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Abstract

We derive an effective plate theory for internally stressed thin elastic
layers as are used e.g. in the fabrication of nano- and microscrolls. The
shape of the energy minimizers of the effective energy functional is inves-
tigated without a priori assumptions on the geometry. For configurations
in two dimensions (corresponding to Euler-Bernoulli theory) we also take
into account a non-interpenetration condition for films of small but non-
vanishing thickness.

1 Introduction

In the present paper we investigate thin elastic films whose (flat) reference con-
figuration S × (−h/2, h/2), h � 1, is stressed due to some small mismatch of
equilibria in the x3-direction. This mismatch can be caused e.g. by a temper-
ature gradient or is due to differing lattice constants for a film consisting of
layers of different materials. If such a film is freed from the substrate, it will
assume a geometrically non-trivial configuration in order to reduce its elastic en-
ergy. This phenomenon is used e.g. in the waver-curvature measurement where
one tries to deduce material (mismatch) properties from measurements of the
curved substrate. Another, recent application is the fabrication of nanotubes
(nanoscrolls, nanobelts, etc.) by growing bi-layers of films with mismatching
lattice constants and relieving them from the substrate (see e.g. [8, 4]).

SEM image of a multi-layer tube (cour-
tesy of H. Paetzelt, V. Gottschalch,
J. Bauer, H. Herrnberger, G. Wagner,
Universtität Leipzig, see [4])

In the physics literature so far (mostly linear) three-dimensional elasticity
theory is used to describe the energy of such objects (cf. e.g. [5], [9]); and
in order to discuss the geometry of energy minimizers, one uses appropriate
ansatz functions (cylinders, belts, etc.) and optimizes with respect to certain
parameters (e.g. radius, winding direction).
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Our aim is first to derive an effective plate theory from three-dimensional
nonlinear elasticity theory rigorously as a suitable Γ-limit in the bending energy
regime for h → 0, see section 2. (This is the appropriate energy scale for
objects as nanoscrolls etc. mentioned above.) We have not chosen the most
general model of a heterogeneous film, so that in fact this derivation is a rather
straightforward extension of the results in [2], yet it models thermally stressed
films of a single material or stress induced due to mismatching lattice constants
of materials with similar elastic constants (as e.g. in [4]) reasonably well. We
do not re-derive all the steps needed from [2]; rather we focus on those parts
of the derivation that are new. (For more general models, the adaption of the
methods in [2] is not so straightforward, however still possible as will be detailed
elsewhere.) The outcome is an integral expression for the energy in terms of
the second fundamental form of the film surface similar as in [2]. However, the
reference state is not a state of minimal energy any more; the thin film can
reduce energy by rolling up.

The following section 3 is devoted to an ansatz free study of minimal energy
configurations (for free boundary conditions). An elementary observation shows
that indeed one cannot do better than cylinders. Using results of Pakzad (cf.
[6]) on the developability of W 2,2 isometric immersions, it is proved that in
fact every minimizer must be a cylinder. We also describe the set of optimal
winding directions and radii in detail.

While in the previous section admissible functions where all W 2,2 isometric
immersions, in section 4 we will also take into account a non-interpenetration
condition for films of small but non-vanishing thickness. Motivated by the
results of section 3, we study Euler-Bernoulli type deformations that can be
described by a planar curve of length L, say. We investigate the minimal energy
configurations in the most interesting regime L ∼ h−1 in detail and find non-
trivial minimal energy configurations. According to the boundary conditions
chosen, they will turn out to be spirals or double spirals.

TEM cross sectional images of a BGaAs 7nm / InGaAs 9 nm two layer system rolled
up in (1, 0, 0) direction (courtesy of H. Paetzelt, V. Gottschalch, J. Bauer, H. Herrn-
berger, G. Wagner, Universtität Leipzig, see [4])

2 Bending energy for strained multi-layers

Assume that Ωh = S× (−h/2, h/2) ⊂ R
3, S ⊂ R

2 a bounded Lipschitz domain,
is the reference configuration of a thin film. If the material is homogeneous, the
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elastic energy of a deformation v : Ωh → R
3 is given by∫

Ωh

W (∇v(z))dz.

Here W : R
3×3 → R is the stored energy function which shall satisfy the

following hypotheses:

(i) W is continuous, C2 in a neighborhood of SO(3).

(ii) W is frame indifferent: W (F ) = W (RF ) for all F ∈ R
3×3 and all R ∈

SO(3).

(iii) W (F ) ≥ C dist2(F, SO(3)) for all F ∈ R
3×3, W (F ) = 0 if F ∈ SO(3).

For strained thin films we will consider potentials varying in x3-direction∫
Ωh

W (z3,∇v(z))dz.

In detail, we are interested in the following two regimes:

W (x3, F ) := W0

(
1

a(x3)
F

)
(1)

for a : (−δ, δ) → R differentiable at 0 and

W (x3, F ) := W (h)(x3, F ) := W0

(
1

1 + hf(x3/h)
F

)
(2)

for f ∈ L∞((−1/2, 1/2); R) where W0 satisfies the above hypotheses (i)-(iii).
Here (1) serves as a model of a thermally strained film of a single material
whereas (2) describes films consisting of different layers internally stressed due
to mismatching energy wells. In order to avoid stretching energies in the ref-
erence configurations we assume that a(0) = 1 resp. f ∈ L∞((−1/2, 1/2); R)
satisfies

∫ 1/2
−1/2 f(t)dt = 0.

To treat both cases simultaneously, we will from on – slightly more general
– assume that W is of the form

W (x3, F ) := W (h)(x3, F ) := W0

(
1

1 + hf (h)(x3/h)
F

)
(3)

with f (h)(t) = f(t)+o(1) for f(t) = a′(0)t, a as in (1), resp. f as in (2). Chang-
ing variables y(x′, x3) = v(h)(x′, hx3), the 3-dimensional energy functional is

E(h)(v(h)) =
∫

Ωh

W (x3,∇v(h)(x))dx = h

∫
Ω1

W (hx3,∇′y(x),
1
h

y,3(x))dx (4)

for y ∈ W 1,2(Ω1, R
3).

The following compactness result is proved in [2] in case W = W0.
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Theorem 2.1 (Compactness) Let the energy be of the form (4) with W as in
(3). Suppose a sequence y(h) ⊂ W 1,2(Ω; R3) has finite bending energy, i.e.

lim sup
h→∞

1
h2

∫
Ω1

W

(
hx3,∇′y(h)(x),

1
h

y
(h)
,3 (x)

)
dx < ∞.

Then ∇hy(h) = (∇′y(h), 1
hy

(h)
3 ) is precompact in L2(Ω) as h → 0: there exists a

subsequence (not relabeled) such that

∇hy(h) → (∇′y, b) ∈ L2(Ω),

(∇′y, b) ∈ SO(3) a.e. Furthermore, (∇′y, b) ∈ H1(Ω) is independent of x3.

