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Abstract

In this paper we show that the Higgs boson of the (minimal) Standard Model
has at most three gauge inequivalent ground states. One of these states is related
to ordinary electromagnetism and the other two to electromagnetism within mag-
netically charged vacua. If space-time is assumed to be rotationally symmetric
then the charged electroweak vacua may be identified with Dirac monopoles of
magnetic charge g = ±1/2. This offers a physical interpretation of magnetic
monopoles and Dirac’s quantization condition of electric charge in terms of the
electroweak interaction. Moreover, in the case of the (minimal) Standard Model
the three possible gauge inequivalent ground states of the Higgs boson are shown
to fully determine the topological structure of the gauge bundle which underlies
the electroweak interaction.
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1 Introduction

In this paper we discuss the topological structure that underlies the electroweak in-

teraction as it is described by the (minimal) Standard Model. More specifically, we

shall show that the topological structure of the principal SU(2) × U(1) bundle of the

electroweak interaction is fully determined by the hypercharge of the Higgs boson.

In [Tolk’03(c)] it has been shown that the symmetry of electromagnetism under

charge conjugation is equivalent to the triviality of the electroweak gauge bundle. The

aim of this paper is to discuss the topology of the electroweak gauge bundle P over

an arbitrary space-time (M, gM) when charge conjugation is not taken into account.

We will show that the structure of P is fully determined by Dirac’s famous quantiza-

tion condition of electric charge. It follows that in the case of the (minimal) Standard

Model the Higgs boson has at most three gauge inequivalent ground states, one of

which corresponds to ordinary electromagnetism and the other two correspond to elec-

tromagnetism within a “magnetically charged vacuum”. Thus, the latter spoil charge

conjugation. The fact that there are two charged vacua corresponds to the Z2−grading

of charge conjugation of ordinary electromagnetism. To prove this, we will first sum-

marize the basic geometrical setup in the next section. In the third section we present

the proof of the above statements and discuss some consequences. In the fourth sec-

tion we propose a specific generalization of the moduli space of all electroweak vacua

that has been introduced in loc site and discuss Dirac monopoles from the geometrical

viewpoint presented in this paper. We finish with a summary of the results presented.

In the following we summarize the motivation and the physical terminology used in

this paper (see also in loc site). This paper is part of a sequence of papers dealing with

a globally geometrical analysis of spontaneously broken gauge theories. The discussion

is based on a geometrical understanding of the “two shifts” usually performed in order

to make perturbation theory on Minkowski space-time R1,3

d �→ d+ A,

z0 �→ z0 + φ. (1)

For example, in the semi-classical approximation (“tree-level”) of the (minimal)

Standard Model A = B+W ∈ Ω1(R1,3,R⊕R3) denotes the electroweak gauge potential

and φ ∈ Ω0(R1,3,C2) represents the Higgs boson. Moreover, the Higgs boson and the
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electroweak gauge boson are assumed to represent the following “particle multiplets”

A = (Aelm,W
±, Z0),

φ = (φG, φH,phys). (2)

When “quantized” Aelm is identified with the photon and W± and Z0 with the elec-

troweak vector bosons; φG denotes the Goldstone boson and φH,phys the physical Higgs

boson.

In the unitary gauge the pair (A, φH,phys) is physically interpreted as a “fluctuation”

of a ground state (“semi-classical vacuum”) of the electroweak interaction. From a

geometrical perspective such a ground state may be described as a particular “Yang-

Mills-Higgs pair” (d, z0), where “d” is considered as the exterior covariant derivative

with respect to the trivial connection on C
2. The chosen minimum z0 ∈ C

2 of the Higgs

potential VH can be regarded as the canonical smooth mapping

z0 : R
1,3 −→ orbit(z0)

x �→ z0. (3)

Here, the sub-manifold orbit(z0) ⊂ C
2 is the orbit of z0 with respect to a unitary group

action of G ≡ SU(2) × U(1) on C2.

