Max-Planck-Institut
fiir Mathematik

in den Naturwissenschaften
Leipzig

Eigenfrequencies of fractal drums

(revised version: March 2005)
by

Lehel Banjai

Preprint no.: 11

2005







Eigenfrequencies of fractal drums

Lehel Banjai
March 5, 2005

Abstract

A method for the computation of eigenfrequencies and eigenmodes of fractal drums is presented.
The approach involves first mapping the unit disk to a polygon approximating the fractal and then
solving a weighted eigenvalue problem on the unit disk by a spectral collocation method. The numerical
computation of the complicated conformal mapping was made feasible by the use of the fast multipole
method as described in [2]. The linear system arising from the spectral discretization is large and dense.
To circumvent this problem we devise a fast method for the inversion of such a system. Consequently the
eigenvalue problem is solved iteratively. We obtain 8 digits for the first eigenvalue of the Koch snowflake
and at least 5 digits for eigenvalues up to the 20th. Numerical results for two more fractals are shown.

1 Introduction

Objects in nature are not always well represented by simple geometries such as circles or straight lines.
As evidence for this Mandelbrot [24, 25] used the experiments by Richardson to show that some coastlines
are better modelled by curves of infinite length than by compositions of smooth curves. The overwhelming
evidence that objects in nature can be modelled by fractals leads to the question of how physical processes
on fractals can be described. Also some physical processes seem to generate fractals [35].

One particular physical process that has attracted theoretical [19, 21], experimental [29] and numerical
investigation [15, 20] is the mechanical vibration of a fractal drum. The hope is that such research might shed
light on such problems as the dependence of sea waves on topography of the coastline. The mere existence
of fractal coastlines may suggest good damping properties of fractal shapes [28].

In this paper we develop a numerical method for the computation of the eigenvalues and eigenfunctions
of the Dirichlet Laplacian on fractal domains. We approximate a fractal with a polygon of many thousands
of vertices and solve the eigenvalue problem on this polygon. Numerical solution of eigenvalue problems
on polygons is a classical problem, see [13], and has recently been very successfully solved numerically for
polygons with few vertices [3, 7]. However all of these methods become too expensive once the number of
vertices of the polygon runs into thousands. Hence alternative methods are required when the domain of
interest is a fractal.

As our main example we study the steady-state vibrations of a Koch snowflake drum. Computations
of eigenvalues and eigenfunctions of such a system have already been done by using finite differences on
polygonal approximations to the fractal domain [20]. Using their numerical results Lapidus et. al have
produced beautiful images of eigenmodes; these images have subsequently been realized as mathematical
sculptures by the artist Helaman Ferguson [10].

Our method consists of transplantation from a Koch snowflake polygon to the unit disk and then the
solution of the modified eigenvalue problem on the unit disk by a spectral collocation method. The idea of
using conformal mapping to simplify the computational domain is by no means new. The more common
approach to solving Poisson equations is to map the domain onto a rectangle and then use finite difference or
finite element discretizations on the rectangle; for a review of this and many other applications of conformal
mapping see [30]. Cureton and Kuttler [5] have computed eigenvalues of the hexagon by conformally mapping
the domain to the unit disk and then using the Rayleigh-Ritz method, where the trial functions are the
eigenfunctions of the unweighted problem on the disk. Mason uses a conformal map to straighten the
reentrant corner of the L-shaped membrane and then applies a spectral method to the transplanted problem
[26].

In numerical experiments we find that, whereas previous studies have achieved around 3 digits of accuracy,
this method appears to provide at least 5 and up to 8 digits, depending on the eigenvalue, not only for the
approximating polygons but also for the Koch snowflake fractal. We do not prove that our results are this
accurate, but the experimental evidence is compelling. We also compute eigenvalues for further two fractals.
One is an example of a fractal for which our method works even better than for the Koch snowflake whereas
for the second it performs less well. We give reasons why such a behaviour is to be expected.



Figure 1: Polygon Ps is shown on the left and polygon P on the right.