Proof. This follows directly from the homogeneous case (cf. [2]) since

lim sup
h→∞

1
h2

∫
Ω1

dist2
(
∇hy(h), SO(3)

)
dx < ∞ :

By hypothesis (iii) on W0, dist2(F, SO(3)) is bounded by

2 dist2
(

1
1 + hf (h)(x3)

F, SO(3)
)

+ 2
∣∣∣∣F − 1

1 + hf (h)(x3)
F

∣∣∣∣
2

≤ 2
C

W (hx3, F ) + 2
(

1
1 + hf (h)(x3)

− 1
)2

|F |2

for all x3 ∈ (−1/2, 1/2). Noting that ( 1
1+hf(h)(x3)

− 1)2 = O(h2) and |F | ≤
C(1 + dist(F, SO(3))) implies

dist2(F, SO(3)) ≤ C ′ (W (hx3, F ) + h2
)
.

�
The main result of this section is the following derivation of limiting bending

energies by Γ-convergence. For a deformation y ∈ W 2,2(S, R3) we denote by
II its second fundamental form: IIij = y,i · b,j, b = y,1 ∧ y,2. The set of W 2,2-
isometric immersions is denoted

A := {y ∈ W 2,2(S; R3) : |y,1| = |y,2| = 1, y,1 · y,2 = 0}

(viewed as a set of functions in W 2,2(Ω1; R3) independent of x3 whenever conve-
nient). Depending on Q3, the Hessian of W0 at the identity, we define a relaxed
quadratic form on 2 × 2-matrices by

Q2(F ) = min
c∈R3

Q3(F̂ + c ⊗ e3)

where F̂ is the 3 × 3-matrix
∑2

i,j=1 Fijei ⊗ ej .
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Theorem 2.2 (Γ-limit) The functionals 1
h3 E(h) Γ-converge to I0 in W 1,2 as

h → 0. The two-dimensional limiting energy functional is given by

I0(y) =
{

1
24

∫
S Q2(II − a1Id) − a2 dx for y ∈ A,

∞ else
where

a1 = 12
∫ 1/2

−1/2
tf(t)dt and

a2 =

⎛
⎝6

(∫ 1/2

−1/2
tf(t)dt

)2

− 1
2

∫ 1/2

−1/2
f2(t)dt

⎞
⎠Q2(Id).

If W is as in (1), this reads

I0(y) =
{

1
24

∫
S Q2(II − a′(0)Id)dx for y ∈ A,

∞ else.

Proof. The proof closely follows the proof of theorem 6.1 in [2].
(i) Lower bound. For sequences (y(h)) with bounded energy converging to

y, it is shown in [2] that one can construct a piecewise constant approximation
R(h) : S′

h ⊂ S → R
3×3 to ∇hy(h) such that (for a subsequence)

G(h)(x′, x3) =
R(h)(x′)T∇hy(h)(x′, x3) − Id

h
⇀ G in L2.

If G′ denotes the 2 × 2-matrix obtained by omiting the third row and third
column, it is further shown that

G′(x′, x3) = G′(x′, 0) + x3II(x′), II = (∇′y)T∇′b (5)

and
χhG(h) ⇀ G in L2(Ω)

where χh is the characteristic function of the set S′
h ∩ {|G(h)(x)| ≤ h−1/2}.

It remains to estimate the energy in terms of G. This is done in analogy
to [2] by a careful Taylor-expansion of W0 around the identity: W0(Id + A) =
1
2Q3(A) + η(A) with η(A)/|A|2 → 0 as |A| → 0 and set ω(t) := sup|A|≤t |η(A)|.

Frame indifference leads to

1
h2

∫
Ω

W (hx3,∇hy(h))dx ≥ 1
h2

∫
Ω

χhW0

(
1

1 + hf (h)(x3)
(R(h))T∇hy(h)

)
dx

=
1
h2

∫
Ω

χhW0

(
Id + hA(h)

)
dx

≥
∫

Ω

1
2
χhQ3

(
A(h)

)
− 1

h2
χhω

(
|hA(h)|

)
dx

where

A(h) =
1

1+hf(h)(x3)
− 1

h
Id +

1
1 + hf (h)

G(h), χhA(h) ⇀ −f(x3)Id + G in L2(Ω).
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Using lower semicontinuity of Q3, hA(h) → 0 in L∞, and Q3(F ) ≥ Q2(F ′),
as in [2] we find that

lim inf
h→0

1
h2

∫
Ω

W (hx3,∇hy(h))dx ≥ 1
2

∫
Ω

Q2

(
G′(x′, 0) + x3II(x′) − f(x3)Id′) .

Because of
∫ 1/2
−1/2

x3dx3 =
∫ 1/2
−1/2

f(x3)dx3 = 0, integrating over x3 yields

lim inf
h→0

1
h2

∫
Ω

W (hx3,∇hy(h))dx

≥ 1
24

∫
S

Q2(II(x))dx − c1

∫
S

Q2(II(x), Id)dx +
c2

2

∫
S

Q2(Id)dx

=
1
24

∫
S

Q2(II(x) − 12c1Id)dx −
(

6c2
1 −

1
2
c2

)
Q2(Id)dx

where c1 =
∫ 1/2
−1/2 x3f(x3)dx3, c2 =

∫ 1/2
−1/2 f2(x3)dx3.

(ii) Attainment of the lower bound. Let y ∈ A. As in [2] we choose approx-
imations yλ and bλ to y and b = y,1 ∧ y,2 (extended to maps in W 2,2(R2, R3)
resp. W 1,2(R2, R3)) such that

‖∇2yλ‖L∞ , ‖∇bλ‖L∞ ≤ λ, |Sλ| ≤ C
ω(λ)
λ2

where

Sλ = {x ∈ R
2 : y(x) �= yλ(x) or b(x) �= bλ(x)}, ω(λ) → 0 as λ → ∞.

Let λh = c/h. More generally than in [2] we define

y(h)(x′, x3) = yλh(x′) + hx3b
λh(x′) + h2D(x′, x3)

for D(x′, x3) =
∫ x3

0 d(x′, t)dt, d ∈ C1(Ω1; R3). (If W is as in (1), we can
use trial functions with d(x′, x3) = x3d(x′) as in [2].) Furthermore denote
R(x′) := (∇′y(x′), b(x′)) and

RT

(
∇′y(h),

1
h

y
(h)
,3

)
= RT

(
(∇′yλh , bλh) + h(x3∇′bλh , d) + h2(∇′D, 0)

)
=: Id + B(h).

Similar as above let

A(h) =
(

1
1 + hf (h)(x3)

− 1
)

Id +
1

1 + hf (h)(x3)
B(h).

On the good set S \ Sλh , we have RT (∇′yλh , bλh) = Id and

|B(h)| ≤ C(hλh + h + h2) ≤ C(c + h0 + h2
0) for all h ≤ h0.

