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BERNSTEIN TYPE THEOREMS WITH FLAT NORMAL BUNDLE

KNUT SMOCZYK, GUOFANG WANG, AND Y. L. XIN

Abstract. We prove Bernstein type theorems for minimal n-submanifolds in
R

n+p with flat normal bundle. Those are natural generalizations of the corre-
sponding results of Ecker-Huisken and Schoen-Simon-Yau for minimal hypersur-
faces.

1. Introduction

From the counter example given by Lawson-Osserman [LO77], we know that mini-
mal submanifolds of higher codimension in Euclidean space are more complicated.
Their general Bernstein property has been studied in [HJW81], [FC80], [JX99] and
[Wan03], but one is still far from a complete understanding.

From the geometric point of view, the normal bundle might be complicated in higher
codimension, which would influence the submanifold properties. Now, we consider
the simplest case, i.e. that of flat normal bundles and expect this case might share
similar properties with minimal hypersurfaces, as shown in [Ter86], [Ter85], [Ter87]
and [HPT88]. In the previous paper [Xin03] we study such a situation. The w-
function determined by the generalized Gauss map (see §3) will play an important
role. If it is positive, the submanifolds are like stable minimal hypersurfaces. They
have only one end. We also obtained an adequate generalization of the Bernstein
theorem for a minimal graph with controlled growth due to Ecker-Huisken [EH90].

Now, we find the result in [Xin03] can be improved and there is no dimension
limitation any more. This is Theorem 1. The key point is Lemma 1 which gives us
a better estimate for the second fundamental form in the case of higher codimension
and flat normal bundle. From such an estimate and the stability inequality (2.7),
curvature estimates, as done by Simon-Schoen-Yau for hypersurfaces [SSY75], are
available immediately.
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2. Basic formulas

Let M be a minimal submanifold in Euclidean (n + p)-space R
n+p with the second

fundamental form B. TM and NM denote the tangent bundle and the normal
bundle along M , respectively. There are induced connections on TM and NM . If
the curvature of the normal bundle vanishes, then M called a submanifold with flat
normal bundle

For ν ∈ Γ(NM) the shape operator Aν : TM → TM satisfies

〈BXY , ν〉 = 〈Aν(X), Y 〉 ,

where B can be viewed as a map from �2TM to NM . There is the trace-Laplace
operator ∇2 acting on any cross-section of a Riemannian vector bundle E over M .

We have (see [Sim68])

∇2B = −B̃ − B. (2.1)

We recall the following notations:

B̃
def.
= B ◦ Bt ◦ B,

where Bt is the conjugate map of B,

BX Y

def.
=

p∑
α=1

(
BAναAνα(X) Y + BX AναAνα (Y ) − 2 BAνα(X) Aνα (Y )

)
,

where (να)α=1,...,p is an orthonormal basis of the normal space. It is obvious that BX Y

is symmetric in X and Y, which is a cross-section of the bundle Hom(�2TM, NM).

Since B ◦ Bt : NM → NM is symmetric, there is a local normal frame field
{ν1, · · · , νp}, such that at a considered point

B ◦ Bt(να) = λ2
ανα.

Noting that ∑
α

λ2
α =

〈
B ◦ Btνα, να

〉
= 〈Aνα, Aνα〉

=
〈
Bei ej

, να

〉 〈
Bei ej

, να

〉
= |B|2,

we get 〈
B̃, B

〉
=

〈
B ◦ Bt ◦ B, B

〉
=
〈
Bt ◦ B, Bt ◦ B

〉
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=
〈
Bei ej

, Bek el

〉 〈
Bei ej

, Bek el

〉
=

〈
Bei ej

, να

〉 〈Bek el
, να〉

〈
Bei ej

, νβ

〉 〈Bek el
, νβ〉

=
〈
ei � ej , B

t(να)
〉 〈

ek � el, B
t(να)

〉
〈
ei � ej , B

t(νβ)
〉 〈

ek � el, B
t(νβ)

〉
=

〈
Bt(να), Bt(νβ)

〉 〈
Bt(να), Bt(νβ)

〉
=

〈
B ◦ Bt(να), B ◦ Bt(να)

〉

=
∑

λ4
α ≤

(∑
α

λ2
α

)2

= |B|4.