2 Statement of the problem

Let © C R? be a bounded simply-connected domain. We consider the situation where a homogeneous
membrane is stretched and then fixed along its boundary 92 and the tension per unit length caused by
stretching is the same at all points and all directions and does not change during motion. Let U(z,y,t) be
a function that gives the displacement of the membrane at point (z,y) € R? and at time ¢t > 0. Then U
satisfies the wave equation

Uy = AU, (1)
with boundary condition
U(zo,y0,t) =0, (x0,y0) € ON. (2)
By separation of variables U(x,y,t) = u(x, y)w(t) the wave equation gives
w”(t) + Aw(t) = 0,
Au+Aiu = 0 in Q,

where A > 0 is a constant. Since the first equation is trivial we concentrate on finding the eigenvalue-
eigenfunction pairs (A, u) such that

Au+iu = 0 in Q,

3)
u = 0 on 0N.
It is known that the spectrum of the Dirichlet Laplacian is discrete and consists of an infinite sequence
of eigenvalues {\;}
O< <A~ <.

such that A\, — 0o as n — oo, see [6]. Also the corresponding eigenfunctions w,, are infinitely differentiable
in Q and u; can be chosen so that uy; > 0.

Naturally we can only expect to be able to solve the problem on an approximation to the fractal domain.
Let us denote the fractal domain by ®, then we choose to approximate ® by a sequence of polygons P,,
see Figure 1 for the case of the Koch snowflake, and solve the eigenvalue problem on these polygons. The
sequence is such that P, C P,4+1 and P, — ® as n — co. We expect that as the polygons increasingly better
approximate the fractal domain, also the spectrum on the polygon becomes closer to the spectrum on the
fractal. The following result, which can be found in Davies [6], confirms the existence of a discrete spectrum
on the fractal and justifies our intuition that as the polygons become better approximations to the fractal
the eigenvalues also converge to the eigenvalues on the fractal.



Figure 2: Conformal transplantation of the eigenvalue problem.

Theorem 1 Let Q be a bounded region in RN, and let £ be the negative of the Dirichlet Laplacian acting
on L?(Q). Then L has empty essential spectrum and compact resolvent. The nth eigenvalue \,(Q) of L is a
monotonically decreasing function of the region, and if Q. is an increasing sequence of regions with union
equal to 2 then

lim A (Q) = A ()

m—00

for allm > 1.

3 Conformal transplantation

As mentioned in the introduction, before we attempt to solve the eigenvalue problem we shall transplant the
problem to a simpler domain. The following result gives the necessary theory for the method of conformal
transplantation; see also Figure 2. Note that for convenience we identify the two-dimensional space of real
numbers R with the complex plane C in the usual way and use the two representations interchangeably.

Theorem 2 If (A, u) is a solution of the eigenvalue problem (3) and if f is a holomorphic function defining
a one-to-one mapping of a region D onto the region Q, then u = v o f~1 where (\,v) is a solution of the
eigenvalue problem

Av + Mol f'? 0 in D,
v = 0 on OD.

(4)

Proof: The result follows from the identity
Azu(z) = Ayo(w)| f'(w)| 72, z€Q,

where w = f~1(2). O

Using this result we can consider a weighted eigenvalue problem on a much simpler domain. Throughout
this chapter D is the unit disk and, since numerically we cannot deal with the fractal, Q is a polygon P,,
for some n > 1, and hence f is a Schwarz-Christoffel map; see Figure 2. To solve the transplanted problem
we need to be able to evaluate f’, which in the case we consider has the form

N
fl(w) = C ] (w = wp)™. ()
k=1

Once the unknown parameters, wy and C, are known this expression can be evaluated extremely efficiently.
The method for both finding the unknown parameters and for rapid evaluation of such products even for
polygons with hundreds of thousands of vertices is described in [2]. Let us just state that the cost of finding
all the parameters is O(N log N) and the cost of subsequent evaluation of the derivative at a single point
inside the disk is O(log V). In the next section the regularity of the eigenfunctions of the original problem
and of the transplanted one are discussed.



4 Smoothness of eigenfunctions

Let (A, u) be a solution of the original eigenvalue problem (3) where the domain  is not the fractal ® but
a certain polygonal approximation to it P,. Then (A, v) is a solution of the transplanted problem (4) with
v(w) = uwo f(w), where f is the conformal map of the unit disk D onto Q@ = P,. It is well known that
u € C(Q); see [18]. Since f is an analytic function inside D we also have that v € C°°(D). Also the
eigenfunction u can be reflected as an C*° function at any part of the boundary 0 that is C°°. Hence u
can only be singular at the corners of the domain 2 and v can only be singular at the images of the corners
under the map f'.