6



An analogous estimate holds for |A(h)|. Choosing c small enough and using that
W0(Id + A) ≤ C dist2(Id + A,SO(3)) in a neighborhood of SO(3) (and letting
χh denote the characteristic function of S \ Sλh), we obtain for all h ≤ h0

1
h2

χhW0(Id + A(h)) ≤ C

h2
χh|A(h)|2

≤ 2C
h2

χh

(
3
(

1
1 + hf (h)(x3)

− 1
)2

+
∣∣∣∣ 1
1 + hf (h)(x3)

B(h)

∣∣∣∣
2
)

≤ C

⎛
⎝
( 1

1+hf(h)(x3)
− 1

h

)2

+
|(∇′b, d)|2 + h2|∇′D|2

|1 + hf (h)(x3)|

⎞
⎠

≤ C(1 + |(∇′b, d)|2 + h2
0|∇′D|2) ∈ L1(Ω).

Furthermore,

1
h2

χhW0(Id + A(h)) → 1
2
Q3(−f(x3) + RT (x3∇′b, d))dx

in measure. So, by dominated convergence,

1
h2

∫
Ω

χhW

(
x3,∇′y(h),

1
h

y
(h)
,3

)
dx =

1
h2

∫
Ω

χhW0(Id + A(h))dx

→ 1
2

∫
Ω

Q3(−f(x3) + RT (x3∇′b, d))dx.

On the bad set Sλh , as shown in [2], dist(Id + B(h), SO(3)) ≤ C, thus also
dist(Id + A(h), SO(3)) ≤ C. So

1
h2

∫
Ω
(1 − χh)W

(
x3,∇′y(h),

1
h

y
(h)
,3

)
dx ≤ C

|Sλh |
h2

→ 0 (h → 0).

Together with our previous estimate we find

1
h2

∫
Ω

W

(
x3,∇′y(h),

1
h

y
(h)
,3

)
dx →

∫
Ω

Q3(−f(x3) + RT (x3∇′b, d))dx.

To finish the proof as in [2], it suffices to note that

dmin(x′, x3) := argmin Q3(−f(x3) + RT (x3∇′b, d)) ∈ L2

and
Q3(−f(x3) + RT (x3∇′b, dmin)) = Q2(−f(x3) + x3II) :

(ii) then follows by a standard approximation procedure. �
Remarks.

(i) By standard arguments in Γ-convergence the above results imply conver-
gence of (almost) minimizers. Note also that appropriate body forces and
boundary conditions can be included in the above analysis.
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(ii) Due to the assumptions made on W0, Q3 is positive semidefinite and
positive definite when restricted to symmetric matrices. It is not hard
to see that this implies that Q2 is positive definite on symmetric 2 × 2-
matrices.

(iii) Consider deformations of Euler-Bernoulli type. Suppose S = (0, L) ×
(0, w) and we are only considering deformations y in the x1−x3 plane, i.e.
y(x1, x2, ) = (f1(x1), x2, f2(x1)). The class of isometric deformations can
then be described by the curve γ ∈ W 2,2((0, L); R2), γ(t) = (f1(t), f2(t)),
where |dγ

dt | ≡ 1. The second fundamental form is given by IIij = −κ for
i = j = 1 and IIij = 0 else. Here κ is the curvature of the curve γ. This
leads to a limiting energy

E(γ) = α1

∫ L

0
(κ(t) − α2)2 + α3 dt (6)

for constants α1 > 0, α2, α3 ∈ R.

3 Minimal energy configurations in 3D

As seen in the previous section, thin strained multi-layers deformed by y : S ⊂
R

2 → R
3 have bending energy

E(y) =
{ ∫

S Q(II − c0Id) + c′0 dx for y ∈ A
∞ else

(7)

for some Q, positive definite on symmetric matrices, c0, c
′
0 ∈ R. In the following

we will address the question what one can say about the set of energy minimizers
of (7)

M = {u ∈ W 2,2(S; R3) : E(u) = min
y∈W 2,2(S;R3)

E(y)}.

Note that energy minimizers in general will be non-unique. For isotropic mate-
rial, e.g., every winding direction will be equally well suited to reduce energy.

We will, slightly more general, only assume that Q is any positive semidef-
inite quadratic form on symmetric 2 × 2-matrices. We start with the following
observation.

Lemma 3.1 Let N := argmin{Q(F−c0Id) : F singular and symmetric}. Then
u ∈ M if and only if II ∈ N a.e. In particular, M contains cylinders.

Proof. Any u of finite energy is an W 2,2-isometry, so det(II) = 0 (see [6]). Since
the set of symmetric singular 2 × 2-matrices is R · {n ⊗ n : n ∈ R

2, |n| = 1}
which is just the set of (constant) fundamental forms of cylinders, we can – and
therefore have to – minimize E in (7) by minimizing the integrand pointwise
subject to II being singular and symmetric. Choosing u to be a cylinder with
II ≡ F0 ∈ N constant, u lies in M. �

In the following we will identify a symmetric matrix F = (Fij) with the vec-
tor (F11, F22, F12)T ∈ R

3. Accordingly, Q will be viewed as a positive semidefi-
nite quadratic form on R

3 with rank(Q) denoting the rank of the corresponding
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symmetric 3 × 3-matrix. The cone of singular symmetric matrices is denoted
C := {m ∈ R

3 : m1m2 − m2
3 = 0}, and we set c = (c0, c0, 0)T for c0 is as in (7).

(Note that c lies on the symmetry axis of C.)
As noted, u ∈ M iff II ∈ N a.e. It is therefore interesting to examine N in

more detail. Depending on the rank of Q, N is the intersection of C with an
ellipsoid centered at c and touching C from inside, with a straight line through
c, or with a plane containing c.

In fact it is elementary to see that, if rank(Q) = 2, N consists of at most
two points, in case rank(Q) = 1 and c0Q(Id) �= 0, N is a non-degenerate conic,
and, for rank(Q) = 1 and c0Q(Id) = 0, N = RN (1) ∪ RN (2) where N

(1)
ij ≥ 0

and N
(2)
11 = N

(1)
22 , N

(2)
22 = N

(1)
11 , N

(2)
12 = −N

(1)
12 . Except for this last case, any

two elements of N are linearly independent.
Claim. If rank(Q) = 3, then #N = 1, #N = 2, or N is a circle. In every case,
if F (1), F (2) ∈ N , then trace(F (1)) = trace(F (2)).
Proof. The proof is completely elementary; we indicate the main steps. If
min{Q(m − c) : m ∈ C} = q0, then N = C ∩ E for E = {Q(m − c) = q0},
an ellipsoid touching C from inside. If #N ≥ 2, choose a, b ∈ N , a �= b, and
consider a plane P through a, b, c. On P choose a coordinate system (x, y) with
origin at c such that the y-axis lies in R(1, 1, 0)T + R(0, 0, 1)T , i.e. is an axis of
symmetry of the conic C ∩ P. In these coordinates let a = (a1, a2), b = (b1, b2).
Since the ellipse E ∩P touches C ∩P from inside, a2 and b2 have the same sign,
say a2, b2 < 0. Now suppose a2 �= b2.

