
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Adaptive variable-rank approximation of general

matrices

(revised version: February 2007)

by

Steffen Börm
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Abstract. In order to handle large dense matrices arising in the context of integral equations
efficiently, panel-clustering approaches (like the popular multipole expansion method) have proven
to be very useful. These techniques split the matrix into blocks, approximate the kernel function
on each block by a degenerate expansion, and discretize this expansion in order to find an efficient
low-rank approximation of each block.

Typical expansion schemes use the same expansion order in each block, and since the matrix
approximation error has to be kept consistent with the discretization error, this allows us to handle
n × n matrices by algorithms with a complexity of O(n logα n) for α ≥ 1.

Recently, variable-order expansion schemes have been introduced, which choose different ranks
for different blocks and have been demonstrated to reach a complexity of O(n) while keeping the
matrix approximation error and the discretization error consistent.

This paper introduces an algorithm which can construct variable-rank approximations for general
matrices without the need of an in-depth analysis of the underlying operators: the matrix is fed into
the algorithm, and the algorithm approximates it up to an arbitrary precision.
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1. Introduction. We are interested in efficient algorithms for storing, and work-
ing with, a matrix M ∈ RI×I , where I is a general index set of cardinality n ∈ N.
Storing M directly requires O(n2) units of storage, i.e., the storage complexity de-
pends quadratically on the number of degrees of freedom. Therefore this representa-
tion is only efficient for small matrices.

For large matrices, different techniques have been developed: many matrices re-
sulting from the discretization of partial differential equations are sparse, i.e., the
number of non-zero entries in each of their rows can be bounded by a constant. Stor-
ing only these non-zero entries and treating the remaining ones implicitly yields a
representation which requires only O(n) units of storage.

Another type of large matrix arises from the discretization of integral equations:
since the integral kernels typically have global support, the resulting matrices have
O(n2) non-zero entries and cannot be treated by sparse matrix techniques. There
are different techniques for handling this type of matrix. Most prominent are panel-
clustering and wavelet techniques. Panel-clustering techniques [16, 18] and the closely
related multipole methods [17, 13] approximate the kernel function locally by degen-
erate expansions, thereby describing the interaction of subdomains very efficiently.
Wavelet techniques [9, 8] use a Galerkin approach with special basis functions in or-
der to ensure that the resulting matrix is essentially sparse, i.e., sparse up to entries
of negligible size.

We will focus here on panel-clustering techniques. The basic idea is to split the
index set I × I corresponding to the matrix M into subblocks t × s, where t, s ⊆ I,
and approximate the subblocks M |t×s by low-rank matrices M̃ |t×s. If we represent

∗Max Planck Institute for Mathematics in the Sciences, Inselstraße 22–26, 04103 Leipzig, Germany

1



the low-rank matrices in an efficient factorized format, the resulting approximation
M̃ of M is called a hierarchical matrix [14, 4, 3] and requires only O(nk log n) units
of storage, where k ∈ N is an upper bound for the rank of the subblocks.

If we use a more efficient factorization of the subblocks, we arrive at the H2-matrix
representation [15, 5], which will in general require only O(nk) units of storage.

In practical applications, the rank k controls the accuracy of the approximation:
usually, we have a relationship of the kind k ∼ logα(1/ε), where ε ∈ R>0 is the desired
accuracy and α ∈ N is a parameter depending on the approximation scheme.

When dealing with matrices resulting from the discretization of an integral or
partial differential equation, we want the matrix approximation error to be propor-
tional to the discretization error. If we assume that the discretization error behaves
like ε ∼ n−β, where n is the number of degrees of freedom and β ∈ R>0 is deter-
mined by the discretization scheme, this means that the rank k has to behave like
k ∼ β logα(n), which implies an effective complexity of O(n logα+1 n) for hierarchical
matrices and O(n logα n) for H2-matrices.