Let us choose a corner zg € 952 with interior angle 7/« and let (r, ¢) be the polar coordinates originating
from that corner. Then

u(r,¢) = Y anJan(VA) sin(ang), (6)
n=1
where J, is a Bessel function of the first kind. Expanding the Bessel functions we get that
u(r, §) = agr® sin(ag) + O(r**) + O(r*+2). (7)

If v is a positive integer the solution can be extended to a C'°° function in the vicinity of such a corner; this
can be seen either by reflection or by the above expansion. When « is not an integer the leading singularity
is of the order r®. In the case of the Koch snowflake this means that at an acute angle of the boundary,
a = 3, an eigenfunction has a removable singularity whereas at an obtuse angle, & = 3/4, the singularity
has the leading order r3/4.

The conformal map f is also singular at the preimages of the corners. If z; € 9Q, k = 0,...,n, are the
corners with interior angles 7/ay, with ag = «, then f can be written as

fw) =20 +C ’ [T —wi)/>+—1dg,

wo k=0

where wy = f~1(zx) are the prevertices and C is some constant; see [8]. We are interested in the behaviour
near the prevertex wy at some point w = wy + pe? € D. In the following we will use the fact that
[Th_ (¢ — wg)'/2*~1 is analytic and hence has a valid Taylor series in a neighbourhood of w.

w

flun+pe) = fw) = z+C [

wo

(¢ —wo) /> TT (¢ = wi)!/ o+ —1dg,
k=1

= 20+C [ (C=wo)/*71 Y (¢ — wo)™dC
wo m=0
= z+C Z bm /w(( — wp)m Y/ e-1ge
m=0

wWo

= 20+ Z Cmpm—&-l/aei(m-&-l/a)e’

m=0

for some constant coefficients (b, )m>0 and (¢m)m>0. The interchange of integration and summation can
be justified using integration by parts and the uniform convergence of the Taylor series. From above we
conclude that near wy

flwo + pe'?) = cop'/ e/ + O(p* /). (8)

Combining (7) and (8) we obtain, where (p, ) are the polar coordinates originating at wq, that
0(p,0) = dopsin(8) + O(p1+) + O(p12/), (9)

This means that in the case of the Koch snowflake polygons, the singularity at the preimage of an obtuse
angle is now of the leading order p”/* and at the preimage of an acute angle of the order p°/3. Hence the
transplanted eigenfunction is considerably more smooth than the original one. This fact may allow us to
effectively use high order methods to compute the solution of the eigenvalue problem. The problem of solving
the weighted eigenvalue problem is addressed in the next section.



5 Numerical solution of the transplanted eigenvalue problem

We first describe one way of discretizing the Laplacian on the unit disk. Here we follow closely the descrip-
tion given in Chapter 11 of [34]; see also [12]. The matrix arising from such a disretization is full. The
eigenfunctions of the transplanted problem are smooth inside the unit disk D, but not on its closure D, as
discussed in the previous section, and cannot be extended analytically outside the unit disk. This implies
that the number of discretization points required for high accuracy will be quite large, which means that the
discretization matrix will be both large and full. For this reason we also develop a method for fast inversion
of such a matrix.

5.1 Spectral discretization of the Laplacian on a disk

We reformulate the problem by changing to polar coordinates
r=rcosf, y=rsind,

so that the weighted eigenvalue problem becomes

vrr+rflvr—|—r72v99—|—/\v|f'\2 = 0, for r <1,

10
v = 0, for r=1. (10)

Inspecting the above equations we can see that the point at the origin may prove to be a problem in the polar
coordinate system. The governing equation is singular at » = 0 and whatever sensible range we restrict r
and 6 to, the origin will have an infinite number of representations in this system. This is an old and vexing
problem that affects polar, spherical, cylindrical and toroidal coordinates. A number of methods have been
used to address this issue; for an extensive summary see [4]. The particular method we adopt is the one
proposed by Fornberg [11, 12] as realized in [34].

We discretize the disk by taking a periodic Fourier grid in # and a non-periodic Chebyshev grid in r
where

0 €0,2n], re[-1,1].

By a Fourier grid we mean M equally spaced points in the interval [0, 2] and the Chebyshev grid points are
defined by x; = cos(jn/N), j =0,1,...,N. Even though this representation is not one-to-one it is often
preferred to the more common one where

6 € 1[0,2x], re[0,1].

The problem with the latter representation is that many of the discretization points are wastefully clustered
near the origin. For the former representation the map (r,6) to (z,y) is 2-to-1 and at the origin it is co-to-1.
The problem at the origin can be avoided by choosing N to be odd. This trick appears effective in practice,
though we do not know if there is a theoretical justification.