In case C∩P is not compact, after a suitable linear transformation we obtain
either a circle touching a hyperbola or parabola from inside at two points where
the center of the circle does not lie on the axis of symmetry of the hyperbola
resp. parabola, or a circle touching a hyperbola or parabola from inside at
four points where the center of the circle lies on the axis of symmetry of the
hyperbola resp. parabola.

In case C ∩ P is compact, after a suitable linear transformation we obtain
either an ellipse touching a circle from inside at two points where the center
of the circle does not lie on an axis of symmetry of the ellipse, or an ellipse
touching a circle from inside at four points where the center of the circle lies on
an axis of symmetry of the ellipse.

In all cases all the normals of the touching points to the corresponding
circle intersect at the circle centers. This yields a contradiction when viewed as
normals to the corresponding hyperbola resp. parabola resp. ellipse. The claim
now easily follows. �

Also note that in case N is a circle, Q is of the form

Q(m1,m2,m3) = α

(
m1 + m2

2

)2

+ β

(
m1 − m2

2

)2

+ βm2
3

for some α > 0, β ≥ 0, hence Q is isotropic:

Q(II) =
β

2
|II|2 +

α − β

4
(trace(II))2 =

α + β

4
|II|2
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where the last equality followed from det(II) = 0. Furthermore, if Q describes
a material with cubic symmetry, then Q(RT MR) = Q(M) for all symmet-
ric M and R = e2 ⊗ e1 − e1 ⊗ e2 ∈ R

2×2. Straight forward calculations for
Q(m1,m2,m3) =

∑
1≤i,j≤3 qijmimj with qij = qji lead to

(qij)ij =

⎛
⎝ q11 q12 q13

q12 q11 −q13

q13 −q13 q33

⎞
⎠ .

Then Rc is a principal axis for every ellipsoid {Q(m1,m2,m3) = const.}. So if Q
is not isotropic, i.e. q13 �= 0 or q11−q12−q33/2 �= 0, N = {n(1)⊗n(1), n(2)⊗n(2)}
with |n(1)| = |n(2)| and n(1) ⊥ n(2) as expected.

The following theorem gives a complete description of the minimizers of E.

Theorem 3.2 Suppose u ∈ M.

• If rank Q = 2 or 3 or if rank Q = 1 and c0Q(Id) �= 0, then u is a cylinder.

• If rank Q = 1 and c0Q(Id) = 0, then there exists a unique normal vector
n ∈ R

2 with n1 > 0, n2 ≥ 0 such that u is locally of Euler-Bernoulli type
w.r.t. n or n⊥ = (−n2, n1)T .

Here we say that a deformation y : S → R
3 is of Euler-Bernoulli type (w.r.t.

n ∈ R
2) if there is a plane P ∈ R

3 with normal ν and a function f : R ⊃ I → P
such that

u(x) = f(x · n) + (x · n⊥)ν.

In the last case we obtain a decomposition of S (as in the following picture)
into stripes parallel to n⊥ resp. n on which u is of Euler-Bernoulli type w.r.t.
n resp. n⊥ and a rest where II = 0, i.e. u is rigid. These stripes can meet only
at the boundary ∂S.

�
�

n

n⊥

Lemma 3.3 Let n ∈ R
2. Suppose y ∈ A with II(x) = µ(x)n ⊗ n. Then y is

locally of Euler-Bernoulli type w.r.t. n.

Proof. Elementary calculations using ∇y ∈ O(2; 3) a.e. show that ∇n⊥u(x) =: ν
is constant. Applying ∇y ∈ O(2; 3) again, the claim follows. �
Proof of theorem 3.2. In [6] it is shown that (locally on convex subdomains)
u ∈ A implies that u is a developable ruled surface. Moreover, there exists
fu ∈ W 1,2(S, R2) such that ∇fu = II and the connected components of the
pre-images of fu are the segments (neighborhoods) on which u is affine. We
may choose coordinates (s, t) such that

u(γ(t) + sν(t)) = γ̃(t) + sv(t)
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where, in the regions where fu is not constant, γ ∈ W 2,∞ (parameterized by
arclength) is orthogonal to the inverse images of fu, and ν = (γ′)⊥. By κ we
denote the curvature of γ, i.e. γ′′ = κν.

As in [6] note that Γ(t) = fu(γ(t) + sν(t)) is independent of s. Since both
rows of ∇fu are parallel to γ′ and dΓ/dt = ∇fu(γ(t) + sν(t))(γ′(t) + sν ′(t)) =
∇fu(γ(t) + sν(t))(1 − sκ)γ′(t), we can write

∇fu(γ(t) + sν(t)) = µ(s, t)(ν(t))⊥ ⊗ (ν(t))⊥ =
µ(t)

1 − sκ
(ν(t))⊥ ⊗ (ν(t))⊥.

In case rank(Q) = 1 and c0Q(Id) = 0, since ν is continuous, it follows from
II ∈ N that ν is locally constant, and hence u is locally of Euler-Bernoulli type
by lemma 3.3.

In the remaining cases, the elements of N are pairwise linearly indepen-
dent, whence in fact κ = 0 a.e. But then ν ′ = 0, i.e. ν(t) ≡ ν(t0) and
II = µ(t0)(ν(t0))⊥ ⊗ (ν(t0))⊥. Now II being constant on every convex subdo-
main, it must be constant on S. �

In case II is smooth we give a self contained proof of the above result not
using developability. Note that this is in fact sufficient for the case rank(Q) = 3
interesting for elasticity: by the reasoning above, there is a constant r0 such
that for all II ∈ N , II11 + II22 = r0. Also in [6] (cf. lemma 2.6) it is proved
that the Codazzi-Mainardi-equations II11,2 = II12,1 and II12,2 = II22,1 hold in
distributions. But then locally there exists f ∈ W 1,2 such that ∇f = II. It
follows

0 = div cof ∇f = div
(

II22 −II21
−II12 II11

)
= div

( −II11 −II12
−II21 −II22

)
,

i.e. ∆f = div ∇f = 0. But then f and hence II is smooth and we can proceed
as follows.

Write II(x) = ±n(x) ⊗ n(x), n ∈ R
2. Up to a discrete exceptional set

we can solve locally in matrix space, w.l.o.g. for n2: n2 = f(n1), f ana-
lytic. Inserting this into the Codazzi-Mainardi-equations (n2

1),2 = (n1n2),1 and
(n2

2),1 = (n1n2),2 leads to

2n1n1,2 = (f(n1) + n1f
′(n1))n1,1

2f(n1)f ′(n1)n1,1 = (f(n1) + n1f
′(n1))n1,2,

a linear system for ∇n1 which has non-trivial solutions if and only if

0 = det
(

(f(n1) + n1f
′(n1)) −2n1

−2f(n1)f ′(n1) (f(n1) + n1f
′(n1))

)
= (f(n1) − n1f

′(n1))2.