Of course, the decomposition (2) and the physical interpretation of (A, φH,phys) only

makes sense if either the topology of space-time (M, gM) or the topology of the under-

lying gauge bundle P is assumed to be trivial. But what do we know about the global

properties of the respective spaces? And what kind of phenomena can we expect if the

respective topologies are non-trivial? Usually, one argues that physics can only make

local statements. Consequently, the above given interpretation may be considered as

local relations for locally space-time and any (gauge) bundle are topologically trivial.

Then, for example, the gauge classes of mappings (3) are known to be classified by

π1(G/H), where the closed sub-group H ⊂ G is isomorphic to the isotropy group of

z0. However, the notion of locality is physically meaningless in the context of gauge

theories for the latter do not give rise to a scale (in contrast to gravity). Therefore,

the mathematical fact that every bundle is locally trivial has no physical meaning. We

are thus forced to consider a bundle as a global geometrical object. This holds true in

particular with respect to a gauge bundle P. Likewise, because of the local nature of

our experiments it seems more appropriate to determine the topological structure of
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space-time only by physical reasoning and not by a-priori assumptions.

The assumption that the topology of (M, gM) and of P is quite general naturally

rises the question about the moduli space of gauge classes of semi-classical vacua.

This moduli space is related to the topology of space-time and the underlying gauge

bundle. One may thus learn something about the global structure of the latter by

investigating the moduli space of semi-classical vacua. Notice that the topological

structure of space-time and of the gauge bundle also determines the global structure of

every associated bundle (up to equivalence). That the moduli space of semi-classical

vacua actually provides a good tool to study the possible topolological structure of

P is demonstrated in this paper for the special case of the electroweak interaction.

Although restricted to the semi-classical approximation the results presented may also

have non-trivial consequences for quantizing the electroweak/electromagnetic interac-

tion on curved space-time. Indeed, our discussion is also intended as a preliminary step

towards a geometrical understanding of perturbation theory.

2 The electroweak interaction as a specific Yang-

Mills-Higgs gauge theory

For the convenience of the reader we summarize in this section the basic geometrical

notions used to geometrically formulate the bosonic sector of the electroweak inter-

action as a specific Yang-Mills-Higgs (YMH) gauge theory. For the terminology used

and the details we refer to [Tolk’03(a)] and [Tolk’03(c)]. A corresponding discussion of

fermions can be found in [Tolk’03(b)].

In what follows (M, gM) denotes a smooth orientable (semi-)Riemannian manifold

of arbitrary signature and dimension. As a topological space, M is assumed to be

paracompact, connected and Hausdorff. Since we are mainly interested in the case

where (M, gM) denotes a four dimensional Lorentzian manifold of signature -2, we call

M “space-time”. Likewise, by P we mean a smooth principal G bundle over space-time

M
πP : P −→ M

p �→ x, (4)

with structure group G := SU(2)×U(1). We call P the “electroweak gauge bundle”. Its
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topological structure is thought to be given but so-far arbitrary. We will show that the

actual bundle structure is fully determined (up to equivalence) by physical reasoning.

We call (P, ρH, VH) the geometrical data which permit to describe the electroweak

interaction as a specific YMH gauge theory. Here,

ρH : G −→ GL(2,C)

g = (g(2), g(1)) �→ g(2)g
y

(1) (5)

with y ∈ Q denoting the so-called “hypercharge”;

VH : C
2 −→ R

z �→ λ |z|4 − µ2 |z|2 (6)

is the well-known Higgs potential (λ, µ > 0). Note that the unitary representation ρH

is faithful and the Higgs potential is rotationally symmetric, i. e. VH = fH ◦ r with

r(z) := |z| the “radial function”.

