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Full field algebras

Yi-Zhi Huang and Liang Kong

Abstract

We introduce a notion of full field algebra which is essentially an
algebraic formulation of the notion of genus-zero full conformal field
theory. For any vertex operator algebras VZ and VB, VI @ VE is
naturally a full field algebra and we introduce a notion of full field
algebra over V' @ VE. We study the structure of full field algebras
over VI @ VE using modules and intertwining operators for VX and
VE. For a simple vertex operator algebra V satisfying certain natural
finitely reductive conditions needed for the Verlinde conjecture to hold,
we construct a bilinear form on the space of intertwining operators for
V and prove the nondegeneracy and other basic properties of this
form. The proof of the nondegenracy of the bilinear form depends not
only on the theory of intertwining operator algebras but also on the
modular invariance for intertwining operator algebras through the use
of the results obtained in the proof of the Verlinde conjecture by the
first author. Using this nondegenerate bilinear form, we construct a
full field algebra over V ® V and an invariant bilinear form on this
algebra.

0 Introduction

In the present paper, we solve the problem of constructing a genus-zero full
conformal field theory (a conformal field theory on genus-zero Riemann sur-
faces containing both chiral and antichiral parts) from representations of
a simple vertex operator algebra V satisfying the following conditions: (i)
Viny = 0 for n < 0, Vigy = C1, and W) = 0 for any irreducible V-module
W which is not equivalent to V. (ii) Every N-gradable weak V-module is
completely reducible. (iii) V' is Cy-cofinite. Note that the last two conditions



are equivalent to a single condition that every weak V-module is completely
reducible (see [L] and [ABD]).

Conformal field theories in its original form, as formulated by Belavin,
Polyakov and Zamolodchikov [BPZ] and by Kontsevich and Segal [S1] [S2]
[S3], have both chiral and antichiral parts. The fundamental work [MS1]
[MS2] of Moore and Seiberg is also based on the existence of such full con-
formal field theories with both chiral and antichiral parts. In mathematics,
however, it is mostly chiral conformal field theories that are constructed and
studied. To use conformal field theory to solve mathematical problems and
to understand mathematical results such as mirror symmetry, we need full
conformal field theories, not just chiral or antichiral ones.

Assuming the existence of the structure of a modular tensor category
on the category of modules for a vertex operator algebra, the existence of
conformal blocks with monodromies compatible with the modular tensor cat-
egory and all the necessary convergence properties, Felder, Frohlich, Fuchs
and Schweigert [FFFS] and Fuchs, Runkel, Schweigert and Fjelstad [FRS1]
[FRS2] [FRS3] [FFRS] studied open-closed conformal field theories (in partic-
ular full (closed) conformal field theories) using the theory of tensor categories
and three-dimensional topological field theories. They constructed correla-
tion functions as states in some three-dimensional topological field theories
and they showed the existence of consistent operator product expansion co-
efficients for bulk operators. However, since these works were based on the
fundamental assumptions mentioned above, an explicit construction of the
corresponding full conformal field theories, even in the genus-zero case, is
still needed.

In [KOJ, Kapustin and Orlov studied full conformal field theories associ-
ated to tori. They introduced a notion of vertex algebra which is more gen-
eral than the original notion of vertex algebra [Bo] or vertex operator algebra
[FLM] by allowing both chiral and antichiral parts. In [R1] and [R2], Rosellen
studied these algebras in details. However, the construction of the full confor-
mal field theories associated to affine Lie algebras (the WZNZ models) and to
the Virasoro algebra (the minimal models) was still an open problem. More
generally, we would like to construct full conformal field theories from the
representations of a vertex operator algebra satisfying reasonable conditions.
Also, since the braid group representations obtained from the representations
of these vertex operator algebras are not one dimensional in general, it seems
that the corresponding full conformal field theories in general do not satisfy
the axioms for the algebras introduced and studied in [KOJ, [R1] and [R2].
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In [H7], [H8] and [H10], the first author constructed genus-zero chiral
theories, genus-one chiral theories and modular tensor categories from the
representations of simple vertex operator algebras satisfying the three condi-
tions above. Since modular tensor categories give modular functors (see [T]
and [BK]), these results also give modular functors. One of the remaining
problems is to construct a full conformal field theory from a chiral theory and
an antichiral theory obtained from the chiral theory. In the present paper,
we solve this problem in the genus-zero case by constructing a full conformal
field theory corresponding to what physicists call a diagonal theory (see, for
example, [MS3]) from the representations of a simple vertex operator algebra
satisfying the conditions above. The same full conformal field theory is also
constructed by the second author using the theory of tensor categories in
[K]. The genus-one case and the higher-genus case can be obtained from the
construction of the genus-zero theories in this paper and the properties of
genus-one and higher-genus chiral theories. These will be discussed in future
publications.

Technically, we construct a genus-zero full conformal field theory as fol-
lows: We first introduce a notion of full field algebra and several variants,
which are essentially algebraic formulations of the notion of genus-zero full
conformal field theory (for a precise discussion of the equivalence of this no-
tion of full field algebra and its variants with geometric formulations of genus-
zero conformal field theories in terms of operads, see [K]). For a simple vertex
operator algebra satisfying the three conditions above, by the results in [H7],
we have an intertwining operator algebra, which is equivalent to a genus-zero
chiral conformal field theory (see [H3] and [H4]). The genus-zero chiral con-
formal field theory also gives a genus-zero antichiral conformal field theory.
We construct a nondegenerate bilinear form on the space of intertwining op-
erators and use this bilinear form to put the genus-zero chiral and antichiral
conformal field theories together. We show that the resulting mathematical
object is a full field algebra satisfying additional properties and thus gives
a genus-zero full conformal field theory. One interesting aspect of our con-
struction is that our construction (actually the proof of the nondegeneracy
of the bilinear form on the space of the intertwining operators) needs the
theorem proved in [H9] (see also [H6]) stating that the Verlinde conjecture
holds for such a vertex operator algebra. This theorem in [H9], and thus
also our construction of genus-zero full conformal field theories, depend not
only on genus-zero chiral theories constructed in [H7], but also on genus-one
chiral theories constructed in [HS].



This paper is organized as follows: In Section 1, we introduce the notion
of full field algebra and several variants and discuss their basic properties. In
Section 2, we discuss basic relations between intertwining operator algebras
and full field algebras. This is a section preparing for our construction in
Section 3. Our construction of full field algebras is given in Section 3. We
also construct invariant bilinear forms on these full field algebras in the same
section.

Acknowledgment The first author is partially supported by NSF grant
DMS-0401302.

1 Definitions and basic properties

Let F,(C) = {(#1,...,2,) € C" | 2; # z; if i # j}. For an R-graded vector
space F' = [[, g Flr), we let F' =[], g F(») be the algebraic completion of F.
For r € R, let P, be the projection from F or F to Fiyy. Aseries ) f,, in Fis
said to be absolutely convergent if for any f' € F', > |(f', f.)| is convergent.
The sums Y |(f’, fn)| for f" € F’ define a linear functional on F’. We call this
linear functional the sum of the series and denote it by the same notation
> fn. If the homogeneous subspaces of F' are all finite-dimensional, then
F = (F")* and, in this case, the sum of an absolutely convergent series is
always in F. When the sum is in F, we say that the series is absolutely
convergent in .

Definition 1.1 A full field algebrais an R-graded vector space F' = [, g F(r)
(graded by total conformal weight or simply total weight), equipped with cor-
relation function maps

My, Fo x F,(C) — F
(U1 @+ @Up, (21,...,20)) = Mu(Us, ..., Un; 21,215+ 20y Zn),

for n € Z, and a distinguished element 1 called vacuum satisfying the fol-
lowing axioms:

1. Forn € Zy, my(uy,...,up; 21,21, .., 2n, Zn) is linear in wuy, ..., u, and
smooth in the real and imaginary parts of zq,..., z,.

2. Foru € F, my(u;0,0) = u.



3. ForneZy, uy,...,u, € F,

mn+1<u17---7un71;217217---yzn72n7Zn+172n+l)
=My (Up, .oy Uy 215 21, -+ Zny Zn)-
: 1) (1) (k)
4. The convergence property: For k,ly, ...l € Z, anduy ;... w7, .. Uy,
ul(]l:) € F', the series
1
Z 7”nk(Prlmll(ug)7 ul(l),zg), (), zl(l),zl(l)),...,
T1y..Tk
k k k 0 0
Prkmlk(ug),...,ul() zg),zp, zl(k),zl( )) zﬁ),zp, z,(g),z,(c))

(1.1)

converges absolutely to

1 k(1 0 ~(1) , -0 0
My 4. +lk(u§),...7ul(k);z§)+z§),zp—i-z%) z§1)+z§),
(1)+Z§0)7...,z§k)+z,(€0) ()—l—z(o) .. zlk—l—z,(g),zl’i—l—,?,io)).
(1.2)

when || + 29| < |zf0) - z](-o)| for i,j = 1,...,k, i # j and for
p=1,...,LLandg=1,... 1.

5. The permutation property: For any n € Z, and any o € S,,, we have

mn(uh ey Upj 21, Z17 s 7Zn72n)
= Mp(Us(1), - - - » Uo(n); Zo(1)s Za(1)s - - - » Zo(n)s Zo(n)) (1.3)
for uy,...,u, € F and (z1,...,2,) € F,(C).
6. Let d be the grading operator, that is, the operator defined by df = r f
for f € F{;). Then forn € Z;, a € R, uy,...,u, € F,
emy(Ut, .. U 21, 21y ey 2y Zn)
= my(e™uy, ..., e, ez, €2, . .. e, € Z,).
We denote the full field algebra defined above by (F,m,1) or simply by
F'. In the definition above, we use the notations

Mo (W1« oy U 21, 21 - oy 2y Zn)
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instead of
M (Ut -+ oy U 215 - vy Zn)

to emphasis that these are in general not holomorphic in zq,...,2,. For
ueF u,...,u, €F,

(W my (U, e U 21,21 -+ oy 2y Zn))

as a function of zq,..., z, is called a correlation function.
Homomorphisms and isomorphisms for full field algebras are defined in
the obvious way.

Remark 1.2 Note that in the convergence property, we require that the
multisum is absolutely convergent. This is stronger than the following con-
vergence property: For k.l € Z, and uq,...,up_1,v1,...,v € F, the series

ka(ul, e, Py (v, v 2P 2 ,zl(k), El(k));

0) —(0 0) —(0
Z%%Z% )7...721(6)721(6))

converges absolutely to
(0) 5(0) (0)

Mot (Wny ooy U1, VL, e UL 2Y 3 2] e e 2 s
SN T R - L NP T )
when 2" z](-o) fori,j=1,...,kand |2"] < ]z,io) — 2O fori=1,... k-
1, and for p = 1,...,l. However, for the purpose of constructing genus-

zero conformal field theory satisfying geometric axioms, this version of the
convergence property is actually enough.

Let (F,m,1) be a full field algebra and let
Y: F®2xC* — F
Y

(u®wv,22) = Y(u;z2)v

be given by
Y(u; 2, 2)v = ma(u®v; 2, 2,0,0)

for u,v € F. The map Y is called the full vertex operator map and for
u € F, Y(u; z,2) is called the full vertex operator associated to u. We have
the following immediate consequences of the definition:
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Proposition 1.3 1. The identity property: Y(1; z,2) = Ip.
2. The creation property: lirr(l) Y(u; 2,2)1 = u.

3. For f e F,
d,Y(u; z,2)| = (z— - z%) Y(u; 2z, 2) + Y(du; 2, 2) (1.4)

4. The total weight of the vacuum 1 is 0, that is, d1 = 0.
Proof. Foru e F,

Y(1;2,2)u = ma(1,u;z,2,0,0)
m2<u7 17 07 07 2 2)
m1<u7 07 0)

= Uu.

For u € F,

lir%Y(u; z,Z)1 = lir%mg(u, 1;2,2,0,0)
= lir% ma(u; 2, Z)
= m (U, 07 0)
= u.
For u,v € F and a € R,

Y (u; 2, 2)v = Y(eu;ez, e 2)e . (1.5)

Taking derivatives of both sides of (1.5) with respect to a, letting a = 0 and
noticing that v is arbitrary, we obtain (1.4).
From the identity property,

g _0 _
(za + Z@) Y(1;2,2) =0.

Then by (1.4), we obtain

[d, Y(1; 2, 7)) = Y(d1; 2, 2). (1.6)
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Since Y(1;z2,2) = Ir, (1.6) gives
Y(d1; z,2) = 0. (1.7)

Applying (1.7) to 1, taking the limit z — 0 on both sides of the resulting
formula and using the creation property, we obtain d1 = 0. So the total
weight of 1 is 0. |

Now we discuss two important properties of full field algebras which follow
also immediately from the definition.

Proposition 1.4 (Associativity) For uj,us,uz € F,

Y(ui; 21, 21) Y (ug; 22, Zo)us = Y(Y(uq; 21 — 22,21 — Zo)Us; 29, Z2)ug  (1.8)
when |z1| > |z2] > |21 — 22| > 0.
Proof. The convergence property says, in particular, that the series

Y(ui; 21, 21) Y (uz; 22, Z2)us = ZY(Ul; 21, 21) P Y (ug; 22, Zo)us, (1.9)

neR

(a product of full vertex operators) converges absolutely in F for uy, uy, us € F
when |z1]| > |z2] > 0. The convergence property also says, in particular, that
the series

Y (Y (ur; 21 — 22, 21 — Za)ug, 22, Z2)u3
= ZY(PnY(Ul, 21 — <2, 21— 22)11,2, 22, 22)11,3 (110)

neR

(an dterate of full vertex operators) converges absolutely for uy,uq,us € F
when |z5| > |21 — 22| > 0. Moreover, the convergence property also says that
both (1.9) and (1.10) converge absolutely to

mg (U, ug, us; 21, 21, 22, 22, 0, 0).

This proves the associativity. |



Proposition 1.5 (Commutativity) For ui,us, usz € F,

Y(uy; 21, 21)Y (ug; 29, Z2)us, (1.11)
Y (ug; 22, 22) Y (ug; 21, 21)us, (1.12)

are the expansions of
ma (w1, Ug, uz; 21, 21, 22, 22,0, 0).
in the sets given by |z1] > |22| > 0 and |zs| > |21| > 0, respectively.

Proof. By the convergence property, we know that (1.11) and (1.12) con-
verge absolutely to

mg(ur, ug, ug; 21, 21, 22, 22, 0, 0)

and
mg (s, Uy, us; 22, Za, 21, 21, 0, 0),

respectively, when |21 > |z2] > 0 and |z > |21| > 0, respectively. By the
permutation property,

ma(uq, ug, us; 21, 21, 22, 22, 0, 0) = mg(ug, ur, us; 22, 22, 21, 21, 0, 0).
Thus (1.11) and (1.12) converge absolutely to
ms(uy, ug, ug; 21, 21, 22, 22, 0, 0)

when |z1] > |z2] > 0 and |za| > |z1| > 0, respectively. So they are the
expansions of
mz(u, ug, us; 21, 21, 22, 22, 0, 0).

in the sets given by |z1]| > |22| > 0 and |z > |z1]| > 0, respectively. |

Before proving more properties, we would like to discuss first the prob-
lem of constructing full field algebras. It is clear that vertex operator algebras
have structures of full field algebras. Let (VL Y1 1L wk) and (VE Y E 15 WF)
be two vertex operator algebras. Consider the graded vector space VI @ V%
equipped with the correlation function maps, the vacuum and the operator

d given as follows: For n € Z,, uk,... ul € VI and uf, ... uf € VE



mu(ul @ult . ul @ul; 2, 21, ., 2, Z,) are given by the analytic exten-
sions of

(YL<U'{17 Zl) ® YR(ullQ? 21)) e (YL(uﬁv Zn) ® YR(“’T?? gn))l'

Then we take the vacuum 1 = 1% ® 1% and the operators d = L*(0) ® Iyr +
Iye @ LE(0). In particular, the full vertex operators are given by

Y(ul @ uf, 2)vt @ o' = YE(u®, 2)0f @ YRR, 2)vf.

for u”, v* € VE uft, v € VE and 2 € C*.
We have:

Proposition 1.6 The vector space VE @ VE equipped with the correlation
function maps and the vacuum 1 given above is a full field algebra.