Now if ∇n1 �= 0 on some open set (and hence the image of n1 not discrete), we
have

f(t) − tf ′(t) = 0 ⇒ f(t) = Ct.

Hence n(x) = µ(x) (1, C)T =: µ(x)n0. As before this implies that u is locally
of Euler-Bernoulli type resp. a cylinder due to the structure of N . �
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4 Minimal energy configurations in 2D

In this section we consider thin strained multi-layers of Euler Bernoulli type.
As noted at the end of section 2, these objects are described by a planar curve
γ tracing the position of the middle fiber of a two-dimensional section. In
this setting, the determination of energy minimizers of the two-dimensional
energy functional (7), (6) becomes trivial. However, considering films of finite
thickness h > 0, in the regime L ∼ 1/h, a non-intersection will lead to non-
trivial geometric behavior globally.

Consider a curve γ ⊂ R
2 of length |γ| = L. Let t be arclength, γ : [0, L] →

R
2, e1 = dγ/dt, e2 = e⊥1 . The film of thickness h associated to γ is

{γ(t) + se2(t) : 0 ≤ t ≤ L,−h/2 < s < h/2}.
Note that – to first order in h – this is a reasonable model for a film of thickness
0 < h � 1 motivated by the shape of our test functions in the proof of theorem
2.2. We will impose the following non-intersection condition:

γ(t1) + s1e2(t1) = γ(t2) + s2e2(t2) =⇒ t1 = t2 and s1 = s2. (8)

Seeking for energy minimizers among such curves, we will speak of curves with
two free ends.

It will be interesting to also consider curves γ in the upper half plane where
one end is attached to the x1-axis (curves with one free end).

More precisely, in the second case we demand that γ : [0, L] → R × [−h/2,∞),
γ(0) = (0,−h/2) and ((−∞, 0] × {−h/2}) ∪ γ satisfies the non-intersection
condition (8).

According to (6), we define the energy of γ by

E(γ) =
∫ L

0
(κ(t) − κ0)2

where κ(t) denotes the curvature of γ at t, and κ0 ≥ 0 is a fixed constant. By
definition, κ satisfies

d2γ

dt2
=

de1

dt
= κ(t)e2.

The corresponding admissible classes of curves are

A1 := {γ ∈ W 2,2(0, L; R2) : |γ′| ≡ 1 and (8) holds},
respectively

A2 := {γ ∈ W 2,2(0, L; R2) : |γ′| ≡ 1, γ(0) = (0,−h/2) and
(8) holds for ((−∞, 0] × {−h/2}) ∪ γ}.
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Since the non-intersection condition (8) implies |κ(t)| ≤ 2/h, in fact, for fixed
L and h, the elements of Ai, i = 1, 2, are uniformly bounded in W 2,∞.

Using the direct method of the calculus of variations, it is easy to show
existence of minimizers.

Proposition 4.1 (Existence of minimizers) There exist ui ∈ Ai, i = 1, 2, such
that E(ui) = minu∈Ai E(u).

Proof. For a minimizing sequence γ(n) we may assume that γ(n)(0) = (0,−h/2),
e
(n)
1 (0) = (1, 0) for all n, and γ(n) ∗

⇀ γ in W 2,∞. Then γ(n) → γ in W 1,∞

and, by lower semicontinuity, E(γ) = infu∈Ai E(u). It only remains to check
that γ (resp. ((−∞, 0] × {−h/2}) ∪ γ) satisfies our non-intersection condition.
Suppose not, i.e. γ(t1) + s1e2(t1) = p = γ(t2) + s2e2(t2) for some t1, t2 ∈
(0, L), s1, s2 ∈ (−h/2, h/2) with (t1, s1) �= (t2, s2). Choosing n large enough we
find neighborhoods Ui of ti and Vi of si with U1 ∩ U2 = ∅ or V1 ∩ V2 = ∅ such
that

p ∈ {γ(n)(t) + se
(n)
2 (t) : t ∈ Ui, s ∈ Vi}, i = 1, 2,

which contradicts our non-intersection assumption on γ(n). �
As energy minimizers for the curve with only one free end we expect a spiral

deformation. A moments thought shows that, in case the curve has two free
ends, we can do better by joining two spirals by a straight line the energy of
which is negligible for large L.

In the following we will determine the minimal mean energy 1
LE(γ) up to

O(h) in the limit L → ∞, h → 0. The result turns out to depend only on
a := Lh. The proof will also show that minimizing configurations (to leading
order) are in fact of the shape described above.

Upper Bounds

To obtain upper bounds for the energy minimizers, we consider a specific ex-
ample. Let (in polar coordinates)

γ(t) = (r(t) = r0 + hϕ(t)/2π, ϕ(t))

where ϕ(0) = 0 and ϕ′ = 1/
√

(h/2π)2 + r2 > 0, so t is arclength. Up to an error
of order O(1), this is the sum of the energies of nested circles with distances h,
the smallest of radius r0, the largest of radius R0 where πR2

0 − πr2
0 = Lh = a.

Up to O(1), this energy is

1
h

∫ R0

r0

2πr

(
1
r
− κ0

)2

dr.
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Now minimizing this energy expression with respect to πR2
0 −πr2

0 = a for fixed
a, yields r0 and R0 uniquely in terms of a and κ0 by

πR2
0 − πr2

0 = a and 1/r0 − κ0 = κ0 − 1/R0. (9)

Setting

E2(a) =
2π
a

[
log(r) − 2κ0r + κ2

0r
2/2
]R0

r0

(10)

for r0, R0 as in (9), we see that the energy of γ satisfies

1
L

E(γ) = E2(a) + O(h). (11)

In case the film has two free ends we get an upper bound on the minimal energy
by considering a bi-spiral γ whose energy E(γ) is, up to O(1), the energy of
two (equal) single spirals:

1
L

E(γ) = E1(a) + O(h), E1(a) = 2E2(a/2). (12)

In theorem 4.4 we will see that indeed

min
γ∈Ai

1
L

E(γ) = Ei(a) + O(h), i = 1, 2, a = Lh.

Spirals as minimizers

Consider the case of curves in A2 with one fixed end first.

Proposition 4.2 Let γ ∈ A2. If κ(t) < 0 for some t, then there exists another
curve in A2 having less energy than γ.

The idea of the proof is to show that the contact set of γ with its convex
envelope connected.
Proof. Let co(γ) be the convex hull of γ. Clearly γ(0) ∈ ∂co(γ) and e2(0) points
inward co(γ). Let t1 be the last time such that γ(t) ∈ ∂co(γ|[t,L]) for all t ≤ t1.
There exists t2 > t1 such that γ(t2) ∈ ∂co(γ|[t1,L]) and γ ∩ (γ(t1), γ(t2)) = ∅.
We obtain three cases:

e1(t2) = e1(t1) or e1(t2) = −e1(t1) or e1(t2) �= ±e1(t1).