To be able to discretize equation (10) we need to construct discretized first and second derivatives on a
Chebyshev grid and the second derivative on a Fourier grid. We give the definitions of the matrices involved
but not direct formulas for their construction; these can be found in [34].

Let us define the discrete Fourier transform (DFT) of a vector v € RM to be the vector © with elements

M
~ 2 —ikx: . M M
’Uk:M;G J’Uj, k—-;-’-l,,?, (].].)
where z; are the Fourier grid points
x;=2mj/M, j=1,..., M. (12)
The inverse DFT is given by
1 M/2
= ikx; A~ -
’Uj—Qﬂ_‘ Z e iy, j=1,..., M. (13)
j=—M/2+1

Given the vector of values of a function on the Fourier grid we can now compute the n-th spectral derivative
by the following procedure:



Compute v from v.

Define wy, = (ik)" 0, except if n is odd Wy =0 .
e Compute w from .

This operation is linear and hence the second derivative can be represented by a matrix Déz) or it can be
performed by the use of the Fast Fourier Transform (FFT). In fact the above procedure is equivalent to first
constructing the trigonometric interpolant

M2

1 ! ikx 5
p(z) = gk Z € Uk,

=—M/2

where the prime indicates that the terms k = £M/2 are multiplied by %, and then computing the nth
derivative of the interpolant and evaluating it:

wy, = p™ ().

Similarly the spectral derivative of n-th order w on a Chebyshev grid (xj)éy:l given function values ('Uj)évzl
is defined by the following two steps:

e Let p be the unique polynomial of degree < N such that p(z;) = v;.
e Define w; = p(™ (z;), where p(™ is the n-th derivative of p.

This operation is again linear and hence can be represented by a matrix. It can also be performed by the
use of FFT, but we shall not make use of this fact. Let the first derivative be represented by a matrix
D,; then the second derivative is represented by the matrix D?. We can impose homogeneous Dirichlet
boundary conditions by requiring that the polynomial p from the above construction is zero at the boundary
points &=1. This requirement amounts to removing the first and last column and the first and last row of the
differentiation matrices, giving new matrices D,. and D? of size (N — 1) x (N — 1) for the first and second
derivatives respectively.

Now we are in a position to construct the discretized Laplacian for the unit disk. First we need to deal
with the redundancy of our representation of points in the unit disk. Following [34], to understand how to
deal with this redundancy let us consider solving the following 2K x 2K system of linear equations where
Ay, Ay, Az and A4 are K x K matrices, and 1, 22,b; and by are K x 1 vectors:

A1 A2 T1 _ bl

A3 A4 T2 B ba .
If we know that 1 = x5 and that b; = bz then the system can be reduced to an K x K linear system: either
(A1 4+ Ag)xy = by or (As + As)xy = by. Accordingly we break up the differentiation matrices D, and D2

into blocks as follows:
= E1 E2 52 Dl D2
DT_<E3 E4>7 D= Ds Dy )

Finally the discretized Laplacian can be constructed from the above matrices by the use of Kronecker

products

I I
L:(D1+RE1)®<O ?>+(D2+RE2)®<? O)+R2®D§2’, (14)

where T is the M/2 x M /2 identity and R is a (N —1)/2 x (N — 1)/2 diagonal matrix which is the discrete
equivalent of r in equation (10). The last remaining term that needs to be discretized is the one corresponding
to the derivative of the conformal map, |f’|? in (10). This is a diagonal matrix which we denote by F. With
this the equation is discretized and to find discrete approximations to the eigenvalues and eigenfunctions of
(10) we need to find the eigenvalues and eigenvectors of the matrix F~'L. Note that since f is conformal
inside the unit disk its derivative is never zero so the inverse of diagonal matrix F' is well-defined.

Now we can employ any suitable method for finding eigenvalues of a matrix to find approximations to the
eigenvalues of the vibrating membrane. Since for reasonable accuracy the size of the matrix F~1L becomes
very big we wish to solve the eigenvalue problem by an iterative solver. We apply Matlab’s function eigs,
which uses the Fortran package ARPACK [22, 23], and requires a function that computes the product of the
inverse of the matrix FF~'L with an arbitrary vector. Since F is a simple diagonal matrix we concentrate on
the inversion of L.



