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We generalise the Langevin equation with Gaussian white noise by replacing the velocity term by
a local fractional derivative. The solution of this equation is a Lévy process. We further consider
the Brownian motion of a fractal particle, for example, a colloidal aggregate or a biological molecule
and argue that it leads to a Lévy flight. This effect can also be described using the local fractional
Langevin equation. The implications of this development to other complex data series are discussed.
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Exactly 100 years ago Einstein [1] proposed the the-
ory of Brownian motion which marked the birth of the
field of stochastic processes and has worked as a guiding
principle in modelling of many fundamental as well as
applied phenomena in physical, chemical and biological
sciences (see reviews [2, 3] and references therein which
document its impact). Present interest in complex high
dimensional systems, in wide ranging fields, whose dy-
namics may not be completely known has given rise to
the study of many irregular processes. Experience shows
that, in spite of the lack of understanding of the laws gov-
erning the phenomena, they can be successfully modelled
using stochastic processes. As a result new processes are
being introduced [4]. In the past, the Gaussian process
used to be the main tool employed to this end. But re-
cently, owing to the frequent occurrence of anomalous
diffusions [5] (where < x2 >∝ tα, α �= 1), two main gen-
eralisations of Gaussian process, viz., Lévy processes [6]
and fractional Brownian motion (fBm) [7], have turned
out to be of importance. These processes respectively re-
lax two important assumptions in the central limit theo-
rem that of finite variance and independence. A process
whose second moment diverges but the first moment is
finite falls into the domain of attraction the Lévy process
of index µ, with 1 < µ < 2, where µ characterises the
power law tail of the probability distribution function
and the one with even the first moment infinite corre-
sponds to the Lévy process with 0 < µ < 1. It is now
known that many economical time series are better mod-
elled by a truncated Lévy flight [8]. Also in biological
physics, modern high speed imaging techniques have un-
covered many interesting anomalous diffusive behaviours
of large biological molecules [9].

On the other hand, derivatives and integrals of non-
integer order [10, 11] have been found to be useful in
successfully describing scaling processes. The realm of
applications of such a fractional calculus is fast expanding
with ever new developments rapidly taking place in the
field of statistical and nonlinear physics over the last few
years [12–19]. Fractional derivatives were used in the def-
inition of fBm [7, 20] and the fractional Langevin equa-

tion has been shown to give rise to fBm [21]. Many re-
searchers have used the diffusion equation involving frac-
tional derivative in space which describes a Lévy process
and there are studies wherein the Gaussian white noise in
the Langevin equation is replaced by a Lévy noise [22–26].
This models the anomalous behaviour of the environment
or the heat bath. But there is no generalisation of the
Langevin equation in which one naturally obtains a Lévy
process from usual white noise. That is the heat bath is
normal but the system is irregular and there is no mem-
ory. It has been shown, however, that the Lévy flights
can be obtained from continuous time random walks by
introduction of an operational time [27].

In this letter we generalise the Langevin equation by
incorporating the local fractional derivatives and show
that it leads to the Lévy flights from usual white noise.
We then consider, as an example, the Brownian motion
of rigid irregular particles, a study possibly relevant for
aggregates and biological molecules. We argue that the
fractal nature gives rise to the Lévy flights. We describe
this phenomena using the local fractional Langevin equa-
tion. We further point out the importance of this for-
malism in describing irregular processes which arise in
econophysics.

One way of defining the fractional derivative is through
the so called Riemann-Liouville fractional derivative [10,
11]. For q, the order of the derivative, between zero and
one it is given by:

aDq
xf(x) =

1
Γ(1 − q)

d

dx

∫ x

a

f(y)
(x − y)q

dy. (1)

Clearly this is nonlocal and depends on the lower limit
a. It is interesting to note that it is this dependence on
the parameter, which led to confusion in different ways
of defining a fractional derivative towards the end of 19th
century and hence possibly delayed its application, is now
becoming important. The value of a is usually dictated
by the problem one is investigating. In some cases it is
appropriate to put it equal to zero and in some other it
is taken to be ±∞. In the latter case it is called Weyl
derivative. Another choice of the lower limit is made in
the following definition called the Local fractional deriva-
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tive (LFD) defined as follows [28, 29]:

f (q)(x) = lim
x′→x

x′Dq
x(f(x) − f(x′)) 0 < q < 1. (2)