We also have

〈B, B〉 =
〈
Bei ej

, να

〉 〈
Bei ej

, να

〉
= 〈[Aνβ , [Aνβ , Aνα]] (ei), ej〉 〈Aνα(ei), ej〉

= 〈(AνβAνβAνα − 2 AνβAναAνβ + AναAνβAνβ) , Aνα〉 .

Noting that

〈AναAνβAνβ , Aνα〉 = 〈AναAναAνβAνβ , I〉

= trace(AνaAναAνβAνβ)

= 〈AναAνaAνβ , Aνβ〉 ,

we obtain

〈B, B〉 = 〈AνβAνβAνα − 2 AνβAναAνβ + AνβAνβAνα, Aνα〉

= 〈AνβAνβAνα − AνβAναAνβ , Aνα〉

− 〈AνβAναAνβ − AνβAνβAνα , Aνα〉
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= 〈AνβAνα − AναAνβ , AνβAνα〉

− 〈AναAνβ − AνβAνα, AνβAνα〉

= 〈AναAνβ − AνβAνα , AναAνβ〉

− 〈AναAνβ − AνβAνα, AνβAνα〉

=
∑
α�=β

|[Aνα, Aνβ ]|2 = 0,

where the last equation holds by Ricci’s equation in the case of a flat normal bundle.
Thus, we have 〈∇2B, B

〉 ≥ −|B|4. (2.2)

It follows that

∆|B|2 ≥ −2|B|4 + 2|∇B|2. (2.3)

In order to use the formula (2.3), we need an estimate of |∇B|2 in terms of |∇|B||2.
Schoen-Simon-Yau [SSY75] did such an estimate for codimension p = 1. For any p
with flat normal bundle their technique is also applicable and we have from [Xin03]

|∇B|2 − |∇|B||2 ≥ 2

n
|∇|B||2. (2.4)

This is our desired Kato-type inequality. From (2.3) and (2.4) we have

Lemma 1. Let M → R
n+p be a minimal n-submanifold with flat normal bundle.

Its second fundamental form satisfies

|B|∆|B| ≥ −|B|4 +
2

n
|∇|B||2. (2.5)

For two simple unit n-vectors

A = a1 ∧ · · · ∧ an, B = b1 ∧ · · · ∧ bn,

their inner product is defined by

〈A, B〉 = det (〈ai, bj〉) .
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Choose an orthonormal frame field {ei, eα} along M such that ei ∈ TM and eα ∈
NM . Fix a unit simple n-vector A = a1 ∧ · · · ∧ an in R

n+p and define a function w
on M by

w = 〈e1 ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉 = det (〈ei, aj〉) .

By a direct computation we derived a basic equation for w.

Lemma 2. ([Xin03]) Let M be an n-submanifold in R
n+p with parallel mean cur-

vature and flat normal bundle. Then the above defined w-function satisfies

∆w = −|B|2 w. (2.6)

This equation is a generalization of the basic equation in constant mean curvature
hypersurfaces in Euclidean space.

We assume that the w-function is positive everywhere on M . Then, we have a
stability inequality by a theorem in [FCS80]. We state a lemma as follows:

Lemma 3. ([Xin03]) Let M be a complete n-submanifold in R
n+p with flat normal

bundle and parallel mean curvature. If the w-function is positive everywhere on M ,
then

∫
M

|∇φ|2 ∗ 1 ≥
∫

M

|B|2φ2 ∗ 1, (2.7)

for any function φ with compact support D ⊂ M.

3. The Geometric Meaning of w > 0

For an n-dimensional oriented submanifold M in Euclidean space R
n+p we have the

generalized Gauss map. By the parallel translation in the ambient Euclidean space,
the tangent space TxM at each point x ∈ M is moved to the origin of R

n+p to obtain
an n-subspace in R

n+p, namely, a point of the Grassmannian manifold γ(x) ∈ Gn,p.
Thus, we define a generalized Gauss map γ : M → Gn,p.