Proof. The proof is a straightforward and easy verification. |

Note that there is also a vertex operator algebra structure on V% @ VE,
For simplicity, we shall use the notation V* ® V¥ to denote both the vertex
operator algebra and the full field algebra structure. It should be easy to see
which structure we will be using in the remaining part of this paper.

The full field algebra V® V' in general does not give a genus-one theory,
that is, suitable ¢g-traces, even in the case that they are convergent, of the full
vertex operators in general are not modular invariant. For chiral theories,
we know from [H8] that if we consider the intertwining operator algebras
constructed from irreducible modules for suitable vertex operator algebras,
we do have modular invariance. So it is then natural to look for full field
algebras from suitable extensions of VI @ V by V£ @ VE-modules.

Note that V¥ ® VE has an Z x Z-grading with grading operators being
LE(0)®1yr and I, @ LE(0). If a full field algebra is an extension of V@V
by VI ® VE-modules, it has an R x R-grading.

For any R x R-graded vector space F' = H(m’n)eRxR Fimny, we have a
left grading operator d* and a right grading operator d¥ defined by d*u =
mu, dfu = nu for u € E, ), where m (n) is called the left (right) weight of
u and is denoted by wtfu (wt®u). For m,n € R, let P,,, be the projection
from F' — Fi,n. We still use F' and F to denote the graded dual and
the algebraic completion of F', but note that they are with respect to the
R x R-grading, not any R-grading induced from the R x R-grading.
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Definition 1.7 An R x R-graded full field algebra is a full field algebra
(F,m,1) equipped with an R x R-grading on F' (graded by left conformal
weight or left weight and right conformal weight or right weight and thus
equipped with left and right grading operators d* and d?) and operators
DY and D satisfying the following conditions:

1. The grading compatibility: d = d* + d®.
2. The single-valuedness property: 27" =4%) — [

3. The convergence property: For k,ly,... Iy € Z, and ugl), . u(l), e ,u(k)

sy Uy 1 >
U(k) - F the Series
* lk )

1 . (1) - )
Z mk(Pphqlmll(ug ), . 7“1(1)535 ),zg ), . .,zl(l),zl(l)), .

P11 Pk
k k). (k) —(k k) _(k 0) (0 0) (0
Ppk,qkmlk(ug),...,ul(k);z§),Zg),...,zl(k),zl(k));zg),Zg),...,z,(c),zlg))
(1.13)

converges absolutely to (1.2) when |z$7] + || < |zf0) - z](-o)| fori,j =
1,...,k,i#jandforp=1,...,andg=1,....,1;.

4. The d*- and d®*-bracket properties: For u € F,
0
[d", Y(u; 2, 2)] = za—Y(u; z,2) + Y(d*u; z, 2) (1.14)
z

[dR,Y(u; z, 2)] = z%Y(u; 2z, 2) + Y(dFu; 2, 7). (1.15)

5. The D¥- and D®-derivative property: For u € F,

[D*,Y(u; 2, 2)] = Y(D"u;2,2) = %Y(u; 2, Z), (1.16)

[DF,Y(u; 2, 2)] = Y(D"u;2,2) = %Y(u; z,2).  (1.17)

We denote the RxR-graded full field algebra defined above by (F, m, 1, DX, D)
or simply by F. But note that there is a refined grading on F' now.

Remark 1.8 Note that for R x R-graded full field algebra, there is also a
weaker convergence property similar to the one in Remark 1.2.
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Remark 1.9 The single-valuedness property actually says that F'is graded
by a subgroup {(m,n) € RxR | m—n € Z} of R xR. This single-valuedness
indeed corresponds to a certain single-valuedness condition in the geometric
axioms for full conformal field theories.

We have the following immediate consequences of the definition above.

Proposition 1.10 1. The pair (left weight, right weight) for 1 is (0,0),
that is, d¥'1 = df1 = 0.

2. The pairs (left weight, right weight) for D¥ and D® are (1,0) and (0,1),
respectively, that is,

[d*,D*] = D",
[d", D" = o,
[d*, D] = o,
[df, Df] = D~

3. D1 = D®1 =0.

Proof. From the identity property,

0 _
zaY(l,z, z) = 0.

Then by (1.14), we obtain
[d",Y(1;2,2)] = Y(d"1; 2, 2). (1.18)
Since Y(1; z, Z) = I, we obtain
Y(d*1;2,2) =0 (1.19)

from (1.18). Applying (1.19) to 1, taking the limit z — 0 on both sides of
(1.19) and using the creation property, we obtain d¥1 = 0. So the left weight
of 1 is 0. Similarly, we can prove that the right weight of 1 is 0.

Applying both sides of (1.14) to 1, taking the limit z — 0 and then using
the creation property and the fact d*1 = 0 we have just proved, we obtain

.0 _
BB?)Z@Y(U’ 2,2)1 =0 (1.20)
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for u € F. Applying % to both sides of (1.14) and using the DI-derivative
property, we obtain

[dL, Y(DLU; 2, Z)}
0 0
=09,
0 0

B o 0 o LaL,. . »
= ZEEY@L,Z,Z) - &Y(u’ z,z) +Y(D"d u; 2, 2)

0
= za—Y(DLu; 2, 2) + Y(D*u; 2, 2) + Y(D*d u; 2, 2). (1.21)
2

Applying (1.21) to 1, taking the limit z — 0 on both sides of (1.21) and
using the creation property, (1.20) and d*1 = 0, we obtain

u; 2, Z) + Y(DEd u; 2, 2)

d!D*y = D*u + Dtd

proving that the left weight of D” is 1. Similarly, we can prove that the right
weight of D¥ is 0, the left weight of D is 0 and the right weight of D® is 1.

Using the D*- and D%-derivative properties and the creation property,
we see immediately that DY1 = DF1 = 0. |

For an R x R-graded full field algebra (F,Y, 1, DL, D®), we now introduce
a formal vertex operator map. We shall use the convention that for any
z € C*, log z = log |z| + v/ —1arg z where 0 < arg z < 2. For u € F, we use
wt? v and wtf u to denote the left and right weights, respectively, of u. Let
u,v € F and w’ € I’ be homogeneous elements. We have

(W', [d¥, Y (u; 2, 2)]v) = {((d¥)w',Y(u; 2, 2)v) — (W', Y(u; 2, 2)d"v)
= (wth w — wth v)(w', Y(u; 2, 2)v) (1.22)

where (d%)’ is the adjoint of d¥. On the other hand,

(w', Y (d"u; z, 2)v + zagY(u; 2,Z)v)
2

= (th u+ z%) (W', Y(u; 2, 2)v). (1.23)
Let f(z,z) = (v, Y(u; 2, 2)v). Then by (1.14), (1.22) and (1.23), we have
z%f(z, 7) = (wth w' — wth u — wth ) f(2, 2). (1.24)

13



Similarly, using (1.15), we have
0

2§f(z, z) = (wtf w' — wtf u — wt® v) f(2, 2). (1.25)
z

The general solution of the system (1.24) and (1.25) is

L, _wtLl sl 4R,/ R, R
Czwtw wt™ u—wt vzwt w —wttu—wtt o (126)

where C' € C. Note that f(z, Z) is a single-valued function and that by the
single-valuedness of the full field algebra F',

(wtr w' — wtr u — wt* v) — (wt® w’ — wtf u — wtf v) € Z.

. . L,/ _ L, L J— R, R
This means that if we choose any branches of zWt" @' =Wt u—wt?v g q zwt™w'—wtFu—wtTv,

then there must be a unique constant C' such that f(z, z) is equal to (1.26).
We choose the branches of "t w=—wiu-witv gpq zwtfw'—wtfu-wifv ¢, po
ettt w'—wit u—witv)logz o e(wtfw'—wifu—wtffo)logz Lognectively. So there is a
unique C' € C such that

_ Loy ot Doy wrtl R,/ _wtR, iR\ Toas
f<Z7Z) :Ce(wt w' —wt™ u—wt v)logze(wt w' —wt™ u—wt't v) logz' (127)

Hence P, ,Y(u; 2, 2) Pp.pn, m,n,p,q € R can be written as

p,q (p—wtlu—m)logz (q—wtFu—n) logz
up? e e :

where ub? are linear maps from F,, ) — F(pq) for m,n,p,q € R. Thus we
have the following expansion:

Y (u; 2, 2) Z Y (u e(l=Dlogzg(~r—1)logz (1.28)

r,s€R

where Y;,(u) € End F with wt*Y,,.(u) = wtfu — [ — 1 and wt?Y,;,.(u) =
wtflu — r — 1. Moreover, the expansion above is unique. Let z and z be
independent and commuting formal variables. We define the formal full
vertex operator Y ¢ associated to u € F' by

(u;z, ) Z Yo, (w)o™ et (1.29)

l,reR

These formal full vertex operators give a formal full vertexr operator map

Y;: F®F — F{z,z}.
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For nonzero complex numbers z and (, we can substitute e"'°6% and e® log ¢ for
x" and Z°, respectively, in Y¢(u;x,Z) to obtain a map Ya,(u;2,¢) : F — F
called the analytic full vertex operator map.
The following propositions are clear:
Proposition 1.11 Foru € F and z,{ € C*, we have
Yan(; 2,¢) = 247 ¢ Y (24 ¢~ u; 1, 1) 274" ¢ 4", (1.30)
For formal full vertex operators, we have
Yi(u;z,7) = o 7Y (2 e 1, D) T (1.31)
Proposition 1.12 Foru € F,
Yi(1;2,2)u = u, (1.32)
lim Yy¢(u;z,2)1 = u, (1.33)

rz—0,2—0

where lim,_, z—.o means taking the constant term of a power series in x and
z. In particular, Y, ,.(u)1 =0 for all l,r € R and Y_; _1(u)1 = u.

Proposition 1.13 For u € I, we have

D" Yy(wi,7)] = Y (Dwse®)= ¥ j(wi),  (134)

0
[DR7Yf<w;$7jj)] = Yf<DRw;xaj) = ;Yf@l}?maj)' (135)
x
In particular, we have D*1 = DF1 =0 and for I,r € R,

[D" Y, (u)] = Y, (D"u) =—1Y;,_1,(u), (1.36)
(DY, (u)] = Y, (Du)=—rY;,_1(u), (1.37)

We need the following strong version of the creation property:
Lemma 1.14 Foru € F,

Yi(u;z, )l = emP Dy, (1.38)
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Proof. Using (1.34) and (1.35), we have
Y p(e0P + 70Dy g ) = Y (s x4 0, T + To). (1.39)

Now let both sides of (1.39) act on the vacuum 1. Since Y (u; x4z, T+7o)1
involves only nonnegative integer powers of z + xo and T + Ty, we can take
the limit x — 0,7 — 0. Then replacing zy and zy by = and Z, we obtain
(1.38). |

Proposition 1.15 (Skew symmetry) For any u,v € F and z € C*, we
have

Y(u; 2, 2)v = 2P P Y (0; —2, =Z)u (1.40)

and

xDL+5:DRY (

Yi(u;z,2)v=e r(v;e™x, e ™ T ). (1.41)

Proof. From the convergence property, it is clear that, for any u,v € F,
Y(Y(U, Z1 — 22,21 — 22)1};2:2722)1 (142)

converges absolutely to mg(u, v, 1; 21, 21, 29, 22,0, 0) when |z5| > |21 — 25| > 0,
and
Y(Y(v; 20 — 21, 20 — 21)u; 21, 21)1 (1.43)

converges absolutely when |z;| > |21 — 23| > 0 to m3(v, u, 1; 22, 22, 21, 21, 0,0)
which is equal to mg(u,v,1; 21, 21, 29, Z2,0,0) by the permutation property.
Hence, using (1.38), we obtain

L 3, R L > R
eZZD +zoD Y( z21D*+z1D Y(

Uy z1 — 29,21 — Z)U=¢€ Vs 29 — 21,22 — Z1)u (1.44)

when |23 > |21 — 22| > 0 and |21] > |21 — 22| > 0. We change the variables
from 21, 29 to 2 = z; — 23 and zy. Then (1.44) gives
2D 2Dy (y; 2, 2)p = e HAP HEIAD Yy () 2 Ty (1.45)

when |2z2] > |z] > 0 and |29 + 2| > |2| > 0.
Notice that for fixed z # 0 and w’ € F”,

(W', e2P 2Py (y: 2, 2)v) (1.46)
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involves only positive integral powers of z3, 2o and thus is a power series in 2,
and Z, absolutely convergent when |z5| > |z| > 0. From complex analysis, we
know that a power series in two variables z; and (5 convergent at z; = 23 and
¢ = ¢ must be convergent absolutely when |z5] < |29] and |G| < |¢9]. T
particular, when ¢ = 29, such a power series must be absolutely convergent
when |2] < [29] and (5 = Zz. In our case, since for any fixed z, (1.46) is
absolutely convergent when |z5| > |z]| > 0, we conclude that (1.46) converges
absolutely for all z5. Since w' is arbitrary, we see that the left-hand side of
(1.45) is absolutely convergent in F' for all zy. Since z is also arbitrary, by
the convergence property again, we see that the left-hand side of (1.45) is
absolutely convergent in F for all z and 2, such that z # 0. Similarly, the
right hand side of (1.45) also converges absolutely in F for all z and 2, such
that z # 0.

If e=2P"~2D" gives a linear operator on F, then we can just multiply
both sides of (1.45) by e~22P"~2DP" to obtain (1.40). In the case that the
total weights of F' is lower-truncated, e=?2" “=2D" is indeed a linear operator
on F. In the most general case, this might not be true. But we can still
obtain (1.40) as follows: Consider the formal series

Lo~ pR L~ DR _
6sc1D +z1D eng +ZoD Y(U,ZE,I)U

_ 6(331+I2)DL+(561+562)DRY<U; T, T)v (1.47)

where x, T, x1, T1, x2 and Ty are commuting formal variables. Since Y(u; z, z)v
is absolutely convergent in F when z # 0, we can substitute z, Z, —z, — %,
29 and Z, for x, T, x1, T1, 2 and Ty on the right-hand side of (1.47), respec-
tively, and the resulting series is absolutely convergent in F. So we can do
the same substitution on the left-hand side of (1.47) and the resulting series
is absolutely convergent in F. Similarly, consider the formal series

L = R L - = R . T
6sc1D +z1D e(ss2+:c)D +(Z2+z)D Y(v;emx,e WZLU)U

_ e(:m+a:2+x)DL+(:731+532+50)DRY(U; e, e T )u. (1.48)

Since e*P"+#P"Y (v; —z, =%)u is absolutely convergent in F when z # 0, we
can substitute z, Z, —z9, —Z3, 29 and 2, for z, T, x1, T1, 2 and Z, on the right-
hand side and thus also on the left-hand side of (1.48) and the resulting series
is absolutely convergent in . The convergence of these series and (1.45) with
suitably chosen zy gives (1.40)

Now (1.41) follows immediately: On the one hand, by (1.31), we have

dr

eV 7Y (o1, 1) =Y(u;x, 7). (1.49)
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On the other hand, we have

pd" pd" DDy (pmd gy 1 1) 4y
= eIDL”DRYf(U,e z, e T )u. (1.50)
Using skew symmetry (1.40), (1.49) and (1.50), we obtain (1.41). |

Definition 1.16 An R x R-graded full field algebra (F,m,1, D¥, D®) is
called grading restricted if it satisfies the following grading-restriction condi-
tions:

1. There exists M € R such that F,,,) =0ifn <M orm < M.
2. dim Fi,, ) < oo for m,n € R.

We say that F'is lower truncated if F' satisfies the first grading restriction
condition.