Especially for very large problems, the additional polylogarithmic factor leads to
a significant increase in the computing time, therefore we would like to get rid of it
and reach the optimal complexity O(n). For H2-matrices, this can be achieved by
variable-rank approximations [18]: we use a low rank for small subblocks and a high
rank for large ones. For a certain class of matrices, the rank can be chosen in such
a way that a complexity of O(n) is sufficient for keeping the matrix approximation
error consistent with the discretization error [18, 7, 19].

Obviously, methods of optimal complexity are very desirable when dealing with
large problems, and we would like to have methods of this kind at our disposal for
as many problem classes as possible. Unfortunately, the results given in [18, 7, 19]
are closely connected to a special kind of matrix resulting from a special kind of
discretization of a special kind of integral operator, and they rely on a careful analysis
of the underlying continuous problem. For general applications, a purely algebraic
method is desirable: we would like to have an algorithm which takes an arbitrary
matrix and constructs an efficient variable-rank approximation of prescribed accuracy.

This paper is devoted to the construction of an algorithm matching this descrip-
tion. Since we will formulate it in the language of H2-matrices, we have to briefly recall
the corresponding basic definitions. Then we introduce the algorithm and prove that
it is efficient. A careful error analysis allows us to choose the truncation thresholds
required by the algorithm in such a way that a prescribed accuracy is reached. First
numerical experiments demonstrate the practical applicability of the new method.

2. H2-matrices. We will now briefly recall the structure of H2-matrices [15, 5].

2.1. Block structure. Hierarchical matrix techniques are based on detecting
subblocks of the matrix which admit a data-sparse approximation. In order to find
these admissible blocks efficiently, we introduce a hierarchy of subsets:

Definition 2.1 (Cluster tree). Let I be an index set. Let T be a labeled tree.
We denote its root by root(T ), the label of t ∈ T by t̂, and the set of sons by sons(t, T )
(or just sons(t) if this does not lead to ambiguity).

T is a cluster tree for I if it satisfies the following conditions:

• ̂root(T ) = I.
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• If sons(t) �= ∅ holds for t ∈ T , we have

t̂ =
⋃

s∈sons(t)

ŝ and

ŝ1 ∩ ŝ2 = ∅ for all s1, s2 ∈ sons(t) with s1 �= s2.

If T is a cluster tree for I, we will denote it by TI and call its nodes clusters. The
set of leaves of TI is denoted by

LI := {t ∈ TI : sons(t) = ∅}.

The definition implies t̂ ⊆ I for all clusters t ∈ TI . We can use induction to prove
that the set LI of leaves of TI is a disjoint partition of the index set I.

The level of a cluster t ∈ TI is defined by

level(t) :=

{
level(t+) + 1 if there is a t+ ∈ TI with t ∈ sons(t+),
0 otherwise, i.e., if t = root(TI).

For each � ∈ N0, we define the set

T (�)
I := {t ∈ TI : level(t) = �}

of clusters with level �. The set of descendants of a cluster t ∈ TI is defined by

sons∗(t) :=

{
{t} ∪

⋃
s∈sons(t) sons∗(s) if sons(t) �= ∅,

{t} otherwise.

Using cluster trees, we can now define a partition of the matrix entries:
Definition 2.2 (Block partition). Let I and J be finite index sets, and let TI

and TJ be corresponding cluster trees. A set P ⊆ TI × TJ is a block partition if
{t̂ × ŝ : (t, s) ∈ P} is a disjoint partition of I × J . We will call the elements of P
blocks.

The admissible blocks, i.e., those that can be treated by a data-sparse approxi-
mation, are picked from the elements of P :

Definition 2.3 (Admissibility). Let P be a block partition for TI and TJ . Let
Pnear ⊆ P be such that for all (t, s) ∈ Pnear the equation sons(t) = ∅ = sons(s)
holds. Then Pnear is called a nearfield for P , and Pfar := P \ Pnear is called the
corresponding farfield. The blocks in Pfar are called admissible blocks, the blocks in
Pnear are called inadmissible blocks. Whenever we introduce a block partition, we
assume that matching sets Pnear and Pfar are implied.