5.2 Efficient inversion of the discretized Laplacian

The cost of constructing the inverse of matrix L directly is O(N3M?). To reduce the cost we turn to Fourier
space. As we have seen from the derivation of the matrix Déz), the operator that it describes is diagonal in
Fourier space; also the operator on the right-hand side of the second Kronecker product in (14) is diagonal
in Fourier space since it is the convolution matrix of the vector (0,0,...,1,...,0)7, where 1 is in position
M. So with variable 8 transformed to Fourier space the discretized Laplacian has the form

Lr=A1Q01+AQ7Z+ A3 D,

where
A =D, + REq, As = Dy + RE>, Az = RQ,

Z = diag((=1)"*1), i = 1,...,M and D is also an M x M diagonal matrix. It can be shown that the
diagonal entries of D are the negative squares of integers; see [34].
Now we can see that inverting the matrix Lz can be reduced to inverting M smaller matrices, i =
1,..., M,
Ay + (1)1 Ay + d; As,

where A; and Ay are K X K matrices as defined above, K = (N — 1)/2 and d; are diagonal elements of the
matrix D. Note that A3 is a diagonal matrix so it is cheap to find the inverse A3 ! hence it is sufficient to
invert the following matrices

Ay +d;il, (15)

where i =1,..., M and
Ay = A7T A £ AJ A, (16)

The special structure of the subproblems can be used to solve the systems faster (see problem 7.4.3 in
[14]). This can be done by using the real Schur decomposition to find orthogonal matrices @+ and upper
triangular matrices T4 such that

Ar = Q1T QY.

The cost of finding this decomposition is O(K?). These matrices allow us to write
(A + ;)7 = (QeTe Qi + diQrQY) ™ = QL(Tw + di) ' Q.
Hence it remains to invert M triangular matrices of size K x K:
Ty +dil,

the cost of which is O(M K?).

To recapitulate, as a pre-calculation two Schur decompositions need to be performed, the cost of which is
O(K?), and inverses of M triangular matrices (T+ +d;I) need to be computed, the cost of which is O(M K?).
Once these matrices are computed the cost of matrix vector multiplication Lz'b is O(MK?). The cost of
moving to and from Fourier space is of a lesser order O(M K log M K).

5.3 Convergence of the spectral method

We do not give a rigorous error analysis. Instead, using the results on the regularity of the eigenfunctions,
we attempt to justify our use of a spectral method for the transplanted eigenvalue problem. We do so by
considering the one-dimensional approximation sub-problems in the r and in the 6 directions. The following
result will prove useful. The proofs can be found in [27, 33].

Theorem 3 Let g(x) be a 2m-periodic function on R and let gpr(x) be the trigonometric interpolant of degree
M/2 in the equally spaced points x; = 2nj/M, j=1,...,M. Then

i) if g has a kth derivative in [0,27] of bounded variation for some k > v then
max,e(o,24] |9 () — g](&) (z)] = O(M~F*v) as M — co.

i) if g is analytic inside a strip of width 2n then maxye[o,27) lgW) () — g](\/V[) (z)] = O(MVe="1M/2),
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Figure 3: The convergence of the polynomial interpolant in Chebyshev points of degree N py to the function
g(z) = (1 — )%2 on the left and to its second derivative ¢@(z) on the right. The errors displayed are at x = 0.5.

Let (A, v) be a solution of the transplanted problem (4). For a fixed 7 < 1 the above result is applicable
to the trigonometric interpolation in equally spaced points of the function v,(0) := v(r, ). Since v is C™
inside the unit disk, the discretization error decays faster than any fixed degree polynomial rate. This is
true for any fixed r < 1, but for r close to one, the singularities are closer to the approximation interval
which necessarily makes the errors larger. Theorem 3 can easily be extended to the case of continuous
functions on the interval [—1, 1], but for our problem this result would not be applicable since for any fixed
0, vg(r) := v(r,0) has a singularity on the boundary, such that the second derivative is in fact unbounded on
the interval [—1, 1]. The case of boundary singularities has been considered by Elliott [9]. For functions of
the type g(x) = (1 — 22)%g(x) where g(x) is smooth everywhere on [—1, 1], Elliott estimates the magnitude
of the coefficients of the expansion of g in Chebyshev polynomials. In particular, if

g(z) = Z an (),
n=0

where T}, (-) is the nth Chebyshev polynomial, it is shown that a,, = O(n~2?~1). Since the largest singularity
of v(r, 8) is located on the boundary and has leading order (1—7)5/3 we consider the following model function:

glz) = (1 =2, 2 e [-1,1].

