09, -+ ,vx) € RE abusing the notation
a little bit, we write (v,%) = v;)* € T(XM). And we also write for £ € T'(XM)

(¥, &) = (0", Osur, W, snr, -+, (W5, xm) € RY,

if there is no confusion.
Set

Xps(M,N) == {(6,9) € W x WS with (2.12) and (2.13) a.e.}.
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For simplicity of notation, we denote Xll 42 /3(M ,N) by X(M, N) (thus, we are chang-

ing the convention of (2.1)). It is clear that the functional L(¢, ) is well-defined
for (¢,4) € X(M, N).

Definition. A critical point (¢,v) € X (M, N) of the functional L in X(M, N) is
called a weakly Dirac-harmonic map from M to N. Equivalently, (¢,) € X (M, N)
is a weakly Dirac-harmonic map from M to N if and only if (¢, 1)) satisfies

(2.14) /M {(V6, Vi) — (A(do, dd) + P(A(d(ea)ca - 0): )Y} = O,
(2.15) / [(0,96) — (A(db(ea).ea- 1), E)} = 0,

for all n € C>°(M,R¥) and £ € C>*°(XM ® RX).

One of our purposes of this paper is to study the regularity of weakly Dirac-
harmonic maps. Our main observation is that when the target IV is the standard
sphere S", a weakly Dirac-harmonic map has a special structure like a weakly har-
monic map. For weakly harmonic maps, see [7].

Proposition 2.1. Let M be a Riemann surface with a fized spin structure and
(p,0) € X(N,M) a weakly Dirac-harmonic map from M to S™. Let D be a simply
connected domain of M. Then there exists M = (M%) € W?(D,R™ ") such that

(2.16) _np= 200 OMO

Proof. For N = S" C R"", the equations (2.10) and (2.11) can be respectively
written as follows:

(2.17) P = =) (Vo v @ o™,

(2.18) —A¢™ = [doPd + (U @ dé(ea), ea - V) smsrs

form=1,2,--- ,n+ 1. Set ¢, := do(e,).
From (2.18), we have for m =1,2,--- ;n+ 1 that
(2.19)

Agm = —|dglPd" + (U™ @ dBlea) a - V) marems N
= —(0h0" — GO+ Dhlea - UL U )mar (a8 0 = 01 = 20%,6)
= [(Ou ", ™) — (050" — ¢'93") ]9,
+[(0y - V) s — (90" — D'y )] ¢,
= Aml(blz + Bml(bly.
We would like to show that there exists some function M™ on D such that
(2.20) A™ = MM, B™ = —M"

which, by the Frobenius theorem, is equivalent to

(2.21) AM 4 B = 0.
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Calculating directly, one derives
AT+ B = (O, 0™ sr + (On - ' 0 sr + (0 - 1y, V™) s
+(0y - ' ) sm — (G 0™ — O O + By, 0" — Dby
(2.22) = (P )sn — (O, PP )sm — (AP'9™ — Ag™).
From equation (2.18), one gets
(2.23)  —(A¢'¢™ — A¢™¢") = —ghd™ (ea - ¥, V) st + G0 (ea - U s,
And from equation (2.17), one obtains
(@W,wm>2M = _¢i¢i<€a ) ¢k>¢m>2M-
Hence
(2.24) (P, 0™ om — (W, PO )onr = GEO™ (ea - V) — 9RO (e - U ) s

Putting (2.23) and (2.24) into (2.22) we have (2.21). Hence we prove the Proposition.
O

Theorem 2.2. Let M be a Riemann surface with a fixed spin structure. Suppose
that (¢,1) € X (N, M) is a weakly Dirac-harmonic map from M toS™. Then ¢ € C°.
And hence (¢,1)) is smooth.

Proof. From Proposition 2.1 and Wente’s well-known lemma ([17]), we know that
@™ is continuous, m = 1,2,---, n + 1, namely, ¢ € C°(M,S"). By Theorem 2.3
below, we have that ¢ and v are smooth. a

Theorem 2.3. Let (¢,7) : (D,003) — (N", gij) be a weakly Dirac-harmonic map.
If ¢ is continuous, then (¢,1)) is smooth.

To prove this theorem, we first establish two lemmas (Lemma 2.4 and Lemma
2.5 below which are similar to Lemma 8.6.1 and Lemma 8.6.2 in [9]). Since ¢ is in
C°(D, N), we can choose local coordinates {y;} on N such that T%,(4(0)) = 0. In
these coordinates, the equations for ¢ and 1 can be written as

(2.25) AG™ = ~TT(6)0h0L + S R(0) 04, VT - v,

(2.26) P = TSV - .

