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Abstract

In this paper, we will propose a boundary element method for solving classical boundary integral
equations on complicated surfaces which, possibly, contain a large number of geometric details or even
uncertainties in the given data. The (small) size of such details is characterised by a small parameter ε
and the regularity of the solution is expected to be low in such zones on the surface (which we call the
wire-basket zones).

We will propose the construction of an initial discretisation for such type of problems. Afterwards
standard strategies for boundary element discretisations can be applied such as the h, p, and the adaptive
hp-version in a straightforward way.

For the classical boundary integral equations, we will prove the optimal approximation results of our
so-called wire-basket boundary element method and discuss the stability aspects. Then, we construct the
panel-clustering and H-matrix approximations to the corresponding Galerkin BEM stiffness matrix. The
method is shown to have an almost linear complexity with respect to the number of degrees of freedom
located on the wire basket.

AMS Subject Classification: 65F50, 65F30
Key Words: hierarchical matrices, panel clustering, boundary element method, hp-version of BEM

1 Introduction

In the paper, we will consider the numerical solution of classical boundary integral equations on (open respec-
tively closed) hypersurfaces Γ ⊂ R3. We will focus on applications where the surface contains complicated
geometric details and/or the data is given only up to some uncertainties. Typcial applications are, e.g., the
computation of the elastic behaviour of a plate or a body containing a large number of small cracks. As an
illustrative example we have depicted a plate of duplex steel which contains many cracks caused by fatigue
material (see Figure 1). In a neighbourhood of the geometric details, the solution, typically, has low regularity
while, at proper distance to these zones, the solution is expected to be smooth.

The goal of this paper is to introduce the wire-basket boundary element method for the construction of
an initial discretisation for such type of problems. Based on this initial discretisation, standard strategies for
enriching the boundary element space can be applied straightforwardly. Among them are the h-version or the
hp-version of the boundary element method (and, certainly, various other methods), see e.g., [5], [13], [28],
[19], [20], [22], [23], [30], [8] and the references therein.

However, in some applications a refinement of the initial discretisation is not of interest because the error
in the data due to, e.g., measurement errors and uncertainties, then, might dominate the error. In this light,
the wire-basket BEM is not considered as an alternative to standard h-version or adaptive hp-version but as
an efficient initial discretisation of boundary integral equations on complicated surfaces.

Our construction of the wire-basket discretisation employs techniques such as mesh grading and variable
polynomial degree vectors which are well known in the field of adaptive hp-BEM. However, the essential
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Figure 1: Plate of duplex steel which contains many cracks (reproduced by courtesy of Professor A. Brückner-
Foit). For the physical background to this problem we refer to [4].

difference of the wire-basket BEM and the adaptive hp-BEM is related to the accuracy requirements in the
following way. The mesh width of the boundary element mesh for the wire-basket BEM in the local vicinity
of the geometric details will be of order O (ε) in order to resolve the details of size ε. The regularity of
the solution is expected to be low in such zones and, hence, low order boundary elements spaces are used
there. As a consequence, the error of the Galerkin solution, in general, will be, at least, of size Cκεκ, where κ
depends on the (low) regularity of the solution and, typically, satisfies κ ∈ ]0, 1]. In [25], it is proved for some
model problems that under very weak assumptions on the geometry the constant Cκ is moderately bounded
independently of the number and size of the geometric details and that κ ≥ 1/2.

The idea of the wire-basket BEM is the construction of a boundary element discretisation which contains
only very few unknowns and leads to a numerical solution which has accuracy O (εκ) with respect to the
energy norm. In contrast, the adaptive hp-BEM is a method which constructs a sequence of discretisations so
that the error converges exponentially.

The moderate accuracy requirements for the wire-basket BEM allows to employ highly non-uniform but
shape-regular meshes in contrast to the adaptive hp-BEM where elements with high aspect ratio occur. As a
consequence, the evaluation of singular and nearly singular surface integrals for the wire-basket BEM which
massively occurs when computing the entries of the system matrix can be performed by simple numerical
quadrature (see [27], [9], [28]). In addition, the wire-basket BEM allows the application of the panel-clustering
or H-matrix techniques (cf. [14, 15, 11]) for the data-sparse representation of the non-local boundary integral
operators.

Next, we will specify more formally the class of problems where we see the promising applications of the
new boundary element method and introduce the basic notations.

Let Ω denote a bounded, three-dimensional Lipschitz domain or the unbounded complement. As a proto-
type of a homogeneous, linear, elliptic boundary value problem with constant coefficient we choose a Laplace-
type equation as our model problem – either with given Dirichlet data or with given Neumann data. This
problem can be transformed into a boundary integral equation on the boundary Γ = ∂Ω by means of the
boundary integral equation method.

We are interested especially in problems where the smoothness of the given data and geometry are not
uniform on Γ. Instead, we assume that a (thin) zone Γrough ⊂ Γ can be described where we expect the solution
to have very low regularity while on the remaining part Γ\Γrough we expect the solution to be analytic.We
do not assume that the (one-dimensional) boundary of Γrough consists of only few long straight lines, but
∂Γrough is a polygonal line with a possibly large number of straight segments. Such problems typically arise,
e.g., in crack propagation especially if the data stems from pointwise measurements containing possibly some
uncertainties.

The problem class we are interested in can be described by the following assumption.

Assumption 1.1 Γ is the surface of a Lipschitz polyhedron and can be decomposed into (moderately many)
smooth (open) polygonal surface patches Γi, 1 ≤ i ≤ q, and a remaining part Γrough so that the given data,
say f : Γ → R, has the property that the restrictions f |Γi

are analytic for all 1 ≤ i ≤ q.

We have in mind that the surface measure of Γrough is very small compared to the complement Γ\Γrough.
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Figure 2: Screen with rough boundary. The mesh is graded geometrically towards the geometric details. Note
that the wire-basket BEM does not require periodicity of the geometric details.
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Figure 3: Screen containing two cracks. The error bars indicate that the exact position of the crack is not
known due to measurement errors. The zones Γrough contain the region, where the solution is expected to
have low regularity.

Such kinds of geometric applications motivate the name wire-basket zone for the set Γrough.

The starting point of the discretisation is the generation of a surface mesh G = {τ1, . . . , τn} consisting of
shape regular, triangular panels which are graded geometrically towards the wire-basked Γrough.

We assume that Γrough is resolved by G in the following sense.

Assumption 1.2 There exists a subset Grough ⊂ G which is a quasi-uniform and shape regular boundary
element mesh for Γrough.

The largest diameter of the elements in Grough is denoted by h.

h := max
τ∈Grough

hτ with hτ := diam τ. (1.1)

Remark 1.3 Note that h is not considered here as a discretization parameter and convergence is not studied
as h → 0 but reflects the size of the geometric details in the domain and the data. If the details are of size ε > 0
then, typically, h ∼ ε. We will prove that the wire-basket BEM behaves robustly with respect to the smallness
of ε, i.e., the discretisation error is of order O (εκ) for some κ ∈ ]0, 1] uniformly with respect to small ε. We
further prove that the complexity, under moderate assumptions, is of order (number of geometric details)×ε−1

up to logarithmic terms.