Due to this definition, inadmissible blocks correspond to leaves of the cluster trees,
i.e., to small subsets of I × J which we can afford to store in the standard format.
An efficient representation is only required for admissible blocks.

In practice, these blocks are identified by an admissibility condition. For matrices
resulting from the discretization of elliptic problems, the condition

max{diam(Ωt), diam(Ωs)} ≤ dist(Ωt, Ωs) (2.1)

is frequently used, where Ωt and Ωs are suitable domains containing the supports of
the basis functions or functionals corresponding to t and s.
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Fig. 2.1. Nested cluster basis

The condition (2.1) ensures that we are dealing with a region where we can expect
Green’s function to be smooth or at least separable. In the case I = J , this means
that the block t̂ × ŝ lies “sufficiently far away” from the diagonal of the matrix.

If the indices in I and J correspond to locations in space, it is possible to construct
good cluster trees TI and TJ by binary space partitioning and a good block partition
P = Pfar∪̇Pnear by a simple recursion strategy [11, 12].

2.2. Factorized representation. Typical hierarchical matrices are defined
based on the block partition P : for all admissible blocks b = (t, s) ∈ Pfar, the
corresponding matrix block M |t̂×ŝ is required to be of low rank and stored in an
appropriate factorized form.

The H2-matrix format is a specialization of this representation: we require not
only that admissible blocks correspond to low-rank matrix blocks, but also that the
ranges of these blocks and their adjoints are contained in predefined spaces.

In order to simplify the presentation, we introduce a restriction operator χt : I →
I for each t ∈ TI by

(χt)ij =

{
1 if i = j ∈ t̂,

0 otherwise,
for all i, j ∈ I.

Restriction operators χs : J → J for s ∈ TJ are defined in a similar fashion. For
t ∈ TI , s ∈ TJ , the matrix χtMχs ∈ RI×J is equal to M in the sub-block t̂ × ŝ and
zero everywhere else.

Definition 2.4 (Cluster basis). Let TI be a cluster tree. A family k = (kt)t∈TI
of integers is called rank distribution. For a given rank distribution k, a family
V = (Vt)t∈TI satisfying Vt ∈ RI×kt and χtVt = Vt for all t ∈ TI is called cluster basis
for TI with rank distribution k.

We can see that this definition implies (Vt)iν = 0 for all t ∈ TI , i ∈ I \ t̂ and
ν ∈ {1, . . . , kt}, i.e., only matrix rows corresponding to indices in t̂ can differ from
zero.

Definition 2.5 (Nested cluster bases). Let TI be a cluster tree, and let V be a
corresponding cluster basis with rank distribution k. Let E = (Et)t∈TI be a family of
matrices satisfying Et ∈ Rkt×kt+ for each cluster t ∈ TI that has a father t+ ∈ TI . If
the equation

Vt =
∑

t′∈sons(t)

Vt′Et′ (2.2)
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(cf. Figure 2.1) holds for all t ∈ TI with sons(t) �= ∅, the cluster basis V is called
nested with transfer matrices E.

The case t = root(TI) is only included in order to avoid the necessity of treating
a special case: we can see that the definition does not require the transfer matrix
for the root of TI to satisfy any conditions. In practice, this matrix can be ignored
completely.

If a cluster basis V = (Vt)t∈TI is nested, it satisfies the recursive equation

Vt =

{∑
t′∈sons(t) Vt′Et′ if sons(t) �= ∅,

Vt otherwise,
for all t ∈ TI , (2.3)

i.e., we do not have to store the matrices Vt for clusters t ∈ TI \ LI which are not
leaves, since we can rely on the transfer matrices Et′ for t′ ∈ sons(t) instead.

The nested structure is the key difference between general hierarchical matrices
and H2-matrices [15, 5, 6], since it allows us to construct very efficient algorithms by
re-using information across the entire cluster tree.