This intrinsic version of our equations is well-defined since ¢ € C°.

Lemma 2.4. Let (¢,v) be a weak solution of (2.25) and (2.26). If ¢ € C°nN
Wh2(D, N), then for any € > 0, there is a p > 0 such that

(2.27) / VoPP(z) < e / \Vn|2+08(/ o,
D(z1,p) D(z1,p)

D(z1,p)

where D(z1,p) C D, n € Wy(D(x1,p),R), C is a positive constant independent of
g, p,» and .

Proof. Denote

C(2,6,d0) = TR(0)0hh — 2 (@) (b, Vo - th)mar, G = (GLGP - O,
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then
|G| < C(|dg]* + [V 9] |del),

|Gyl < C(ldgl* + [¢1*|de]),
|Gasl < C(1dg] + [¢]%).
The weak form of equation (2.25) is:

2.28 Vad'Va(' = | G'(z,9,d9)(",
(2.25) [ Va6 = [ Gao.aeic
for any ¢ € W2 N L>(D,R¥). Now we choose ((z) = (é(x) — ¢(x1))n*(x), then

. v do|2n? G\ i OV,
(2.20) /D(m’p)v GV /D(w)wm +2/ 0 (2) — & (21))VadVan

D(:El,p)

We have

/ Gi(z, 6, dp)C: :/ T ()8 (F1(z) — & (1)) ()]
D(z1,p) D(z1,p)

_1 g kvj‘ ZEM iZL‘— il'l 21‘
3 RO 99 (o (0) = )0

IN

OnerSuppa, | 6(x) — d(ay)| / Mot
D(x1,p

+ONSUDp gy )| 0(2) = ¢(21)] ||| [*n*

D(z1,p)

IN

CnerSupp(ey |0(2) — dla1)] / Ll
D(x1,p

+ONSUD (e |0(7) — B / doP)h

D(Ilvp)
(2.30) < / i,
D(z1,p)

where €; > 0 is a given small number. On the other hand,

2/ (¢ (2) = ¢'(21))VadVan < CnxSupp,, ,)|6(2) —¢(9€1)\/ |do||[Vnln
D(z1,p) D(z1,p)

1
< 5 [ o 8Supp, (o) - o)
2 Jp@1p)
(2.31) X / V)2
D(:L‘1,p)
Substituting (2.29), (2.30) and (2.31) into (2.28), and choosing p small enough then
yields (2.27). O

Lemma 2.5. If ¢ € CONWYNW32(D(zo, R), N) and ($,%) is a weak solution
of (2.25), (2.26), then for R sufficiently small, we have

(2.32) V20| L2(D(ao. r/2)) + 140N T 4(D(wg, 72 < CrlldOl| L2(D (o, R))

where Cy > 0 is a constant depending on |¢|cop,n) and R.
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Proof. We may assume zo = 0 € D. Given &’ > 0 small, since ¢ is continuous, we
can choose R small enough such that |¢(x) — ¢(0)| < & for all x € D(zo, R). For
simplicity, we denote B := D(xo, R). From equation (2.26) we have

|P0] < T5(0(2)) = T (6(0)]|de? [[9*] < Cwlo(x) — $(0)]]d] [,
hence
(2.33) P < Cne'ldg| 4]
Noting that @()n) = nd + Vn - ¢, we have

||&(¢77)||L4/3(B) < ||77$¢||L4/3(B) + IV ¢||L4/3(B)
Cne'llldollvnll sy + 11VllY]l Lsss)
Cne'lldol 2 10l acsy + NIVl Lars ).

By the elliptic estimates for the first order equation, we have

(2.35) IV @)l arscey + [l sy < Crll@on)l zarss)-

A proof was given in Lemma 4.8 in [3]. By choosing R small enough such that
Cne'lldd||r2s) < 3, we obtain from (2.34) and (2.35) that

27
(2.36) IV @)l arssy + [[0nllasy < CrllValldlll as ),
from which we easily derive that

(2.37) ||IV¢|77||L4/3(B) + ||¢77||L4(B) < CR|||V77||w|HL4/3(B)'