Case 1: Replace γ|[t1,t2] by a straight line connecting γ(t1) and γ(t2).
t1t2

Since by strict convexity of the energy functional

E(γ|[t1,t2]) ≥ κ2
0(t2 − t1),
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this yields an amount of energy larger than κ2
0(t2 − t1 − |[γ(t1), γ(t2)]|), while it

makes the film t2 − t1 − |[γ(t1), γ(t2)]| shorter. Note that this procedure does
not enlarge the convex hull of γ|[t1,L], so the new configuration is admissible.
Now add the segment [(−t2 + t1 + |[γ(t1), γ(t2)]|,−h/2), (0,−h/2)] to this new
configuration and shift to the right.
Case 3: If e1(t2) �= ±e1(t1), then t2 = L, and we replace γ by γ[0,t1] ∪ [(−t2 +
t1,−h/2), (0,−h/2)] and shift to the right. As in case 1, one sees that this
lowers energy noting that

∫ t2
t1

κ(t)dt < 0.
Case 2: t1t2

γ on [t1, t2] together with the line segment [γ(t2), γ(t1)] forms a closed curve
such that γ(t) lies in its interior Ω for t > t2 and in its exterior Ωc for t < t1.

For s ≥ t2 we define gs to be the shortest curve in Ω that connects γ(t1) to
γ(s). (Note that gs is unique since Ω is simply connected. Furthermore, gs \ γ
consists of intervals where gs is a straight line, and – as does γ – gs lies in W 2,∞.)
By I ⊂ [t2, L] we denote the set of those s for which gs ∩ γ|[t2,L] = {γ(s)}. Let

t(s) be arclength of gs, e
(s)
1 = dgs/dt(s), and κ(s) the curvature of gs.

Claim. Suppose s ∈ I. If γ|[t1,t2) ∩ gs �= ∅, say γ(t) = gs(t(s)), then e1(t) =

e
(s)
1 (t(s)). Furthermore, κ(s) ≥ 0 a.e.

Proof of the claim.
for small t(s) > 0 with gs(t(s)) ∈ γ([t1, t2)]), (e(s)

1 )⊥ points outside Ω.
Assuming one of the statements of the claim is not satisfied, there are points

gs(t(s)) on γ|[t1,t2) such that (e(s)
1 (t(s)))⊥ points inside Ω. Choose t

(s)
2 minimal

with this property, and suppose t
(s)
1 < t

(s)
2 is maximal with gs(t

(s)
1 ) ∈ γ|[t1,t2),

(e(s)
1 (t(s)1 ))⊥ pointing outside Ω (recall (8)). But then the union of gs([t

(s)
1 , t

(s)
2 ])

and γ([γ−1(g2(t
(s)
1 )), γ−1(g2(t

(s)
2 ))]) is the graph of a closed curve with γ(s) lying

in its interior and γ(t2) in the exterior. This contradicts the fact that this curve
does not intersect γ|[t2,L] due to s ∈ I. �

Define sm := sup I (> t2), t∗ = max{t ∈ [t1, t2) : γ(t) ∈ gsm}. Our aim is,
as in case 1, to connect some γ(t), t ∈ [t1, t2), to some γ(s), s ∈ [t2, L], by a
straight line.

Suppose first sm < L. If sm ∈ I, set s∗ = sm. Then e1(s∗) = e1(t∗) and, in
a neighborhood of s∗, γ lies on one side of its tangent at s∗ (which contains the
last part of gsm).

t∗

sm

t∗

sm

or

If sm /∈ I, then gsm intersects γ|[t2,L] before sm and we choose s∗ such that
s∗ ∈ I and γ(s∗) ∈ gsm . Note that there is a sequence s(n) ∈ I, s(n) → sm, such
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that gs(n) converges to gsm uniformly, in particular, e1(s∗) is parallel to e1(t∗)
and γ lies on one side of gsm in a neighborhood of s∗.

t∗

s∗

sm

Indeed we must have e1(s∗) = e1(t∗), for else consider the closed curve γ|[s∗,sm]∪
[γ(sm), γ(s∗)]. For ε small enough, this curve would have to be intersected by
γ|[t2,s∗−ε] which is not possible.

Now we have to take care of our non-intersection condition (8). Let B =
B1 ∪ B2 where

B1 = {τγ(t∗) + (1 − τ)γ(s∗) + σe2(t∗) : 0 < τ < 1, 0 ≤ σ < h},
B2 = {τγ(t∗) + (1 − τ)γ(s∗) + σe2(t∗) : 0 < τ < 1,−h < σ < 0}.

First note that γ|[t1,t∗] does not intersect B: enlarge gsm after sm straightly until
it hits γ|[t1,t2) at γ(t′). Then note that γ|[t1,t∗] does not enter {γ(t) + σe2(t) :
t∗ < t ≤ t′, 0 ≤ σ < h} nor [γ(t∗), γ(t′)], hence γ|[t1,t∗] ∩ B1 = ∅.

To see that γ|[t1,t∗] does not intersect B2, note (γ(t∗), γ(s∗)] lies in the inte-
rior of gsm|[0,g−1

sm (γ(t∗))] ∪ γ|[t∗,t2] ∪ [γ(t2), γ(t1)]. If γ|[t1,t∗] intersected B2, then
also gsm |[0,g−1

sm(γ(t∗))] would have to intersect B2. But this is impossible since

κ(sm) ≥ 0 a.e. due to our claim above.
If also γ|(s∗,L] does not intersect B, then replacing γ|[t∗,s∗] by the straight

line [γ(t∗), γ(s∗)] leads to a configuration satisfying (8).
Suppose now γ|(s∗,L] intersects B. This intersection can not take place on

the same side of gsm as γ lies in a neighborhood of s∗ since then s∗ − ε could
not be connected to t2.

t∗

s∗

For sm = s∗ the intersection can not take place on the other side of gsm

either, due to maximality of sm, and we are done. Now consider the remaining
case. Note that if γ(s) ∈ B, s > s∗, then s ≤ sm since γ(s) lies in the interior
of γ|[s∗,sm] ∪ [γ(sm), γ(s∗)] for s > sm and 〈e1(s), e1(t∗)〉 > 0 (else t2 can not be
connected to sm).

t∗
s∗

sm
s∗∗

Let s∗∗ ∈ (s∗, sm] be such that γ(s∗∗) ∈ B is closest to [γ(t∗), γ(s∗)]. Now
shift γ|[s∗∗,L] (by an amount < h) perpendicular to γ(s∗) − γ(t∗) such that
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γ(s∗∗) lies on (the old) gsm and connect γ(t∗) to γ(s∗∗). This does not violate
our non-intersection condition since γ|[t∗,s∗∗] is removed.