The “Higgs bundle” ξH and the “Yang-Mills bundle” ξYM := τ ∗
M
⊗ad(P) are naturally

associated with the geometrical data (P, ρH, VH). The Higgs bundle is defined by

πH : EH := P ×ρH
C

2 −→ M
z ≡ [(p, z)] �→ πP(p) (7)

and the adjoint bundle ad(P) is given by

πad : ad(P) := P ×ad Lie(G) −→ M
τ ≡ [(p,T)] �→ πP(p). (8)

The latter is always considered as a real vector bundle of rank four. Also the Higgs

bundle will be mainly regarded as a real vector bundle of rank four. The real vector

bundle τ ∗M denotes the cotangent bundle of space-time M.

Each minimum z0 ∈ C
2 of the Higgs potential induces a specific fiber sub-bundle

ξorb ⊂ ξH, which we call the “orbit bundle” with respect to z0:

πorb : Orbit(z0) := P ×ρorb
orbit(z0) −→ M

z ≡ [(p, z)] �→ πP(p), (9)
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with ρorb := ρH|orbit(z0). Note that in the case at hand the Higgs potential has only

one orbit of minima. Also, for two different minima the corresponding orbit bun-

dles are equivalent. We therefore refer to (9) as the orbit bundle with respect to the

data (P, ρH, VH). For rotationally symmetric Higgs potentials the orbit bundle can be

thought of as a sphere sub-bundle of the Higgs bundle.

Each section V ∈ Γ(ξorb) is in one-to-one correspondence with a smooth principal

H bundle Q over M

πQ : Q −→ M
q �→ x. (10)

The structure group H ≡ Uelm(1) of Q is isomorphic to the isotropy group I(z0) ⊂ G

of the minimum z0 ∈ C2

I(z0) ≡
{
exp(θ[T + iy]) |T = T(z0) ∈ su(2), tr[(T + iy)2] = −n2, n ∈ N

}
. (11)

Moreover, there is an equivariant embedding of principal bundles ι : Q ↪→ P, such

that (ι,Q) is an H-reduction of P (see, [Koba/Nomi’96]). For a discussion of sponta-

neously broken gauge theories in terms of bundle reductions see, for example, [Trau’80],

[Blee’81], [Choq/deWit’89] and [Ster’95]. We call the principal H bundle Q the “electro-

magnetic gauge bundle” with respect to the “vacuum section” V. The relation between

a section V of the orbit bundle and the appropriate H-reduction (ι,Q) of P is given by

V(x) = [(ι(q), z0)]|q ∈ π−1
Q (x) for all x ∈ M.

Each V ∈ Γ(ξorb) gives rise to a distinguished subset of principal connections on P.

They are determined by the requirement

dAV = 0, (12)

where A ∈ A(ξH) is the corresponding associated connection on ξH. The connections

on P which satisfy the condition (12) are called compatible with the vacuum section V
(resp. with the H-reduction (ι,Q) of P). These connections have the crucial property

that they are flat when restricted to the “physical space-time” Mphys := V(M) ⊂ EH.

A YMH pair (A,Φ) ∈ A(ξH)×Γ(ξH) is called a “vacuum (pair)” iff Φ = V is a vac-

uum section and A = Θ is associated with a flat connection on P which is compatible

with V. Each vacuum defines an absolute minimum of the energy functional (if globally
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defined) that is associated with the well-known YMH functional. The moduli space of

gauge classes of vacua is denoted by Mvac. The latter turns out to be non-trivial iff P is

trivial. In this case, Mvac can be canonically identified with H1
deR

(M). In other words,

the moduli space of the electroweak vacua only depends on the topology of space-time.

In particular, if M is simply connected then there is a natural vacuum (pair) (Θ0,V0)

which generates Mvac. This vacuum corresponds to the vacuum usually introduced in

perturbation theory via the “shift” (1).

Since Mvac = ∅ for non-trivial P, we have to appropriately generalize the notion of

the moduli space of electroweak vacua. This will be achieved by use of the fact that

Mvac �= ∅ iff electromagnetism is symmetric with respect to charge conjugation. Before

we introduce a generalization of Mvac, however, we shall prove in the next section that

Dirac’s quantization condition of electric charge fully determines the topological struc-

ture of the electroweak gauge bundle.