In this case, for u € F and k£ € R, we have

Z Y (u) € End F

l4+r=k

with total weight wt u —k —2. We denote ), Y, (u) by Yi_1(u). Then
we have the expansion

(u;x, x) ZYk 7 (1.51)

keR

where wt Yy (u) = wt u—k — 1. For given u,v € F, we have Yj(u)w = 0 for
sufficiently large k.

Let (VE YL 1L wE) and (VE YE 17 wF) be vertex operator algebras.
Let p be an injective homomorphism from the full field algebra VI @ VE to
F. Then we have 1 = p(1l' @ 1%), dl o p = po (LX(0) @ Iyr), df o p =
po(lyr®@LT(0))), D op = po(L*(~1)®@Iyr) and D¥op = po(Iyr@L(-1)).
Moreover, F has a left conformal element p(w? ® 1%) and an right conformal
element p(1F @ w?). We have the following operators on F:

L¥(0) = Res,Res;z7 'Y, (p(w” @ 1%); 2, 7),
LR(0) = Res,Resz2 'Y (p(1F @ wh); 2, 7),
LE(—1) Res,Res;zz 'Y (p(w" @ 1%); 1, 7),
LE(-1) Res,Res;7 'Y (p(1F @ wh); 2, 7).
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Since these operators are operators on F', it should be easy to distinguish
them from those operators with the same noptation but acting on V* or V.

Definition 1.17 Let (VL YL 11 wE) and (VE YE 17 wE) be vertex op-
erator algebras. A full field algebra over V¥ @ V® is a grading-restricted
R x R-graded full field algebra (F,m,1, DY, D®) equipped with an injec-
tive homomorphism p from the full field algebra VZ @ V# to F such that
df = L1(0), d® = L%(0), D* = LY(—1) and D = LE(-1).

We shall denote the full field algebra over VF ® V# defined above by
(F,m, p) or simply by F.

The following result allows us to construct full field algebras using the
representation theory of vertex operator algebras:

Theorem 1.18 Let (VL YE 1E wh) and (VE, YE 18 W) be vertex oper-
ator algebras. Let (F,Y,p) be a full field algebra over VE* @ VE. Then F
is a module for V¥ @ VE viewed as a vertex operator algebra. Moreover,
Y¢(-,z, ), is an intertwining operator of type (FFF)

Proof. Let Y5 be the vertex operator map for the full field algebra p(V: ®
V). Then we have

YEE(p(ut @ u®); 2, 2)p(v” @ v) = p(YE(u", 2)v" @ YRR, 2)0®)  (1.52)

for ul,v* € VI uf vf € VR and 2z € C*.

Now we show that a splitting formula similar to (1.52) holds for vertex
operators of the form Y(p(u* ® uf);z,2) : F — F. By the associativity of
Y, we have

(w', Y(p(u" @ u'); 21, 20) Y (p(v" @ v™); 29, Z2)w)
= (W, Y(YPB (p(u @ uft); 21 — 29,21 — ) p(v" @ vT); 29, Z2)w)
(1.53)
when |z1| > |za] > |21 — 22| > 0 for ul 0l € VE wft 0B € VE w € F and
w' € F'. Take v = 1% and u®, v® = 1%. Then we have
(W', Y(p(u" @ 1%); 21, 21)w)
= (W', Y(p(u" @ 17); 21, 21) Y(1; 22, Z2) w)
= (W, Y(YER (p(uh @ 17); 2 — 29,21 — Z2)p(1F @ 17); 29, Z)w)
= (0, Y(p((Y"(u", 21 — 22)1%) © 1%); 25, Z)w) (1.54)

19



Since the right-hand side of (1.54) is independent of z;, so is the left-hand
side. Thus we see that Y(p(ul @ 1), 2, 2) depends only on z for all ut € V£
and we shall also denote it by YZ(ul, z). (Since it acts on F', there should be
no confusion with the vertex operator Y2 (ul, 2) acting on V2.) So Y (ul, 2)
is a series in powers of z. But YX(ul, 2) is also single valued. So by (1.28),
there exists ul € End F for n € Z such that wt’ ul = wt ul —n -1,
wtft ul = 0 and
YEul, 2) = Zuﬁz’"’l.
neZ

Similarly, Y(p(1* ® u®); 2, z) depends only on z and will also be denoted
by Y%(u®, z). (There should also be no confusion with the vertex operator

YE(uf, 2) acting on V) For u®® € VE, there exists uf € End F for n € Z
such that wt® uff = wt u® —n — 1, wtl uff = 0 and

YRR, 2) = Z ultz7r L

ne”L

We also have the formal vertex operator maps, denoted using the same no-
tations Y© and Y, associated to Y and Y# given by

YL(uL, xr) = Z uﬁx‘"‘l,
nez
YA 7) = Z ultg—t

ne’

for u € VI and u® € VE,
Foru* e Vi uft e VEand w € F,w' € I,

(W', Y (b, 2) YR W®, 2)w) = (w', Y(p(u*@1%); 21, 2) Y (p(1F@u®); 29, Z0)w)
(1.55)
is absolutely convergent when |2;| > |25 > 0, and

(W', YR 2) YT (u®, 2 )w) = (W', Y(p(1F@ul); 20, 22) Y (p(u*@1%); 21, 2 )w)

(1.56)
is absolutely convergent when |za| > |z;] > 0. They are both analytic in
z; and Zy. By the convergence property for full field algebras, both side of
(1.55) and (1.56) can be extended to a same smooth function on {(z1, z2) €
(C*)?|2; # 2 }. Since the complement of the union of the sets of convergence
of (1.55) and (1.56) in {(21, 22) € (C*)?|z1 # 22} is of lower dimension, by the
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properties of analytic functions, it is clear that the extended smooth function
is actually analytic on {(z1, Z2) € (C*)?|2; # 29}
By associativity, we have

(w', Y (", 2)) YRR, 2)w) = (W', Y(p(YE(u, 21 — 2)1%) @ u'); 2, Z)w)

(1.57)
when |z1| > |22] > |z1 — 22| > 0. The right-hand side of (1.57) has a well-
defined limit as z; goes to z. Therefore (1.55) and (1.56) can be further
extended to a single analytic function on {(z;,2;) € (C*)?}. This absence
of singularity further implies that the left-hand sides of (1.55) and (1.56) are
absolutely convergent and are equal for all z1,2, € C*. Let 2 = 29 = 2z in
(1.55), (1.56) and (1.57). Use the discussion above and the creation property
for the vertex operator map Y, we obtain

Y(p(u® @ uf);2,2) = YE(ul, 2)Y (R, ) = YRR, )Y E(uh, 2),  (1.58)
or equivalently, in terms of formal vertex operator,

Yi(p(u* @ ul);z,7) = YEuh, o) YE W, 2) = YRR, 2)YE(u®, z)  (1.59)

for all u* € VI and u® € VE. In particular, we have [ul uf] = 0 for all
ul € VI and uff € VE,
Since F' is lower truncated, we have
Y (p(ut @ uf);z, z)v € (End F)((x)). (1.60)

for ul e VI, uft € VE and v € F.

The associativity (1.53) together with (1.59) and (1.60) implies the as-
sociativity for the vertex operator map Y¢(p(-);z,z)-. Together with the
identity property this associativity implies that F'is a module for the vertex
operator algebra VI @ VE.

Next we show that Y(;x, x) is an intertwining operator of type ( FF F).
Since For given u,v € F, we have Yi(u)w = 0 for sufficient large k, the

lower-truncation property of Y (-, x, ) holds. For u € F', We also have

Y (D" + DMyusz,z) = Yi((D* + DM)u;2,7) |5

= ((% + %) Yf(u;x,f))

d
- %Yf(u,il?,iﬁ),

T=x
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proving the D-derivative property of Yy(-;z, x).
Now, we prove the Jacobi identity for Y, (-;x,x). For any fixed r € R,
using the associativity for the full vertex operator map Y twice, we obtain

(w', Y (ub, 2)) YRR, 2)Y (u; r, r)w)
= (W', Y(p(u* @ 1%); 21, 21) Y (p(1* @ u®); 29, Z2) Y (u; 7, r)w)
= (0, Y(Y(p(u* @ 15); 21 — 7, 20 — r)Y(p(1F @ u®); 20 — 1, 2y — 7)u; r, 7)w)
= (W', Y(YE(b, 2 — r)YEW®, 2 — r)u;r, r)w)

(1.61)

when |2|, [22| > 7 > |21 — 7|, |22 — 7| > 0 for all u* € VL wft e VE wwe F
and w’ € F’. By the commutativity for the full vertex operator map Y,

(W', YE(u®, 2) YR, 2) Y (u; r, r)w) (1.62)

and
(W', Y (u;r, r)YE(u®, 2) YE (U, 2)w) (1.63)

are absolutely convergent in the regions |z|, [22| > 7 > 0 and r > |z, |22| >
0, respectively, to the correlation function

w my(u® @17 18 @ uf u, w; 21, 21, 29, 20,7, 7,0, 0). 1.64
<74< 3 g Wy Wy £y ©1y 25 22,151, Y,

By our discussion above, we know that the right-hand side of (1.61), (1.62)
and (1.63) are all analytic in z; and Z; and that we can take z; = Z; in the
right-hand side of (1.61), (1.62) and (1.63). Thus after taking z; = Z,, the
right-hand side of (1.61), (1.62) and (1.63) are analytic in z = 2; = Z5. Since
the right-hand side of (1.61), (1.62) and (1.63) are the expansions of (1.64)
in the regions r > |21 —r|, |zo—7| > 0, |21], |22] > 7 > 0 and r > |z], |22]| > 0,
respectively, we see that we can also let z; = Zy in (1.64) and the result is
also analytic in z = 2; = Z. Thus we have proved that

(! V(Y (plus® ® wR; 2 — 1, — sy o),
(W', Yy (p(u® @ u); 2, 2)Y (u; 7, m)w),
(w', Y (u;r, )Y (plul @ uft); 2, 2)w)

are absolutely convergent to
(', my(p(u” @ 15), p(1% @ u®), u,w; 2, 2, 2, 2,7, 7,0, 0)
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which is in fact analytic in z. Using the Cauchy formula for contour integrals,
we obtain the Cauchy-Jacobi identity

Res.—oof (2) (W', Y (p(u® ® u®); 2, 2)Y (u rr)w)
—Res.—of (2) (W', Y (u; 7, 1) Yy (p(u” @ u'); 2, 2)w)
= Res.—,.f(2)(w', Y(Y;(p(u” @ u ) z—rz—r)ur,r)w), (1.65)

where f(z) is a rational function of z with the only possible poles at z =
0,7,00. Since w and w’ are arbitrary, this Cauchy-Jacobi identity gives us
identities for the components of the vertex operator Y¢(u;x, x). These iden-
tities are the component form of the Jacobi identity for Y (u; z, x). |

Definition 1.19 Let c*, c® € C. A conformal full field algebra of cen-
tral charges (cf,cF) is a grading-restricted R x R-graded full field algebra
(F,m,1, D, DE) equipped with elements w’ and wf called left conformal

element and right conformal element, respectively, satisfying the following
conditions:

1. The formal full vertex operators Y ;(w”; z, ) and Y;(w?; z, T) are Lau-
rent series in x and Z, respectively, that is,

Yiwhiez) = Y L)

ne”l

Yz ) = Y Lin)z >

neL

2. The Virasoro relations: For m,n € 7Z,

[LE(m), LEm)] = (m =)L (m +n) + S5 (m* = m)dn i
[LA(m), LR ()] = (m—n)LE(m +n) + = (m® = m)6mrno,

12
[LE(m), LR(n)] = o.

3. d" = L}(0), d® = LR(0), D¥ = L(—1) and DR = LR(—1).
We shall denote the conformal full field algebra by (F,m,1,w’, wf) or

simply by F.
We have:
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Proposition 1.20 Let (F,m,1,w* wf) be a conformal full field algebra.
Then the following commutator formula for Virasoro operators and formal
full vertex operators hold: For u € F,

[Yf<WL§ 21, 71), Y p(u; 9, T9)]

= Res,, 250 < > Y4 (Y (wh; w0, Zo)u; 2o, T), (1.66)

1 — X

T2
Y (w21, 1), Yy (u; 22, )]
— Resy, %5 10 (“’1 — xO) Y (Y (wh; 20, Zo)u; w9, T2).  (1.67)

4

Proof. For any v € F', u,v € F, we consider
(W', ma(w”, u,v; 21, 21, 20, 22, 0,0)). (1.68)

Using the convergence property and the permutation property for conformal
full field algebras, we know that it is equal to

(W, Y(wk; 21, 21) Y (u, 29, 2o)0), (1.69)
(W', Y (u; 29, 22)Y(wF, 21, 21 )0), (1.70)

in the regions |z1| > |22| > 0, |22| > |z1] > 0, respectively. By the definition

of conformal full field algebra, we know that for any fixed zo # 0, (1.69)

and (1.70) are analytic as functions of z; in the regions |z1| > |z2| > 0 and

|za] > |z1| > 0, respectively. So (1.68) is analytic as a function of z; in the

regions |z1| > |z2| > 0 and |z3] > |21| > 0. But we know that (1.68) is smooth

as a function of z; in C\ {22,0}. Thus (1.68) must be analytic in C\ {z9,0}.
We know that (1.68) is equal to (1.69), (1.70) and

(W, Y(Y(wh; 2y — 2, 21 — Z2)u; 22, Z2)0)

in the regions |z1] > |z2] > 0, |22] > |z1] > 0 and 22| > |21 — 22| > 0,
respectively. Since F' is lower truncated, using the Virasoro relation, we
see that Y (w% z,Z)u and Y;(w’; z,Z)v have only finitely many terms in
negative powers of x. Also using the lower-truncation property of F' and
the Virasoro relation, we see that for any w € F, (v/, Y (w”; z, Z)w) has only
finitely many terms in positive powers of . Using these facts, we see that the
singularities z; = 25,0, 00 of (1.68) are all poles. Using the Cauchy formula,
we obtain the component form (1.66).
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Similarly, we can prove (1.67). |
The following is clear from the definition and Theorem 1.18:

Proposition 1.21 Let (VL YL 15 wl) and (VE YE 1L W) be vertex op-
erator algebras of central charges c* and c%, respectively. A full field algebra
(F,m, p) over VE®@ VE equipped with the left and right conformal elements
p(w? @ 17) and p(1* @ wf) is a conformal full field algebra.

In view of this proposition, we shall call the conformal full field algebra
in the proposition above, that is, a full field algebra (F,m, p) over VE @ VE
equipped with the left and right conformal elements p(w’ ® 1%) and p(1F @
wtt), a conformal full field algebra over VE @ VE and denote it by (F,m, p)
or simply by F.