As in the previous cases we add a suitable line segment [(−l,−h/2), (0,−h/2)]
so that our new configuration has length L and shift to the right. As before
this lowers energy: note that

∫ s∗
t∗ κ(t)dt and

∫ s∗∗
t∗ κ(t)dt are equal to 0 or −2π.

Now if sm = L we proceed as above replacing γ|[t∗,sm] by [γ(t∗), γ(sm)],
adding a suitable segment and shifting. Note that here

∫ s∗
t∗ κ(t)dt ≤ 0. �

Minimal Energy Estimates for Spirals

We consider the subclass of spirals of A2: Asp
2 = {γ ∈ A2 : κ(t) ≥ 0 a.e.}.

Lemma 4.3 Define E2(a) as in (10). There exists a constant C depending on
h and L only through a = hL such that for each γ ∈ Asp

2 ,

1
L

E(γ) ≥ E2(a) − Ch.

Proof. Choose t0 = 0 < t1 < t2, . . . , tN ≤ L such that
∫ tn
tn−1

κ(t)dt = 2π and∫ L
tN

κ(t)dt < 2π. By convexity,

E(γ) =
∫ L

0
(κ(t) − κ0)2dt

≥
N∑

n=1

∫ tn

tn−1

(κ(t) − κ0)2dt

≥
N∑

n=1

(tn − tn−1)
(

2π
tn − tn−1

− κ0

)2

. (13)

Now consider the following closed curves: For n = 1, . . . , N choose sn max-
imal such that γ(sn) lies on the half line starting at γ(tn) with direction e1(tn).
Define γn to be the closed curve [γ(tn), γ(sn)] ∪ γ|[sn,tn].

s2

s1
t0

t1

t2

Recall the definition of r0 and R0 from (9) and assume first that r0/6 ≤
|γn| ≤ 8πR0 for all n. (Then also L − tN is bounded.) Also suppose that
|γ(t1) − γ(t0)| ≤ 4πR0.

Since γn are nested closed and convex curves with mutual distance ≥ h, we
deduce from lemma A.1 that

|γn+1| ≥ |γn| + 2πh.
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Also note that there exists C independent of N such that∣∣∣∣∣
n∑

k=1

|γk| −
n∑

k=1

(tk − tk−1)

∣∣∣∣∣ ≤ C ∀n ∈ {1, . . . , N}. (14)

(To see this, note that, in components γ = (γ1, γ2),

n∑
k=1

(tk − tk−1) − |γk| =
n∑

k=1

(sk − tk−1) − (γ1(sk) − γ1(tk))

with γ1(sk) − γ1(tk−1) ≤ sk − tk−1 ≤ γ1(sk) − γ1(tk−1) + γ2(sk) − γ2(tk−1), i.e.

sk − tk−1 − (γ1(sk) − γ1(tk))
{ ≥ γ1(tk) − γ1(tk−1)

≤ γ1(tk) − γ1(tk−1) + γ2(tk) − γ2(tk−1).

Summing over k we get lower and upper bounds by evaluating telescoping sums
which are bounded, since the spiral occupies a bounded region.)

By the lemma A.4 below, we may therefore replace tn − tn−1 in (13) by |γn|
and obtain

E(γ) ≥
N∑

n=1

|γn|
(

2π
|γn| − κ0

)2

+ O(1).

Now this is exactly the energy of N nested circles (annuli) of length |γn|.
Since for two such annuli of different size enlarging the smaller one and shorten-
ing the bigger one by the same amount yields energy, we may assume that the
annuli touch (i.e. have distances h). Since, by (14),

∑N
k=1 |γk| = tN + O(1) =

L+O(1), the previous calculation of the upper bound (cf. (11)) applies to this
configuration and we find that

1
L

E(γ) ≥ E2(a) − Ch.

Now if γn ≥ 8πR0 for n ≤ N1, γn ≤ r0/6 for n ≥ N2 and r0/6 ≤ |γn| ≤ 8πR0

else, we apply the above reasoning to γ|[tN1
,tN2

] replacing the middle part of γ
by nested circles of optimal energy leading to inner and outer radii r̄0 ≥ r0 and
R̄0 ≤ R0, resp.

Consider γ|[tN2
,L]. If L− tN2 ≤ r0, this part is negligible. If not, we proceed

as follows: Since γ|[tN2
,L] is contained in the domain bounded by γN2 of diameter

≤ r0/12, by lemma A.2 we have
∫ L
tN2

κ(t)dt ≥ �(L − tN2)/(r0/3)� ≥ 2(L −
tN2)/r0. By convexity we may lower energy replacing γ|[tN2

,L] by a curve of
constant curvature 2/r0. The energy can be reduced further by replacing this
part by nested touching annuli whose biggest radius is r̄0 − h. (Note that
curvature is reduced pointwise, since (L − tN2)h ≤ 2πr2

0/36 < πr2
0(1 − 1/4).)

For the first part of the curve observe that since γ|[0,tN1
] lies outside the

domain Ω bounded by γN1 , which has diameter ≥ 8πR0, tn − tn−1 ≥ 4πR0

for n ≤ N1. (Apply lemma A.3 with p = γ(tn−1) and q = γ(tn).) As in
(13) replacing this part of the curve by annuli of circumference tn − tn−1 yields
energy. Similar as in the case just treated we may lower the energy even further
replacing these by nested annuli whose smallest radius is R̄0 + h.
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If |γ(t1) − γ(t0)| ≥ 4πR0, we apply the above procedure to γ|[t1,L]. Noting
that t1 − t0 ≥ 4πR0, we can then replace γ|[t0,t1] by a circle of radius 2R0.
Continue as in the previous case. �

We summarize the above results in the following

Theorem 4.4 Let a = Lh, E1, E2 as in (12), resp. (10). Then

(i)

inf
γ∈A2

1
L

E(γ) = min
γ∈A2

1
L

E(γ) = min
γ∈Asp

2

1
L

E(γ) = E2(a) + O(h),

(ii)

inf
γ∈A1

1
L

E(γ) = min
γ∈A1

1
L

E(γ) = E1(a) + O(h).

Proof. It only remains to prove 1
LE(γ) ≥ E1(a) − Ch for γ ∈ A1. Let co(γ)

be the convex hull of γ. If there exists t0 ∈ [0, L] with γ(t0) ∈ ∂co(γ) such
that e2(t0) is not an outward normal of co(γ), we consider γ|[0,t0] and γ|[t0,L]

separately. This reduces (up to O(h)) to the spiral case (i) already treated. For
a1 = t0h, a2 = (L − t0)h we see that

1
L

E(γ) ≥ 1
L

(t0E2(a1) + (L − t0)E2(a2)) − Ch ≥ 2E2(a/2) − Ch.