Definition 2.6 (H2-matrix). Let TI and TJ be cluster trees. Let P = Pfar∪̇Pnear

be a block partition. Let V and W be nested cluster bases for TI and TJ with rank
distributions k and l. Let M ∈ RI×J . If we can find matrices (Sb)b∈Pfar satisfying

Sb ∈ Rkt×ls , χtMχs = VtSbW
�
s for all b = (t, s) ∈ Pfar, (2.4)

the matrix M is called an H2-matrix with row cluster basis V and column cluster
basis W . The family S = (Sb)b∈Pfar is called the family of coupling matrices.

The set of all H2-matrices with row cluster basis V , column cluster basis W and
block partition P is denoted by H2(P, V, W ).

This definition implies that each H2-matrix can be written in the form

M =
∑

b=(t,s)∈Pfar

VtSbW
�
s +

∑
b=(t,s)∈Pnear

χtMχs, (2.5)

since P = Pfar∪̇Pnear defines a partition of I × J .

2.3. Complexity. Let us now consider the storage complexity of the H2-matrix
representation.

Block partitions constructed for standard situations have an important property:
for each t ∈ TI , there is only a limited number of blocks of the form (t, s). For cluster
trees and block partitions constructed by geometric bisection, an explicit bound for
this number can be given, and this bound does not depend on the number of degrees
of freedom [11, 12].

Definition 2.7 (Sparse partition). Let P be a block partition. Let Csp ∈ N. The
partition P is Csp-sparse if we have

#{s ∈ TJ : (t, s) ∈ P} ≤ Csp for all t ∈ TI , (2.6)
#{t ∈ TI : (t, s) ∈ P} ≤ Csp for all s ∈ TJ . (2.7)

The complexity of most H2-matrix algorithms is determined by the behaviour
of the rank distributions k = (kt)t∈TI and l = (ls)s∈TJ . The total complexity of
most algorithms is determined by suitably defined average values of k and l: the rank
can be allowed to be large in a small number of clusters as long as its stays small
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in the majority of clusters. In order to prove optimal bounds, we require that, as
the rank increases polynomially, the number of clusters exceeding this rank decreases
exponentially:

Definition 2.8 (Polynomial rank). Let k = (kt)t∈TI be a rank distribution. Let
k̂ := (k̂t)t∈TI be a family defined by

k̂t :=

{
max

{
kt,

∑
t′∈sons(t) kt′

}
if sons(t) �= ∅,

max
{
kt, #t̂

}
otherwise,

for all t ∈ TI . (2.8)

Let α, β ∈ N0, γ ∈ N and ξ ∈ R>1. The rank distribution k is (α, β, γ, ξ)-polynomial
if we have

#{t ∈ TI : k̂t > (α + β�)γ} ≤ ξ−�#TI for all � ∈ N0. (2.9)

Most papers on variable-order techniques rely on a level-wise splitting of the set
of clusters: a high rank is allowed only for low levels, and the number of clusters is
expected to increase exponentially in the level number.

It is easily verified that Definition 2.8 is more general than level-wise splittings:
we can simply identify the level number and the parameter �.

The more general approach presented here is required in order to be able to handle
local irregularities arising from non-smooth boundaries or non-uniform triangulations.

Lemma 2.9 (Storage of cluster bases). Let V = (Vt)t∈TI be a nested cluster
basis with rank distribution k = (kt)t∈TI represented in the form (2.3). Let k be
(α, β, γ, ξ)-polynomial. Let cI := #TI be the number of clusters in TI . Then V
requires O((α + β)2γcI) units of storage.

Proof. Let k̂ be defined as in (2.8). We define

C� :=

{
{t ∈ TI : k̂t ≤ αγ} if � = 0,

{t ∈ TI : (α + β(� − 1))γ < k̂t ≤ (α + β�)γ} otherwise,
(2.10)

for all � ∈ N0. We observe that (C�)∞�=0 is a disjoint partition of TI and that Defini-
tion 2.8 implies

#C� ≤ ξ−(�−1)cI = ξξ−�cI for all � ∈ N0.