For any ¢ € W,?(B,R¥),

(2.38) /Bv¢v<:—/BA¢g:/BGg,

Choosing ¢ = V,(£2V,¢), where £ € C°NWy*(B,R) is to be determined later, we
get

<
(2.34) <

/B V. (Vsh)Va(€V,0) = — / V50V (V4 (£2V,0))

- - [ avev
(2.39) = /BVVGVVMQ.
Note that
Vo (V) Va(E2V,0) = [V, V0|2 + (V V6 V,0) V¢
(2.40) > [V — 2| V?¢||dg|[EVE],
and

V.GVl < Cn(ldgl" + [¢1IVe|dg]* + [del ]
(2.41) +HV2l|dgl* + [ V*oldg][¥]*).
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Substituting (2.40) and (2.41) into (2.39) yields

/ V%P < Cn / 1V26||d8||EVE| + O / V20| |dg €2
B B B
On /B do[*€® + Cy /B ][V |do|2€?

N / 6|4 €? + Cy / V26|l e
B B
(2.42) = [+ I+ +IV+V+VI

For £, > 0 small, we have

C
(2.43) 1< e [ V0P + 2 [ jaopive
B &1 B

(2.44) IISCN&/ |V2¢|2§2+@/ |do['e®.
B €1 Jp
Choosing 7 = |d¢|¢ in (2.37), we obtain
@45) VI, g ) + I91d61E N i) < CIVAABIIAN, 5 5

Because

IVl < 2MIVPlEI )+ 2idolIVElvlI,

L3 (B)
2 11242 i 2 2 Ny
< o vore [ 1wt e[ aopvep [ ol
2.46 — 2 Ha( [ V2% do|?|VEP),
(2.46) ([ W[ vope + [ jasoep)
choose R > 0 small enough such that
(2.47) C?* max{2Cy, C%} ly|* < 1,
D(zo,R) 8
we get
IV < CullIVUlldsiEl g I01d0lE N ecs)
< ONCIV (Bl (by (2.45))
<

CnC? i V2P + [ 1doPVEP)  (by(2.

2Cx </Bw|></B| ¢|f+/3|¢u &Py (by(2.46))
1 1

(2.48) < g/B|V2¢I2§2+§/BId¢\2\V€I2.
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Similarly, we can estimate the terms V' and VI as follows.
2¢2|,014 Cn 442
Vo< Cun [ Loyl +—/|d¢|£
1 C
< oxa [ W[ lidoleh? N/\dm
12 2 N 2
< Carl [ WO, + 2 [ laol'e (w(245)
C
CnC?2 4 2 112¢2 do|? 2 ~“N dolie?
20 W[ 1o+ [ laoPvepy+ 2 [ jape
1 2202 L 2 2, On 442
240) < g [ 190Pe g [ aoPiver+ 2 [ jasiie

and

IN

VI o= Oy / (IV2616) (j[2|déle)

IN

1 1
3 | IVore+ 565 [ ultaope

3 [ 1ok 5[ 1wt witidarey?

/ V2PE + SOk / A2V (ldglo)]l 2,

L3(B)

3 | Ivore + e[ i [ 1vope+ [ jaopivel)

@s0) < g [ Ivepe g [ (vepe+ ¢ [ aokiwer
Putting (2.43), (2.44), (2.48), (2.49) and (2.50) into (2.42) gives

2.51 V2p|2¢2 < ¢ do|?|VE|? dol*e?).
(2.51) /D(M)| o126 < (/D(M’R)WH 5'+/DW>W'“

Now for e > 0, let p > 0 be as in Lemma 2.4, and with D(z1, p) C D(zo, R), choose
a cut-off function & € C§°(D(x1,p)), 0 < & < 1 such that

IN

IN

IN

4
E=1 in D(xl,g); |V£|§; in  D(z1,p),

denote B, := D(z1, p) for simplicity, one derives

/ dof'e = / Ao (dsle)?
B, B,

< < [ V(aolOF + C=( [ uitldslis) Oy Lemmaza)
B, B,

< e | VPP e | doPIVER + Oe( ] [ulldel'eh)z,
B, B, B,

it follows from (2.45) that
I1611d01€] e,y < CUTAABENVI 3.,
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then, by an argument similar to the one used in the proof of (2.46), we can get