2 Intertwining operator algebras and full field
algebras

Let V' and V' be vertex operator algebras. In the preceding section, we have
shown that a conformal full field algebra (F,m, p) over VL @V is a module
for the vertex operator algebra VL@V and the Y;(-; z, z) is an intertwining
operator of type ( FF F) This result suggests a method to construct conformal
full field algebras from intertwining operator algebras, which are algebras of
intertwining operators for vertex operator algebras and were introduced and
studied in [H1], [H2], [H3], [H4], [H5] and [H7] by the first author.

Let V' be a vertex operator algebra and for a V-module W let C (W) be
the subspace of V' spanned by u_jw for u € V; = ]_[neZ+ Viny and w € W.

We consider the following conditions for a vertex operator algebra V':

1. Every C-graded generalized V-module is a direct sum of C-graded ir-
reducible V-modules.

2. There are only finitely many inequivalent C-graded irreducible V-modules
and they are all R-graded.

3. Every R-graded irreducible V-module W satisfies the C;-cofiniteness
condition, that is, dim W/Cy (W) < oc.
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In this section, we fix vertex operator algebras (VYL 1L wE) and (VE Y E 17 %)
satisfying these conditions. Let A”* and A® be the sets of equivalent classes
of irreducible modules for V¥ and for VE, respectively. Let {W% | a € A"}
be a complete set of representatives of the equivalence classes in A" and
{Wht | pe AR} a complete set of representatives of the equivalence classes

in AR,

Proposition 2.1 The vertex operator algebra V' @ V® also satisfy the con-
ditions above.

Proof. Let W be a generalized V¥ @ V-module. Then W is a generalized
VI module. So there exist vector spaces M® for a € A" such that W is
equivalent to the generalized V*-module [] .. (W5* ® M®). Since W is
also a generalized V®-module, M* must be Vf-modules. So they can be
written as direct sums of irreducible V%-modules W b ¢ AR So W
is equivalent to HaeAL,beAR Ngp (Wt @ WHe) where Ny, € N for a € AL,
b € A% By Proposition 4.7.2 of [FHL], Wle@ W are irreducible VF @V -
modules. So V¥ ® V satisfies Condition 1. The second condition follows
from Theorem 4.7.4 of [FHL]. The C}-cofiniteness follows immediately from
the fact that

CL(WH) @ W @ Whe @ Cy (W) c Cy(Whe @ W),

This result immediately gives:

Corollary 2.2 Let F be a module for the vertex operator algebra V' @ VE.
Then as a module for the vertex operator algebra V* @ VE, F is isomorphic
to

H H ﬁ (WL§‘Z>(mab) ® (WR;b>(mab) (2.1)

ac AL be AR mgp=1

Let F be a module for the vertex operator algebra VI @ VI and let v
be an isomorphism from (2.1) to F. Then there exist operators L*(0) and
LE(0) on F given by

LEO)p(w” @ wf) = p((LE0)wh) @ w),
LE(0)p(w” @ w® p(w” @ (LF(0)w™))

~—
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for wl € (Whe)ma) and wf € (W) ma) - Clearly L¥(0) and L¥(0) com-
mute with each other.

Let YV be an intertwining operator of type (F

e F) and v an isomorphism
from (2.1) to F. Let

YW (FF)xC* — F
(u®v,2) — YY(u;z 2)v

and

Y):F®F — F{zz}

URV — Y?f(u;a:,j:)v
be linear maps given by
Y (u; 2, 2)v = 22O Oy, 1)~ L0 - L)

and
Y}}(u; T, T)v = xLL(O)jLR(O)y(u, 1)x_LL(O)i_LR(O),

respectively, for v € F. We call Y¥ and Y}] the splitting and formal splitting
of ), respectively.

Proposition 2.3 Let Y be an intertwining operator of type (FFF), YY and
Y}) , the splitting and formal splitting of Y, respectively, and v an isomor-
phism from (2.1) to F. Then for any aj,a; € AY, b,by € AR 1 <
Marpy, < hapy, and 1 < mgp, < hayp,, there exist intertwining operators
cﬁ;;?;‘%bi*;“i‘ and ylff;’:%”*% for az € AL, by € A and map, = 1,. .., hages
(WL;a3)(ma3b3) (WR;b3)(ma3b3)
of types ((WL;al)(ma1b1) (WL;ﬂz)(mazbz)) and ((WR?bl)(malbl) (WR;bz)(mazbz)
tively, such that for ub @ uft € (Whar)Meren) @ (W) Mare) gnd ol @ v €
(WL;QQ)(mazbz) X (WR;bZ)(ma2b2)7 we have

) , respec-

Y (y(u* @ u); 2, 2)y (0" @ o)
hagbs

=20 2 X O w2t @ W Wl 2ot
’ ) .
a3€AL b3€AR ma3b3:1 102

(2.2)
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Similarly, for the formal full vertex operator, we have

VY (v(ut @ ul); 2, 2)y (0 @ oF)
hasbs

= 30 3 Y At et @ Y ()
) ) °
a3€AL bge AR Mg py=1 -

(2.3)
Proof. Since YY restricted to
,-Y<<WL§‘11)(ma1b1) ® (WR§b1)(ma1b1)) ® ,-Y<<WL§‘12>(ma2b2) ® (WR;bz)(maQbQ))

is an intertwining operator of type

F
(oo & (i gnn) (teons o o)

it was proved in [DMZ] that (2.2) is true when z = z = r > 0. Then we have

Y (y(u* @ u); 2, 2)y (0" @ v
_ ZLL(O)ZLR(O)y(,Y(uL ® uR>7 1)Z—LL(O)2—LR(O),Y<UL Q UR)

hasbs

=3 > D O e Wt O
az€AL b3e AR mggps=1
(" OV W, 1)z OR)
hagzbs

=3 Y N A WE 2t @ Yy (W, 2)o").

az€AL b3e AR mggpy=1

The proof of (2.3) is completely the same. n

Corollary 2.4 Let (F,m,p) be a conformal full field algebra over VI @ V.
Then as a module for the vertex operator algebra VI @ VE, F is isomor-
phic to (2.1). Moreover, if v is an isomorphism from (2.1) to F, then for
any ap,as € AL, by, by € AR 1 < may, < hap, and 1 < Mgy, < hagsys

. . .. Limg.p.;a3 Rymg.,p,;b3
there exist intertwining operators YVaja, > °"" and Y, """ for az € AL,
(WL;a3)(ma3b3)

by € A% and mag, = 1,..., Ry, of types ( ) and

(WL?al)(m%bl ) (WL;a2)(ma252)
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(WR;b3)(ma3b3) ) .
((WR;b1)<ma1b1> (WR;bQ)(mGQbQ)), respectively, such that for ut@u® € (Whier) (M) g

(Wb mae) gnd vl @ vt € (Whe2)mazes) @ (WHb2)(Mases) - the formulas
(2.2) and (2.3) hold when Y and Y?f are replaced by Y and Y ¢, respectively.

Proof. The first conclusion follows immediately from Corollary 2.2. Now if
we consider the intertwining operator Y (-; x, x), then the second conclusion
follows immediately from Proposition 2.3. |

For either the map Y}] in Proposition 2.3 or the formal full vertex operator
map Y, for a conformal full field algebra over VZ ® V we can substitute
z and ( for the formal variables = and Z in Y?f(-; z,z) or Ys(-;x,z) (that is,

substitute e"°6% and e 1°8¢ for 2" and z°, respectively, for r; s € R) to obtain
YY (- 2,¢) (called analytic splitting of ) or Yau(+;2,¢). Then by (2.3), we
have:

Corollary 2.5 For the analytic splitting Y2, of Y in Proposition 2.3, we
have

Y2, (v (u" @ ul); 2, Oy (0" @ o™
hagbg
Limg b, ;as R;mg ., b, ;b3
= D0 D D At 2t @ Yy W )

az3€AL b3e AR mggpy=1

(2.4)

for ut @ uft € (Wha)maye) @ (W) Marn) gnd vl @ vft € (WEe2)mag) @
(WHEb2)(Mazes)  The same is also true for the analytic full vertex operator
map Yan for a conformal full field algebra over VF @ VE.

This corollary allows us to treat the left and right variables z and Z in
YY(-;2,%) or Y(-; 2, 2) independently. In particular, we have the following
strong versions of associativity and commutativity for conformal full field
algebra over VI @ VE:

Proposition 2.6 (Associativity) Let (F,m,p) be a conformal full field al-
gebra over VI @ VE. Then for u,v,w € F and w' € F’,

<U)/, Yan(u; 21, Cl)Yan(U; 22, CQ)w>
= <U)/, Yan(Yan(u; 21 — 22, Cl - CZ)U; 22, CQ)w> (25)

when |z1| > |z2| > |21 — 22| > 0 and |G| > |G| > |G — G| > 0.
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Proof. Using (2.4) and the convergence result proved by the first author in
[H7] for vertex operator algebras satisfying the conditions assumed for V'
and V2 in the beginning of this section, the left-hand side of (2.5) converges
absolutely when |z1| > |z2| > 0 and |(1] > |(1]| > 0, and the right-hand side of
(2.5) converges absolutely when |zo| > |21 — 22| > 0 and |G| > |(1 — (2| > 0.
By the associativity (1.8), (2.5) is true when (; = z; and (; = z for all
u,v,w € F and w’ € F'. In particular, replacing u by (LY (—=1))*(L%(—1))u,
v by (LE(=1))"LE(-1))"v, for k,I,m,n € N and using the LY(—1)- and
LE(—1)-derivative properties, we obtain

ak al am an
_ / Y . Y .
o2k oc oz ocg W Yl 2 V(o G|
ok ot g o
— AT ! Yan Yan ; - ) - ; )
0:F ol 0y 0G5 (W', Yon (Yan(u; 21 — 22, Gt — ()5 22, (o) w) s,

(2.6)

for all k,1,m,n € N, when |z;| > |23| > 0 and |z > |21 — 22| > 0. We know
that both sides of (2.5) give branches of some multivalued analytic functions
in the region given by |z1]| > |z2| > 0, |(1]| > [C1] > 0, |z2| > |21 — 22| > 0 and
|Ca] > |¢1 — ¢2| > 0. From (2.6), we know that the power series expansions
of these branches are equal in the neighborhood of those points satisfying
(1 = Z1, (2 = Z». Thus (2.6) holds in the region |z1| > |22] > 0, |(1] > [¢1] > 0,
|zo| > |21 — 22| > 0 and |G| > |(1 — (| > 0. |

Proposition 2.7 (Commutativity) Let (F,m,p) be a conformal full field
algebra over VI @ VE. Then for u,v,w € F and w' € F’,

(W', Yan (us 21, C1) Yan (v; 22, G)w) (2.7)
and

(W', Yan (05 22, G2) Yan (u; 21, C1)w) (2.8)
are absolutely convergent when |z1| > |z2| > 0, |¢1| > |G| > 0 and when | 23] >

|z1] > 0, |Ca] > |Ci| > 0, respectively, and can both be analytically extended

to a same multivalued analytic function of (z1, z2; (1, Ca) for (21, 29; (1, () €
M? x M?, where M?* = {(z1,22) € (C*)?*| 21 # 22}.

Proof. The convergence and the existence of analytic extensions follow im-
mediately from Corollary 2.5 and the convergence and the existence of ana-

lytic extensions of products of intertwining operators for the vertex operator
algebras VI and V.
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By Proposition 1.5, we know that these two multivalued analytic functions
obtained by analytically extending (2.7) and (2.8) have equal values at points
of the form (21, z1, ..., 2, Z,) for (21,...,2,) € F,(C). Using the L¥(—1)-
and LT(—1)-conjugation properties for full vertex operators, we see that
these two analytic functions are actually the same, that is, they are analytic
extensions of each other. |

For (z1,...,2n),(C1,...,Cy) € F,(C), we denote the corresponding ele-
ments of F,,(C) xIF,,(C) by (21,1, - -, 2n, Gu) instead of (z1,..., 2p, C1y oo oy Go)-
We have the following analyticity of the correlation functions:

Proposition 2.8 Let (F,m, p) be a conformal full field algebra over VEQVE.
For anyn € Z, and uq, ..., u,, there exists a multivalued analytic function
of (z1,C1y -+ 20y Cn) € Fr(C) X F\,(C) such that for (z, ..., z,) € F,(C), the
values

M (Ut ooy U 21, 21y -+ s Zny Zn)

of the correlation function is a value of this multivalued analytic function
above at the point (21,21, ..., 2n, Zn). Moreover, these multivalued analytic
functions are determined uniquely by the products of analytic full vertex op-
erators in their regions of convergence.

Proof. The proof of this result is basically the same as the proof of the
generalized rationality for intertwining operator algebras in [H5]. We have
proved the above strong versions of associativity and commutativity for an-
alytic full vertex operators. Using these strong versions of associativity and
commutativity, we see that the multivalued analytic functions in various re-
gions obtained from all kinds of products and iterates of analytic full vertex
operators are analytic extensions of each other. Thus we have such a global
multivalued analytic function. Clearly these multivalued analytic functions
are determined uniquely by the products of analytic full vertex operators in
their regions of convergence. |

By the results above, we see that for a conformal full field algebra over
VI ® VE, the correlation function maps are determined uniquely by the
products of analytic full vertex operators in their regions of convergence,
and thus are determined uniquely by the full vertex operator map. In view
of this fact, we shall use also (F,Y, p) to denote a conformal full field algebra
over VI @ VE,
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We shall use
E(m)n(ula'"7un;z17Cl7"'72n7Cn) (29)

to denote the analytic extension obtained in the proposition above together
with the prefered values

mn(uh s 7un;z17217 s 7Zn72n)

at the special points of the form (z1,z,..., 2y, Z,). For uy,...,u, € F and
a path

v:[0,1] — T,(C) xF,(C)
t = (zl<t)7 Cl(t)a cee 7zn(t)7 Cn(t))

starting from a point of the form (21, z1, . . ., 2zn, 2, ), we shall use

Em)p(uy, ... un;21(t),G(t), ..oy 2a(t), Gu(2))

to denote the value of (2.9) at the point y(¢) obtained by analytically extend
the preferred value of (2.9) at the starting point v(0) of v along the path ~
to the point ~y(t).

Corollary 2.9 Let (F,Y,p) be a conformal full field algebra over VI @ VE.
Let

v:[0,1] — T,(C) x F,(C)
t = (zl<t)7 Cl(t)a cee 7zn(t)7 Cn(t))

be a path starting from a point of the form (z1,z1, ..., 2n, 2n). Then we have
the following permutation property: For uy,...,u, € F and 0 € S,

E(m)n(uh ey Ung Zl<t)7 Cl(t)7 Tt 7Zn(t)7 Cn(t))
= E(m)n (o) - - - Uo(n); 2o(1) (8), Co1) (£); - - - 5 Zo(n) (£); Con) (£))(2.10)

Proof. This follows immediately from the permutation property for full field
algebras and the uniqueness of analytic extensions. |

Corollary 2.10 Let (F,Y,p) be a conformal full field algebra over VEF@ VI,
Let r1,7r9 € R satisfying ro > r1 > 0. Then for u,v,w € F and w' € F’,

(W', Y an (0572, 72) Yau (w5 71, 71 )W), (2.11)

32



can be obtained by analytically extending the analytic function (which is a
branch of a multivalued function)

(W', Yan(u; 21, 1) Yan (v 22, Go)w), (2.12)

defined near the point z; = (1 = 19, 29 = (o = 11, in the region |z > |23] > 0
and |(1| > |e| > 0, along the path given by

0,1] — M?*x M?
t o= ((z(t), 22(1)), (D), G(1))),

where
2(t) = n _g "2 + emL ; Tl,
2(t) = n ; "2 emL g Tl,
Gty = Dl
T+ T2 —imT2 — T
t) = -
CQ( ) 2 2 Y

to the region |za| > |z1| > 0 and |G| > |¢i| > 0 and then evaluated at

21:C1:T1 QNdZQZCQZT'Q.