3 The topology of the electroweak gauge bundle

When charge conjugation is taken into account the existence of vacuum sections is

equivalent to the triviality of the electroweak gauge bundle. We therefore consider in

this section the situation where charge conjugation is spoiled. Physically, this is the

case if an absolute magnetic field exists which, for example, is generated by a magnetic

monopole. We show that in the case of the Standard Model the Higgs boson may also

provide such a state.

Proposition 3.1 Let Q be a principal H bundle over a smooth manifold M and let

λ : H ↪→ G be a homomorphism which is also a smooth embedding of Lie groups. Up

to isomorphism there is a unique principal G bundle P over M together with a smooth

embedding ι : Q ↪→ P such that (ι,Q) is an H-reduction of P.

Proof: For this let {(Ui, ϕi) | i ∈ Λ} be a family of local trivializations of the principal

H bundle Q : πQ : Q → M. That is, Ui ⊂ M is an open subset such that M ⊂ ∪i∈ΛUi,

and

ϕi : π−1
Q

(Ui) −→ Ui × H
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p �→ (x := πQ(q), hi := ϕi,x(q)) (13)

is an equivariant diffeomorphism for all i ∈ Λ.

Accordingly, for Ui ∩ Uj �= ∅ we denote by the mappings

hij : Ui ∩ Uj −→ H

x �→ ϕi,x(q) (ϕj,x(q))
−1 (14)

the transition functions with respect to the local trivialization {(Ui, ϕi) | i ∈ Λ}.

For all i, j ∈ Λ such that Ui ∩ Uj �= ∅ we define smooth mappings

gij : Ui ∩ Uj −→ G

x �→ λ(hij(x)) (15)

which satisfy the co-cycle condition gij(x)gjk(x)gki(x) = e for all x ∈ Ui ∩ Uj ∩ Uk.

Therefore, up to equivalence there is a unique principal G bundle P : πP : P → M
with local trivialization {(Ui, ψi) | i ∈ Λ} such that gij(x) = ψi,x(p) (ψj,x(p))

−1 .

We define a smooth family {(Ui, ιi | i ∈ Λ)} of mappings

ιi : π−1
Q

(Ui) −→ π−1
P

(Ui)

q �→ ψ−1
i (x, λ(ϕi,x(q)))|x = πQ(q). (16)

Since λ is an embedding, these mappings have maximal rank and fulfill ιi(q) = ιj(q)

for all q ∈ π−1
Q

(Ui ∩ Uj). Therefore, they define a global immersion ι : Q → P which is

a homeomorphism onto ι(Q). Moreover, since λ is a homomorphism, the embedding ι

is equivariant and fulfill πP ◦ ι = πQ. Consequently, (ι,Q) is an H-reduction of P and

thus P a G-extension of Q. Any other G-extension P ′ must be equivalent to P, for the

structure functions of P ′ are equivalent to those of P. �

Therefore, for given data (Q,G, λ) there is (up to equivalence) a unique G-extension

P of the principal H bundle Q. Since every principal U(1) bundle is characterized by

an integer we may apply the Proposition (3.1) to prove our main result.
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Proposition 3.2 Let (P, ρH, VH) be the geometrical data which specifies the electroweak

interaction of the (minimal) Standard Model as a YMH gauge theory. Up to equivalence

the topological structure of the electroweak gauge bundle is fully determined by the

hypercharge of the Higgs boson. Moreover, for a given hypercharge y > 0 there are

2|n| + 1 gauge inequivalent sections of the orbit bundle where

y =

√
1
2

(
n2 − 1

2

)
, n ∈ Z

∗. (17)