611dl€ ]2z, < 2C% /B v Ivrore + / doP|VEP),

thus,
dol'e? < e | VPP +e | |doPIVEP
B, By By
([ (vrope s [ laopive)
B, B,
(252 = c=([ vrope s [ laoPIvep)
B, B,
On the other hand, by (2.51), we have
(2.53) V2o < O([ |dol?|VEP + [ |do|'e?),
B, B, B,

substituting (2.52) into (2.53) yields

V2Pe < C / o Ve,
B, B,

hence,
2,2 C 2
(2.54) V2P < 5 do 2.
D(z1,5) P~ JD(x1,p)
Covering D(zg, &) with {D(z1,£)} and using (2.54) we obtain (2.32). O

Now we are in the position to give the

Proof of Theorem 2.3. First, we show that ¢ € W22 N W*(D(zo, %), N). This can
be done just by replacing weak derivatives by difference quotients in the proof of
Lemma 2.5. Denote

¢(z + hE;) — ¢(z)

h )
where (Ey, Ey, - - - , E¢) is an orthonarmal basis of RE, h € R. A" := (AR AL ... J AL,
Let ¢ := AJ"(¢?Al¢), then, similar to (2.51), we have

s | L Iv@re<c /

D(zo,R)

Alg(a) =

(if dist(z,0D) > |h]),

ARGPIVEP + O / VP A,

D(z0,R)
Since (cf. [9], p.382)

c / AMPIVEP < C / VoPIVER,
D(zo,R) D(zo,R)

applying Lemma 2.4 to the right hand side, we obtain the following estimate anal-

ogous to (2.54):
C
[ w@epe<S [ s,
D(x1,5) P~ JD(z1,p)

from which it follows that the weak derivative V2¢ exists and (2.32) still holds true
with p sufficiently small and C > 0 which depends on |¢|co(p n) and p.
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Next, since ¢ € W22, we have that ¢ € WP for any p > 0, thus, the right hand
side of (2.26) is in LP(p > 2), so 1 € C®7 for some v > 0. By the elliptic estimates
for the equation (2.25), we have ¢ € WP for any p > 2, thus ¢ € C'7. By the
elliptic estimates for the equation (2.26), we have ¢ € C'7. Then the standard
arguments yield that both ¢ and 1 are smooth. This completes the proof. a

3. ENERGY IDENTITIES

First, using the elliptic estimates, we can establish the following vanishing theorem
which will be used later in obtaining the energy identities, and in which we see
that the W12norm of ¢ and L*-norm of ¢ play an important role in the analytic
properties of ¢ and ). We note that these two norms are conformally invariant.

Theorem 3.1. Let (M?, hag) be a compact Riemann surface with a fized spin
structure, and (N, g;;) be a compact Riemannian manifold. There is a constant
g0 > 0 small enough such that if (¢,¢) is a smooth solution of (2.2) and (2.3)
satisfying

(35) | (ol + 101 < e
M
then ¢ is constant and consequently qp* =0,i=1,2,--- n.

Proof. In the sequel, we write || - ||p, for the L*P-norm on the domain D, and
if there is no confusion, we may drop the subscript D. Embed N into some RX
isometrically, then from the ¢-equation (2.11) we have

[Ad] < [|Allcldel* + Cldg ][],

where Cy > 0 is a constant depending only on N, ||A|l := maxy |A]. It follows
from the above inequality that

1AGllos < 1Allolllddlllo,s + Crllldol1[lo, 4
< C(lldgllg2 + 1¥15.4)ldllo.s
< C(ldgllg2 + 115, lldgll,a/s-

If [,,(|do|* + [¢|*) < o for small gy > 0, then ¢ = const. From equation (2.10), we
have ' =0,1=1,2,--- ,n. 0

Now we prove the small energy regularity. Since the problem is local, we assume
that M is flat.

Theorem 3.2 (s—regularity theorem). There is an gy > 0 such that if (¢, ) :
(D, dap) — (N, gi;) is a C*° Dirac-harmonic map satisfying

(3.6) / (1462 + [41%) < <o,
D
then
(3.7) 1dél15., < C(D, )|déllpos
(3.8) IV4ll51, < OB, o)1l pos,

(3.9) V¥l o) < CDlpoas  ¥llengs) < CD)¥llnoa
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VD C D,p > 1, where C(E,p) > 1 is a constant depending only on D and p.
To prove this theorem, we first estimate |d¢|.

Lemma 3.3 There is an g > 0 such that if (¢,v) : (D,043) — (N, gi5) is a C™
Dirac-harmonic map satisfying (3.6), then

(3.10) l¢llpria < C(DY)/E, VD' with DI cC D,
where C(DY) > 0 is a constant depending only on D'.