Proof. By Proposition 2.7, we know that (2.11) can indeed be obtained from
(2.12) by analytic extension. What we need to show now is that the analytic
extension along the path given above gives precisely (2.11).

Since Y(+;2,2) = Yan(52,()|c=z and (1(t) = z1(t) and (o(t) = 22(t), we
see that (2.11) is equal to (w’, mg(v, u, w;r9, 19, 71,71,0,0)) and that

(W', Yan(u; 21(t), G (1)) Yan (05 22(1), Ga(t) )w) (2.13)
when |z5(t)] > |z1(¢t)| > 0 and
<w/7 Yan(v; 22<t)7 CZ (t))Yan<u7 21 (t)7 Cl (t))w> (214)

when |z (t)] > |22(t)| > 0 are equal to

<w’, E(m>5<u, U, Wy Zl@)y Cl (t)v ZQ(t)7 CQ(t)7 07 O)>
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and
<w/7 E(m)i‘}(v’ U, w; ZQ(t)ﬂ CQ(t)7 <1 (t)v Cl (t)7 07 O)>7

respectively. By the permutation property of full field algebras and Corollary
2.9), we see that (2.11), (2.13) and (2.14) are equal to

<U),, m3<u7 U, w;Tr1,71,72, 72, 07 0)>7

<w,7 E<m>3<u7 v, W; Z1<t)7 Cl (t)7 Z2(t)7 CQ(t)a 07 0)>
and
<w/7 E(m)d(uﬂ v, W; 21 (t), Cl (t)7 Z2(t)7 CQ(t)7 07 O)>7

respectively. From this fact, we see that indeed the analytic extension of
(2.12) near the point z; = (; = 79, 20 = (» = r1, along the path given above
gives (2.11).

This result can also be proved directly using the associativity (Proposition
2.6) and the skew-symmetry (1.41) (see [K] for details). |

Theorem 2.11 A conformal full field algebra over VF @ VT is equivalent
to a module F for the vertex operator algebra V' @ VT equipped with an

intertwining operator Y of type (FFF) and an injective linear map p : V* ®

VE — F, satisfying the following conditions:
1. The identity property: V(p(1f @ 17), 2) = Ip.
2. The creation property: Foru € F, lim, .o Y(u,)p(1* @ 1%) = u.

3. The associativity: The equality (2.5) holds when |z1| > |z| > 0 and

|G| > |G| > 0.
4. The single-valuedness property:
2L O)=LRO) = [ (2.15)
5. The skew symmetry:
YV (u: 1, 1)v = X COHEEDYY (4 7 o7y, (2.16)
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Proof. 1f (F,Y,p) is a conformal full field algebra over VI @ V£, then the
results in Section 1 shows that F is a VL @ VEmodule, Y;(;z,z) is an
intertwining operator of type ( FFF) and the five conditions are all satisfied.
We now prove the converse.

Let F be a module for VL ® V%, Y an intertwining operator of type (1)
and p: VI ® VP — F an injective linear map, satisfying the five conditions
above. We take the splitting Y¥ of ) to be the full vertex operator map. For
simplicity, we shall denote Y¥ simply by Y. We now want to construct the
maps m,, for n € N and to verify the convergence property.

Using (2.4) and the convergence property of the intertwining operators
for the vertex operator algebras V' and V', we know that for ui,...,u, € F
and w' € F’,

(W', Y(uy; 21, 1) - - Y(un; 20, o)1) (2.17)

is absolutely convergent when |z1| > -+ - > |2,| > 0, |¢1| > -+ > |(,] > 0, and
can be analytically extended to a (possibly multivalued) analytic function of
25y 20, Qs ..o, Gy In the region given by z; # z;, 2z # 0, ¢; # ¢, ¢; # 0.
We use

E(m)n(wlvulv'"7un;217C17'"7zn7Cn) (218)
to denote this function. This is a function of 21, (1, . . ., 2, ¢, Where (21, ..., 2,),
(C1y. -, ) € Fr(C). So we can view this function as a function on F,(C) x

F,.(C). In general, this function is multivalued. Using analytic extension,
a value of this function at a point P; € F,(C) x F,(C) and a path v in
F,.(C) x F,(C) from P, to P, € F,,(C) x F,(C), determines uniquely a value
of the function at the point Py;. Moreover, this value depends only on the
homotopy class of the path . We shall call the value of the function (2.18)
at Py obtained this way the value of (2.18) at Py obtained by analytically
extending the value of (2.18) at Py along .
We choose the correlation function

(W' mp (U, o U 21, 215 -+ vy 2y Zn)) (2.19)

as follows: For zy = n,...,z, = 1, we define (2.19) to be (2.17) with
21 = ¢ = ny...,zy = ¢, = 1. For general (z1,...,2,) € F,(C), we
choose a path v from (n,...,1) to (21,...,2,). Then we have a path v x 7
from ((n,...,1),(n,...,1)) € F,(C) x F,,(C) to ((z1,.-.,2n),(Z1,...,2n)) €
F,.(C) x F,(C). We define (2.19) at to be the value of (2.18) obtained by an-
alytically extending the value of (2.18) at ((n,...,1),(n,...,1)) along v x 7.
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The first thing we have to prove is that the correlation function we just
defined is indeed independent of the path ~. To prove this fact, we need
only prove that if v is a loop in F,,(C) based at (n,...,1) , then the value of
(2.18) at ((n,...,1),(n,...,1)) obtained by analytically extending the value
(2.19) of (2.18) at ((n,...,1),(n,...,1)) along the loop v x 7 is equal to the
original value (2.19) of (2.18) at ((n,...,1),(n,...,1)). In other words, we
need only prove that the monodromy along the path v X 7% s trivial. Note
that the group of the homotopy classes of based loops in F,,(C) , that is, the
fundamental group of F,(C), is the pure braid group of n strands (see [Bi]).
This group is generated by the homotopy classes of the loops given by fixing
sy Zjo1y Zjgds .-, 2n tOben, o n— (j —2), n—j,..., 1, respectively,
and moving z; starting from z; = n — (j — 1) around 2z; = n — (i — 1) once
(but not around other points above) in the counter clockwise direction, for
i #7,1,5 =1,...,n. Hence we need only prove that the monodromy along
the path 7 x 7 is trivial for (the homotopy class of) such a loop ~.

We now prove that the monodromy along the path v x 7 is trivial for
(the homotopy classes of) such a loop «. Let r be a positive real number
satisfying n— (i—1) > r > n—i. Note that r satisfiesr >n—(i—1)—r > 0.
We know that

(W Y(up;n,n) - Y(usn—(i—1),n— (i —1))Y(uj;r,7)-
Y(uipin —i,n—i) - Y(ugn—(j—2),n—(j —2))-
Y(uigr;n—jg,m—7)) - Y(up; 1,1)1) (2.20)
can be obtained by analytically extending the value
<U)/, Y(U’h n, n) Y Y(u'm L, 1)1>

along a path from ((n,...,1),(n,...,1)) to

((n,....n—(—2),r,n—73,...,1),(n,...,n—(5—=2),r,n—7,...,1)). (2.21)

Such a path can always be taken to be of the form vy x 7y where vq is a path
in F,(C) from (n,...,1) to (n,...,n —(j —2),7,n — j,...,1). This path
7o induces an isomorphism from the fundamental group of F,(C) based at
(n,...,1) to that based at (n,...,n— (5 —2),r,n—7j,...,1). It is clear that
the monodromy along a loop based at (n,...,1) is trivial if and only if the
monodromy along the corresponding loop based at (n,...,n—(j —2),r,n—
Jy ..., 1) is trivial. So we need only prove that the monodromy along a loop of
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the form 7 x 7 is trivial where v is a loop based at (n,...,n—(j —2),r,n —
Js...,1) given by fixing z1,...,2j_1, Zj41,...,2, t0 be n,....n — (j — 2),
n —j,...,1, respectively, and moving z; starting from z; = r around z; =
n—(i— 1) once (but not around other points above) in the counter clockwise
direction. By the definition of 7y, the value of (2.18) at the point (2.21)
obtained by analytically extending the value (2.19) of (2.18) at the point
((n,...,1),(n,...,1)) along ~ is (2.20). Since we also have r > n— (i —1) —
r > 0, by associativity, (2.20) is equal to

(W', Y(ug;n,m) - Y(ui_y;n— (i —2),n — (i — 2))-
Y(Y(uizn—(i—1)—r,n— (i —1) —r)u;;r,r) -
Y(uipsn —in =) Y(uzn— (G —2),n—( —2))
Y(uip;n —gim = j)) -+ Y(un; o, mn)1).

Now let v : [0,1] — F,,(C) be the loop given by
te(n,...,n—(i=2), r+e™ (n—(i—1)—r),n—i,...,n—(j-2),r,n—j,...,1).

Then the value of (2.18) at (2.21) obtained by analytically extending the
original value (2.20) of (2.18) at the point (2.21) along = is

(W, Y(up;n,n) - Y(ui_y;n— (i —2),n— (i — 2))-
V(Y (ugs ™ (n — (i = 1) = 7), e (n — (i = 1) = 7))ug;r,7) -
Y(uirisn—t,n—d) - Y(ugn— (G —2),n—(j —2)) -
Y(uirr;n—d,m — 7)) - Y(Up; 7, 7)) 1) (2.22)

But by the L¥(0)- and L¥(0)-conjugation properties and the siungle-valuedness
property, we have
Y(uize®™(n— (i — 1) =r),e*"(n— (i = 1) = 1))

_ 627ri(LL(0)—LR(0))Y(e—Qm'(LL(O)—LR(O))ui; n—(Gi—-1)—rn—(G-1)—r)-

o~ 2Wi(LE(0) LR (0))

=Y(uzn—(i—1)—rn—(i—1)—r). (2.23)

Using (2.23) and the associativity again, we see that (2.22) is equal to (2.20).
Thus the analytic extension along this loop indeed gives trivial monodromy.

Now the correlation functions and thus the maps m,, for n € N are defined.
The only remaining thing to be shown is the convergence property. We
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need to show that for any k € Zy, ly,...,lx € Z¢, (z1,...,2;) € F,(C),
G zl(;)) € F,(C),i=1,...,k, the series (1.13) converges absolutely to
(1.2) when |2] + || < |2 — zj(-o)| fori#j,4,7=1,...,k,p=1,...,1;
and ¢ =1,...,1;.

We use induction on k. We first prove the special case in which k& = 2

and zéo) = 250) = 0. The case k = 1 is in fact a special case. By the definition

of Y, (1.13) becomes

1 . (1) (1 1) _(1 0) _(0
Z Y( Py, gy, (w (),...,ul(l);zp,z%),...,zl(l),zl(l));z§),zﬁ))-

P1,91,p2,92

2 2 2) _(2
-Pp27q2m12(ug ), Uz(2)> z§ ), z§ ), . zl(z), zl(z))).(2.24)

We use induction on ;. When [} = 1, (2.24) becomes

1) (1 0) -
Z Y p1,91 U’l ’Zg )725 )>1;Z£ )72:%))

P1,91,p2,92

2 2 2 2) (2
-Pp27q2m12(u§ ), Uz(2)> z§ ), z§ ), . zl(z), zl(z))).(2.25)

Using the construction of Y in terms of intertwining operators the propertles
of intertwining operators and noticing that our condition |z\| —|-| | < |22

implies |zl )| < |z1 | and |le) + zlo)| > |z- |, we know that

1 1 0
ZY P1Q1 Ul),ZE )7 ())1 ZE )72())

P1,91
2 2). _(2) (2 2) _(2
-Ppmzmb(ug ), . ,ul(Q); z§ ), z§ ), . zl(z), zl(z)))
is absolutely convergent to

Y2 + 2%, 2" + 7)Y (147, 27)-

2
.szﬂlzmlz(ug )7 o ul(2)7 Z:E )72:5_ )7 Zl(2)7zl(2)))
_ Y(u( ). ( ) + 250)7251) 4 Zg ))
2
'szﬂzzmlz(ug)v" ul(2)7zi )7Z§ )7 Zl(2)7zl(2)>>'

Then by the construction of the correlation function maps and, in particular,
by the fact that the correlation functions are values of multivalued analytic
functions at certain particular points, we know that the right-hand side of
(2.25) is absolutely convergent to

2 2 1 _(0 2) (2 2) (2
ml+l2<ug )7u§ )7" ul(2)7 ! )+Z§ )7 7 )+Z§ )72§ )72§ )7"'721(2)7’2[(2))'
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Here we have used the fact that if a certain iterated sum of a series in powers
of these complex variables is convergent to an analytic functions in the region
above, then the multisum must also be absolutely convergent.

Now we assume that for [y < [, the conclusion holds. We want to prove
the conclusion for the case I} = [. We first assume that |2\"], ..., |Zz(1)| are
all different from each other. Then in particular there exists ¢ such that

\z,gl)\ > ]zgl)], ce ]zgl)\, ce ]zl(l)\, where and also below we use ~ to denote

that the item under ~ is missing. Then (2.24) in this case is equal to

Z ZY P1Q1 U’t )7 (1)7215(1))'

p1,491,p2,92 TS

-Pmml_l(ugl), . ,ugl), . ,ul(l); z%l), 251), . ,zfl), zﬁ”, ) )
0
zP? 2”)-
2 2 2 2
Py, quZQ(ug ), .. ul(Q),zi ),z§ ), .. .,zl(z),zl(z))). (2.26)

Using the construction of Y in terms of intertwining operators and the proper-
ties of intertwining operators, and noticing that our condition |zt(1)| + |Z](2 | <

217 implies 7] < [of”| and |2} + 21| > 27|, we know that

1) (1
ZY P X Ut ; ()7215))'

P1,91
.Pr’smlfl(ugl)7 o ’u£1)7 o ’ul(l); z§1)7 251)7 o Zgl)’ 2151)7 ' )
(0) ())
) 21
2 2 2 2) (2
Py, (w2 A0, 2D 22

is convergent absolutely and, when |zt + zl | > |zlo)|, it is absolutely con-
vergent to

Yl Y + 59,50 4 20

-Y(Pmml,l(ugl), . ,ugl), . ,ul(l); zil), 251), - zgl), zﬁ”, - zl(l), Zl(l));
0) _(0
0,30)
2 2 2 2) _(2
Pp2q2m12(ug),.. ul(Q),zi),zi),...,zl(z),zl(z))). (2.28)

By the induction assumption,
S 4 50 50 4 50).

7,8,P2,92

39



—_ —_——

'Y(Prsm5—1(u(1) (1) 1. @) 1) 1) =) (1) —(1)).