The parts Γi of the surface where the solution is assumed to be analytic, is meshed by triangles which
are geometrically graded to the wire-basket zones. The precise definition of such meshes will be presented in
Definition 2.3 while Figures 2, 4depict two characteristic examples.
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Figure 4: Quasi-uniform mesh in the wire-basket regions and graded mesh in the remaining part of the screen.

The regularity theory for elliptic equations with constant coefficients implies that the solution is analytic
on the smooth parts Γsmooth

i while it might have very low regularity on the portion Γrough of the boundary.
We discretise the integral equations by the Galerkin boundary element method where we use high order

elements within the parts Γi, 1 ≤ i ≤ q, and decrease the polynomial degree to lowest order finite elements
towards the wire-basked zone Γrough. The number of degrees of freedom associated with Grough is proportional
to the total number of unknowns. Since we have in mind that the set Γrough is very thin, while the parts Γi

are proper two-dimensional, we say that the discretisation is concentrated to the wire-basket zones.
The (weak) requirement for the discretisation error to be of order hκ (instead of exponential convergence

for the adaptive hp-BEM) allows the use of panel-clustering to avoid the full system matrix and, in addition,
the smoothness requirements on the solution are substantially relaxed compared to the adaptive hp-BEM.
The total computational complexity and memory consumptions depend linearly on the number of degrees of
freedom on the wire-basket zone. Hence, in the case of smooth data on each part Γi, our method can be viewed
as an effective reduction of the classical 3D-BEM to the wire-basket of the surface (where all the singularities
are located).

The paper is structured as follows. In Section 2, we will introduce the wire-basket boundary element space
for the Galerkin BEM. The corresponding approximation theory will be presented in Section 3. The panel-
clustering method for the wire-basket BEM will be introduced and analysed in Section 4. The complexity of
the method is summarised in Remark 4.9.

2 Galerkin discretisation of classical boundary integral equations

2.1 Classical boundary integral equations

Throughout this paper, Ω ⊂ R
3 denotes a bounded Lipschitz domain with boundary Γ and normal vector field

n (oriented to the exterior of Ω). We define the Sobolev space Hs(Γ), s ≥ 0, in the usual way (see, e.g., [12]).
Note that the range of s for which Hs(Γ) is defined may be limited, depending on the global smoothness of
the surface Γ. For s < 0, the spaces Hs(Γ) are the dual of H−s (Γ). The norm in Hs (Γ) is denoted by ‖·‖s.

We will consider the general integral equation

(λI + K) u (x) := λu (x) +
∫

Γ

k (x, y)u (y) dsy = f (x) , x ∈ Γ, (2.1)

for some given scalar λ ∈ R kernel function k and sufficiently smooth right-hand side f . The corresponding
weak form is

find u ∈ Hµ such that a(u, v) := ((λI + K)u, v) = (f, v) for all v ∈ Hµ. (2.2)

Here Hµ denotes the “energy space” for some µ ∈ {−1/2, 0, 1/2}. (The bracket (·, ·) denotes the continuous
extension of the L2 (Γ) scalar product to the H−µ(Γ)×Hµ(Γ) duality pairing.) The operator associated with
the bilinear form a (·, ·) is denoted by A : Hµ → H−µ, where H−µ is the dual of Hµ.

Typical examples are: the classical single layer, double layer and hypersingular operators for the operator
Lκu := −∆u + κ2u for some κ ≥ 0. The bilinear form has the following general form

a (·, ·) = λ (·, ·) + â (·, ·) , (2.3)
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where the definition of the integral operators is based on the fundamental solution of the operator Lκ:

S (z) :=
e−κ|z|

4π |z| .

Single layer potential:

λ := 0, µ = −1/2, â (u, v) :=
∫

Γ×Γ

S (x − y) v (x) u (y) dsx dsy,
(2.4a)

Double layer potential:

λ := ± 1
2 , µ = 0, â (u, v) :=

∫
Γ×Γ

v (x) u (y)
∂

∂ny
S (x − y) dsydsx,

(2.4b)

Hypersingular operator:

λ := 0, µ = 1/2, â (u, v) :=
∫

Γ

v (x)
∂

∂nx

∫
Γ

u (y)
∂

∂ny
S (x − y) dsydsx.

(2.4c)

Remark 2.1 For κ = 0, the operator Lκ is the Laplace operator. In this case, the energy space for the
hypersingular operator is the quotient space H1/2 (Γ) /R. To avoid technicalities, we restrict ourselves in this
paper, for the hypersingular operator, to κ > 0 while the generalisation to κ = 0 is straightforward.

2.2 Galerkin discretisation

In the standard, conforming Galerkin method we select a subspace S ⊂ Hµ and approximate (2.2) by seeking
uS ∈ S, such that

a (uS , v) = (f, v) for all v ∈ S. (2.5)

In the context of the boundary element method, these subspaces are finite element spaces lifted on the surface
Γ.

Definition 2.2 (a) The master element t̂ ⊆ R2 is the open triangle with vertices (0, 0)ᵀ, (0, 1)ᵀ and (1, 1)ᵀ.

(b) A set T = {t1, t2, . . . , tn} consisting of open and disjoint (possibly curved) triangles in R3 such that there
is a Ck-diffeomorphism Ψt : t̂ → t for each t ∈ T is a surface triangulation of Γ if it satisfies

Γ =
⋃
t∈T

t.

(c) The triangulation is compatible if the intersection t∩ t′ =: e of non-identical triangles t, t′ ∈ T is either
empty, a common vertex, or a common edge and in the case that e is an edge, there exist affine mappings
γt, γt′ : [0, 1] → t̂ such that Ψt ◦ γt = Ψt′ ◦ γt′ and Ψt ◦ γt : [0, 1] → e is bijective.

The triangulation for the wire-basket BEM is constructed as follows.

First, Grough is constructed as a set of quasi-uniform and shape regular triangles covering the wire-basket
zone Γrough (cf. Figure 4).

The connectivity components of the complement Γ\Γrough define the polygonal subsets Γi, 1 ≤ i ≤ q. On
each component Γi, we construct a mesh Gi which is concentrated to the (one-dimensional) boundary ∂Γi in
such a way that the union G := Grough

⋃
(
⋃q

i=1 Gi) is a compatible surface mesh on Γ. The definition of Gi

below generalises the boundary concentrated meshes introduced in [22, Definition 2.3].
Let hτ denote the diameter of a triangle τ ∈ G (cf. (1.1)) and recall the notation of Grough as in Assumption

1.2. In the following we will employ frequently the distance function distgeo (A, B) measuring the geodetic
distance on Γ of two subset A, B ⊂ Γ. However, we assume that there are constants c, C such that geodetic
distance is comparable with the three-dimensional Euclidean distance dist (A, B)

c dist (A, B) ≤ distgeo (A, B) ≤ C dist (A, B) ∀A, B ⊂ Γ.

The estimates in the remaining part of this paper may depend on the constants c, C.
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Definition 2.3 Let Grough be given with mesh size h (cf. (1.1)). A compatible, shape-regular mesh G ⊃ Grough

on Γ is called a mesh concentrated to the wire-basket zones Γrough, if there exist c1, c2 > 0 such that for all
τ ∈ G\Grough:

1. if τ ∩ Γrough = ∅, then c1h ≤ hτ ≤ h,

2. if τ ∩ Γrough = ∅, then c1 distgeo(τ, Γrough) ≤ hτ ≤ c2 distgeo(τ, Γrough).