Proof. Choose a cut-off function n : 0 < n < 1, with n|p: = 1 and Suppn C D. By
(2.11) we have

[Ame)l < C(9] + [do]) + | Alloc|dl (Id(n¢)| + |¢dn]) + [nal
< [|Allsldelld(ne)| + C(|0] + |do]) + [nal,
where v := P(A(dp(en), € - ¥); ), thus, for any p > 1,

(3.11) 1AM lop < [[Allssllldelld(nd)llop + Clldllp + [Inellop-

Let p = 3, and without loss of generality we assume [, ¢ = 0 so that [¢[l1, <

C'||do||op, then

Al ll1délld(nd)llo.2 < 1AllsolIndllrallddllo.,
from this and (3.11) we have

1n¢ll2,s < Cl[Allollndll1alldello + el s + lInello ).
Bythe Sobolev inequality, |[n¢]l14 < C”||77¢||27§, S0,

(3.12) (C = ClAlsllddllo) Indlla < Cld g, s + [Inello2),

moreover,

IN

O |62 |l s

CN”WPW(?W) - <Z5d77‘”0,§
P s + Cl1PIbdll
CllllGalnellia + Cllvlls s

Cllsbl5 allnella + Cllebll 4
putting this into (3.12) we get:

Ingllra < Clldollg s + vEollndllia + 1% 15.4),

Inalos

IAIA

IN

which yields
Ingllna < Clldgllo,s + 1|19ll5.4) < 2v/E0C.

Next we estimate ).

Lemma 3.4. There is an g9 > 0 such that if (¢,7) : (D, 6ap) — (N, gij) is a C
Dirac-harmonic map satisfying (3.6), then

(3.13) 1204 < C(DH)|Y|lpos, Yg>1, ¥D? with D2 C D,

where C(D?) > 0 is a constant depending only on D?.
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Proof. Choose a cut-off function n : 0 < n < 1, with n|pz = 1 and Suppn C D.
For any i = 1,2,---,n, ¥ is an ordinary spinor field, and & := m)* has compact
support in D, so, by the well-known Lichnerowitz’s formula, we have

PE = —AE +LRE = ~AF

because the scalar curvature R = 0 on D. Integrating this yields

[ver = [ 1acr
= [ ot
= /DIVn-WﬂLWWI2

< o[ We+ [ o)
c([ Wwpc [ iaopiup)

IN

hence,
IVE Doz < CU[W Ipoz+ 1delDoallvllDoa)
< Cl¥llpoa(l+ [|ddlpoa)
< C'Ylpoas
from which it follows that
1Yl D204 < Cll¥llp,o,a-

O
Lemma 3.5. There is an g9 > 0 such that if (¢,v) : (D, dap) — (N, gi;) is a C™
Dirac-harmonic map satisfying (3.6), then
(3.14) |dé|lp204 < C(D?)||dd||po2 ¥D* with DZC D,
where C(D?) > 0 is a constant depending only on D?.
Proof. Choose a cut-off function n : 0 < n < 1, with n|p2 = 1 and Suppn C D. By
(3.12), we have
||77¢||D,1,4 < C(||d¢||D,o,§ + ||77a||D,0,§)
< Cldollpoz+ lInallpe.s),
and it is clear that
lallpos < CllUPIdellpos

e[ i laop:

< ClYllpoaldd|p.oz2,

IN

therefore,
In9llp,1,4 < Clldd||p,o2-
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Proof of Theorem 3.2. Choose D C D3 C D?* C D' C D. Also choose a cut-off
function 7 : 0 < 7 < 1, with n|ps = 1 and Suppny C D?. By (3.11) on D? for p = 2
(we temporarily assume f p2®=0):
70llp222 < ClIAllsolld®m)Ip204lld8l 20,4 + (|6l D212 + [[197]d6) [ p20.2]
< C(|Allsolngll p2,1,4lld@l 20,4 + 10l D212 + 9112 0,5l Al p2.0,4)-
Since

79l p2,1,4 < C(D2)||77¢||D2,2,§ < Olnédllp2,2.2,

using this and (3.10) we otain

[Al[o 179l p2,1,4lld@ | D204 < C'Veo| AllsolIn@ll p2,2.2,
which yields

(1 - CC'VeolAllso)lIngllpzzz < Clllgllpzaz + 152 05l del 20.0)

<
< C¢llp21.4,

therefore,
18l p2,2,2 < Cll9llp2,1.4 < [[dOD2,0,4-
By the Sobolev inequality, we have

(3.15) |dollpsop < Clldo||p2os, Vp> 1.