For defining the w-function we need to fix a unit n-vector A = a1∧· · ·∧an. Without
loss of generality, we assume that A is defined by the first n-axes. If the tangent
vectors to M are

e1 = (e11, e12, · · · , e1n, · · · , e1n+p)

· · · · · · · · · · · ·
en = (en1, en2, · · · , enn, · · · , enn+p),
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then

w = det

⎛
⎝e11 e12 · · · e1n

...
...

. . .
...

en1 en2 · · · enn

⎞
⎠ .

If w = 0 on M , then the tangent n-plane is also spanned by n vectors

e′i = ai + ziαen+α,

where (ziα) is an n × p matrix. Thus, if w never vanishes on M , the image un-
der the generalized Gauss map for a submanifold M lies in one local coordinate
neighborhood in the Grassmannian manifold.

For the fixed n-planes A and γ(TxM), considered as two points in the Grassmannian
manifold Gn,p, we can define Jordan angles between them. Those are

θα = cos−1(λα),

where λ2
α are eigenvalues of the symmetric matrix W TW , where W = (〈ei, aj〉). In

the case of w = 0, the Jordan’s angles between A and γ(TxM) lie in [0, π
2
). We also

know the relation between w and those angles [JX99]

w =

n∏
α=1

cos θα.

4. Bernstein Type Theorems for Controlled Growth

In the case when w is positive, we set v = 1
w
. We have a Bernstein type result as

follows.

Theorem 1. Let M be a minimal n-submanifold in R
n+p with flat normal bundle.

If M has polynomial volume growth and v has growth

v = O (Rµ) ,

where 0 ≤ µ < 1 and R is the Euclidean distance from any point in M . Then M
has to be an affine linear subspace.

Proof. From (2.6) we obtain

∆v = v |B|2 +
2

v
|∇v|2. (4.1)
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From (2.5) and (4.1) we obtain for any real q and s

∆ (vq|B|s) ≥ q (q + 1) vq−2|B|s |∇v|2 + s

(
s − n − 2

n

)
vq|B|s−2|∇|B||2

+ (q − s) vq|B|s+2 + 2 q s vq−1|B|s−1 〈∇v,∇|B|〉 . (4.2)

By using the Cauchy inequality with ε > 0

vq−1|B|s−1 〈∇v,∇|B|〉 ≤ 1

2

(
ε−1vq−2|B|s|∇v|2 + εvq|B|s−2|∇|B||2)

which is substituted in (4.2) we have

∆ (vq|B|s) ≥ q (q + 1 − ε−1s) vq−2|B|s|∇v|2

+s

(
s − n − 2

n
− ε q

)
vq|B|s−2|∇|B||2 + (q − s) vq|B|s+2 (4.3)

By choosing s = q > n − 2 and ε = q
q+1

we have

∆(vq|B|q) ≥ 0.

We also choose q = s + 1 > n − 1 and ε = q−1
q+1

in (4.3), and then we have

∆(vq|B|q−1) ≥ vq|B|q+1. (4.4)

Hence we may apply the mean value inequality for any subharmonic function on a
minimal submanifold M in R

n+p [CLY84], [Ni01] to vq|B|q−1 which gives

vq|B|q(o) ≤ C

Rn

∫
DR

v2q|B|2q ∗ 1 ≤ C vol(DR)
1
2

Rn

(∫
DR

v2q|B|2q ∗ 1

) 1
2

, (4.5)

where we assume o ∈ M ⊂ R
n+p and C is a constant depending only on n.
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Multiplying by vq|B|q−1φ2q, where φ is any smooth function with compact support,
in (4.4), then integrating by parts and using the Cauchy inequality, we have∫

M

v2q|B|2qφ2q ∗ 1 ≤
∫

M

vq|B|q−1φ2q∆(vq|B|q−1) ∗ 1

= −
∫

M

〈∇(vq|B|q−1φ2q),∇(vq|B|q−1
〉 ∗ 1

= −
∫

M

|∇(vq|B|q−1)|2φ2q ∗ 1

−2q

∫
M

〈
φq−1|B|q−1vq∇φ, φq∇(vq|B|q−1)

〉 ∗ 1

≤ C1(q)

∫
M

v2q|B|2q−2φ2q−2|∇φ|2 ∗ 1. (4.6)

By using Young’s inequality

ab ≤ αpap

p
+

α−qbq

q

for any positive real numbers p, q, α, a, b with 1
p

+ 1
q

= 1, (4.6) becomes∫
M

v2q|B|2qφ2q ∗ 1 ≤ C2(q)

∫
M

v2q|∇φ|2q ∗ 1.