The constant which measures the shape regularity is given by

creg := max
τ∈G

hτ/ρτ where ρτ is the radius of the largest inscribed circle in τ.

Remark 2.4 For given δ > 0, let

Γrough
δ :=

{
x ∈ Γ : distgeo

(
x, Γrough

)
< δh

}
(2.6)

be a neighbourhood of Γrough and G be a mesh on Γ as in Definition 2.3. Then, there exists a constant C > 0
depending only on δ, c2 (cf. Definition 2.3) and creg such that all triangles τ ∈ G with τ ∩ Γrough

δ = ∅ satisfy

hτ ≤ Ch.

In order to define hp-type boundary element spaces on a mesh G, we associate a polynomial degree pτ ∈ N

to each element τ and collect them in the polynomial degree vector p := (pτ )τ∈G . The hp-boundary element
space is defined by

Sk
p(G) := {u ∈ Hk+1 (Γ) : ∀τ ∈ G : u|τ ∈ Ppτ } for k = −1, 0 with k + 1 ≥ µ, (2.7)

where Pm denotes the space of bivariate polynomials of maximal total degree m.

For any τ and any edge γi of τ , 1 ≤ i ≤ 3, we define pτ,i as the maximal polynomial degree such that for
all elements Ppτ,i ∈ Ppτ,i , the traces onto the edges satisfy Ppτ,i

∣∣
γi

∈ Sk
p(G)

∣∣
γi

, i.e.,{
w|γi

: w ∈ Ppτ,i

}
⊂
{

u|γi
: u ∈ Sk

p(G)
}

.

Then, we set
pmax

τ := max
1≤i≤3

pτ,i and pmin
τ := min

1≤i≤3
pτ,i.

Assumption 2.5 For k = −1, 0, let Sk
p(G) be defined as in (2.7).

a. p = (pτ )τ∈G is a linear degree vector, i.e., it satisfies

cp + γ log
hτ

h
≤ pmin

τ ≤ pmax
τ ≤ Cp + γ log

hτ

h
(2.8)

for some constants cp, Cp ≥ 0 and γ > 0 independent of h.

b. There exists a constant prough ∈ {0, 1} with prough > k such that, for all τ ∈ Grough, there holds
pτ = prough.

c. The positive ratio

Cdeg := min
τ∈G

pmin
τ

pτ

is bounded away from 0 independently of h and p.

In the following we abbreviate Sk
p(G) by S if no confusion is possible.
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2.3 Error estimates

In the case of (2.4a,c) the bilinear form a (·, ·) in (2.3) is Hµ(Γ)-elliptic

|a (u, u)| ≥ c ‖u‖2
µ ∀u ∈ Hµ(Γ),

and continuous
|a (u, v)| ≤ C ‖u‖µ ‖v‖µ ∀u, v ∈ Hµ(Γ).

Via the Lax-Milgram lemma, continuity and ellipticity imply the unique solvability of the corresponding
boundary integral equations and quasi-optimal error estimates of the Galerkin BEM due to Céa’s lemma:

‖uS − u‖µ ≤ c inf
v∈S

‖u − v‖µ. (2.9)

To obtain quantitative error estimate, we will further study the best approximation inf
v∈S

‖u − v‖µ under

appropriate regularity assumptions.
For the double layer potential (2.4b) we require the coercivity, injectivity and continuity of the bilinear form.

In this case, the coercivity is proved for smooth surfaces while the generalisation to other classes of surfaces is
still open (cf. [8]) as long as the double layer potential is considered as a mapping from L2 (Γ) → L2 (Γ). In
contrast, the coercivity of the double layer is proved for the energy space H1/2 (Γ) (see [6], [7], [28, Sec. 3.8]).

3 Approximation theory

3.1 Function spaces

In this section, we will introduce some function spaces and begin with a short outline of their different roles.
The function space for describing the regularity of the solution will be the intersection of two spaces:

• Hµ+δ (Γ) for some δ > 0: This space reflects the low global regularity which will be resolved on the
wire-basket zone by the fine local mesh width h.

• Aβ (C, γ; Γ): Set of functions described in terms of countably normed spaces (cf. (3.1)).

The error estimates will be derived first for the auxiliary (local) function set AM,ρ (τ), which contains all
functions with analytic continuation in certain neighbourhoods of τ (cf. Definition 3.3). Then, the error esti-
mates for functions in Aβ (C, γ; Γ) are derived from those in AM,ρ (τ) by using the alternative characterisation
of AM,ρ (τ) (cf. Remark 3.5) and its relation to Aβ (C, γ; Γ) (cf. (3.1)).

We begin with the definition of the space AM,ρ (τ) which requires several steps. For the interval I := (−1, 1)
and ρ > 1, the Bernstein’s regularity ellipse is given by (cf. [2])

Eρ := {z ∈ C : |z − 1| + |z + 1| ≤ ρ + ρ−1}.

The corresponding semi-axes are a = ρ+ρ−1

2 and b = ρ−ρ−1

2 . Obviously there holds a + b = ρ.

Definition 3.1 Let I = (−1, 1) and M > 0, ρ > 1 be given constants. AM,ρ(I) is the class of functions
f ∈ C∞(I) having a holomorphic extension to Eρ(I) such that

|f(z)| ≤ M ∀z ∈ Eρ(I).

Next, we introduce the multidimensional analogue of AM,ρ(I) on the tensor domain Id := (−1, 1)d. Let
E(j)

ρ := I × ... × I × Eρ × I × ... × I.

Definition 3.2 For given constants M > 0, ρ > 1, the set AM,ρ

(
Id
)

consists of all functions f ∈ C∞ (Id
)

having holomorphic extensions to E(j)
ρ , for all 1 ≤ j ≤ d, and satisfying

max
1≤j≤d

{ sup
x∈E(j)

ρ

|f(x)|} ≤ M.
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For triangles τ ∈ G\Grough, let B (τ) denote some minimal rectangular bounding box B (τ). Thus, we may
fix, for any τ ∈ G\Grough, a bijective affine mapping χτ : Id → B (τ).

Definition 3.3 For given constants M > 0, ρ > 1, the set AM,ρ (τ) is the class of functions f : τ → R such
that the pull back f ◦ χτ can be extended to a function in AM,ρ

(
Id
)
.

We shall deal with functions which locally can be extended to some complex neighbourhoods of the triangles
in G\Grough. To describe this neighbourhood we introduce

Eρ (τ) := χτ

⎛⎝ d⋃
j=1

E(j)
ρ

⎞⎠ and Eρ (Γ) :=
⋃

τ∈G\Grough

Eρ (τ) .

The following assumption concerns the overlap of these complex neighbourhoods.

Assumption 3.4 There exists a constant Col > 0 such that, for all x ∈ Γ, there holds

�
{
τ ∈ G\Grough : x ∈ Eρ (τ)

}
≤ Col.

Note that Assumption 3.4 can be satisfied by a proper choice of c1, c2 in Definition 2.3.

Finally, we introduce the set of functions which will be used to describe the regularity of the solution of
(2.2). With the distance function r = dist(x, Γrough), and for β ∈ [0, 1), we introduce the weighted space
H2

β(Γ) as the completion of C∞(Γ) under the norm

||u||2H2
β(Γ) := |u|2H1(Γ) + ||rβ∇2u||2L2(Γ).