This also holds for ¢ without [ p2®=0.

Now for D C D3, as above, we choose a cut-off function n : 0 < n < 1, with
nlp = 1 and Suppn C D?. By (3.11) on D? for any p > 1 (we again temporarily
assume [, ¢ = 0) we have:

Ingllpa 2 < ClllAllscllldlldmd) I p2op + 61121 + 1817 d1 ] 2,0,]-
Using (3.15), we obtain:

lld6lldre)lpsas < ([ 14673 < Cldbli g < Clldellon
and
loPldollosas = (f lufridolr)s

(11l p2.0.4p)*1db ] 3,02

<
S C||d¢||D2,074a

we conclude that

17913 25 < Clldoll D204,
from which and (3.14) it follows that

161152, < Clldol[ 20,4 < Clldd| p0,2-

Clearly, this also holds for ¢ without [ ps @ = 0. Now let us give the estimates for 1.
By Lemmas 3.4 and 3.5, for D! C D, the following estimates hold

(3.16) 1110 < Clllp.o.a,

(3.17) ldéllp11p < Clldé|l D02
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On the other hand, for D! C D, by an argument similar to the one used in the proof
of Lemma 3.4, we have

(3.18) IVY'Iproz < CllYllpoa
Computing directly, one gets
DY = —(Ve Ve, ¥0)' + kmvﬁb’? Ve -k,

from which we have

A¢Z + (Fékp pm jk)¢p¢j ¢k - kpjv¢p v¢j wk

(3-19) "‘Flkfb wk + 2rzk¢] Veaw’“ = 0.
For any n € C*(D, R) with 0 <7 <1, we have
(320) A < O]+ Vel + [do[0] + [V*8llv]| + [do|[ V),

on D? C D'. Choose a cut-off function  : 0 < n < 1, with n|p2 = 1 and Suppn C
D*'. For any p > 1 we have

Inliprzs < Coll$llprop + 1VElDr0p + N8Il D10,
(3.21) HIIV20l1W 0 + [11dl [Vl 1,0,

Let p = 3, by (3.16), (3.17) and (3.18), we obtain

[Ullp2as < CllYlpios + IVYllpies + 14615 oall ol p10.a
V20l pro2ll¥llpr 04 + lddll pr o4l Vil b1 o]
< Cl¥Y|poa
from which it follows that

(3.22) [¥llp2,1a < CllYbllp,o,a;
and consequently,

[¥]lcopz) < CllYlIpo4s
This proves the second inequality in (3.9).

Now for D? C D?, choose a cut-off function n : 0 < n < 1, with n|ps = 1 and
Suppn C D% By (3.21) on D? for p = 2 we have:

1n¥llp222 < Cllvllp2o2 + IV¥p202 + I1de1* 1] 5202
+1V20]14[ p20.2 + 11| V||| p2,0,2]
< ClllYllp204 + 1¥lpoa + 1ol He o sl1¢] p2,0,4
V20l 20,410 2,04 + 1d || 20,4V p2 0]
< ClYllpoa

consequently,

(3.23) [llpsap < CllYllpos, V> 1.

We again use (3.21) on D? for a cut-off function 1 : 0 < n < 1, with 5|5 = 1 and
Suppn C D?. By (3.16) (3.17) (3.18) and (3.23) we have:

1mY p32p < ClltblDoa, Vo> 1.
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that is,
”vw”Dlp (D PIYlpoa-
We therefore obtain

V¥l ooy < CD) 8,04
This proves the first inequality in (3.9). a

Theorem 3.6 (Energy identities). Let {(¢g,¢r) : M — S™} be a sequence of
smooth Dirac-harmonic maps with uniform bounded energy:

E((bkawk) S A < +OO,

and assume that {(Pr, Vr)} weakly converges to a Dirac-harmonic map (¢,v) in
WH2(M,S™) x LY (XM @ R™Y), then the blow-up set

S = ﬂT>Q{ZL‘ S M|11m1nfk_,oo/ (|d¢k|2 + |wk|4) > 60}
Dz,r)
is a finite set of points {p1,p2, - ,pr}, and there are a subsequence, still denoted by
{(ér, )}, and a finite set of Dirac-harmonic maps (0!, &) : S? - S* i =1,2,---,I;
l=1,2,---,L; such that

(3.24) limg—oo B(ér) = E(0) + S, 5% E(07),
(3.25) limy—o E(¢1) = B(¥) + T Equ(d)
where €q is as in Theorem 3.2, E(¢y) : fM |dor|?, E fM [Up|*, E(fp, V) i=

Jar(dowl® + [0eh).