Proof: To prove the statement we make use of the fact that every principal U(1)

bundle is characterized by its Chern number n ∈ Z, where n=0 corresponds to the

trivial bundle (see [Free/Uhle’84]). For a given hypercharge y ∈ Q, the definition (11)

of the isotropy group of a minimum z0 ∈ C2 of the Higgs potential VH determines an

integer n ∈ Z∗ ≡ Z\{0} which is unique modulo Z2. For example, one may assume that

z0 = (0, 0, 0, r0) with r0 :=
√

µ2/2λ and T(z0) = iτ3/2 ∈ su(2) to prove the relation

(17). In the case where y < 0, we may replace y by −|y| in the definition of the

hypercharge. So, we may assume y > 0 without loss of generality. The relation (17)

is Dirac’s quantization condition of electric charge in terms of the hypercharge of the

Higgs boson. Modulo Z2, this condition fixes a specific principal Uelm(1) bundle Q over

M, where h ∈ Uelm(1) is given by h = det exp(θ[T + iy]). Accordingly, the embedding

λ reads

λ : Uelm(1) ↪→ SU(2) × U(1)

h = exp(inθ) �→ (exp(θT), exp(iθy)). (18)

Therefore, the structure of the electroweak gauge bundle P is fully determined

by the hypercharge of the Higgs boson. Moreover, if the case n=0 is taken into ac-

count one obtains 2|n|+1 Uelm(1)−reductions of the principal SU(2)×U(1) bundle P.

�

The case n=0 is special in several respects and has been thoroughly discussed in

[Tolk’03(c)]. For instance, as already mentioned, the corresponding electromagnetic

gauge bundle equals the trivial principal Uelm(1) bundle independently from the topol-

ogy of space-time

pr1 : M× Uelm(1) −→ M
q = (x, h) �→ x. (19)
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This electromagnetic gauge bundle is the only one which possesses a flat connection.

Moreover, it has a natural flat connection that is induced by the Maurer-Cartan form on

Uelm(1). Since the electroweak gauge bundle is trivial too, the corresponding embedding

ι : Q ↪→ P is given by

ι : M× Uelm(1) ↪→ M× (SU(2) × U(1))

(x, h) �→ (x, λ(h)). (20)

Accordingly, the vacuum section V0 reads

V0 : M −→ M× orbit(z0)

x �→ (x, z0). (21)

Indeed, it has been shown that, for the trivial electroweak gauge bundle, any other

vacuum section V must be gauge equivalent to the canonical section V0. It follows that

Mvac � H1
deR(M), which turns out to be equivalent to the existence of charge conjuga-

tion. Therefore, the case n=0 corresponds to ordinary electromagnetism generated by

the ground state V0 of the Higgs boson.

Since for n �= 0 the corresponding electromagnetic gauge bundles possess no flat

connection, we call the appropriate ground states of the Higgs boson “magnetically

charged”. They spoil the symmetry of ordinary electromagnetism under charge conju-

gation like a magnetic monopole. However, the Z2−symmetry of charge conjugation is

hidden in the two-to-one relation (17) between the Chern number and the hypercharge

of the Higgs boson. Physically this means that it is possible to absolutely distinguish

between positive and negative electrically charged particles if we know the gauge class

of the ground states of the Higgs boson. We stress that for n �= 0 the electroweak gauge

bundle P is non-trivial and possesses no flat connection.

When the Gell-Mann-Nishijima relation between the hypercharges and the electric

charges of the fermions is taken into account, the hypercharge of the Higgs boson yields

y=1/2 (c. f., for instance, [Ait/Hey’82], [Nach’89] or [Wein’01]). Thus, in the case of

the (minimal) Standard Model the Higgs boson has exactly three gauge inequivalent

ground states, which are parameterized by the Chern numbers n = 0,±1. These ground

states correspond to the lowest non-vanishing electric charge a particle may have.