By Aβ (C, γ; Γ) we denote the set of functions on Γ that can be described in terms of countably normed spaces

Aβ (C, γ; Γ) := {u ∈ H2
β(Γ) : ‖u‖H2

β(Γ) ≤ C, ‖rβ+n∇n+2u‖L2(Γ) ≤ Cγnn! ∀n ∈ N}. (3.1)

Assume that our solution has a global Sobolev regularity u ∈ Hµ+δ(Γ) for some δ > 0. For two-dimensional
problems, the regularity results imply that the parameter β ∈ [0, 1) can be specified explicitly by β = 2−µ−δ
(cf. [1], [10], [22]). The regularity theory in terms of countably normed spaces Aβ (C, γ; Γ) is still an open
question, hence, in the following, we employ, as a hypothesis, that the choice β = 2 − µ − δ is also valid in
BEM applications.

The following remark recalls the well-known fact that controlling all higher derivatives of a function implies
that it belongs to the class of analytic functions AM,ρ(τ) (see e.g., [3] for the proof in the case τ = I).

Remark 3.5 Assume that a function u : I → R satisfies for some Cu, γu ≥ 0∥∥∥∥∂nu

∂xn

∥∥∥∥
L∞(I)

≤ Cuγn
un! for all n ∈ N0. (3.2)

Then u ∈ AM,ρ(I) holds with ρ = 1 + γ−1
u > 1, M = C ·Cu. Similarly, if we control higher order gradients of

a function u : B(τ) → R, then u ∈ AM,ρ(τ).

3.2 Local polynomial approximation on τ ∈ G\Grough

Due to classical results on the best polynomial approximation we know that for any f ∈ AM,ρ(I), there holds

inf
v∈PN (I)

‖f − v‖C0(I) ≤ Mρ−N , (3.3)

where PN(I) is the set of polynomials of degree N on I. Moreover, we have

‖f − INf‖C0(I) ≤ cM (log N) ρ−N , (3.4)

where IN is the polynomial interpolation operator at the N + 1 Chebyshev nodes on I (see, e.g., [31]) and c
does not depend on f . The corresponding result for the W 1

∞-norm reads as: For each 1 < ρ1 < ρ,

‖f − INf‖W 1∞(I) ≤ CMN (log N) ρ−N
1 . (3.5)
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Note that without loss of generality one can choose ρ = ρ1 in (3.4).
For multivariate functions f = f(x1, ..., xd) : Rd → R, we use the tensor product interpolant

INf = I1
N ...Id

Nf ∈ PN [Id
1 ],

where Ii
Nf denotes the interpolation polynomial with respect to the variables xi ∈ Ii := [−1, 1], i = 1, ..., d,

at the Chebyshev nodes.

Proposition 3.6 Let M > 0 and ρ > 1 be given. For all f ∈ AM,ρ(Id) and N > 1 the estimate

‖f − INf‖C0(Id) ≤ c M
(
logd N

)
ρ−N (3.6)

holds. Moreover, we have
‖f − INf‖W 1∞(Id) ≤ c MNd

(
logd N

)
ρ−N . (3.7)

Proof. The proof of (3.6) is based on a multiple use of the triangle inequality in combination with the familiar
estimate to the Lebesgue constant,

||IN ||L∞(I)→L∞(I) ≤ c log N

(see [17] for more details). The second statement is a consequence of (3.5).
Lemmata 3.7 and 3.8 below allow us to prove the optimal approximation results in L2- and H1-norms by

the wire-basket hp-FEM for functions in Aβ (C, γ; Γ). Then the result in the Hµ-norm for µ ∈ [0, 1], follows
by interpolation. To recover the almost optimal approximation order in Hµ-norm with µ < 0, we need some
modification of the approximation space.

Our arguments here are similar to those from [22, 21], where the approximation theory in the H1-norm
was derived. We apply the explicit construction of the interpolation operator from [24] and provide the
corresponding error analysis based on Proposition 3.6. Let Ipi,i be the standard interpolation operator along
the ith edge γi of the unit triangle τ̂ at the pi + 1 Chebyshev nodes (properly scaled to the ith edge of τ̂ ).

Lemma 3.7 Let u ∈ AM,ρ (τ̂ ) for some M > 0 and ρ > 1. For each p = (p1, p2, p3) ∈ N
3, there exists a

linear interpolation operator πp : C(τ̂ ) → Pp(τ̂ ) with p := max1≤i≤3 pi such that

(πp u)|γi
= Ipi,i(u|γi

), i = 1, 2, 3.

Let C0 := min1≤i≤3 pi/p. Then there exists b with 0 < C0 � b such that

||u − πpu||L∞(bτ) ≤ c M p3/2(1 + log p)5/2ρ−bp. (3.8)

Moreover,
||∇(u − πpu)||L2(bτ) ≤ cMp4(1 + log2 p)ρ−bp. (3.9)

Proof. We apply the interpolation operator πp constructed in [24]. Estimate (3.8) is proved by combining the
bound

‖u − πpu‖L∞(bτ) ≤ cp3/2(1 + log p)1/2 inf
v∈Pp(bτ)

‖u − v‖L∞(bτ)

(see [24, Th. 6.2.6] for the case p1 = p2 = p3 = p) with estimate (3.6) for N = C0p. The modification to the
case p1 < p2 ≤ p3 = p is rather straightforward because, then, p1 = C0p and b in (3.8) and (3.9) may depend
on C0.

Estimate (3.9) is more involved. We start from the bound

‖∇(u − πpu)‖L2(bτ) ≤ inf
v∈Pp(bτ)

{‖∇(u − v)‖L2(bτ) + Cp2‖u − v‖L2(bτ)}, (3.10)

which is a simple modification of [24], (6.2.17). We then choose the element v = v0 as the Chebyshev
interpolant of the extension of u to I2. Thus, this function realises (cf. (3.7) with d = 2)

‖∇(u − v0)‖L2(bτ) ≤ cMp2(1 + log2 p)ρ−bp.

9



Since v0 interpolates u at some point x0 ∈ τ̂ , i.e., min
x∈bτ

|(u − v0)(x)| = 0, finally, we treat the simultaneous

approximation (3.10) by using the Poincaré-Friedrichs inequality

‖u − v0‖L2(bτ) ≤ c‖∇(u − v0)‖L2(bτ)

which completes the proof.
Now we give some auxiliary approximation results with respect to the Hm-norm with m ∈ [0, 1]. Let Ipi,γi

denote the Gauss-Lobatto interpolant of degree pi on the edge γi of the reference element τ̂ . We apply the
explicit construction of the interpolation operator in [24] and provide the corresponding error analysis based
on Proposition 3.6.

The following interpolation error estimate on τ ∈ G is a consequence of Lemma 3.7. We employ the
convention that if τ and p = (p1, p2, p3) appear in the same context, then, pi is defined as the maximal
polynomial degree of the trace functions u|γi ∈ Ppi , 1 ≤ i ≤ 3, for u ∈ Sk

p(τ), where γi denotes the ith edge
of τ . For any τ ∈ G, we define the lifted interpolation operator πτ by

πτf =
(
πpf̂

)
◦ χ−1

τ with f̂ = f ◦ χτ and χτ as in Definition 3.3.