where we introduce the notation that the superscript in
the brackets on the LHS denotes the LFD of that order.
This definition naturally appears in the local fractional
Taylor expansion [28] giving it a geometrical interpreta-
tion. It should be noted that the extra limit in the defini-
tion of the LFD makes it very different from other defini-
tions of fractional derivatives and some of its properties
are very different from the non-local versions of fractional
derivatives (see [30–34] for more mathematical properties
and some applications of the LFD). One important dif-
ference is that though it reduces to the usual derivative
when q = 1, the LFD is not an analytic function of q for
a given function. For example, if the function is smooth
then the LFD of any order q less than one is zero. In fact,
in general for any continuous nondifferentiable function
there exists a critical order of differentiability between
zero and one below which all the derivatives are zero [51]
and above which they do not exist. This critical order
of differentiability is equivalent to the local Hölder expo-
nent or the local power law exponent [29]. and for this
formalism to yield meaningful results we should work at
the order which is equal to this exponent. So it can be
said that the LFD is a nonanalytic extension of the usual
derivative. This means that the LFD signals an emer-
gence of a new calculus with its new rules to which one
should get accustomed. This is much in the same way
as in the case of, for example, the Ito calculus. It should
be noted that the LFD characterises the local scaling
whereas the nonlocal fractional derivatives are useful to
study asymptotic scaling. Owing to these complimentary
roles played by these two versions of the definitions it can
not be ruled out that in some applications a combination
of the two is indispensable. The limit in eqn (2) which
is akin to the limit in the renormalization group trans-
formation, in fact, bestows the LFD a physical interpre-
tation. It can be used to relate and study the dynamics
of renormalised quantities. Carpinteri and Cornetti [33]
used it to relate renormalised stress and strain when the
stress is concentrated on a singular set.

The next step is to consider the equations involving
the LFD. The simplest such equation is

f (q)(x) = g(x) (3)

where g(x) is a known function and f(x) an unknown.
Using the local fractional Taylor expansion [28] its solu-
tion can be written as a generalised Riemann sum giving

f(x) =
∫

g(x)dqx = lim
N→∞

N−1∑
i=0

g(x∗
i )

(xi+1 − xi)q

Γ(q + 1)
(4)

where g(x∗
i ) is an appropriately chosen point in the in-

terval [xi, xi+1]. Such integrals should be useful for in-
tegrating physical quantities over a fractal boundary, for

example, a current passing through an interface. The or-
der of the integral, in this case, of course being equal to
the Hölder exponent of the fractal curve. For q < 1, if the
function g(x) is, say, nonnegative in some interval then
the above sum grows in the limit [52]. Yet, two classes of
functions g(x) can be identified which will yield a nontriv-
ial function f(x) as a solution. The first class corresponds
to the functions which have fractal support [35]. Then if
q = α the dimension of the support of the function the
sum above converges since only a few terms contribute
to the sum giving rise to a finite solution. This func-
tion, called the ”devil’s staircase”, changes only on the
points of the support of g(x) and is constant everywhere
else. We denote this solution by Pg(x). The second class,
which is a main focus of this work, consists of rapidly
oscillating functions which oscillate around zero in any
small interval. These oscillations then result in cancella-
tions again giving rise to a finite solution. A realisation of
the white noise is one example in this class of functions.
This immediately prompts us to consider a generalisation
of the Langevin equation which involves LFD and g(x)
is chosen as white noise.

So we consider a generalisation of the Langevin equa-
tion [36] in the high friction limit where one neglects the
acceleration term and replaces the first derivative term
by the LFD to arrive at

x(α)(t) = ζ(t), (5)

where < ζ(t) >= 0 and < ζ(t)ζ(t′) >= δ(t − t′) the
Dirac delta function. The solution of the above equation
follows from Eq. (4). Heuristically it can be seen that

< x(t) > = tα lim
N→∞

N−α

Γ(α + 1)
N1/2 (6)

and therefore the average is zero if α > 1/2 and it does
not exist if α < 1/2. Now we consider the second mo-
ment.