If such a t0 does not exist, we see as in the proof proposition 4.2 (cf. ‘case 1’)
that {t : γ(t) ∈ ∂co(γ)} is an interval [t1, t2], say, and

∫ t2
t1

κ(t)dt = −2π. Now let
t′1 (resp. t′2) be the largest (resp. smallest) time such that ∂co(γ|[0,t′1]) ∩ γ|[0,t′1]

(resp. ∂co(γ|[t′2,L]) ∩ γ|[t′2,L]) contains a point γ(t) with e2(t) not an outward
normal. Choose t′′1 ∈ [0, t′1] maximal with this property (t′′2 ∈ [t′2, L] minimal).
Now treat γ|[0,t′′1 ] and γ|[t′′2 ,L] as in the spiral case. Observe that

∫ t′1
t′′1

κ,
∫ t′′2
t′2

≤ π,
so replacing [t′′1, t′′2 ] by a straight line yields energy. Now add this straight line
to one of the two spirals to obtain two spirals with lower energy. As above it
follows that 1

LE(γ) ≥ 2E2(a/2) − Ch. �
Remark. The proof shows that the minimal energy configurations are (up to
O(h)) indeed of the form depicted on page 13.

Appendix: Analytical Lemmas

In this appendix we prove more or less elementary facts for curves resp. domains
in R

2 and a lemma on convex functions on the line that where needed in section
4.

Lemma A.1 Suppose Ω1,Ω2 ⊂ R
2 are convex domains with Ω1 ⊂ Ω2 and

dist(∂Ω1, ∂Ω2) ≥ h. Then

|∂Ω2| ≥ |∂Ω1| + 2πh,

and equality holds iff Ω2 = Ωh
1 := {x ∈ R

2 : dist(x, ∂Ω1 < h}.
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Proof. Suppose first ∂Ω1 is C2, parameterized by [t1, t2] � t �→ γ(t), where t is
arclength oriented such that e2 = e⊥1 is the inner normal to ∂Ω1, e1 = dγ/dt,
and κ ≥ 0. Then ∂Ω2 can be parameterized by γ̃(t) = γ(t)−f(t)e2(t), f ∈ W 1,∞

and f ≥ h.
Since de2/dt = de⊥1 /dt = κe⊥2 = −κe1, we can calculate:

|∂Ω2| =
∫ t2

t1

∣∣∣∣ d

dt
γ̃

∣∣∣∣ dt =
∫ t2

t1

∣∣∣∣dγ

dt
− df

dt
e2 − f

de2

dt

∣∣∣∣ dt

=
∫ t2

t1

∣∣∣∣e1 − df

dt
e2 + fκe1

∣∣∣∣ dt ≥
∫ t2

t1

|1 + κf |dt

=
∫ t2

t1

(1 + κf)dt ≥ t2 − t1 + h

∫ t2

t1

κdt

= |∂Ω1| + 2πh

with equality everywhere iff f ≡ h, i.e. Ω2 = Ωh
1 . For general Ω1 approximate

by an interior convex domain having smooth boundary.
(Alternatively assume that Ω1 has polygonal boundary (else approximate).

Projecting (i.e. contracting) Ω2 onto Ωh
1 yields |∂Ω2| ≥ |∂Ωh

1 | = |∂Ω1| + 2πh
with equality iff Ω2 = Ωh

1 . This argument also shows that we do not have to
require that Ω2 be convex.) �

Lemma A.2 Suppose Ω ⊂ R
2 is a domain of diameter d, γ : [0, l] → Ω a curve

(parameterized by arclength) in Ω. Then

∫ l

0
|κ|(t)dt ≥ 1

2

⌊
l

2d

⌋
.

Proof. W.l.o.g. l > 2d. Since for 0 ≤ t1 < t2 ≤ l

d ≥ |γ(t2) − γ(t1)| =
∣∣∣∣
∫ t2

t1

(
dγ

dt
(t1) +

∫ t

t1

d2γ

dt2
(s)ds

)
dt

∣∣∣∣ ,
we have ∣∣∣∣(t2 − t1)

dγ

dt
(t1)
∣∣∣∣ ≤ d +

∫ t2

t1

∫ t2

t1

∣∣∣∣d2γ

dt2
(s)
∣∣∣∣ dsdt

= d + (t2 − t1)
∫ t2

t1

|κ(t)|dt.

Therefore
∫ t2
t1

|κ(t)|dt ≥ 1 − d/(t2 − t1). In particular, if t2 − t1 = 2d, then∫ t2
t1

|κ(t)|dt ≥ 1/2. Cutting γ into �l/2d� pieces of length 2d, we thus find that

∫ l

0
|κ|(t)dt ≥ 1

2

⌊
l

2d

⌋
.

�
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Lemma A.3 Suppose Ω ⊂ R
2 is a convex domain, p, q ∈ R

2 separated (not
necessarily strictly) from Ω by some hyper-plane. Then any domain Ω′ (with
sufficiently smooth boundary) containing Ω, p, q satisfies

|∂Ω′| ≥ |p − q| + 1
2
|∂Ω|.

Proof. W.l.o.g. assume that Ω′ is the convex hull of Ω, p and q. Reducing
|∂Ω′| − |p − q| we may also assume that p and q lie on the separating hyper-
plane, even that the image of the orthogonal projection of Ω to this line is [p, q]◦.
But then |p − q| ≤ |∂Ω|/2, so the claim follows from |∂Ω′| ≥ |∂Ω|, because of
Ω′ ⊃ Ω (cf. lemma A.1).

Lemma A.4 Let I ⊂ R be an interval and f : I → R be convex. Let x1, . . . , xN ,
y1, . . . , yN ∈ I such that y1 ≤ y2, . . . ≤ yN . Assume that there is c such that
|∑n

k=1 xk −∑n
k=1 yk| ≤ c for all n ∈ {1, . . . , N}. Then there exists C > 0 only

depending on c, f ′(y1) and f ′(yN ) such that

N∑
k=1

f(xk) ≥
N∑

k=1

f(yk) − C.

Proof. Let an := f ′(yn)− f ′(yn−1) if n ≥ 2, a1 := f ′(y1), bn := xn − yn, and set
An = a1 + . . . + an, Bn = b1 + . . . + bn. By convexity and partial summation,

N∑
n=1

f(xn) −
N∑

n=1

f(yn) ≥
N∑

n=1

f ′(yn)(xn − yn) =
N∑

n=1

Anbn

= ANBN −
N∑

n=2

anBn−1

= f ′(yN )
N∑

n=1

(xn − yn) −
N∑

n=2

anBn−1

≥ C(f ′(yN ), c) − max
1≤n≤N−1

|Bn|
N∑

n=2

an

≥ C(f ′(yN ), f ′(y1), c).

(Note that by convexity and (yn) being increasing, an ≥ 0 for n ≥ 2.) �
Of course this lemma also applies to y1 ≥ y2, . . . ≥ yN . Just note that∣∣∣∣∣

N∑
k=n

xk − yk

∣∣∣∣∣ =
∣∣∣∣∣

N∑
k=1

xk − yk −
n−1∑
k=1

xk − yk

∣∣∣∣∣ ≤ 2c.
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