Choosing φ as the standard cut-off function, we obtain∫
DR

v2q|B|2q ∗ 1 ≤ C2(q) R−2q

∫
D2R

v2q ∗ 1

≤ C2(q) R−2qvol(D2R) sup
D2R

v2q. (4.7)

We know that M has polynomial volume growth of order n+m, m ≥ 0. From (4.5)
and (4.7) we obtain

vq|B|q(o) ≤ C3(n)R−n−qRn+m sup
D2R

vq,

then

v|B|(o) ≤ C(n) R−1+ m
q

+µ.
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For given m ≥ 0 and 0 ≤ µ < 1, we can choose q large enough such that

−1 +
m

q
+ µ < 0.

Let R go to infinity, we have |B|(o) = 0. Since o is any point in M , we complete the
proof. �

In case M is an entire graph defined by p functions on R
n+p, v is just the volume

element. If
v = O (Rµ) ,

then
vol(DR) = O(Rn+µ).

In this case the assumption that M has polynomial growth is redundant and we
have the following result, which is a generalization of the results by Ecker-Huisken
and Nitsche [EH90], [Nit89].

Corollary 1. Let M = (x, f(x)) be a minimal graph given by p functions
fα(x1, · · · , xn) with flat normal bundle. If for 0 ≤ µ < 1

(det(δij + fα
i fα

j ))
1
2 = O(Rµ),

where R2 = |x|2 + |f |2. Then fα are affine linear functions.

5. Curvature Estimates

Replacing φ by |B|1+qφ in (2.7) gives

∫
M

|B|2q+4φ2 ∗ 1 ≤
∫

M

[
(1 + q)2|B|2q|∇|B||2φ2 + |B|2q+2|∇φ|2

+2(1 + q)φ|B|2q+1(∇φ) · (∇|B|)
]
∗ 1. (5.1)

Multiplying φ2|B|2q with both sides of (2.5) and integrating by parts, we have

2

n

∫
M

φ2|B|2q|∇|B||2 ∗ 1 ≤ −(1 + 2q)

∫
M

φ2|B|2q|∇|B||2 ∗ 1

+

∫
M

|B|4+2qφ2 − 2

∫
M

φ|B|2q+1(∇φ) · (∇|B|) ∗ 1. (5.2)
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By adding up both sides of (5.1) and (5.2) we have(
2

n
− q2

)∫
M

φ2|B|2q|∇|B||2 ∗ 1

≤
∫

M

|B|2q+2|∇φ|2 + 2q

∫
M

φ|B|2q+1(∇φ) · (∇|B|) ∗ 1. (5.3)

Since

2qφ|B|2q+1(∇φ) · (∇|B|) ≤ 2qφ|B|2q+1|∇φ||∇|B||
≤ εq2φ2|B|2q|∇|B||2 + ε−1|B|2q+2|∇φ|2,

(5.3) becomes [2

n
− (1 + ε)q2

] ∫
M

φ2|B|2q|∇|B||2 ∗ 1

≤ (1 + ε−1)

∫
M

|B|2q+2|∇φ|2 ∗ 1.

When

0 ≤ q <

√
2

n

we can choose ε sufficiently small such that∫
M

φ2|B|2q|∇|B||2 ∗ 1 ≤ C1

∫
M

|B|2q+2|∇φ|2 ∗ 1, (5.4)

where C1 > 0 is a constant depending on n, q.