< x(t1)x(t2) > =
∫ t1

0

∫ t2

0

δ(t′1 − t′2)d
αt′1d

αt′2 (7)

which exists only when α = 1. In order to see this system-
atically we generalise the concept of the delta function.
The usual Dirac delta function is defined as the deriva-
tive of the Heaviside step function (θ(x) = 0 for x < 0
and 1 for x > 0); δ(x) = θ′(x). Here two things can be
generalised, first the derivative can be replaced by the
LFD of order γ and second, the Heaviside function can
be replaced by a scaling function θ̄(x) = xβ for x > 0 and
0 for x < 0 and 0 < β < 1. As a result, our generalised
delta function is defined as δ(x; γ, β) = θ̄(γ)(x − y)|x=y.
It follows from this definition that

∫
δ(x; γ, β)dαx = 0 for

α > γ − β and ∞ when α < γ − β. Now δ(x) = δ(x; 1, 0)
leading to the above conclusion. This shows that when
0 < α1/2 both the first and the second moments di-
verge whereas when 1/2 < α < 1 only the second mo-
ment diverges. This implies that the above process is in
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the domain of attraction of a Lévy process of index 2α
for α < 1. This brings forth some interesting perspec-
tive. The generalisation of the Langevin equation using
non-local fractional operators gives rise to the fractional
Brownian motion whereas the one using the local frac-
tional operator results in the Lévy process.

As an application of this formalism we consider the
Brownian motion of a rigid fractal particle. Such con-
sideration is useful in colloids as well as biological sys-
tems [37]. Usually theoretical studies of Brownian mo-
tion are restricted to spherical particles in which case
one has, from the Stokes’ law, the formula for frictional
force in terms of the viscosity and one also assumes that
the displacements well separated in time are not corre-
lated. Any deviation from the sphericity makes matters
complicated [38]. Berry [39] studied velocity of fractal
flakes falling under the gravity. He assumed that the
cluster entrains the air inside it and used the Stokes’
law. We do not make any such assumption in the fol-
lowing. Also, there exists a formal theoretical treatment
of the Brownian motion of particles of arbitrary shapes
using hydrodynamical approach [40]. However it is not
valid for fractal particles since one needs to solve fluc-
tuating hydrodynamical equations with boundary condi-
tions emanating from the surface of the particle and in
the process one needs to integrate the normal compo-
nents of the fluctuating stress tensors over the surface.
This can not be carried out for a fractal particle since
the normal can not be defined on a fractal boundary and
integrating over a fractal surface would require integrals
as in equation (4) necessitating a new approach using
the present calculus with the order of the derivative be-
ing the local Hölder exponent of the surface. Here we
model the irregularity of the suspended particle by the
fractality and first, using purely statistical arguments,
argue that the Brownian motion of such irregular parti-
cles leads to the Lévy flights. Then we arrive at the same
conclusion starting from above local fractional Langevin
equation. The essential step is to compare the distri-
bution of the resultant force acting along the center of
mass on a particle with fractal boundary with the lateral
dimension D to that of a spherical particle of diameter
D. We treat the problem in two dimensions. First, we
consider the ideal situation wherein the boundary is a
mathematical fractal without any lower cutoff and the
surrounding fluid consists of point particles. We ignore
any lower length scales in the problem. In a small time in-
terval ∆t, N particles collide with a spherical Brownian
particle whereas for a particle with a fractal boundary
Nd particles, with d, 1 < d < 2 being the dimension
of the fractal boundary, will impart their momentum to
the fractal particle. Given the fact that the case with a
spherical particle gives rise to the normal diffusion with
finite variance leads us to the conclusion that the fractal
particle, under the same assumptions, will undergo diffu-
sion with much larger fluctuations leading it to the basin

of attraction of a Lévy process. More precisely, the frac-
tal particle will undergo the same number of collisions in
time t as the spherical particle would undergo in time td

making it a Lévy flight with index 2/d.
One can use the above formalism of the local fractional

Langevin equation to describe this phenomenon. In order
to do this we consider the x-component of the displace-
ment of the particle as a function of time and hypothesise
that the frictional force is proportional to x(1/d)(t), which
we call the “renormalised” velocity instead of the usual
velocity which is the case when d = 1. Here 1/d is again
the Hölder exponent of the x-component of the fractal
boundary [41]. A way to motivate this is to note that
the friction increases with the irregularity of the particle
and this diverging situation can be remedied by renor-
malising the velocity. We use this in the Langevin equa-
tion and again assume the high friction limit and neglect
the acceleration term. In this way we arrive at the equa-
tion (5) and its solution we know is the Lévy process with
index 2/d. It is clear that, since 1 < d < 2, the resulting
process has finite mean.