For u ∈ Aβ(Cu, γu; Γ) and for τ ∈ G, we define (cf. [22])

Cτ :=

√√√√ ∞∑
n=0

1
(2γu)2n(n!)2

‖rn+β∇n+2u‖2
L2(τ). (3.11)

We recall that the polynomial degree on the mesh Grough equals prough ∈ {0, 1} (cf. Assumption 2.5).

Lemma 3.8 For each Γi, 1 ≤ i ≤ q, and m ∈ {0, 1}, let u ∈ Hm+δ ∩Aβ(C, γ; Γi). Then, for all τ ∈ G\Grough

there holds
||u − πτu||Hm(τ) � Cτh2−m−β

τ P0(p) ρ−bpτ , (3.12)

where P0 is a polynomial of fixed degree that does not depend on u. For elements τ with τ ⊂ Γrough
δ (cf. (2.6))

the following estimate is valid

‖u − πτu‖Hm(τ) � hmin{δ,prough+1−m}||u||Hm+δ(τ). (3.13)

Proof. The estimate (3.12) for m = 0 follows from (3.8), applying the pull-back πτu ◦χτ of approximation πτ

(cf. Lemma 3.7) to each triangle τ ∈ G\Grough. First, we estimate the constant M for the pull-back û = u◦χτ .
To that end, we note that

‖rn+β∇n+2u‖2
L2(τ) ≤ Cτ (2γu)nn! ∀τ ∈ G (3.14)

(cf. (3.11)) and, moreover,
∑
τ∈G

C2
τ ≤ 4

3C2
u with Cτ as in (3.11). Using (3.14), one can see that û satisfies

‖∇n+2û‖L2(bτ) � Chn+1
τ ‖∇n+2u‖L2(τ) (3.15)

≤ Ch1−β
τ ‖rn+β∇n+2u‖L2(τ) (3.16)

≤ Cτh1−β
τ (2γu)nn!

(cf. [22]). Now Remark 3.5 implies that û ∈ AM,ρ (τ̂) with M � Cτh1−β
τ and ρ = 1 + (2γu)−1. Then we have

||u − πτu||L2(τ) � hτ ||û − πτ û||L2(bτ)

� hτP0(p)ρ−bpτ max
x∈Eρ(bτ)

|û|

� Cτh2−β
τ P0(p)ρ−bpτ .

Using (3.9), the case m = 1 can be proven similarly. For elements lying in a δ-neighbourhood of Γrough (cf.
(2.6)), we apply standard finite element error estimation to obtain

‖u − πτu‖Hm(τ) � hmin{δ,prough+1−m}||u||Hm+δ(τ).
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3.3 Approximation of Hµ+δ(Γ) ∩Aβ(C, γ; Γ)-functions by Sk
p(G) for µ ≥ 0

In this Section, we will prove optimal approximation results by our hp-BEM for functions in Hµ+δ(Γ) ∩
Aβ(C, γ; Γ) for certain range of parameters µ, δ, β. The regularity results for the Sobolev space Hµ+δ(Γ) on
the Lipschitz surfaces are well presented in the literature on BEM. Concerning the conditions which guarantee
certain regularity in countably normed spaces we refer to [1], [10], [19], [26] and literature therein.

We will need an assumption concerning the geometric structure of the wire-basket.

Assumption 3.9 There exists a constant ω0 > 0 independent of h such that for all ω > ω0 and β > ωh, the
measure of the subregions

F (ω, β) :=
{
x ∈ Γ : ωh ≤ distgeo(x, Γrough) ≤ β

}
satisfies

|F (ω, β)| � β − ωh,

where the constant being hidden in the “�”-estimate may depend on the length of the boundary ∂Γrough but
not on h.

Next, we introduce on each component Γi, 1 ≤ i ≤ q, a layer-type structure in the triangulation G. Let L
be the largest integer such that (diam Γ) 2−L > ω0h with ω0 as in Assumption 3.9. For 0 ≤ � < L, we define
the subgrids G� by

G� :=
{
τ ∈ G : (diam Γ) 2−�−1 ≤ distgeo(τ, Γrough) < (diam Γ) 2−�

}
and GL := G\

(
L−1⋃
�=0

G�

)
(3.17)

and the subregions γ� by

γ� :=
{
x ∈ Γ : (diam Γ) 2−�−1 ≤ distgeo

(
x, Γrough

)
≤ (diam Γ) 2−�

}
. (3.18)

In the following lemma, the symbol O(...) means the two-sided estimate.

Lemma 3.10 Let G be a mesh as in Definition 2.3 and derive the distribution of the polynomial degrees
according to (2.8). Then, for all 0 ≤ � ≤ L and all τ ∈ G� we have

hτ = O(2−�), pτ ≤ C(1 + L − �), N� :=
∑
τ∈G�

1 ≤ C2� (3.19)

and, for � < L,
distgeo(τ, Γrough) = O(2−�). (3.20)

Proof. Let τ ∈ G�. The estimate hτ = O
(
2−�

)
follows by combining Definition 2.3 and (3.17). The estimate

pτ = O(1 + γ(L − �)) is a consequence of the previous one, (2.8), and Assumption 2.5.c, while (3.20) follows
from (3.17). It remains to estimate the number of elements in G�. All triangles τ ∈ G� satisfy hτ = O

(
2−�

)
and the shape regularity of the mesh (cf. Definition 2.3) implies the estimate |τ | = O

(
2−2�

)
for the area of τ .

From Assumption 3.9 we conclude (cf. (3.18))

γ� = F

(
(diam Γ)

2−�−1

h
, (diamΓ) 2−�

)
and for the area we obtain

|γ�| ≤ C2−�.

Comparing this area with the area |τ | leads to the estimate for N�.

Theorem 3.11 Assume u ∈ Hs(Γ)∩Aβ(Cu, γu; Γ) for some s ≥ µ. Let b > 0 be as in (3.8), G be a geometric
mesh with mesh size h (cf. (1.1)) and let p = {pτ} be a linear degree vector on G with slope γ > 0 provided
that 2− β− bγ < 0. Let Assumptions 3.4 and 3.9 be satisfied. For k = −1, 0, let Sk

p (G) be defined as in (2.7).
Then for each m ∈ [0, min {s, k + 1}], there exists a constant C > 0 depending on u and β such that

inf{‖u − v‖Hm(Γ) : v ∈ Sk
p(G)} ≤ Chmin{s,prough+1,2−β}−m. (3.21)
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Proof. First, we will consider the case m = 0. Based on Lemma 3.8, we explicitly construct an element
πu ∈ Sk

p(G) providing an optimal approximation property in the L2(Γ)-norm. For any τ ∈ GL there holds
pτ = prough. The combination of Remark 2.4 and (3.13) yields

‖u − Iτu‖L2(τ) ≤ chmin{s,prough+1}‖u‖Hs(τ), (3.22)

where Iτ is the linear interpolant in the case of continuous boundary elements while it is the L2 (τ)-orthogonal
projection for discontinuous boundary elements. For � = 0, 1, . . . , L − 1 and τ ∈ G�, we apply the results of
Lemma 3.8 elementwise to obtain

L−1∑
�=0

∑
τ∈G�

‖u − πτu‖2
L2(τ) �

L−1∑
�=0

ρ−2bγ(L−�)
∑
τ∈G�

h2(2−β)
τ C2

τ

� h2(2−β)
L−1∑
�=0

22(2−β)(L−�)−2bγ(L−�)C2
u

� h2(2−β)C2
u, (3.23)

taking into account that 2 − β − bγ < 0, by assumption. In the estimate above we made use of the finite
overlapping property between the regularity ellipses Eρ(τ) for different τ ∈ G� (cf. Assumption 3.4). The
combination of (3.23) and (3.22) completes our proof in the case m = 0.