Let py be the unique polynomial of degree < N such that py(x;) = g(x;) where (l‘j);'vzl is the Chebyshev
grid. According to the result of Elliott we expect that [px(z) — g(x)| = O(N~'3/3) for any fixed z € [~1,1].
Consequently for the second spectral derivative approximation we expect that \pg\z,) (z)—gP@(z)| = O(N~/3),
for any fixed x € (—1,1). This is exactly what is observed in numerical experiments; see Figure 3. By
choosing Chebyshev points for collocation we ensure that the errors in the approximation of function g are
roughly equally distributed along the interval [—1, 1]. However since the second and higher derivatives of g
are infinite at the boundary of the interval, we expect that the errors will be higher close to the boundary
especially for the approximation of g”. This is highlighted by Figure 4. In fact increasing N does not improve
the global error sup,¢(_j 1) |p§3)(m) — ¢®(2)|, but in contrast to Theorem 3 we have that for any § > 0

2y _ (2 —O(N~T7/3
o max PN (@) = g @) = o).

This suggests that our discretization of the function vg(r) may be inadequate. However, note that the
value of vg at the boundary is known: vg(+1) = 0. Since vy(r) is at least once continuously differentiable
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Figure 4: Behaviour of the errors |py(z) — g(z)| and \pg\?) —g@| for N = 50.

on [—1,1] there will be a neighbourhood of +1 where the function will not change much from 0. If this
neighbourhood is large enough, the errors we commit in the disretization of the second derivative near
the boundary may not be crucial. We expect this neighbourhood to be smaller for higher eigenfunctions,
consequently we expect that the accuracy will deteriorate for higher eigenvalues. We now proceed to the
numerical results, which will support these informal statements.

6 Numerical results

In this section we report on numerical results obtained by the methods described in the first half of the
paper. For simplicity of implementation, for most part, we do not use the symmetries of eigenfunctions
but solve the eigenvalue problem on the whole domain. Nevertheless, numerical results suggest that this
approach produces 5 or more digits of accuracy, depending on the eigenvalue, for the first 20 eigenvalues of
the Koch snowflake fractal.

Figure 5: Spectral collocation grid in the Koch snowflake keeping M ~ N on the left and M = 5N on the right.
The number of points is approximately the same in the two plots, but the covering of the snowflake domain is much
better in the second one.
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Figure 6: Convergence of the first 20 eigenvalues of the polygon Ps as the number of discretization points is increased.
The discretization parameters are chosen so that My ~ 12Nj.

6.1 Choice of discretization points

Since the best available estimates found in the literature for the eigenvalues of the Koch snowflake or the
polygons approximating it, which come from [20], are not accurate to more than 3 digits we increase the
number of points in the discretization of the unit disk and observe the change in eigenvalues of the discretized
linear system. It is, however, not obivous how best to do this. There are two parameters: M, the number
of discretization points in the 6 direction, and N + 1, the number of points in the r direction. Recall that
the total number of distinct discretization points is M (N — 1)/2.

From extensive numerical investigation, as documented in [1], we concluded that for our purposes a good
way of choosing the discretization parameters is to have the parameter M approximately 12 times larger
than N. An indication as to why M should be chosen considerably larger than N can be obtained by looking
at the image of the discretization points in the polygonal domain. In Figure 5 it can be seen that with the
same number of points the covering of the snowflake is much better if the parameter M is much larger
than N. This is the consequence of a phenomenon of conformal mapping called crowding. Crowding also
makes the computation of the conformal map f increasingly difficult to compute accurately; see [1]. Because
of the difference between the domains D and §2 groups of prevertices are crowded together, i.e., groups of
singularities are crowded together which need to be resolved. Since we use evenly spaced disretization points
in the @ direction we are forced to use a very large number of points in that direction.

The data obtained by choosing M ~ 12N is displayed in Figure 6; the precise numerical values can be
found in [1]. From the convergence plot, we conclude that the eigenvalues of the particular polygon can
be computed to around 5 and more digits for the first 20 eigenvalues. We now turn to the problem of
approximating the eigenvalues on the Koch snowflake fractal. The hope is that these eigenvalues can also
be computed to 5 and more digits.

6.2 Change of eigenvalues with the change of fractal level

Our ultimate goal is to compute the eigenvalues not on the polygonal domains but on the full fractal domain.
We attempt to do this by solving the eigenvalue problem on a sequence of polygons P,, n > 1, we defined
recursively.