The cluster basis V is described by transfer matrices (Et)t∈TI for all clusters and the
matrices (Vt)t∈LI for leaf clusters. For all t ∈ TI \ {root(TI)}, the transfer matrix Et

requires ktkt+ units of storage, where t+ ∈ TI is the father of t. Therefore all transfer
matrices require ∑

t∈TI\{root(TI)}
ktkt+ =

∑
t∈TI

∑
t′∈sons(t)

kt′kt ≤
∑
t∈TI

k̂tkt ≤
∑
t∈TI

k̂2
t

units of storage. Due to the definition of (C�)∞�=0, we have

∑
t∈TI

k̂2
t =

∞∑
�=0

∑
t∈C�

k̂2
t ≤

∞∑
�=0

∑
t∈C�

(α + β�)2γ

≤ ξcI

∞∑
�=0

(α + β�)2γξ−� ≤ ξcI

(
α2γ + (α + β)2γ

∞∑
�=0

�2γξ−�

)
,
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and since ξ > 1 holds, the sum can be bounded by a constant Csum ∈ R>0. This
means ∑

t∈TI\{root(TI)}
ktkt+ ≤

∑
t∈TI

k̂2
t ≤ (Csum + 1)ξcI(α + β)2γ . (2.11)

For all leaf clusters t ∈ LI , the matrix Vt requires (#t̂)kt units of storage, so the
storage requirements for all leaf clusters can be bounded by∑

t∈LI

(#t̂)kt ≤
∑
t∈LI

k̂tkt ≤
∑
t∈LI

k̂2
t ≤

∑
t∈TI

k̂2
t ,

and we can proceed as in (2.11) in order to conclude the proof.
Lemma 2.10 (Storage of coefficients). Let V = (Vt)t∈TI and W = (Ws)s∈TJ

be nested cluster bases with rank distributions k = (kt)t∈TI and l = (ls)s∈TJ . Let P
be a block partition for TI and TJ . Let k and l be (α, β, γ, ξ)-polynomial, and let P
be Csp-sparse. Let cI := #TI and cJ := #TJ . Then the matrices (Sb)b∈Pfar and
(χtMχs)b∈Pnear of a matrix M given in the form (2.5) require O((α + β)2γc

1/2
I c

1/2
J )

units of storage.
Proof. Let k̂ be defined as in (2.8), let l̂ be defined similarly for the rank distri-

bution l.
Let us consider a block b = (t, s) ∈ P . If b ∈ Pfar, we store the matrix Sb, which

requires ktls ≤ k̂t l̂s units of storage. If b ∈ Pnear, we store the matrix χtMχs, which
requires (#t̂)(#ŝ) units of storage. In this case, Definition 2.2 implies t ∈ LI and
s ∈ LJ , i.e., we have #t̂ ≤ k̂t and #ŝ ≤ l̂s, so the storage requirements are also
bounded by k̂t l̂s.

Combining these estimates, we find that the coefficient matrices of all blocks
require not more than

∑
b=(t,s)∈P

k̂t l̂s ≤

⎛⎝ ∑
b=(t,s)∈P

k̂2
t

⎞⎠1/2 ⎛⎝ ∑
b=(t,s)∈P

l̂2s

⎞⎠1/2

≤
(

Csp

∑
t∈TI

k̂2
t

)1/2
⎛⎝Csp

∑
s∈TJ

l̂2s

⎞⎠1/2

units of storage. We can proceed as in (2.11) in order to conclude∑
b=(t,s)∈P

k̂t l̂s ≤ Csp(Csum + 1)ξ(cIcJ )1/2(α + β)2γ .