For k = 0, we have to consider the case m = 1 which can be treated similarly (cf. [22]). The estimate for
the intermediate indices follows by interpolation.

3.4 Approximation in Sobolev norm H−µ, µ > 0

Now we discuss the approximation properties of functions u ∈ Hµ+δ(Γ) ∩ Aβ(C, γ; Γ) with respect to the
Sobolev norm with negative indices H−µ, µ > 0. Let vN ∈ Sk

p(G) be the best approximation to u in the
L2-norm. Then, with an arbitrary zN ∈ Sk

p(G), there holds

‖u − vN‖H−µ = sup
z∈Hµ\{0}

(u − vN , z − zN )
‖z‖Hµ

,

and we readily obtain

‖u − vN‖H−µ ≤ C‖u − vN‖0 sup
z∈Hµ\{0}

inf
zN∈Sk

p(G)

‖z − zN‖0

‖z‖Hµ

. (3.24)

Since we approximate on large panels with high order polynomials we cannot gain from the term

inf
zN∈Sk

p(G)
‖z − zN‖0 ≤ C‖z‖Hµ

since z ∈ Hµ, in general, is not smooth enough to make use of the high-order polynomial degrees on the
elements with proper distance to the wire basket. To improve the approximation properties in (3.24) we
modify the approximation space as follows. Fix the surface patch Γi. Choose a coarse mesh parameter
H =

√
h and introduce the domain ΓH ⊂⊂ Γi by

ΓH := {x ∈ Γi : dist(x, ∂Γi) ≥ H}.

Let us modify the original triangulation in such a way that it remains a quasi-uniform mesh of the size H in
the domain ΓH (cf. Fig. 5 with NΓ = 4 · 2L). Correspondingly to the new triangulation, we introduce the
modified space Sk

H,p(G), where the polynomial degrees on the elements in ΓH are all chosen as a constant
corresponding to that for the elements of the original space Sk

p(G) on level Lunif ≈ L/2, thus having the
diameter O(H) = O(

√
h).

By standard mesh refinement techniques it is easy to subdivide the triangles τ in G with diam(τ) >
√

h
(see Fig. 5, where we have NΓ = 4 ·2L). The polynomial degree vector for the refined mesh is chosen according
to (2.8) by replacing the ratio hτ/h by min{hτ ,

√
h}/h and the definition of Sk

H,p(G) would correspond to (2.7)
by using the new degree vector and the new mesh. One can easily verify the following properties:
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Figure 5: Modified BCM: L = 8, Lunif = 3 (left), L = 8, Lunif = 4 (right).

• The number of unknowns for the new method is of the same order as for Sk
p(G). In fact, from Lemma

3.10, one derives that the number of unknowns for the original mesh and for the original polynomial
degree vector is O(h−1(log h−1)3), while the number of unknowns for the refined mesh and modified
degree vector is O(h−1(log h−1)3 + h−1(log h−1)2).

• The approximation property holds:

inf
zN∈Sk

H,p(G)
‖z − zN‖0 ≤ C Hµ‖z‖Hµ(Γ). (3.25)

Now we arrive at the following result.

Corollary 3.12 Let the assumptions of Theorem 3.11 be valid. Then for µ = 1/2, there exists a constant
C > 0 depending on u and β such that

inf{‖u − v‖H−µ(Γ) : v ∈ Sk
H,p(G)} ≤ Chµ/2+min{s,prough+1,2−β}(‖u‖Hs(Γ) + Cu). (3.26)

Due to this corollary we see a reduced gap of hµ/2 between the optimal result and (3.26), which certainly
improves (3.24), where inf

zN∈Sk
p(G)

‖z−zN‖0
‖z‖Hµ

≤ C (cf. 3.25).

4 Hierarchical clustering in wire-basket BEM

In this section, we construct and analyse an hierarchical matrix approximation to the exact stiffness matrix
A, corresponding to the Galerkin BEM (cf. (2.5)). In Subsection 4.1 we recall the basic concepts of panel-
clustering and H-matrices, which are applied verbatim to the wire-basket BEM and introduce the basic
notations. For a more detailed introduction to panel-clustering and H-matrices we refer, e.g., to [14], [18],
[28].

In Subsection 4.2, the corresponding error analysis is developed and the complexity estimates are derived.
These results are new and differ from the standard estimates since (a) highly non-uniform meshes occur in
wire-basket BEM and (b) the polynomial degrees are given by a variable degree vector.

4.1 Construction of the hierarchical clustering

We restrict ourselves here to the Galerkin boundary element discretisation of boundary integral equations
while collocation or Nyström discretisations can be considered as well.

Note that the representation of the term λ (u, v) in (2.3) with respect to the nodal basis (bi)i∈Θ leads to a
sparse matrix. (The number of non-zero entries of this matrix is bounded from above by

C
L∑

�=0

∑
τ∈G�

p4
τ ≤ C

L∑
�=0

∑
τ∈G�

(1 + L − �)4 ≤ C
L∑

�=0

(1 + L − �)4 2� ≤ C2L
∞∑

�=0

(1 + �)4 2−� ≤ CN,
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where N is the number of degrees of freedom located in Γrough). Hence, we concentrate on the sparse rep-
resentation of the bilinear form â (·, ·) (cf. (2.4)). The matrix corresponding to the bilinear form â is given
by

A = (â (bj, bi))i,j∈Θ =
∫

Γ

bi (x)
∫

Γ

k (x, y) bj (y) dsydsx (4.1)

and, due to the non-localness of the kernel function, is fully populated. In (4.1), k is the kernel function
corresponding to one of the forms in (2.4).

If the dimension of S is very large, iterative solvers should be employed for the solution of the arising
linear system. Such solvers require a matrix-vector multiplication as a basic operation while the knowledge
of all matrix entries of A, typically, is not needed explicitly. The idea of the panel-clustering algorithm
is to represent the bilinear form â (·, ·) in an alternative way so that a matrix-vector multiplication can be
performed approximately. Here, we will generalise the panel-clustering method to the hp-discretisation in our
applications.

We start with the description of the general idea. Let Θ denote the index set of unknowns. The data-sparse
representation of integral operators starts with the definition of the clusters and a cluster tree.

Definition 4.1 (Cluster) A cluster is a non-empty subset of Θ. The support and the diameter of a cluster
c are given by

Γc := supp
∑
i∈c

bi and diam c := diam Γc,

where bi are the basis functions from (4.1). The cluster-box Qc is the minimal axis-parallel box which contains
Γc and the cluster centre Zc is the centre of mass of Qc. The distance of two clusters c, s is given by

dist (c, s) := dist (Γc, Γs) .

For a finite element function u =
∑

i∈Θ uibi, its restriction to c is denoted by

uc :=
∑
i∈c

uibi.

Definition 4.2 (Cluster Tree) A cluster tree T is a tree1 whose vertices (called “clusters”) are certain
subsets of Θ. These are required to satisfy the following properties:

(i) Θ is the root of T .