Clearly we have made many assumptions in order to
understand the essence of the problem. Firstly we have
assumed a strict mathematical boundary which is irregu-
lar down to the finest length scales. In practice, the sys-
tems will have a lower cutoff arising from the smoothen-
ing of the boundary at the lower length scales or the
finite density of surrounding fluid which will give rise
to a smaller number of collisions and thus make larger
flights less probable. This will lead to truncated Lévy
flights [42] instead of the Lévy flights. Also, other con-
straints, like the size of the system, would also force us
to this conclusion. Another assumption we have made is
that the fluid consists of point particles. The size and
shape of fluid would add to the complications especially
if the molecules are large. This is because, as demon-
strated in [43] and especially for dimension greater than
1.5, the fractal boundary develops wiggles making some
part of it inaccessible to larger molecules. The fractal
dimension of this accessible surface, which we here call
apparent dimension, may be smaller than actual dimen-
sion and may depend on the shape of the approaching
molecule. It is only this apparent dimension that will be
important. Finally, we have considered a particle with
only the boundary that is fractal but this again is not
essential and one can have a porous fractal. Once again,
it is the apparent dimension which will play the role [44]
and this dimension should be greater than the dimension
of the spherical surface in order to obtain the present
result.

Now we consider the local fractional Langevin equation
with additional noise term

x(α)(t) = ζ(t) + η(t) (8)

where ζ(t) is as before the white noise and η(t) are pulses
of finite height and zero width distributed on a random



4

Cantor-like fractal set with dimension equal to α. This
could be a result of some self-organised critical process.
Its solution is given by

x(t) = L(t) + Pη(t) (9)

where L(t) is the Lévy process and Pη(t) is as de-
fined after eqn. (4). The second part of the solution
has log-periodic oscillations embedded at the fractal
set [45]. Such log-periodic oscillations have been observed
in stockmarket data [46] and in other fields [47, 48].

Finally we consider two more local stochastic differen-
tial equations in order to demonstrate the generality of
the formalism. The first equation we consider is

xα(t) + η(t)x(t) = ζ(t) (10)

and its solution is given by

x(t) = x0e
−Pη(t) +

∫ t

0

e−(Pη(t)−Pη(t′))ζ(t′)dαt′ (11)

with x(0) = x0. And the last equation we consider gen-
eralises the simple Kubo oscillator

xα(t) = aζ(t)x(t) (12)

with the solution

x(t) = x0 exp
(

a

∫ t

0

ζ(t′)dαt′
)

(13)

This demonstrates that many different complex stochas-
tic signals can be generated using various local stochastic
differential equations.

To conclude, we have nontrivially and significantly ex-
panded the concept of stochastic differential equation for-
malism as instituted by Langevin by replacing the first
order derivative with a local fractional derivative of order
α between zero and one. It should be emphasized that
this procedure does not add any extra correlations in the
system as a nonlocal fractional derivative would do. This
naturally gives rise to Lévy processes as a solution when
the input noise is usual white noise putting Lévy pro-
cesses and fBm on symmetrical dynamical footing. Es-
sentially this result is a consequence of the integration of
the white noise over a fractal boundary and should have
wider implications. Here, as an application, we have con-
sidered the Brownian motion of a fractal particle and ar-
gued that the fractality of the Brownian particle would
give rise to the Lévy flights. More precisely, a particle
with fractal boundary of dimension d performs a Lévy
flight of index 2/d when immersed in fluid with point
particles. In the case of fluid with larger molecules re-
sults may be different and will have to be worked out for
that case. Furthermore we can describe this statistical
effect using the above generalised Langevin equation by
hypothesising that the frictional force is proportional to

the “renormalised” velocity. This has given a new way of
obtaining superdiffusive behaviour wherein the environ-
ment or the heat bath has normal dynamics but it is the
fractality of the system that makes it anomalous. Care-
ful experiments should be carried out in order to confirm
this prediction. A way to do this would be to study the
Brownian motion of an aggregate, whose dimension is
known, by tagging it with a fluorescent probe and mea-
sure the self-diffusion coefficient [49]. We have restricted
our attention only to the translational motion. The be-
haviour of the angular velocity should also be interesting
in itself. Clearly, there are many other factors affecting
the Brownian motion of a real biological molecule in liv-
ing cell environment but the implications of this study
should be taken into account.

This work also illustrates the use of local fractional
calculus to describe phenomena involving fractals. Such
a tool is badly needed for better understanding of struc-
tures and processes involving fractals (see [50] for another
notable approach with the same aim). This makes it nec-
essary to develop this formalism further to its full poten-
tial, especially the present generalization of the stochas-
tic differential equations. The corresponding extension
of the delta function might lead to a new way of charac-
terising the correlations.
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