Let O ∈ Γ(ξH) be the zero section and Γ∗(ξH) ≡ Γ(ξH)\{O}. Then, the Proposition

(3.2) shows that the Higgs bundle ξH has at least 2|n| + 1 non-vanishing sections.
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Therefore, Γ∗(ξH) �= ∅, and for each Φ ∈ Γ∗(ξH) there is a unique n ∈ Z and a non-

vanishing function ϕ ∈ C∞(M) such that

Φ : M −→ EH

x �→ ϕ(x)V(x). (22)

Consequently, also for n �= 0 every non-vanishing section of the Higgs bundle is fully

determined by its length. This is but a geometrical variant of what is usually refered

to as “unitary gauge”. In fact, despite the chosen terminology the unitary gauge is not

a choice of gauge (which may not exist globally). Instead, it refers to the moduli space

of ground states of the Higgs boson.

4 Magnetically charged vacua and monopoles

As discussed in the last section, ordinary electromagnetism corresponds to the n=0

ground states of the Higgs boson. Moreover, the moduli space of electroweak vacua is

related to the topology of space-time via the isomorphism Mvac � H1
deR

(M).

As we have already mentioned, in the case of n �= 0 the electroweak gauge bundle

possesses no flat connection and thus Mvac = ∅. One may therefore ask for an appro-

priate generalization of Mvac. For this we call a solution Fmag ∈ Ω2(M) of the Maxwell

equations a “Dirac-Higgs (DH) monopole”, provided it satisfies the following condi-

tions: a) [Fmag]/2π ∈ H2
deR

(M) is integral; b) the Chern number n of the isomorphism

class of principal U(1) bundles defined by Fmag is either zero or related to the hyper-

charge of the Higgs boson via Dirac’s quantization condition (17); c) for each x ∈ M
there is a geodesic normal coordinate system (U, ϕ) such that i∂tFmag = 0, where ∂t is

the (local) time-like vector field that is induced by (U, ϕ). In particular, for n=0 it is

assumed that condition c) holds true for every geodesic normal coordinate system. We

let Mmag be the moduli space of all gauge classes of YMH pairs (A,V) ∈ A(ξH)×Γ(ξH)

such that A is associated with a connection on P which is compatible with the vacuum

section V and whose curvature corresponds to Fmag.

The condition c) physically means that there is always an inertial reference sys-

tem (U, ϕ) such that with respect to this system Fmag is purely magnetic: ι∗tFmag =

Bt ∈ Ω2(Σt) with ιt : Σt ↪→ U ⊂ M is defined by the local space-like hyper-surface
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t = const.. Moreover, for n=0 we have Fmag = 0.

For n �= 0 we call Mmag the “(magnetically) charged sector” of the moduli space of

the electroweak vacua. Accordingly, for n=0 we call Mmag = Mvac the “(magnetically)

uncharged sector” of the electroweak vacua. Note that the charged sector of Mmag also

depends on the geometry of space-time1.

To present an example which demonstrates the non-triviality of the magnetically

charged sector of Mmag we consider the exterior Schwarzschild space-time (M, gM). Here,

M � R × [r0,∞[×S2 with r0 ∈ R+ the Schwarzschild radius. Consequently, M ≈ S2

where the latter is a spacelike sub-manifold of (M, gM). Since the pull-back of gM to this

sub-manifold equals the Riemannian standard metric on S2 ⊂ R3 it is straightforward

to check that

Fmag = n
2 sinϑ dϑ ∧ dϕ (23)

defines a Dirac-Higgs monopole provided n �= 0 satisfies Dirac’s quantization condition

(17). The corresponding electromagnetic gauge bundle (Q, ι) over (M, gM) is equivalent

to the (generalized) Hopf bundle (see, for instance, [Trau’80], [Trau’84] and [Nab’00]

for a very readable approach)

πn : S3/Zn −→ S2, (24)

where Zn := {e2kπ i/n | k = 0, 1, . . . , n − 1} ⊂ U(1) and πn generalizes the famous Hopf

map π1 between spheres (c. f. [Hopf’31]; For a recent discussion of the various physical

meanings of the Hopf fibration see [Urb’03]).