Let P, be the equilateral triangle with unit sides and P,4; be the polygon obtained by replacing each
side of the polygon P, by the following generator element:

10



-—(n
n A A N
4 39.51229200544
5 39.40725888240
6 39.36962897131 | 39.34862091891
7 39.35612308145 39.34856177733
8 39.35127249174 39.34855413187 39.34855299677
9 39.34953001618 39.34855314694 39.34855300129
10 | 39.34890401525 39.34855302011 39.34855300136

Table 1: Accelerating the convergence to the first eigenvalue on the fractal by Aitken’s A? method.

log 4
._/\_. Hausdorff dimension = o8

log3’

As an example in Figure 1 polygon Pj3 is shown on the left and polygon P on the right. Note that P,
is a polygonal approximation to the Koch snowflake with 3 x 4"~! vertices as defined. Note also that by
construction P, 41 is a strict superset of P,. The next step in the approximation of the eigenvalues of the
fractal is to compute the eigenvalues of increasingly better polygonal approximations to the fractal.

We perform computations for polygons Py up to Pjg, with the discretization parameters related as
M = 12N, and observe almost identical convergence curves as shown in Figure 6 for Ps. Hence we decide
to use the same choice of discretization parameters for each polygon. We choose M = 1530 and N = 125.
These numbers are somewhat larger than the ones used to obtain the final data point in Figure 6. The
computation of the conformal map is done by the C++ code developed using the methods described in
[2] and the solution of the eigenvalue problem is done using Matlab. For the above choice of discretization
parameters, the time needed to invert all the linear systems, which is an O(N3)+O(M N?) process, is around
280 seconds on a Pentium IIT 800 MHz processor. If the position of the prevertices is already known and
all the expansions in the fast multipole algorithm have been computed, the computation of the derivative
of the SC map at the discretization points takes around 27 seconds irrespective of the number of vertices of
the polygon. Once the linear systems are inverted and the SC integrand is computed, a further 455 seconds
are needed to solve the resulting eigenvalue problem for the first 20 eigenvalues.

To see how well the eigenvalues of the Koch snowflake are approximated by the eigenvalues of these
polygons we plot the absolute change in eigenvalues as the level of approximation to the snowflake is increased;
see Figure 7. The plot suggests that 10th level of approximation to the fractal is enough to obtain about 5
digits of accuracy for the eigenvalues. But the convergence seems very close to linear and we may try and
use this regularity to accelerate the convergence. It is difficult to distinguish convergence curves for different
eigenvalues in Figure 7, so in Figure 8 we plot these curves separately for four eigenvalues.

A suitable extrapolation method in this case is Aitken’s A% method; see for example [16, 32]. Next we
plot the convergence curves of the accelerated sequence; see Figure 9. We see that some of the lines still
look very straight and hence may allow for another application of the Aitken’s A? method. However, the
improvement obtained by a single application is sufficient to allow for about 8 digits if the computations of
the eigenvalues of Koch snowflake polygons are equally accurate. The only eigenvalue, on the polygons, that
we computed to about 8 digits is the first eigenvalue. For this case we applied Aitken’s method twice and
obtained the convergence curves shown in Figure 10.

Hence, it turns out that by accelerating convergence we obtain as many digits for the eigenvalues of the
Koch snowflake as the accuracy of the eigenvalues on the polygons allows us to have; see Table 1 for the
results in the case of the first eigenvalue. In Table 2 we give our best guess for the first 20 eigenvalues. See
Figure 13 for contour plots of some eigenfunctions on the unit disk and Figure 14 for the same eigenfunctions
mapped onto the snowflake domain.

6.3 Making use of symmetries

We know that both the snowflake fractal and the approximating polygons have six lines of symmetry; if the
snowflake is oriented as in Figure 1 and centred at the origin the lines of symmetry are radial lines at angles
that are integer multiples of 7/6. In particular, the real and the imaginary axes are two lines of symmetry.
Let u be an eigenfunction with eigenvalue A of the eigenvalue problem (3). Then it is easy to check that
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[FL M [F] A ]
1 | 39.348553 | 11 | 314.44
2 | 97.43691 | 12 | 314.44
3 | 97.43691 | 13 | 359.51
4 165.406 | 14 | 425.38
5 165.406 | 15 | 443.52
6 190.370 | 16 | 443.52
7 208.608 | 17 | 458.65
8 272.406 | 18 | 458.65
9 272.406 | 19 | 560.38
10 | 312.3538 | 20 | 560.38

Table 2: Eigenvalues of the Koch snowflake, correct to the number of digits shown with doubt over the last digit.

u(x, —y) is also an eigenfunction with eigenvalue A and hence so are

u(z,y) + u(z, —y)

if nonzero. The same holds for

So for any eigenvalue we can assume that its eigenfunction is either symmetric (even) or antisymmetric (odd)
about the real and imaginary axes. The use of symmetries to simplify the computation of eigenvalues is well
known; for example it was famously used to compute the eigenvalues of the L-shaped domain in [13].