This is the desired estimate.
Theorem 2.11 (Storage complexity). Let V = (Vt)t∈TI and W = (Ws)s∈TJ be

nested cluster bases with rank distributions k = (kt)t∈TI and l = (ls)s∈TJ . Let P be
a block partition for TI and TJ . Let k and l be (α, β, γ, ξ)-polynomial, and let P be
Csp-sparse. Let cI := #TI and cJ := #TJ . Then storing the matrix M , given in
the form (2.5) with cluster bases given in the form (2.3), requires O((α + β)2γ(cI +
Cspc

1/2
I c

1/2
J + cJ )) units of storage.

Proof. Combine Lemma 2.9 with Lemma 2.10.
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For constant-order approximations, we have β = 0 and will usually use cluster
trees with n/αγ nodes. In this case, Theorem 2.11 yields a storage complexity of
O(αγn).

For variable-order approximations, we assume that α and β do not depend on n,
and that the number of clusters is bounded by n. In this situation, Theorem 2.11
implies a storage complexity of O(n).

2.4. Orthogonal cluster bases and best approximations. A matrix format
is defined by the partition P and the cluster bases V and W . Finding the best
approximation of an arbitrary matrix in this format is simple if the columns of the
cluster basis matrices Vt are pairwise orthonormal.

Definition 2.12 (Orthogonal cluster basis). Let V be a cluster basis for the
cluster tree TI. It is called orthogonal if V �

t Vt = I holds for all t ∈ TI .
The orthogonality implies that VtV

�
t is an orthogonal projection onto the image

of Vt, since

〈VtV
�
t x, Vty〉 = 〈V �

t VtV
�
t x, y〉 = 〈V �

t x, y〉 = 〈x, Vty〉

holds for all x ∈ RI and y ∈ Rkt . Therefore VtV
�
t MWsW

�
s is the best approximation

of a matrix block χtMχs in the bases Vt and Ws, and

M̃ :=
∑

b∈Pfar

Vt(V �
t MWs)W�

s +
∑

b∈Pnear

χtMχs (2.12)

is the best approximation (in the Frobenius norm) of an arbitrary matrix M ∈ RI×J

in the H2-matrix format defined by P , V and W .
If a non-nested cluster basis is given, an orthogonal counterpart can be con-

structed by simple Gram-Schmidt orthonormalization. If a nested cluster basis is
given, it is possible to construct a nested orthogonal cluster basis by a modified or-
thonormalization algorithm in linear complexity [1].

3. Approximation algorithm. Let M ∈ RI×J be an arbitrary matrix, let
TI and TJ be cluster trees for I and J , respectively, and let P = Pfar∪̇Pnear be a
matching block partition. Let (εt,s)t∈TI ,s∈TJ be a family of error tolerances in R>0

which will be specified later.
Our goal is to find suitable nested cluster bases V = (Vt)t∈TI and W = (Ws)s∈TJ

such that M can be approximated in the corresponding space H2(P, V, W ) of H2-
matrices.

In order to construct V and W , we rely on a variant of the algorithm introduced
in [5]. This algorithm creates orthogonal cluster bases by working recursively from
the leaf clusters towards the root cluster.

We restrict our attention to V . Let t ∈ TI . The matrix Vt has to be constructed
in such a way that

‖χtMχs − VtV
�
t Mχs‖2 ≤ εt,s (3.1)

holds for all s ∈ TJ with b = (t, s) ∈ Pfar.
Since we are looking for a nested cluster basis, our choice of the matrix Vt will also

influence all predecessors of t, i.e., all clusters t+ ∈ TI with t ∈ sons∗(t+), therefore
we have to ensure (3.1) also for all s ∈ TJ for which a predecessor t+ of t satisfying
b = (t+, s) ∈ Pfar exists.
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Fig. 3.1. Matrices Mt for different clusters

By collecting all relevant clusters s ∈ TJ in the set

row∗(t) := {s ∈ TJ : there exists t+ ∈ TI with t ∈ sons∗(t+)

and b = (t+, s) ∈ Pfar}

and introducing the matrix

Mt :=
∑

s∈row∗(t)

ε−1
t,s χtMχs,

(cf. Figure 3.1) we can use the unified condition

‖Mt − VtV
�
t Mt‖2 ≤ 1 (3.2)

as a weaker form of the conditions (3.1) for all s ∈ row∗(t). Our goal is to find
orthogonal low-rank matrices Vt for all t ∈ TI which satisfy this condition.