Since

2 φ|B|2q+1(∇φ) · (∇|B|) ≤ φ2|B|2q|∇|B||2 + |B|2q+2|∇φ|2,

(5.1) becomes∫
M

|B|2q+4φ2 ∗ 1 ≤ (1 + q)2

∫
M

|B|2q|∇|B||2φ2 ∗ 1 +

∫
M

|B|2q+2|∇φ|2 ∗ 1

+(1 + q)

∫
M

|B|2q(∇|B||2)φ2 ∗ 1 + (1 + q)

∫
M

|B|2q+2|∇φ|2 ∗ 1

= (1 + q)(2 + q)

∫
M

|B|2q|∇|B||2φ2 ∗ 1 + (q + 2)

∫
M

|B|2q+2|φ|2 ∗ 1

≤ C2

∫
M

|B|2q+2|∇φ|2 ∗ 1, (5.5)



BERNSTEIN THEOREMS 11

where in the last inequality above we used (5.4). Replacing φ by φq+2 in (5.5) gives∫
M

|B|2q+4φ2q+4 ∗ 1 ≤ C3

∫
M

|B|2q+2φ2q+2|∇φ|2 ∗ 1.

By using Young’s inequality, we have

|B|2q+2φ2q+2|∇φ|2 ≤ ε|B|2q+4φ2q+4 + C4|∇φ|2q+4,

Therefore ∫
M

|B|2q+4φ2q+4 ∗ 1 ≤ C

∫
M

|∇φ|2q+4 ∗ 1. (5.6)

Replacing φ by φq+1 in (5.5) gives∫
M

|B|2q+4φ2q+2 ∗ 1 ≤ C ′
3

∫
M

|B|2q+2φ2q|∇φ|2 ∗ 1. (5.7)

Choosing

q′ =
2

q + 1
, t = q + 1, s =

q + 1

q

and using Young’s inequality again

|B|2q+2φ2q|∇φ|2 = |B|2q+2−q′φ2q|B|q′|∇φ|2
≤ ε(|B|2q+2−q′φ2q)s + C ′

3 |B|q′t|φ|2t

= ε|B|2q+4φ2q+2 + C ′
3|B|2|φ|2q+2.

Thus, (5.7) becomes∫
M

|B|2q+4φ2q+2 ∗ 1 ≤ C ′
∫

M

|φ|2q+2|B|2 ∗ 1. (5.8)

The above inequalities (5.6) and (5.8) enable us to prove the following results, which
is a generalization of the results by Schoen-Simon-Yau [SSY75].

Theorem 2. Let M be a minimal submanifold in R
n+p of codimension p with flat

normal bundle and positive w. If for q ∈
[
0,
√

2
n

)
,

lim
R→∞

R−(2q+4)vol(DR) = 0,

then M is flat.
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Proof. Choose a cut-off function φ to be

φ =

{
1 in DR,

0 outside of D2R.

with φ ≥ 0 and |∇φ| ≤ C0

R
almost everywhere. From (5.6) we have∫

DR

|B|2q+4 ∗ 1 ≤
∫

D2R

|B|2q+4φ2q+4 ∗ 1

≤ C

∫
D2R

|∇φ|2q+4 ∗ 1 ≤ C
C2q+4

0

R2q+4
volD2R =

A volDR

R2q+4
,

where A is constant. Letting R → ∞ gives∫
M

|B|2q+4 ∗ 1 = 0.

�
Remark 1. We know that an n- dimensional minimal submanifold in Euclidean
space has at least polynomial growth of order n [Xin03]. Theorem 2 is interesting
only for n ≤ 5.

From (5.8) it is easy to obtain the following result.

Theorem 3. Let M be a minimal n-submanifold in R
n+p with flat normal bundle

and positive w-function. If M has finite total curvature, then M is totally geodesic.

Using the similar method we can generalize a result in [HOS82] to higher codimen-
sion. We state the result without proof.

Theorem 4. Let M be a complete surface in R
2+p with parallel mean curvature and

flat normal bundle. If the w-function is positive everywhere on M , then M has to
be a plane.

Remark 2. After this work was finished and after authors announced these results
in [SWX04] (Remark 4), M.-T. Wang [Wan04] also submitted Bernstein theorems
for minimal submanifolds with flat normal bundles to the Archiv.
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