Proof. Since E (¢, ) < A < 400, the blow-up set S must be finite. So we can find
small disks Ds, for each p; such that Ds, N D5, = () for i # j, i,j = 1,2,---,1. On
M\ UL Ds., {(¢r, )} strongly converges to (¢,1) in W2 x L*) so equivalently
we need to prove that there are Dirac-harmonic spheres (of,&!) : §2 — S*i =
1,2,--- . I;l=1,2,---, L; such that

(3.26) YL limg, olimy oo B(¢w; Ds,) = X1 %0 E(o)),
(3.27) S limg, olimy o E(¢y; Ds,) = S, S/ (&),
In fact, we will prove for each i = 1,2, --- | I that there exist Dirac-harmonic spheres

(Uﬁ,fll-) :S? —-S* 1=1,2,---,L; such that

(3.28) lims_olimy oo B (és; Ds) = Y E(a'),

(3.29) lims_olimy o B (¢y; Ds) = BF B(€Y),

where, for simplicity, we have dropped the subscript ¢ of Ds,, L; etc. and denote p;
by p. Certainly, in each Ds there is only one blow-up point p.

Let us first prove (3.28) and (3.29) for the case that there is only one bubble at the
blow-up point p. Then, we need to prove that there exists Dirac-harmonic sphere
(o1,€') : S* — S™, such that

(3.30) lims_olimy, oo E(¢: Ds) = E(a),

(3.31) limg_olimy oo B (Uy; D) = E(&Y).
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For each (¢, 1), we choose Ay such that
€
maXmEDg(p)E(¢k7 1/% D)\k (l‘)) = 507

and then choose x;, € Ds such that

€0

E(¢r, r; Dy, (7)) = 2

We may assume that \y — 0 and x;, — p as £ — oco. Let

Ok () = Pp(zp + M),  i(z) == /\;%wk(% + \p),
then L -
E(6x, Yx D1(0) = B(or, s D, (k) = ) < <o,

E(¢r, Yr; Dic) = E(r, r; Dy (wx)) < A,
from the e—regularity theorem Theorem 3.2, we have a subsequence, still denoted
by (5;9, sz) , that strongly converges to some (gg, QZ) in Wh2(Dpg, N) x LY(XDp x RF)
for any R > 1. Thus, we get a nonconstant Dirac-harmonic map ((Z, J) on R?, and
by stereographic projection, we obtain a nonconstant Dirac-harmonic map (o, &)
on S*\ { N} with bounded energy. By the regularity theorem, we have a nonconstant
Dirac-harmonic map (o, &) on the whole S?, this is the first bubble at the blow-up
point p.

Let

A6, R k) = {z € R}MR < |z — 23] < 6},

then to prove the assertion of (3.30) and (3.31) is equivalent to proving

(3.32) limp_ oo lims_olimy oo E(px; A(0, R, k)) = 0,

Now let (ry,0;) be the polar coordinate system centered at xj, f : R x S! —
R2,  f(t,0) = (e7t,0), where R x S! is given the metric ¢ = dt? + df*, which
is conformal to ds? on R?* (f~!)*¢ = e*ds®. Denote Oy := f*¢r, Vi = f*Un,
then E(®g, Vi) < A since the energy functional is conformally invariant. Denote
Ty := |logd|, Pr := [Ty, To + T] x S', T > 0, then (@, ¥1.) — (f*@, f*0) := (D, V)
strongly on Pr for any 7" > 0, hence

E(®, Vs Pr) — E(¢,v; Ds \ Dse-7), as k — oo.

Given any small ¢ > 0, since E(¢,v) < A, we may choose § > 0 small enough
such that E(¢,; Ds) < €/2, then for any T' > 0, there is a k(T") such that when
k= k(T),

(3.34) E(®y, Uy; Pr) < %

Similarly, denote T}, := |log\xR|, Q7 := [T}, — T, T}] x S', then
(3.35) E(Qg, Up; Qrp) < %7 k> k(T).