(ii) L(T) = {{i} : i ∈ Θ}, where L(T) denotes the set of leaves of T.

(iii) If σ ∈ T is not a leaf, there is a set of vertices of T (denoted sons(σ)) such that σ is the disjoint union:
σ = ∪σ′∈sons(σ)σ

′.

There are standard procedures for constructing cluster trees (see for example [11, Example 2.1]). Once
T has been constructed, a second tree, T2, whose vertices are pairs of clusters may be constructed with the
following properties:

Definition 4.3 T2 is uniquely defined by
(i) (Θ, Θ) ∈ T2 is the root of T2,
(ii) For b= (σ′, σ′′) ∈ T2, the set of sons is defined as follows:

sons (b) :=

⎧⎪⎪⎨⎪⎪⎩
sons (σ′) × sons (σ′′) if σ′, σ′′ ∈ T\L (T) ,
{σ′} × sons (σ′′) if b ∈ L (T) × T\L (T) ,
sons {σ′} × {σ′′} if b ∈ T\L (T) × L (T) ,
∅ if b ∈ L (T) × L (T) .

1Usually a tree is a graph (V, E) with vertices V and edges E having a certain structure. Here the structure will be given by
the sons of the vertices (defined below), while V is identified with T.
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The key point in the hierarchical clustering algorithm is to select pairs of clusters (σ′, σ′′) ∈ T2 and
to approximate the corresponding integrals by replacing the kernel k of the integral operator by a suitable
separable expansion. This cannot be done on all pairs of clusters, but only on pairs which are sufficiently far
apart relative to their diameters. This leads to the definition of an admissible pair of clusters:

Definition 4.4 (Admissible Pair) For η > 0, a pair (σ′, σ′′) ∈ T2 is called η-admissible if

max{diamσ′, diamσ′′} ≤ 2 η dist(σ′, σ′′). (4.2)

Using the concept of admissibility, the integration domain Γ × Γ in (4.1) is split into a nearfield and a
farfield, characterised by the subsets Pfar (“farfield”) and Pnear (“nearfield”) of T2, defined as follows.

First set Pnear = ∅ = Pfar, and then initiate a call divide(Γ, Γ) of the following recursive procedure:

procedure divide(σ′, σ′′);
begin if (σ′, σ′′) is η-admissible then Pfar := Pfar ∪ {(σ′, σ′′)}

else if (σ′, σ′′) is a leaf then Pnear := Pnear ∪ {(σ′, σ′′)}
else for all (c′, c′′) ∈ sons(σ′, σ′′) do divide(c′, c′′)

end;

As a result of this call, P := Pnear ∪ Pfar describes a non-overlapping partitioning of Θ × Θ in the sense
that ∪{σ′ × σ′′ : (σ′, σ′′) ∈ P} = Θ × Θ and all contributions σ′ × σ′′ have empty intersection.

In this light, the part of the bilinear form associated with the integral operator,

â (u, v) = (Ku, v)L2(Γ) =
∫

Γ

v (x)
∫

Γ

k (x, y)u (y) dsydsx, (4.3)

can be written in the form

â (u, v) =
∑

b=(σ,s)∈P

∑
(i,j)∈b

viuj

∫
Γσ×Γs

bi (x) k (x, y) bj (y) dsydsx.

The goal is to approximate the kernel functions on admissible blocks Γσ × Γs by a separable expansion with
respect to appropriate function systems Φν

c : Γc → R and Ψν
c : Γc → R , for all c ∈ T and ν ∈ Im. Here Im

denotes an index set and m the approximation order. In typical examples, the function systems could be the
tensorised three-dimensional Lagrange basis functions restricted to the surface patches Γc. In this case, Im is
the index set

Im :=
{
ν ∈ N

3
0 : 0 ≤ νi ≤ m for all 1 ≤ i ≤ 3

}
.

Let b = (σ, s) ∈ Pfar. For x ∈ Γσ, y ∈ Γs, we use a separable approximation kb(x, y) ≈ k(x, y) of the form:

kb(x, y) :=
∑

ν∈Im, µ∈Im

k(ν,µ)
b Φ(ν)

σ (x)Ψ(µ)
s (y). (4.4)

For kernel functions which are related to linear elliptic PDEs of second order with constant coefficients one
can prove (cf. [28] and references therein) the exponential convergence estimate

|k(x, y) − kb(x, y)| ≤ C1
(η′)m

dist(σ, s)κ
(4.5)

for all x ∈ Γσ, y ∈ Γs and b = (σ, s) ∈ Pfar, where η′ = C2η for some constant C2 and η as in Definition 4.4
can be chosen such that η′ < 1. The number κ > 0 is the blow-up rate of the kernel

|k (x, y)| ≤ C3 |x − y|−κ , x, y ∈ Γ, x = y. (4.6)

Note that the constants C1 and C2 are independent of the clusters. In the following, we assume that (4.5)
holds.

The panel-clustering approximation of the bilinear form â in (2.2) acting on the finite-dimensional space
S × S is given by

âpc(u, v) =
∑

b=(σ,s)∈P

∑
(i,j)∈b

viuj

∫
Γσ×Γs

bi (x) kb (x, y) bj (y) dsydsx (4.7)

and

kb(x,y) :=
{

k(x,y) x ∈ Γσ, y ∈ Γs with b = (σ, s) ∈ Pnear ,
kb(x,y) x ∈ Γσ, y ∈ Γs with b = (σ, s) ∈ Pfar .

(4.8)

The algorithmic realisation of (4.7) is as in the standard panel-clustering algorithm (cf. [28]). We skip the
details here and proceed with the error analysis.
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4.2 Error analysis

The replacement of the kernel function in (4.3) by the panel-clustering approximation kb leads to the perturbed
bilinear form âpc. We will employ Strang’s lemma to prove stability and consistency of the perturbed Galerkin
method. First, we will formulate suitable assumptions on the geometry of Γ, on the finite element mesh G,
and on the construction of the cluster tree.

Let QΓ denote the minimal axis-parallel 3D-box containing Γ. By subdividing QΓ step-by-step into eight
congruent sub-boxes results an (infinite, virtual) octree Q. The set Q� contains all boxes in Q which have
depth � in Q. We assume conventionally that the boxes in Q� are pairwise disjoint, i.e., any face, edge and
vertex belongs to only one box, and the union of the boxes is in QΓ.

We identify the cluster tree with the set of clusters

T :=
{
c ⊂ Θ | ∃Q ∈ Q : Z{i} ⊂ Q for all i ∈ c

}
and the set sons (c) of a cluster c is the minimal subset of T so that its union is c. If such a set does not exist,
then, c is called a leaf c ∈ L (T). The subsets T� ⊂ T contain all clusters with depth � in the cluster tree.

Assumption 4.5

1. There exists a constant C4 such that

∀c ∈ T : C−1
4 (diam c)2 ≤ |Γc| ≤ C4 (diam c)2 . (4.9)

2. There exists a constant C5 independent of � such that for all �

∀c ∈ T� : C−1
5 2−� ≤ |Γc| ≤ C52−�. (4.10)

3. There exists C6 such that
C−1

6 h ≤ 2−L ≤ C6h,

where L denotes the minimal constant such that T� = ∅ for all � > L.