In classical electrodynamics the DH monopole field (23) is regarded as being created

by a massive magnetically charged pointlike particle (“Dirac monopole”) moving in

Minkowski space-time R1,3. In this context the monopole field Fmag ∈ Ω2(M) is known

as the Dirac monopole field on M := R1,3\Γ, where Γ ⊂ M denotes the worldline

of the Dirac monopole, see [Dir’31]. However, in the context of the Standard Model

the physical interpretation of (23) is different. Notice that in either case (gM, Fmag) is

not a solution of the combined Einstein-Maxwell equations. Also notice that the DH

monopole has finite energy since the Schwarzschild radius r0 acts like an ultra-violet

cut-off. Indeed, the energy-momentum current τ ∈ Γ(End(τM)) of the DH monopole

1We would like to thank G. Naber for an appropriate hint.
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field (23) reads τ = n2

2r4 IdTM. Hence, the “vacuum energy” Λ is given by the magnetical

analogue of the electrostatic energy of an electrically charged sphere

Λ = 4π
g2

r0
, (25)

where g ≡ n/2 is the magnetic charge of the DH monopole. Notice that the vacuum

energy either is zero or uniquely determined by the Schwarzschild radius and the hy-

percharge of the Higgs boson, i.e by the topology of space-time and the electroweak

gauge bundle. In particular, in the case of the Standard Model one has Λ ∈ {0, π/r0}.

The given example of a DH monopole also demonstrates that the electroweak gauge

bundle P is nontrivial in general. However, to determine the structure of the moduli

space Mmag of electroweak vacua for more general space-times (M, gM) is certainly a

major challenge. The geometry of (static) monopoles (in Minkowski space-time) is thor-

oughly discussed, for example, in [Atiy’79] and [Atiy/Hit’88] (see also, in [Trau’77]).

However, the point here is to not regard magnetic monopoles as individual “classi-

cal (point-like) particles” in space-time but instead to consider monopoles as specific

ground states of the Higgs boson whose realizations depend on both the topology and

the geometry of space-time. Indeed, the notion of a world line Γ ⊂ M is a purely classi-

cal concept which seems to make no sense within (quantum) field theory. Also, Dirac’s

famous quantization condition qn ∈ Z of electric charge q ∈ Q (again, when measured

in appropriate units, see again [Dir’31]) holds true only if the appropriate monopole

bundle (which is characterized by n ∈ Z∗) is identified with the electromagnetic gauge

bundle. However, this is consistent with the Standard Model only if the monopole

bundle is regarded as a specific Uelm(1)−reduction of the electroweak gauge bundle P.

That is, the monopole is identified with a specific gauge class of ground states of the

Higgs boson which are not gauge equivalent to those considered in perturbation theory.

In [Tolk’03(c)] it has been shown that, with respect to any electroweak vacuum,

the Yang-Mills bundle decomposes as

ξYM = ξelm ⊕ ξZ0 ⊕ ξW±. (26)

Here, respectively, ξelm and ξZ0 are trivial line bundles which geometrically represent an

(asymptotically free) photon and an electrically neutral massive weak vector boson. In

contrast, ξW± := τ ∗
M
⊗ ξW, with ξW ⊂ ad(P) denoting a rank two vector bundle, simul-

taneously represents both of the electrically charged and massive weak vector bosons
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W± iff electromagnetism is symmetric with respect to charge conjugation. Of course,

one may expect that only electrically charged particles permit a physical distinction

between the magnetically charged and uncharged ground states of the Higgs boson.

With respect to a magnetically charged vacuum, the (massive) vector bosons W+ and

W− are no longer charge conjugate to each other due to their electromagnetic inter-

action with the corresponding DH monopole. Geometrically, this is expressed by the

non-triviality of ξW and that the asymptotically free states of the W±−bosons have to

satisfy the field equation (see also eq. 35 in [Tolk’03(c)])

δAdAW
± + m2

WW
± = 0. (27)

Here, respectively, dA and δA is the exterior covariant derivative and its formal adjoint

with respect to a DH monopole connection A and W± ∈ Γ(ξW±) is (the electrically

charged part of) a smooth “fluctuation” of A. Moreover, m2
W ∈ R+ is a non-vanishing

eigenvalue of the Yang-Mills mass matrix2 V∗M2
YM

∈ Γ(End(ξYM)) with [(A,V)] ∈ Mmag.

