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Introduction:
In the following we give an explicit estimate on the modulus of continuity of the
tangent plane of a surface whose mean curvature is controlled.

The control is of the form e. g.
Hr =0z +[f" = fIns

with [z [v|*+ [ |V f| < K. Here F denotes the surface, nz its normal Hy its mean
curvature.

Controlling the modulus of continuity of the tangent plane means that sequences
of surfaces with uniform bounds of the above type will converge to rectifiable surfaces
with multiplicity — so called integer rectifiable varifolds.

The method of proof is very close to Allard’s original rectifiability proof, making
the estimates explicit though. It carries over verbatim to varifolds with lower density
bounds. This and an expanded version of the proof will appear elsewhere. Here we
stay with surfaces, the only tools from geometric measure theory used are the Vitali
covering theorem and the monotonicity formula.

A motivation for the result is a proof that implicit time discretization leads to
solutions of mean curvature flow satisfying Brakke’s energy decay condition. Also
that will appear elsewhere.

The result:
Let F be a d-dimensional surface in {2 C R” without boundary in 2. Suppose that
its mean curvature H satisfies:

/ Hng€ = / (€v + Tr(ADE))dp for all £ € CL(Q, ™)
F Q

where Hnx denotes the mean curvature vector, u is a Radon measure and v and A
satisfy estimates
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@ is another Radon measure, F' > 0, F(0,-) = 0, 0,F > 0 and with ¢(L) =
inf{R~¢+ F(R,L)|R > 0}limy_.., L™ g(L) = 0.

Then for every M > 0, Q cc Q, there exists an exceptional set K, C Q
with [i sl < W(M) —y e 0. w depends only on F, [z 1, [dj, such that for
y1, Y2 € F\Ky, Pi, Py the orthogonal projections on the tangent planes at yi, yo

[Py — Py < M|In|y; — || 1.

Remark: )
If [ Hngé = [rvé + [r(f+ — [ Ing€, F = 00N Q,

Ll+n+ [dvrii+lvrh<k
then F satisfies the condition. In this case

p=H"r+H' p= (o] + DH"z+ [ fT1+ v fIH,
A= ftxg+ (1 —xg)f and by the Poincaré estimate

R
o " Al < R_”/ A+1In <—> sup Tl_”/ I+ [~
By () 4 Br(z) 0 By () <| vilrly |)

o<r<R
i — R
e Flo,L)=o(ln +1)L.

Sketch of the proof:

We start with the monotonicity formula for u(g,z) = 07 [z <(zgy)) dy where
@20,@’§O,<p(3):1f0r0§s§%andgp(s)zOforle:
- [z —yI\ |z —y| =y |
M Ou(o,x) = —le/ﬁp/< Id— P, dy
( ) e ( ) P 0 0 ( y) |l‘ o y‘

r—y (lz—yl
+/jEanQd+1<p< . )dy

Here Hng is the mean curvature vector, P, the projection on the tangent space to
F aty.



By the Vitali covering theorem we can estimate the mean curvature term outside

a set K1(L) of the form K;(L) = UB,,(z;) with " ¢¢ < L™ [ dp by:

x_
/an d+1g0<| y‘)gcﬁgF(g,L)

0

More precisely if z ¢ K{(L) or x = x;, 0 > 0;

ouuto) verte o 191 (50 ) ED e mop =3

The trick is to integrate this in equality with respect to x and p to get for R <
dist(§2,0Q)

—y|™|(1d - P)

(M) (Rd /f 1) L aF(R L) > e /B

r(Y)NF\K1(L) /flﬁf =

y\‘

Interchanging the order of integration outside a set K3(L;) of measure proportional
1

to I,

2

(Id — )~ Y| < L, fory € QN F\Ka(Ly)

o -yl

now by another use of Vitali’s covering theorem and the estimate

/ 1< ozdg‘ijg(L)/ 1.
F\Bag, («) F

(M) v —y|

/BR(y)ﬁf\Kl(L)

The set

Ks(e, L) = {y2| there exists p > 0 1> 5/ 1}
B,(y)NK1(L)NF Bgo(y)NF

< (et D) ([ 1) ([ da
FNKs(e,L) € F

Now using the transversality estimate:

can be estimated

If |P,, — P,,| > 7 there exists a d — 1 dimensional space such for the projection
7 onto this subspace

N

|<fd—w>x|2§¥[|ud Py)al? + |(Id = P,,)af’]



and adding (M7,) for y; and y, one gets with y = %(yl +y2), p=|y1 — 2|

In(R 9
(Zép)@lp)d / (1d—m Y=t | < bt ol))
1=0 By, (yNF\K1(L) ly —z|| — 74

Split By ,(y) into Ble(y)m{(]d—ﬂ')ﬁ |* < ¢} and the rest. Using the monotonicity
formula in By ,(y) N F\K;(L) again,

InR/p I I
> ((Ql,o)d (/ 1—co ) — c6F (2" p, L) + S F(2'pé, L)) < 6%92()
=0 fﬁ(Bgzp(y)\KﬂL) fﬂBQZP(y) v 5
If y1 ¢ Ks(e, L) then

InR/o
> <(2l,0)_d </m 1— (e +cd) /mm 1) — F(2"p, L) + F(2'ps, L)) =0(v"

=0

Choosing ¢, d appropriately we get a contradiction if v* = O(Wll)')

This proves the theorem.
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