, RPN TH I T SN PSR ST ARA
472"
-Ppmmb(u?), . ,ul@) z§ ), z%z), . 21(22), 21(22))) (2.29)
is absolutely convergent to
Vil o) 4 20, 20 4 20
-ml+12_1(ug1),.. ugl),...,ul(l),u?),...,ul(;, ()—i-zio),zil)—i- 5),...,
g I e B U GO N C IS S R
:mle(ugl),...7ul(1),ug2),...,ulf); (1)4—250),_(1)—1—25),...,

A0 40,0 S0 S ) 230)

We know that the right-hand side of (2.29) is a value of the multivalued
analytic function

E(m)l+12 (ugl)7 R 7ul(l)7 u§2)7 st 7u(2). Zil) + Z§0)7 Cl(l) + C1(0)7

Iy

1 0) (1 0)_(2) ~(2
4+ 57,0+ G )zP,Cf),---? 46

at the points satisfying Cl(o) = éf)), C}gi) = Ez(f) forp=1,....0;, 1 =1,2.
Since both the sum of (2.29) and the right-hand side of (2.30) are values of
multivalued analytic functions i 1n the same region and we have proved that
their values are equal when |zt + zl | > |zlo (2.29) must be convergent
absolutely to the right-hand side of (2.30) even When |zt + zl | > |zlo)| is
not satisfied. By the properties of analytic functions, we know that (2.26)
as a sum in a different order is also convergent absolutely to the right-hand
side of (2.30).

Now we discuss the case that some of \z%l)\, ey \zl(l)] are equal. Let
N(z%l), . 7251)) be the subset of {zil), . ,zl(l)} consisting of those elements
whose absolute values are equal to the absolute values of some other el-
ements of {zil), . ,zl(l)}. We use induction on the number of elements of
N(z%l), Ce zl(l)). When the number is 0, this is the case discussed above. Now
assume that when the number is equal to n, the conclusion holds. When this
number is equal to n + 1, let € be a complex number such that the number
of elements of N (2" +e, ... ,zl(l) +e)isnand |27 + ¢ + 287 + ¢ < |21V for
p=1,....,1and ¢ = 1,...,l5. Note that we can always find such an € and
we can take such an e with |e| to be arbitrarily small.
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By induction assumption,

Z Y( Py, gy ug ) ,ul(l); zgl) + e, z§” +é6..., zl(l) + €, Zl(l) + €);
Pp1,91,P2,92
0) (0

21 5% )
-Pp27q2mlz(u§2), .. ul(Q), @ 4 €, z§ ) 4 €, . Zz(g) + € 21(2) + €)
(2.31)
is absolutely convergent to
ml+52(u§1), . l( ),u?), . 7“1(22)7 ) 4 z% ) 4 €, z§1) + z§°) + €, .
e e S Y
(2.32)
We have
Z Z _ELL eLR(l)UlyY<Pr1,s1€€LL(_l)+€LR(_1)'
71,51,72,52 P1,91,P2,92
1 1y (1) _(1 1) _(1 0) (0
Pplﬁqlml(ug ), . 7“1( );z§ ),z§ ), . ,zl( ),zl( ));z§ ),z§ )) .
eLL eLR 2 2 2 2) (2
P, e LE(—1)+eLB (- )Ppg,qgmh(ug )7 ul(Q)VZ% )725 )7 o 721(2)721(2)»
_ Z <€_ELL(1)_€LR(1)U,,
71,51,72,52
Y(Prl,slml(ugl), . 7“1( ) (1) +e z§ NI Zl(l) +¢, Zl(l) + €);
0
47,27
-Prl’slmb(u?), . ,ul(Q); @ 4 €, z§ ) 4 €, .. ( ) 4 €, Zz(2) + €)).
(2.33)

So the right-hand side and thus also the left-hand side of (2.33) is absolutely
convergent to

(e_eLL(1)_5]4}%(1)1/7 My, (ugl), . 7ul(l), uf), ul(Q), (4 z( ) 4 €,
2+ 20+, + 20 + 6,70 + 20 + ¢,
()+e 2 v 20 42 1 8)
= (/, e—cLH(-1)—¢eL (—I)TnH_l2 (ugl)7 o 7“1(1)7 qu), ul(22)7 Z§ ) + Z§ ) T,
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20420 e 0 0 re 2V + 20 + e

( ) (2)

+e 20 +E .40 v 20 +e)
- <U/7ml+lz(ugl)v---auz(l)vugz)v Uz(z)vzil) +Z§0) (1) +z()
1 0 0 2 _(2 2 (2
Zl( ) +Z§ ),Zl( ) —|—Z§ )zg )72:% )7 o 7Zl(2)7zl(2))>-

(2.34)

Since the left-hand side of (2.34) is a value of a multivalued analytic function,
any of its expansion must be absolutely convergent. In particular, the left-
hand side of (2.33) as an expansion of the left-hand side of (2.34) is absolutely
convergent. Thus we can exchange the order of the two summation signs such
that the resulting series is still absolutely convergent to the left-hand side of
(2.34) and thus to the right-hand side of (2.34).

But for v’ € F”,

1 . 1) - ) _(1
Z (uﬂY(Pphqlml(ug),...7ul();z§)7z§),...7zl()7zl());

P1,q1,P2,02
0) _(0
2 2 2 2) _(2
PP27Q2ml2<ug )7 - ul(g)VZ% )72'{ )7 s 7Zl(2)7zl(2))>
_ Z <67€LL(1)76LR(1)U/7€€LL( 1)+eL?(-1)
P1,91,P2,92
1 1y (1) _(1 1) _(1 0) _(0
-Y(Ppl,qlml(ug ). 7“1( ), z§ )725 ). ,zl( ),zl( )) z§ )725 ))
2 2 (2) (2 2) _(2
-sz,qzmlz(ug ), . 7“1(2)3 ZE ), ZE ), o ZZ(Q), Zl(2)>>
_ Z <676LL(1)76LR(1)U,/7Y(eeLL(fl)+ELR(fl) .
P1,91,P2,92
1 1) _ 1) _(1 0) _(0
-Pphqlml(ug ), . 7ul( ). z§ ),z§ ), . Zz( )7,2[( ));z§ ),z§ )) .
o€ L(_ eLR(— 2 2 2) (2 2
b DL I)sz,%mlz(ug )7 - UZ(Q),Z£ ) Zg )7 - Zl(2)7zl(2)>>
Z Z 7€LL 6LR(1)U/7Y<PT173166LL( 1)+eL®(-1)
P1,91,p2,92 7'1,51,72,52
1 1 1) _(1 0 _
-Pphqlml(ug ), . 7ul( ). z§ ),z§ ), . ,zl( )7,2[( )) z§ ),z§ ))
eLL(— eLR 2 2 2) (2 2) _
P, se LA (=1)+eL™ (= I)szmmb(ug )7 o 7“1(2);Z§ )72,% )7 B 21(2)72,[(2)»'
(2.35)

We have shown that the right-hand side of (2.35) is absolute convergent
to the right-hand side of (2.34). Thus the left-hand side of (2.35) is also
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absolute convergent to the right-hand side of (2.34). So we have proved

the convergence property when the number of elements of N (z%l), cee zl(l)) is
21"

n+ 1. Thus the convergence property is proved when some of |z§1) l, ..,
are equal.

By induction principle, we have proved the convergence property in this
special case.

We now assume that when £ < K, (1 13) converges absolutely to (1.2)
when zp #z for p,q = 1,... K, zp 7éz forp,q: 1,...,1; and
i=1,...,K1<pq<1, and ]zp | + ]ij)\ < \zz —z](-o)] forp=1,...,1
g=1,...,l,475=1,...,K, 1 # j. Now we consider the case k = K. We
first consider the case that zz(,i) eR,U{0} forp=1,...;;andi=0,..., K
and zf)) > e > zﬁ?). By the definition of the correlation function maps, we
know that (1.13) in this case is equal to

1 . (1) -0 1) —(1)y. _(0) (0
Z ZY(Ppl,qlmll(ug),...7ul(1);z§)725),...,21(1)721(1));Z§),zp)-

P1,91,--PK,9dK T,S

2 2) _ 2) (2
-PmmK_l(szﬁqulQ(ug ), .. ul(z), ZE ), z% ), ZZ(Q), Zl(z)), .
K K K K) (K
PPK:QKle(ug )7' U’l(K)7Z§ )7Z§ ) zl(K)7Zl(K))7
Zg))azé())a Z%),Z( ))

(2.36)

Using the induction assumption, we have

1 1 1 1) _(1 0) —(0
Z Z Y<Pp1,lnmll<ug)7 U’l(l)7z§)7Z§)7"'7Zl(1)’zl(1));z§)72§)>'

7,8,P1,91 P2,92;--PK ,dK

N R AR
P (™24 2200 20);
zéo), zéo), . zg), Zﬁ())
5 VB 000,50, 0,0 0,0
7,8,P1,01
P syt (uf), .. ulf)? . ,ugK), . 7“1(5)3 252) + Zéo),
I B I
A5 +z§?),z§m + 20,20+ 29,20 + 29).

(2.37)
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Sincez]gl)+z(l)<z§) -(0) forp=1,....,l,,g=1,....,andi=2,..., K,

we have 23" + (20 + 20 )) < 2 — 0. Thus by the special case we proved
above, the right-hand side of (2.37) is absolutely convergent to

1 1 K K 1 0
m,1+...+,K(u§ )7...,ul(l),...,ug )7...7ul(K);z§ ) —|—z§ ),
A B N - I I LU L T
25 )+z() ...,z}f)+z§?),z§m+z§()) (2.38)

Note that (2.38) is a value of the F-valued multivalued analytic function

1 1 K 1
E(m)lﬁ...HK(ug),...,ul(l),...7ug ). ul(K),z()—i— E),
Cfl)+C1(0)7"'7zl(1)+zl 7Cll +C1 PR ( )+Z()
K 0
A4 QO +<K ). (2:39)

at the point zi(j ) = zi(j ), Ci(j ) (j ). Thus its expansions, no matter in which
ways, must be convergent absolutely. In particular, (2.36) as one expansion
of (2.38) must be convergent absolutely to (2.38), proving the convergence
in this special case of the case k = K.

We know that for a series in powers of several variables, if it is absolutely
convergent when these variables are equal to some real numbers, then it
is also convergent when the variables are equal to complex numbers whose
absolute values are equal to these real numbers. Using this property, we see
that

1 0 0
Z ZY P1,Q1 (ug)7 Ull ’Zl 7<1 1 ll 7Cl >’Z§)7C1( )>'

P1,91,--PK,4K T,S

2
Py E(m) i1 (P gy E(m) (ul o ul 20,¢2 22 ¢,
PPK,QKE(m)lK<ugK)7 U’Z(II:)7 7CK) ) lK 7ClK )7

2 7C2 )ty K C )
(2.40)

is convergent absolutely to a branch of (2.39) when z 7é zq , Cp =+ qu)
for pg =1,..., K, zg)#zg), CJSZ')#QY) forpg=1,....05;,i=1,....K
290 5 120 < 10 = 121, 1691 41697 < 110~ 16O, or p =1, . 1
g=1,....0,4j=1,..,K i%#j and |27 > .. > [2] |9 >
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cee > |(I(?)|. Using the permutation property for the correlation functions,
we obtain that (2.40) is convergent absolutely to a branch of (2.39) when

0 0 0 0
|z((7()1)| > > |Z((7()K)| and |C§(i)| > > |C§&()| for some o € Sk.

0 0) (0 0 o 0 0
Now for fixed zg ) zg(), Cl( ) ,Cé() satisfying ’ny()n’ > > ’ny()K)‘
and ]ng)\ > > \CSPK)] for some o € Sk, any branch of (2.39) can be
expanded as a series in powers of z;,(,i) and Cl(,i), p=1,...,;,i=1,...,K in
the region

1 K 1 K I3 i i i
(G R e N i) B - T O T O
forp,g=1,...,l;;i=1,..., K,
i 1 0 0 I3 1 0 0
20] 4 129] < 20 = 201 1¢0] 4 1¢9] < ¢ = ¢,

forp=1,...,0l,q=1,....l;,i,5=1,...,K,i# j}.
(2.41)

But in the region

1 K 1 K 7 7 7 7
{<Z§)77ZZ(K)J 1()77C1(K)>|Z;()) %ZS])JC}(;) %C{E)
forp,g=1,...,;,i=1,..., K,
i 1 0 0 i i 0 0
20 + |29] < |22 = 1291, 1¢91 + 1¢9] < 1< = 1,
forp:1,...,li,q:1,...,lj,i,j:1,...7K,i7éj},
(2.42)

we have proved that one branch of (2.39) can be expanded as the series
(2.40), which can be further expanded as a series in powers of z;,(f) and ngi),
p=1,...,l;;i=1,..., K in this region. Since the region (2.42) is contained
in the region (2.41) and the coefficients of the expansion can be determined
completely using the values of the branch in the region (2.42), we see that
the restriction to the region (2.42) of the expansion in the region (2.41) is
the same as the expansion in the region (2.41). Thus, the series (2.40) is
convergent absolutely to a branch of (2.39) in the region (2.41).

In the region (2.41), when CI(,O) = z;,(,o) eERforp=1,..., K, QS“ = zl(f) eR
for p = 1,...,0;, i = 1,..., K, we have proved that (1.13) in this case is
convergent absolutely to the right-hand side of (2.37). Thus in the region
(2.41), (1.13) with k = K is convergent absolutely to the right-hand side of
(2.37), the value of a branch of (2.39).

Finally we consider the case that some of %0),7 ce ]z&?)] are equal. Re-
call the subset N (z\”, .., zﬁ?)) of {2V .., zﬁ?)} consisting of those elements
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whose absolute values are equal to the absolute values of some other el-

ements of {zio), Cey zﬁ?)}. We use induction on the number of elements of
N (250)’ Ce z&?)). When the number is 0, this is the case discussed above. Now

assume that when the number is equal to n, the conclusion holds. When this
number is equal to n + 1, let € be a complex number such that the number
of elements of N (zf)) +e..., zﬁ?) + €) is n and that the other conditions are
still satisfied. Note that we can always find such an € and we can take such
an € with |e| to be arbitrary small. By induction assumption,

1 1 1 1) _(1
Z mK(Pphqlmll(ug), ul(l),z§),z§),...,zl(l),zl(l)),...,
P1,91,--PK,9K
p (K) (), () S06) LK) L)y

PK,QKle(Ul yeeey U TSR R Ty B s R

P - LY O R Sy
is absolutely convergent to

1 1 K K
mlﬁMHK(ug),.. ul(l),...,ug ),. ul(K), ()+z§)+e,

20420 1e o 10 e 2 20 e D

()+z()+e z()+z§()+ezl()+z()+e)

lK

Thus for v’ € F,

1
Z (u’,mK(Pphqlmll(ug),.. u§1),z§), (), zl(l),zl(l)),...,
P1,91,--PK,9K

K K) (K) —(K K) (K
PPK,qulK(ug ),...7UI(K);Z£ ),z§ )7...,ZZ(K),ZI(K)>;
0
40,27, 20, 200

_ Z <66LL(1)+5LR(1)U/7 e—eLL(—l)—ELR(—l) .