The next assumption concerns the partitioning P of Θ × Θ. For c ∈ T, let

Pfar (c) := {s ∈ T : (c, s) ∈ Pfar} and Uc :=
⋃

s∈Pfar(c)

Γs.

The following assumption expresses the fact that the triangles in G are shape regular and, for sufficiently small
control parameter η = O (1) in (4.2), the set Pfar (c) is quasi-uniform.

Assumption 4.6

1. There exists a constant C7 such that

∀c ∈ T : |Uc| ≤ C7 (diam c)2 . (4.11)

2. There exists a constant C8 independent of � such that

∀x ∈ Γ : � {c ∈ T� : x ∈ Uc} ≤ C8. (4.12)

Assumption 4.5 and 4.6 allow to estimate the perturbation in the bilinear form.

Lemma 4.7 Let Assumption 4.5 and 4.6 be satisfied. For the kernel approximation we assume (4.5). Then,

∀u, v ∈ S : |â (u, v) − âpc (u, v)| ≤ C (h) (η′)m ‖v‖L2(Γ) ‖u‖L2(Γ) .

The function C (h) is given by

C (h) := C9

⎧⎨⎩
1 κ < 2,

|log h| κ = 2,
h−1 κ = 3,

(4.13)

where C9 is positive and depends continuously on C1, η, κ, C4, C5, C6, C7, C8.

16



Proof. For all u, v ∈ S, we have

|â (u, v) − âpc (u, v)|
(4.5)

≤ C1(η′)m
∑

(σ,s)∈Pfar

∫
Γσ

∫
Γs

|vσ (x)| |us (y)|
dist(σ, s)κ

dsydsx

≤ C1(η′)m
L∑

�=0

∑
σ∈T�

∑
s∈Pfar(σ)

‖vσ‖L1(Γσ) ‖us‖L1(Γs) dist(σ, s)−κ

(4.2), (4.9), (4.11)

≤ C1(η′)m (2η)κ
√

C4C7

L∑
�=0

∑
σ∈T�

(diamσ)2−κ ‖vσ‖L2(Γσ) ‖us‖L2(Uσ)

≤ C̃(η′)m
L∑

�=0

2�(κ−2)
∑
σ∈T�

‖vσ‖L2(Γσ) ‖us‖L2(Uσ)

≤ C̃C8(η′)m ‖v‖L2(Γ) ‖u‖L2(Γ)

L∑
�=0

2�(κ−2).

where C̃ is positive depending continuously only on C1, η, κ, C4, C5, and C7.
For the sum in the last estimate, we obtain

L∑
�=0

2�(κ−2) ≤ C10

⎧⎨⎩
1 κ < 2,

|log h| κ = 2,
h−1 κ = 3.

In order to prove existence, uniqueness, and quasi-optimal error estimates for the Galerkin discretisation
with panel-clustering via Strang’s lemma we will show

∀u, v ∈ S : |â (u, v) − âpc (u, v)| ≤ Chα ‖v‖Hµ(Γ) ‖u‖Hµ(Γ) ,

where α = min{s, 2−β, prough +1}−µ+ with s, µ, β as in Theorem 3.11 and µ+ := µ for µ ≥ 0 and µ+ := µ/2
for negative µ.

Theorem 4.8 Let the assumptions of Subsection 2.3 and of Theorem 3.11 be satisfied. Choose

m :=
⌈
(α + 1)

|log h|
|log η′|

⌉
with α = min{δ, 2 − β, prough + 1} − µ+ (4.14)

as the expansion order for the panel-clustering algorithm. Then, the Galerkin discretisation with panel clus-
tering has a unique solution ũS ∈ S for sufficiently small h which satisfies the error estimate

‖u − ũS‖Hµ(Γ) ≤ Cuhα.

Proof. The definition of m and C (h) (cf. (4.14) and (4.13)) leads to the estimate

∀u, v ∈ S : |â (u, v) − âpc (u, v)| ≤ C9h
α ‖v‖L2(Γ) ‖u‖L2(Γ) .

For µ ≥ 0, we conclude that

∀u, v ∈ S : |â (u, v) − âpc (u, v)| ≤ C9h
α ‖v‖Hµ(Γ) ‖u‖Hµ(Γ) . (4.15)

The combination of Céa´s lemma 2.9, Strang´s lemma with Theorem 3.11 resp. Corollary 3.12 and (4.15)
proves the assertion for µ ≥ 0.

For µ < 0, we employ the inverse inequality for shape regular meshes (cf. [29, Thm. 4.76]): For all u ∈ S
and all τ ∈ G, we have

‖u‖H1(τ) ≤ C
p2

τ

hτ
‖u‖L2(τ) .

This implies

‖u‖2
L2(τ) ≤ C ‖u‖H1(τ) ‖u‖H−1(τ) ≤ C

p2
τ

hτ
‖u‖L2(τ) ‖u‖H−1(τ)
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and the desired inverse inequality for the L2-norm follows. For τ ∈ G�, there holds (cf. Lemma 3.10)

p2
τ/hτ ≤ C (1 + L − �)2 2� ≤ C2L max

x≥0

(1 + x)2

2x
≤ Ch−1.

Hence,
∀u ∈ S : ‖u‖L2(Ω) ≤ Ch−1 ‖u‖H−1(Ω) .

Interpolating this result with the trivial estimate ‖u‖L2(Ω) ≤ ‖u‖L2(Ω) results in ‖u‖L2(Ω) ≤ Ch−1/2 ‖u‖H−1/2(Ω)

and

∀u, v ∈ S : |â (u, v) − âpc (u, v)| ≤ CC9h
α+1h−1 ‖v‖Hµ(Γ) ‖u‖Hµ(Γ) ≤ Chα ‖v‖Hµ(Γ) ‖u‖Hµ(Γ) .

The combination with the Strang Lemma again yields the assertion.

Remark 4.9 The complexity analysis for the panel clustering and H-matrix construction in the presence
of geometrically refined grids remains basically the same as for quasi-uniform grids. Recall that in [16] the
cardinality and geometry balanced partitionings have been considered in 1D-case as well as in the case of 2D
composed grids (with local mesh refinement). The analysis in the more general setting was presented in [11].
Applying the above mentioned constructions we obtain that the storage requirements and complexity of the
matrix-vector product are estimated by (cf. [11])

NSt(T, k) ≤ 2#LCsp max{k, nmin}#Θp, NH·v ≤ 2NSt(T, k),

where Csp is the so-called sparsity constant (in our particular case we have Csp ≈ 25, nmin ≈ 20). Hence, we
arrive at a linear-logarithmic complexity with respect to NΓrough . The specific feature of our construction is
that we obtain not fully balanced block cluster tree, since some admissible blocks may have small size and thus
they are represented by full matrices. However, this does not destroy the almost linear complexity.
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[10] B.Guo and I. Babuška: Regularity of the solutions for problems on nonsmooth domains in R3, Part 2:
Regularity in a neighborhood of edges, Proc. Royal Soc. Edinb., Sect. A127 (1997), 517-545.

18



[11] L. Grasedyck and W. Hackbusch: Construction and arithmetics of H-matrices. Computing 70 (2003),
295-334.

[12] P. Grisvard: Elliptic problems in non-smooth domains. Pitman, London, 1985.

[13] W. Hackbusch: Integral equations. Theory and numerical treatment. ISNM 128. Birkhäuser, Basel, 1995.
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