Now we prove that there is a K > 0 such that if £ > K, then

(3.36) / (|d®y* + |Ui|*) <&, Vt e [Ty, T —1].
[t,t+1]xS?
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Suppose this is false, then there exists a sequence of {t;} such that t; — oo as
k — oo, and

/ (D2 + [TY) > &, Vi € [Ty, Ty — 1],
[tk,tk+1]><gl

because of (3.34) and (3.35), we know that ¢, — T, T}, — t, — o0, by a translation
from ¢ to ¢t — t, we get some (P, V), and for all k the following holds

(3.37) / (4B, + [T,]*) > <.
[0,1]xS1

By our assumption on (¢, 1), we may assume that (E)k, ‘I/k) weakly converges to
(Poo, Uso) in W2 x L (R x SY). If this is strong convergence on [0, 1] x S', then we
obtain a nonconstant Dirac-harmonic map (@, ¥s,) on the whole R x S*, and hence
a nonconstant Dirac-harmonic map (0w, ) on S?/{N, S} with finite energy. Again
by the regularity theorem, we have a nonconstant Dirac-harmonic map (0, &) 0n
S?, a contradiction to the assumption that L = 1. On the other hand, if (E)k, \T/k)
does not strongly converge to (Po, ¥ ) on [0, 1] x S, then we may find some point
(to,60) € [0,1] x S' at which {(®y, ¥x)} blows up, in this case, we can still get a
second nonconstant Dirac-harmonic map (04, £s) on S?, again contradicting L = 1.
Therefore, (3.36) holds true.

Now from (3.36) and the e—regularity theorem, we have
APy | oo (it,t+17x51) < CVE,
where C' > 0 is a constant independent of ¢. Back to R?, we have

Cve

(3.38) 4o (w) < =

r=r(z)=|al, x€A@RK),
from which we can conclude that

(3.39) | donl| Lo a@rp) < CVE,

where || - || (a(5,m4)) denotes the norm in L) (cf. [7]).
On the other hand, we know that (for the target S™):

Ap™ = [(#1¢™ — ¢'o7) — (er - ¥, ™ ) mm ¢l
+[(¢50™ — ¢'d3") — (e2 - V", V") d5)]
belongs to the Hardy space H!, so we have
(3.40) okl Len asrpy) < C,

(2,1)

where [|-|| @1 (a5, k) denotes the norm in the LY space. Therefore, by the duality

of LY and L) (3.39) and (3.40) we have

P (T [ PR
that is, for k, R large enough, § small enough,
E(¢r; A(6, R, k)) < C,
which proves (3.32).
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Now we turn to the proof of (3.33). Choose a cut-off function n on D(zy,2d) as
follows:

n € C5°(Das \ Da,r/2); n=1 in D5\ Dyr
Vn| <C/6 in Dy \ Ds; [V <C/AMR in Dypr\ Dy gy,

where we denote Ds := D(xy,0) etc. for simplicity. Then from @(niy) = ndy +
Vn - Y, we have

[nrllrs < Clinde + V- byl| 4
< Clinlidénlval + 1Vnllualll s

4.3
< Clddnlusnpaylinlooasney + L (il
A(28,R/2,k)
4.3 4,3
< overlf (wnllwhi ([ (Vnlgel) 3,
Dos\Ds Dy, rR\Dx, R/2
where in the last line we used (3.32). By the definition of n we have
loulosney < OVE+CLf it colf ol
Das\Ds D, rR\Dx /2

< (J\/E—I—(Jsi 1 Cet,

where in the last step, we used (3.36). This proves (3.33). Therefore, the energy
identities holds true for the case L = 1.

For a fixed blow-up point p, the number L of bubbles (¢, ) must be finite. This
follows easily from the fact that there is a number C(S™) > 0 such that for all
nonconstant Dirac-harmonic maps (o,¢) : S? — S", we have

E(0,&8%) > O(S").

In fact, by Theorem 3.1, there is a constant g9 > 0 such that if E(c,&;S?) < &,
then o = const. and v satisfies the Dirac equation @ = 0 on S? which implies that
1) = 0. We therefore have F(a,&;S?) > g for all nonconstant Dirac-harmonic maps

(0,6): S* — S".
The case of L > 1 can be proved by induction on the number L, we omit the
details, as one may see the argument in [4]. O

Remark. From the proof we see that at each blow-up point p; (i = 1,2,--- 1), the
Dirac-harmonic maps (o},&!) : §* — S*,1 =1,2,---, L; in Theorem 3.6 come from
the blow-up process at p;.
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