P1,91;--PK 9K

1 1 1 1) _(1
-mK(Pphqlmll(ug),.. ul(l),zg),zg),...,zl(l),zl(l)),...,
K K) (K) _(K K) _(K
PPK,qulK(ug ),...7UI(K);Z£ ),z§ )7...,ZZ(K),ZI(K)>;
0) _(0 0) _(0
42,287,205

_ Z <6€LL(1)+ELR(1)U/7

P1,91;--PK 9K

1 1 1) (1
mK(Pphqlmll(ug ), ul(l),zg ),z§ ), . .,zl(l),zl(l)), o
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K K), (K) (K K) (K
PPKu‘]Kle( | )7 UI(K);ZE )72:% )7"'7ZZ(K)7ZI(K));
A0 462V 1 20 46 20 o).
is absolutely convergent to

<6€LL(1)+€LR(1)U,7 L e (U’gl)ﬂ ul(ll)ﬂ ce 7ugK)7 s 7U’l(}I(()7 Z{l) + Z{O) + €

20420 e 20 420 4650 420 1250 420 4
()—i-z()—i-e (f)—i-z()—l—ezl()—i-z()—i-e)}

= (u’,mll+...+lk(u§ ), . ul(l), e ,ugK), ul( ), Wy z( )

m—i—zf),.. z}j)+z§°), m—i—z() ZEK)+Z§?),
( )+Z() "'7Z§K)+Z§?)agl(K)+ g{)»

Since u' is arbitrary, we have proved that (1.13) with & = K is convergent
absolutely to the right-hand side of (2.37) in the case that the number of

elements of N (zg ), Cees zﬁ?)) is n+ 1. Thus we have proved this conclusion in
the case that some of ]zio)], ce ]z&?)] are equal.
By the principle of induction, the convergence property is proved. |

Remark 2.12 Although the definition of full field algebra in Definition 1.1
is very general, it is not easy to verify all the axioms directly. Theorem 2.11
gives an equivalent definition of conformal full field algebra over VI @ V#
and the axioms in this definition are much easier to verify than those in
Definitions 1.1, 1.7 and 1.16. In our construction of full field algebras in the

next section, we shall use this definition to verify the structure we construct
is indeed a full field algebra.

3 A construction of full field algebras with
nondegenerate invariant bilinear forms

Let V' be a simple vertex operator algebra and Cy(V') the subspace of V
spanned by u_ov for u,v € V. In this section, we assume that V' satisfies the
following conditions:
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1. Vipy = 0 for n < 0, Vgy = C1 and W = 0 for any irreducible V-
module W which is not equivalent to V.

2. Every N-gradable weak V-module is completely reducible.
3. V is Cy-cofinite, that is, dim V/Cy (V) < oc.

(Note that by results of Li [L] and Abe, Buhl and Dong [ABD], Conditions
2 and 3 can be replaced by a single condition that every weak V-module is
completely reducible.)

Since V satisfies the conditions above, all the results in [H9] can be used.
We shall use all the notations, conventions and choices used in this paper.
In particular, we use the following notations and choices: A is the (finite)
set of equivalence classes of irreducible V-modules; e is the equivalence class
containing V; ' : A — A is the map induced from the functor given by taking
contragredient modules; for a € A, W is a representative of a; (-,-) is the
nondegenerate bilinear form on V' normalized by (1,1) = 1; for ay, as, az € A,
Ve are the spaces of intertwining operators of type ( wes ); 012 and o093

a1az Weaei1Wwa2
are actions of (12) and (23) on V and they generate an action of S3 on

v=J] V&

a1,a2,a3€A

for any bases Y*® ;=1 ... Na o0 =1,234."56,...and ar,as,a3 € A,

ajaz;t?
Q.
of V..,

bl bl . k) 3) k) 4)
F<yccllfa5 K ® ys;ag,,j’ y:zlgag,l ® yalfja2 k) S C

are matrix elements of the fusing isomorphism; for a € A, V¢, , V5., and
Veur are bases of Vi, Vi, and V5, chosen in [H9]; for a € A, there exists
he € Q such that W =T] ., W).

For ay,a, a3 € A, we now want to introduce a pairing between Vg3, and

at

Va’fa’z'

For a € A, w(z € W and w), € (W*), we shall use w, and @/, to denote

LWy, and e~ | respectively. Then we have

(LD el Wap,) = (w!, w,).

We have:
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Lemma 3.1 Fora € A, w, € W and w!, € (W*),

Res,_oz ' V5 4 (2H OOl )20, = (w!, wa)1.

Proof. Since Vigy = C1 and V&, = 023(V2e1),
ReSZ:()Z_lys o 1( L(O)eﬁi(L(O)—hG)w/ Z)ZL(O)QD(Z
= (1, aal(lL() THEO ) 1),)1
(1 025( a’e 1)(6 HEO)- h) 71)wa)1
<emhaygel( L(1) o =mil(0) ,mi(L(0)=ha) W, 1)1, 10,)1
<yg (W@ 1)1, 10,)1
< L( 1) L(1 w wa>]—
<6L / 1) >1
=

w 7wa>

For a single-valued branch fi(z1, 22) of a multivalued analytic function in
a region A, we use E(f1(z1, 22)) to denote the multivalued analytic extension
together with the preferred branch fi(z1, 22). Let wy = wy(z1, 22) and wey =
wy (21, 22) be a change of variables and fs(21, 22) a branch of E(fi(z1, 22)) in
a region B containing wy (21, 22) = 0 and wy(z1, 22) = 0 such that AN B # ()
and f1(z1,22) = f(21, 22) for (21,22) € AN B. Then we use

Resy, =0 w, B(f1(21, 22))

to denote the coefficient of w; ! in the expansion of fo(21,22) as a series in
1 2( 21, 22

powers of w; whose coefficients are analytic functions of wy. By definition,

we have

Resw1:0 | Clw2+C'2E(f1<Z17 ZQ)) - Reswl:O \ w2E<f1 (Zh ZQ)) (31)

for any C; € C*, (5 € C independent of z; and z;. We have:

Proposition 3.2 For aj,az,a3 € A, wa, € W, wa, € W=, wy € (W),
e (W), eV, andYs € VSfagf there exists a constant (Y, y2>vaafaz
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C such that
Res1_z, 200 2 (1 — 21 — 22) "E(("WWa((1 = 21 — 22)" O], 1),
L(l)yl<<1 — 21— Z2)L(0)U~}a17 22)w112>)
= <wa17wa1><wa27wa2><yl y2> (32)

Ezxplicitly, for any bases {yjjaglz | i =1,...,N®, } and {Y, a3’ 2) | i
1.
1,...,N® andjzl,...,Ns,lga,Q, we have

aiag

!
a 113 .
, a’la’z} of Vi3, and Va’la’z’ respectively, and for m,n, k,l € Z+,

H 1 ) al; as; 1
<y:1Lfa2 27 ysfa2,1> a102 - F(O-Q?’ (yaga z> ®Y 13a2 ;’ ygzzz;l ® ysllal;l)
= Flon(Vl) @ Voii Ve | @ Ve - (3.3)

Proof. We prove (3.2) in the case Y, = yjf;j} and )V, = yji; ; for i =
1,...,N° ;‘ ; and j = 1,..., N?, , respectively, or equivalently, we prove (3.3).
The general case follows 1mmed1ately from the bilinearity in Y; and ), of

the right-hand side of (3.2).

For aj,ay € A, ar,aa # e, let {V57,, | i=1,..., N2, } and {))52&1 q 1=
1,. N .7} be an arbitrary basis of V2, and Va,f’al, respectively.

For wa1 € W, w,, € W2, wy € (W), w,, € (W), we have

Resl—21—32:0 \ Z2<1 — 21— Z2)71E<< 1)3}5321 Z(( — A1 ZQ)L(O)PJ);l? Zl)w;y

P DYEN((1 = 21 — 22) Oy, 29)i0a,))
- Resllefzz:l) \ Z2<1 — R Z2>_1
) a53(2) ¢ (1—2z1)L(1) (1 _ —2L(0) |
(1 =2 — Zz)L(O)wfna (1- 21)71)€L(71)€L(1)w;27
Va1 = 21 — 20) O, , 2)la, )
= Resi_.,_2,—0| zQ(l — 21— z) 7"
_ an; wi(L(0)—h /) ~
E((e e Wi, (V2 (1= 21 = 2) O™ MO i 1 2).
V(1 = 21— 29) MO, 29)i0,))

a a4
2
Na4a2 ”‘/1”‘1

- Z F(023 53(; z> & y‘lf;ml;’ ysf@p @ y:lMal q) '

as€A p=1 ¢=1
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‘Resi—z—zp—0 | 2o(1 — 21 — z9) 7!
-E((e L(=1) o L(1) az?ygjaw(yszxal q((l - 22>L(0) .
O =har) l—z—z)-
-(1 — 21 — 29) PO, 20)1dg,))
= Fon(Vri) @ Vel v @ Ve ,0)
'R€S1—zl—22:0 | Zg(l —Z1 — 22) !
B e M, Vit Vo (1= 21— 22) 10

mi(L(0)~hyy)
e ;17

(1 —zZ] — ZZ)L( )wan 22)w112>)
= F<0—23<y;13c; z) ® ys%z,y?yg;zp ® Yy 10131 ) .
{eHD L g

1—21—22)

wa27 ygjz 1(<wa1 ) wa1>1 22>wa2>
ak; (2 as; a e ~
- <w‘/11’wa1>F<0—23(ya3a Z) ® y fa2 VR ye;zp ® ya 101; 1)( (1) a27 e (1)wa2>
; a3;(1 a e
= <wz/117w ><wa27wa2>F(023<y§3a z> ® ), 13a2,;7y652;p ® ya’lal;l)7

where we have used the fact that W = 0 for ay # e. This proves (3.2)
and also the first equality in (3.3). The second equality in (3.3) can be
proved similarly or can be simply obtained using the first equality in (3.3)
and symmetry. |

Clearly, (W1, V2)v o, is bilinear in ); and ),». Thus we have a pairing
<'7 '>V§f’a2 V(Zf(lg ® V hal, — C.
We need the followmg lemma:

Lemma 3.3 Foray,as,as,aq4,a5 €A, Y € V/ oL Vo e V3B

a4a57

e (W) w,, € W w,, € W ifa # a4 or as # as, then

G (Wa1 )/7

RSty —2p=0 | 25 (1 = 21 = 22) TE(("WVi((1 = 21 = 20) Oy, 21)a,,

0P (1= 21 = 22)" Dl , 20)a5)) = 0.
Proof. Using the L(1)- and L(—1)-conjugation formulas for intertwining op-

erators, the definition of 053 and the associativity of intertwining operators,
we know that there exist a V-module W and intertwining operators )3 and
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Y, of types (meiis) and (W"‘}I/VW‘I 4), respectively, such that

Resi_z, 202 (1 — 21 — 22) "E(("WWN((1 = 21 — 22)" O, 1)1,

eL(l)y2((1 — 21— ZQ)L(O)wau Z2)u~)a5>)
- Resllefzgzl) | Z2<1 — 21— Z2>_1 )

E(("TVe i), 0 (V) (1= 21— 20) "0, 1 = 21) -

y2((1 — k= ZQ)L(O)wau Z2)u~)a5>)
=Res1_z, 202 (1 — 21 — z) 7t
'E(<€L(_1)€L(1)U~);2, yg(y4((1 — 21 — ZQ)L(O)UNJ;N 1-— 21 — ZQ) .
(1 — 21 — ZQ)L(O)UNJCM, 22>wa5>). (34)

If a1 # a4, W is not equivalent to W . Thus Vj,l a, = 0. So it is possible to
find such a V-module W which does not contain a summand equivalent to V.
By the assumption on V', we have W), = 0. So the right-hand side of (3.4)
is 0, proving the lemma in this case. If a; = ay, Vj,l o, 1s one-dimensional.
We can choose W to contain one and only one copy of V. If as # a5, any
intertwining operator of type (:;5) (that is, type (lej;js)) must be 0. So
V5(1,2,) = 0. Since Wy = C1, there exists A € C such that the right-hand
side of (3.4) is equal to

)\<6L(—1)6L(1)w(’127 Vs(1, 25)ibg,) = 0,
proving the lemma in the case as # as. |

As in [H9], we now choose a canonical basis of V3, for ai,as,a3 € A
when one of ai,ay,a3 is e: For a € A, we choose V¢, to be the vertex
operator Yjy« defining the module structure on W* and we choose )., to
be the intertwining operator defined using the action of oy5, or equivalently

the skew-symmetry in this case,

(czle;l<wll7x)u - 0-12<yga;1)<wllﬂx)u
= eIL(il) ga;l(“” _‘I)wa

= Dy, (u, —2)w,

for uw € V and w, € W*. Since V' as a V-module is isomorphic to V', we
have ¢ = e. From [FHL|, we know that there is a nondegenerate invariant
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bilinear form (-,-) on V' such that (1,1) = 1. We choose V5., = yg;,;l to be
the intertwining operator defined using the action of g3 by

/

yzia’;l = 023(3256;1),
that is,

(t, Vs (Wa, w)war) = €™ (Vo (" (7™ ™2)HOwg, a7 u, war)

foru eV, w, € W*and w, € W®. Since the actions of oy5 and 093 generate
the action of S3 on V, we have

ys’a;l = 012(y§a’;1)

for any a € A.
Theorem 3.4 The pairing (-, '>V313a Vi, ® fo’a; — C s nondegenerate.
In particular, N = N2,

Proof. For aq,as, a3 € A such that one of aq, as, a3 is e, we have a canonical
basis V7, .; given above. For ay,as, a3 # e, let t=1,...,N%  be

a1a2 IR ajas’
an arbitrary basis of 13

aias”
For ay,as,a3 € A, let
yjf’afz = 0123(y;l;a{;j>;
az;(2)
ya’lsa’z;i - 025(ya12a3 z)
Then the first equality of (3.3) gives
4 a%;(2) as;(1
(23 (V2 s rzs Vit Myss, = (Ve Vesty
= FQ¥ Fagsi @ 0123<y;121aé;j); Veara ® yglal, ).
(3.5)
In [H9], the first author proved the following formula ((4.9) in [H9]):
ag
a/ 03 ,
> P © Vears Vidagn © Vorays)
k=1
(ya, asik Y 0123(37521(1/3;1-); yeag,l ® ya’ ai;l )
F<y((11226;1 ®ya’2a2;1;y352;1 ®y§2a’2;l)' (36)
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In the same paper [H9], the first author also proved that
F<ycc:226;1 ® ys’QaQ;l; ygjg;l ® yszaé;l) 7é 0.

Thus from (3.5) and (3.6), we see that the matrix
(aij) = «‘723(3)5'12@3;1')’ 0123(3’521%;]-))1;313&2) (3.7)

is left invertible. Note that when a,as,a3 # e, Y% . and y“;l in (3.7)

alas;i azal;j
are arbitrary bases of Vs,fag and Vs;lag, respectively.
We now show that (3.7) is also right invertible. By definition, the bilinear
form (-, -)yes is symmetric in the sense that

V1, y2>VZl3a2 = (M2, 1)

3
192

for ai,as,a3 € A. So

/
<023(y5/12a3;i>, 0123(3752}@/3;]-»\)313&2
/
= <0123()}521a,3;j), 023(373/12&3;1-))\;&'3
aqag

:<0—23<0—13<y;1;1a’3;j))70-123<0—13<ys’12a3;7j))>v“ : (3.8)

L~

!
)

_~

Note that for aq,as,a3 € A, alg(y“;f ) is a basis of V7%, such that when

ahas;i
one of the elements aq, as,as € A is e, these basis elements are equal to the
special ones we chosen above. Thus by the result we obtained above, the
matrix
vh )
1%

must be left invertible. So the transpose of (;;), that is, the matrix

(Y1) = (<023(013(y2;1ag;1))a0123(013(y§fa3;k))> o )

aq ey

(Bi5) = ((023(013(Votyy ), o123(015 (V2 )

)%

is right invertible. By (3.8), we see that (3.7) is also right invertible.