However, in the case of a magnetically charged vacuum the Z2−symmetry of charge

conjugation is restored in the two-to-one correspondence between the charge of the

vacuum and the hypercharge of the Higgs boson. Of course, it is interesting to also

ask for appropriate physical effects which permit to distinguish between the gauge in-

equivalent ground states of the Higgs boson. Though we do not want to discuss this

question here, we would like to stress again that such an interaction can only occur for

a topologically non-trivial space-time. Moreover, such an interaction also depends on

the space-time geometry, i. e. on the gravitational field. Consequently, appropriate

physical effects caused by the interaction of the electrically charged weak vector bosons

(resp. fermions) with the electroweak vacuum may provide the possibility to gain some

insight into the topology and the geometry of space-time.

5 Conclusion

We have shown that the topological structure of the electroweak gauge bundle either

is trivial or fully determined by the hypercharge of the Higgs boson. This is a geo-

metrical variant of Dirac’s quantization condition within the realm of the electroweak

interaction. For this it is crucial, however, that in the case of the (minimal) Standard

2For the terminology used please see loc site.
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Model “charge comes with mass”. Indeed, it is a remarkable fact that no massless elec-

trically charged particles are known to exist in nature. In general, the moduli space

of the electroweak vacua consists of a magnetically charged and an uncharged sector.

The uncharged sector corresponds to ordinary electromagnetism. It is determined by

the assumption that the electrically charged massive weak vector bosons are charge

conjugate to each other. The uncharged sector is fixed by the topology of space-time

via the first de Rham cohomology group of M. In contrast, a necessary condition

for the existence of the charged sector (i. e. the existence of DH monopoles) is the

non-triviality of the second de Rham cohomology group of space-time. Moreover, a

charged ground state of the Higgs boson can only exist if it also fits with the geometry

of space-time.

In the case of the (minimal) Standard Model the physical Higgs boson geometrically

appears as a fluctuation of any of the three gauge inequivalent ground states of the

Higgs boson which are characterized by the Chern numbers n = 0,±1. These ground

states correspond to the lowest possible non-vanishing electric charge a particle may

assume. However, the magnetically charged ground states n = ±1 can be realized only

if space-time possesses a non-trivial topology as, for example, in the case of a rota-

tionally symmetric space-time. In this case, the corresponding electromagnetic gauge

bundles are equivalent to Hopf fibrations. The appropriate DH monopoles generalize

the well-known Dirac monopoles of magnetic charge g = ±1/2 to the electroweak in-

teraction within the (minimal) Standard Model. This example may also motivate the

terminology of “magnetically charged electroweak vacua”. In general, these topolog-

ically non-trivial ground states of the Higgs boson yield electric charge quantization

analogous to ordinary Dirac monopoles. Clearly, whether these ground states of the

Higgs boson can be actually realized for a general space-time manifold (M, gM) needs

a more thorough analysis of the space of solutions Fmag ∈ Ω2(M) of the corresponding

Maxwell equations. Moreover, like in the usual discussion of magnetic monopoles also

the definition of DH monopoles does not refer to some field equation of gravity. Of

course, this seems unsatisfying from a physical viewpoint. However, to mathematically

discuss the structure of the correspondingly enlarged moduli space of electroweak vacua

is obviously even more challenging. In any case, the geometrical viewpoint presented

here with respect to the electroweak interaction of the (minimal) Standard Model sug-

gests that the mechanism of spontaneous symmetry breaking may provide a better

understanding of the link between topology and geometry.
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