If the conformal map of the unit disk D to the Koch snowflake € is such that it preserves the symmetries,
i.e. if the prevertices are symmetric with respect to the same six lines, then in the same way as for (2 the
eigenfunctions of the weighted eigenvalue problem on the unit disk split into symmetry classes. If we
concentrate on finding eigenfunctions with particular symmetries our discretization becomes wasteful.

There is a simple way of exploiting the symmetries of eigenfunctions. For example, the eigenfunctions
that are antisymmetric with respect to the real and imaginary axes are zero on these axes so it is enough to
solve the same eigenvalue problem on just a quarter of the snowflake. The redundancy of the discretization
can be dealt with in the same way as in Section 5.1. Another possibility is to transplant the problem on a
slice of the fractal polygon to the unit disk. This can be done by first mapping the unit disk to the quarter
of the unit disk in the first quadrant and then mapping this slice to the slice of the Koch snowflake polygon
with the same symmetric Schwarz-Christoffel map as before. With this the size of the discretized Laplacian
has been significantly reduced for the same density of discretization points and the methods developed in
the previous sections are all applicable. Also the freedom in the choice of the map from the disk to the
quarter disk can be used to improve the convergence. For symmetry classes in which eigenfunctions have at
least one line of even symmetry the situation is a bit more complicated since we need to be able to impose
homogeneous Neumann as well as Dirichlet boundary conditions.

Looking at Table 2 it can be seen that the overall trend is slower convergence for the higher eigenvalues.
However more accurate estimates can be obtained if symmetries are used. To illustrate this we computed
the first 2 eigenfunctions that are antisymmetric with respect to the real and imaginary axes. A contour
plot of the 11th eigenfunction is shown in Figure 15. The same ratio for the discretization parameters as
before proved to be appropriate. Aitken’s method was used again to obtain an estimate of the eigenvalues
on the fractal. We obtain more digits for the 4th and 11th eigenvalues, namely A\y = A5 = 165.4058 and
A1 = A2 = 314.444.

6.4 More fractals

We have also computed the eigenvalues for two other fractals. For the fractal on the left in Figure 11 we
have obtained 6 digits for all the 20 eigenvalues whereas for the one on the right only 3. The lack of accuracy
obtained for the second fractal is due to the extreme crowding caused by the elongations in the fractal
domain. To compensate for the crowding we had to choose many more points in the angular direction than
for the Koch snowflake. We chose M =~ 60N to obtain the convergence plot on the right of the Figure 12.
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Figure 11: For the fractal on the left we have been able to obtain 6 digits for the first 20 eigenvalues whereas for the
fractal on the right only 3.
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Figure 12: Convergence curves of eigenvalues for the fractals shown in Figure 11. Note the different horizontal scales.
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7 Conclusion

To solve the eigenvalue problem on the Koch snowflake, we have approximated the fractal with a polygon
with many sides, mapped the polygon to the unit disk with a Schwarz-Christoffel map implemented with
the aid of multipole expansions, and solved a new eigenvalue problem. The new problem has a much simpler
computational domain and also the eigenfunctions are smoother allowing for an effective use of a spectral
collocation method. The convergence to the eigenvalues of the fractal is slow with the increase of the
level of polygonal approximation to the fractal. We were able to accelerate this convergence by the use
of Aitken’s A% method and it turns out that what limits our accuracy for higher eigenfunctions is not the
poor approximation of the fractal boundary but the accuracy of the numerical solution of the eigenvalue
problem on the unit disk. One of the reasons for this is the restriction on the collocation points in our
algorithm. Consequently it would be interesting to try other methods than spectral collocation to solve the
eigenvalue problem on the disk. One possible choice would be an hp-finite element method [31]. Methods that
allow more freedom in the adaptive choice of discretization could especially be favourable for fractals with
elongations. Transplantation to domains with similar elongations to counter the phenomenon of crowding
could also be considered; see [17].
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