Now we have shown that the matrix (3.7) is in fact invertible. This is
equivalent to the nondegeneracy of the bilinear form. It also implies Ns,faé =
Ngs |

aiaz”’
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Lemma 3.5 If fora € A, V5,1, Ve, Ve are the canonical bases of V¢,

ae;l’
Vge, Ve ./, respectively, chosen in [H9] and above, then their dual bases in Vea
Ve Ve, with respect to the pairing (-, Jva . (-5 hve, (- )ve ,, respectively,

. / .
are equal to the canonical bases Y., Vo1, Vo chosen in [H9] and above.

Proof. This result follows immediately from the definition of the canonical
bases in [H9]. |

We have:

Proposition 3.6 For aj,az,a3 € A, let {V57,, |i=1,..., N3, } be bases
0f Viita, and let {Y,2 =1, aé‘ o} be the dual bases of {V52,,, |1 =
L...,N&, } with respect to the pazrmg ( Dyes 5, Assume that for a € A,

ga.l, 1y Yowa are the canonical bases of Ve,, Ve, V<., respectively, we

aa’’
have chosen. Then for ay,as,as,a4 € A,

a4
a1a5 aQad

a. aQ, a
Z Z Z yafasp asas,q’yagasm(g)ylaz k)

as€A p=1 =

/,a4 las . /a4 /a7
F( a’la’5p®yaa q’yaa n®y )

afal;l

= 5(16 ar 5mn 5kl .

Proof. Foray,ay,as,ay € A, w,, € W and wy, € (W) satisfying (w), , w,,) =
1 for i =1,2,3, using (3.2) and Lemma 3.3, we have

ReS1 2, —25=0 | 23 RES1 25— 2g—0 | 24 (1 — 21 — 23) (L — 20 — 24) 7"
(( l)y//a4/ k((l — 21— z3>L(O)wa17 Zl)

ol -
z/zy’j;'g;l((l — 2 Z4)L(O)w;2;q7

L(l)ys%ae;m«l — k1 Z3)L(0)7~Da17z3) ’
'yszﬁasm«l — R Z4)L(O)wa2§q7 Z4)7I)a3>>
== 5a5a65kaeS].7227Z4=0 | z4<1 — 2y — Z4)_1

B, (1= 25 — 22) O, 2)]

ayag;l asz?
yg;)a;;;n((l — 22— 24)L(0)U~)az7 Z4)U~)a3>)

= Gy OkmOin. (3.9)

ZQ)ZT);:;,
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On the other hand, by the associativity of intertwining operators and
Lemma 3.3, we have

Resi_z—zy=0] 25 ReS1_2p—2y=0 | 24 (1 — 21 — 23) M1 — 20— 24)”

(( 1):))//(14/ k:<<1 — 21— Z3>L(O)u~}(/117 Zl) :

!
(lzfjg;l«]‘ — 2 Z4)L(O)u~)t,127 ZQ)w%’

LWyas (1 -z — 25) O, 23) -

€ aag;m
326a3;n((1 —Z2 = Z4)L(O)wa27 Z4>wa3>)

/a4 /a5 . /a4 /a7
D D PO © Vo Vet © Vi)
ar7,ag€A1,7,8,t

. aq ag . ) .
F( R ® azasz;n’ a3a38®ylllll27

araeim
‘Rest—z,—24=0 | 25 R€S1-25—2y=0 | 2 (1 — 21 — 23) " (1 — 29— 21)
E((Wyi, (Vi (1= 21— 22)" 0], 2 — ) -
'(1 — k2 — 24) L) 22)w;37
osas; ;s cctlfaz;t«]' 2 ZS)L(O)ID@“Z?) —24) -
(1 = 25 — 20)E g, , 24)104,))
Do D0 PO ® Vit Vs © Vi)

ar,as€A,j,s,t

L)

F( . ® T a8a3, ®ya1a2,>'

a1 ae;m azasz;n’

Res1 2y z4=0 | 2 RES1-2) —zy—0] 2 (1 — 21 — 23) (1 — 20 — 24)~

L(1)~ 5 L(0) /544 11—z — 23 L(0)
HA _ yar - /s T .

E(<€ abalsi ((1 %2 Z4) y‘lllaé;j((l — 29 — Z4>

~ 21 — R2 ~ ~
'U);17 m) wt,l27z2) w:l:i’

1— 2 — 23\ "

I “ 1 3
MY, s((l — 2= ) (O)yafaw«m) '

~ 2! ~ ~
“Way m) Way, 24) Weasg >) . (3.10)

We now change the variables z; and z3 to
21— 22

2y = ——————————
].—22—24
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and

23 — %4
6= .
1— 29— 24
Then
1—21—23
1l—25—2 = ——m,
1—29— 24
zZ3 = (1_Z2_Z4>ZG+Z4.

For any branch f(z1, 22, 23, z4) of a multivalued analytic function of 21, 2, 23
and z4 on a suitable region A such that it is equal to the restriction to AN B
of a branch of the same analytic function on a region B containing the point
1 — 21 — z3 = 0, by definition, we have

Resi—z —z—0 | Z3E(f(21, 225 235 34))
1— 21 — R3

- Reslfzt—,sz:O | (1722724)26+Z4E(f<'z17 225 235 Z4)) 1 . (311)
— 25 — %6
By (3.1), we have
1-— 21 — 23
Reslfz5fz6:l) | (17Z27Z4)Z6+Z4E<f(zl7 22, %3, Z4))17
— 25~ %6
1— 2 — 2
= Resi_.;—25=0 | st(f<Zla 22, 23, Z4))1715. (3.12)
— 25 — 26
From (3.11) and (3.12), we obtain
Resi_;,—2,=0 | Z3E(f(217 22, 23, 24))
1—2—2
= Resl_z5_26:0|26E(f(z1,z2,237z4))#. (313)
1— 25 — 26

Using (3.13), the definition of the pairings (-, ->nga2, Lemma 3.3, and the

fact that for ai,aq, a3 € A, {y;‘,“f, Sli=1,..., Ns,éa,} are the dual bases of
172> 172

{Vajags | 1 =1,..., NG5, } with respect to the pairing (-, -)yes , we see that

the right-hand side of (3.10) is equal to

/;a’ 1al 1a 1al
F 4 Uy, 1y e
(y//. ®yl 7. //.-®y//.->'
§ : 2 : ajag;k ayag;l) v aragsi ajay;j
a77a8€‘/4 1’7]787t

a4 ag . a4 as
'F<ya1a6;m ® yazag,;n? y(lg(lg;s ® a1a2;t) :
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‘Res1_ 2y 20 2s RES1_25—z6=0 | 26 (1 — 25 — 26) " (1 — 22 — 24)
E((&“W"f% (1= 2y — 24)HO.
~/

anas;t
.l ~ ~
1t (0= 25— 26 MO )il ),

eL(l)yggas;s((l - Z4)L(0) .
o it (1= 25 — 26) " Othq, , 26)Way, 24)Was))
= D0 D ROk ® Vi i Vet © Vi)
ar,as€A .5t
F(J}gfaﬁ;m ® ygsasm; yg?ams ® gfaz;t) )
ReS1 2y 200 | 26 RES1_2y—zi—0 | 2, (1 — 25 — 26) 7 (1 — 22 — 24)

E((&“W"f% (1= 29 — 24)L(0) .

alal;i

-1

! - - ~
11 (0= 25— ) Ol )i, )i,
el (D) yas (1 — 2 — 24)PO .

agas;s
317&2 t((l — &5 — Z6>L(O)wa17 ZG)UN)@, Z4)u~)a3>>

/a /a /a /a
=2 D POt ® Vi Vs © Vi)

a7€A1,j,8,t

F(ygfag;m ® (?;as ) yg;la;; ;S ® gfaz;t) ’
‘Resi_25—25—0 | ze(l — 25 — Z6) 15is
E(<eL<1>y§fg,2;j((1 — 25 — 26) "W, z5)),,
(1) a1a2 t((l — X5 — zG)L(O)wala Zﬁ)waz>)

= > > FW, ®3/a5 RN z®y;a52])

a7€A L]t

a a
<yafa6 ym ® a2a3 n’ ya;a;; ;S ® a1a2 t)(szs(sjt
. 1ialy /a5 ) /a4 ral
- Z Z F( afag;k ® ya ahalsi ® ya a2,j>

(176./4 7‘).]
a a, a4 a7
F<yafa6;m ® a26a3 n’ya7a3z yalag;j)' (314)

From (3.9)—(3.14), we see that the right inverse of the matrix with entries
1:al, ral o~ shal r:al
F< a’ltjg;k ® ya , al, ; i ® ya ;2,])
is the transpose of the matrix with entries

ay ae a4 a7 )
F(yalaﬁ;m ® azaz;n’ yams, yamz;j ’
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Since for square matrices, right inverses are also left inverses, the proposition
is proved. |

The pairing (-, ), VS, for ay, aq, as € A give a nondegenerate bilinear form
(-, )yon V. Forany o € S3, {o(V;7y,.) | 1= ..., Ng3, }isabasis of o(V3, ).
We have:

Proposition 3.7 The nondegenerate bilinear form (-,-)y is invariant with
respect to the action of S3 on'V, that is, for ay,as,a3 € A, 0 € Sz, Y € VI

and Y, € V Pal
(U(y1)70(y2)>v = <y17y2>v-

Equivalently, for ai,aq, a3 € A, {o( ;a; G | i= .. Ng, } is the dual basis
of {o(Viay) | 0=+ Nty 3

Proof. The equivalence of the first conclusion and the second conclusion is
clear. So we prove only the second conclusion.

The case 0 = 03 follows immediately from (3.3) and the relation o3, = 1.
We now prove the result of 0 = 015. Fori,j =1,..., N%_ by (3.3), we have

ajaz?

/,/

(012(Vrdr ), 012(Vetanis)) = F(Uzs(glz(y; o) ©012(Votari)s Vearn @ Vagan)-
(3.15)
By Proposition 3.4 in [H9], the right-hand side of (3.7) is equal to

F(0152(012(37a13a2 j)) & 0123(023(012(3); c:fz Z)))S 0123(322, a2~1) ® 0132(3):;1;1))
= F<0-23<yafll2‘j) ® y(,za(j z; yea ;1 ® ysla 1)
— F(ops(V% )@y;“s -yea 0 © V) (3.16)

aiag;j az’

By (3.3) again, the right-hand side of (3.16) is equal to
al r;akh .
<ya/§a// ], a/1512774> - 51]7

proving the case of ¢ = o15. Since S3 is generated by o2 and a3, the
conclusion of the proposition follows. |

We are ready to construct a full field algebra using the bases of intertwin-
ing operators we have chosen. Let

F =@, W@ W,
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/ /
For w,, € W, w,, € W%, wy € W and wy, € W, we define

Y((wal ® wa’) < C)(waz ® wa’)

”‘1”‘2

/;ar
Z Z ygfﬂZ,P Way s = )waz ®ya ; p(wa/pg)waé'

azeA p=1

Theorem 3.8 The quadruple (F,Y,1®1,w® 1,1 ® w) is a conformal full
field algebra over Vo V.

Proof. The identity property, the creation property and the single-valuedness
property are clear. We prove the associativity and the skew-symmetry here.
We prove associativity first. For aj,a0 € A, w,, € W, w,, € W?,
e (W), w,, € (W) using the associativity of intertwining operators
and Proposition 3.6, we have

Y ((wa, @ wy, ), 21, C1)Y((way ® wy,), 22, C2)

”‘1”‘5 ‘12‘13

- Z Z Z ygfas,p wal7zl>y:zzg5a3q(wa2722>>

as,aq,a5€A p=1

/,a
®< GQ;%?P( al’Cl) ahaly q( ;27C2))

al
a7

a a N
Nafas N, aga3 ajaz 7al /1

o %zzz;

as,aq,as,a6,a7€A p=1 m=1 n=1 k=1
a a a a
'F<yafa5~p ® a25a3 3q? ya:a3 ‘m yaf@; ) :
HA ral
F( a/la/5p®yaaq7y ®y )

'<(yg§a3;m(ygl5a2;n<wa17 21— 22>wa27 22))

®(y:£é/3;k(y:{1;2 l( ai? C CQ)way CQ)))

/
a7

)
S~ o~

N

A i
ag ajag

a a, N
Naga3 Naﬁa a

= Z Z Z 5a6a7 mkénl
k=1

a3,aq,a6,a7€A m=1 m=1

) yg:a:s, <y315a2, (wa17 21— Z2)wa27 22))

/,a /zz
®< aécz;k:< ay 7 l(wzzl?Cl CQ)wle?CQ))
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a a
Nagag Nata

- Z (ysgag;m(ygfag;n (wa17 Z1 — 22>wa27 22))
as,a4,a6€EA m=1 m=1
1;a 1;ag
®( ag:é;m< al‘f n( ay? Cl CQ)w(,Z27 CQ))
= Y(Y((wa, ® wy,), 21 — 22,1 — (2)(Way @ W, ), 22, C2).

We now prove the skew-symmetry. By Proposition 3.7, {012(3/’ 5 )| i=

aaz

1,...,Ng3, } is the dual basis of {o12(V5?,,) | i =1,..., N&3, }. Thus for

a1a2 ajaz

ap,ay € A, we, € W, w,e, € W2, w, € (W) w;, € (W‘z?) we have

Y((waz ® w(,zz) < O(wal ® wﬁu)

ﬂ2ﬂ1
i
_ E E a3 iag
012 yalagp wa27 )wa1 X JlQ( allal2§p>(wa/27<—)wall
az€eA p=1
Ng3a,
o —miA(YVI3,,. zL(—1 as: T
= g E e ( a1a2,p)e ( )yafaz;p(walﬂe z)wa2

a3E.A p:l

miA(Y P, a o
®e (yalaz p) (L 1)y;a3 p)( e mC)w
— (eZL(—l) ® eCL(—l)) .
Ng3ay

SN Y (W, €T )Wy @ Vi (W, e

azceA p=1
— (ezL(*l) ® eCL(*l))Y«wal ® w(/zl)’ 6”2’, eiﬂ-iC)(wag ® w(/w).

Definition 3.9 A nondegenerate bilinear form (+,-) on a conformal full field
algebra (F,m, 1,wl, w®) is said to be invariant if for u,v,w € F,

(Y(u; 2z, 2)v, w)

= (v, Y(ezLL(1)+2LR(1)emLL(o)meR(o)ZszL(o)gszR(o)u; 2717 Zfl)w).

The conformal full field algebra F' we constructed above has a natural
nondegenerate bilinear form (-,+)p : F ® F' — C given by

0 a; # al

<wa17waz><wa1vw > ay :a,Q

(wa, ® w),)), (wa, @ wy,))F = {
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for ay,ay € A, wa, € W, we, € W2, w, € (W), w,, € (W=)'. We have:
Theorem 3.10 The nondegenerate bilinear form (-,-)g is invariant.

Proof. For ay,az,a3 € A, we, € W™, w,, € W%, w,, € W%, w,, € (Wn),
€ (W), w,, € (W), using Proposition 3.7 for the case o = 093, we
have

(V((wa, @ Wy, ), 2, Q) (Way @ Wy, ), (Way @ we, )

(11(12
/
=3 > (Ve (Wars 2)way, @ Vi (wh, ), (way @ w),))
ags€A p=1
Naay
/; !
- Z <y(?fa2;p<wal7z)wa27wa3>< a’laa3’2;p<wa17 )wa27w >
p=1
Nafay
) la
- Z <0—23<0—23<ygfa2;p)<wa17 Z)wasza3><023<023< a)al, p)( alaC) agr W >
p=1
Naay
- Z (Was thal023(ygfa2;p>(BZL(I)Q_ML(O)Z_QL(O)wcu7 Z_l)wa3> :
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