For a leaf cluster t ∈ LI , we can construct the optimal matrix Vt by computing
the singular value decomposition

Mt = UtΣtP
�
t

of Mt, where the columns of Ut are the orthogonal left singular vectors, those of Pt are
the orthogonal right singular vectors, and Σt = diag(σ1, . . . , σp) is a diagonal matrix
containing the singular values σ1 ≥ . . . ≥ σp ≥ 0 of Mt.

For any kt ∈ {0, . . . , p}, the first kt left singular vectors, i.e., the first kt columns
of the matrix Ut, form an orthogonal matrix Vt satisfying

‖Mt − VtV
�
t Mt‖2 ≤

{
σkt+1 if kt < p,

0 otherwise,
(3.3)

and VtV
�
t Mt is the best rank kt approximation of Mt [10, Theorem 2.5.3]. This means

that we can construct an optimal matrix Vt satisfying the condition (3.2) by using

kt :=

{
max{i ∈ {0, . . . , p − 1} : σi+1 < 1} if σp < 1,

p otherwise.

Let us now consider the case of a cluster t ∈ TI which is not a leaf. We denote the
number of sons by τ := # sons(t) and the sons by {t1, . . . , tτ} := sons(t). We assume
that orthogonal matrices Vt1 , . . . , Vtτ have already been constructed. We are looking
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for a nested cluster basis, so equation (2.2) has to hold, and this equation can be
written as

Vt =
(
Vt1 . . . Vtτ

)︸ ︷︷ ︸
=:Qt

⎛⎜⎝Et1
...

Etτ

⎞⎟⎠
︸ ︷︷ ︸

=:bVt

. (3.4)

Since Qt is prescribed by the sons of t, we only have to compute V̂t, i.e., the transfer
matrices. The approximation error is given by

Mt − VtV
�
t Mt = Mt − QtV̂tV̂

�
t Q�

t Mt,

so multiplying with Q�
t from the left and exploiting the fact that Qt is orthogonal

yields

Q�
t (Mt − VtV

�
t Mt) = Q�

t Mt − V̂tV̂
�
t Q�

t Mt = M̄t − V̂tV̂
�
t M̄t

with M̄t := Q�
t Mt. This problem is similar to the one encountered before, and we

can use the singular value decomposition of M̄t to construct an orthogonal matrix V̂t

satisfying

‖M̄t − V̂tV̂
�
t M̄t‖2 ≤ 1.

The transfer matrices Et1 , . . . , Etτ can be recovered by splitting V̂t as in (3.4).
Now all we need is an efficient method for computing M̄t. We introduce

M̂t,s := V �
t Mχs

for all t ∈ TI and all s ∈ row∗(t). For t ∈ TI with sons(t) �= ∅, we let

M̄t,s :=

⎛⎜⎝M̂t1,s

...
M̂tτ ,s

⎞⎟⎠ (3.5)

and observe

M̄t =
∑

s∈row∗(t)

ε−1
t,s M̄t,s.

The construction of the matrices M̂t,s can be accomplished by a recursion: if sons(t) �=
∅, the nested structure of the cluster basis implies

M̂t,s = V �
t Mχs =

∑
t′∈sons(t)

E�
t′ V

�
t′ Mχs =

∑
t′∈sons(t)

E�
t′ M̂t′,s = V̂ �

t M̄t,s. (3.6)

Using this recursion to construct the matrices M̂t,s efficiently, we can now assemble
the complete algorithm:

10



procedure BuildBasis(t);
if sons(t) = ∅ then

Mt := 0;
for s ∈ row∗(t) do Mt := Mt + ε−1

t,s χtMχs;
Use the singular value decomposition of Mt to define kt and construct Vt;
for s ∈ row∗(t) do M̂t,s := V �

t Mχs

else
M̄t := 0;
for s ∈ row∗(t) do begin

Construct M̄t,s as in (3.5);
M̄t := M̄t + ε−1

t,s M̄t,s

end;
Use the singular value decomposition of M̄t to define kt and construct V̂t;
for s ∈ row∗(t) do M̂t,s := V̂ �

t M̄t,s

endif
Theorem 3.1 (Complexity). We assume that P is Csp-sparse and that the

rank distribution k = (kt)t∈TI is (α, β, γ, ξ)-polynomial. Then the algorithm requires
O(cI(α + β)3γ + cI(#J )(α + β)2γ) operations.

Proof. Let k̂ = (k̂t)t∈TI be defined as in (2.8), and let (C�)∞�=0 be defined as in
(2.10).

Let t ∈ TI . If sons(t) = ∅, we compute the matrix Mt, and this matrix has
#t̂ ≤ k̂t rows and #J columns. If sons(t) �= ∅, we compute the matrix M̄t, and this
matrix has

mt :=
∑

t′∈sons(t)

kt ≤ k̂t

rows and #J columns.
Since {ŝ : s ∈ row∗(t)} is a disjoint partition of J , the construction of the

matrices Mt and M̄t, respectively, can be accomplished in O(k̂t(#J )) operations,
and all matrices M̂t,s can be computed in O(ktk̂t(#J )) ⊆ O(k̂2

t (#J )) operations.
Which leaves us to consider the computation of the singular value decomposition.

Fortunately, we require it only up to machine accuracy, therefore O(k̂2
t (#J ) + k̂3

t )
operations suffice to find kt and construct Vt and V̂t, respectively.

This means that we can find a constant Cad ∈ N such that the number of opera-
tions required for a cluster t is bounded by Cadk̂2

t (k̂t + (#J )). Therefore the number
of operations for all clusters is bounded by

∑
t∈TI

Cadk̂2
t (k̂t + (#J )) ≤ Cad

∞∑
�=0

∑
t∈C�

(α + β�)3γ + (α + β�)2γ(#J )

≤ CadξcI

( ∞∑
�=0

(α + β�)3γξ−� + (#J )
∞∑

�=0

(α + β�)2γξ−�

)
≤ CadCsumξcI((α + β)3γ + (α + β)2γ(#J ))

for a suitable constant Csum depending only on γ and ξ.
In the constant-order case, i.e., for β = 0 and cI � n/αγ , the algorithm has a

complexity of O(nα2 + n2α). In the variable-order case, the complexity is in O(n2).
This is the optimal order of complexity, since n2 matrix entries have to be processed.
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If the matrix M is given in a data-sparse format, we can reduce the complexity
of the algorithm. If M , e.g., is a hierarchical matrix, we can reach almost linear
complexity [5]. If M is an H2-matrix, even linear complexity is possible [1].

4. Error analysis. The main difference between the variable-rank approxima-
tion algorithm and its predecessor introduced in [5] is the weighting strategy for the
block matrices: in the original algorithm, the parameters εt,s appearing in the con-
struction of Mt are all set to the same value, which leads to reasonable performance,
but will not detect a variable-rank structure if it is present.

We will therefore base our choice of εt,s on a careful analysis of the error propa-
gation in our algorithm.

4.1. Nested error estimate. Before we can investigate the global matrix ap-
proximation error, we first have to find a bound for the approximation error of single
blocks. The major step is to control the error introduced by projecting a matrix block
into a cluster basis.

Theorem 4.1 (Nested error). Let V = (Vt)t∈TI be the nested orthogonal cluster
basis constructed by the algorithm from Section 3. Then we have

‖χtMχs − VtV
�
t Mχs‖2 ≤

∑
t∗∈sons∗(t)

εt∗,s (4.1)

for all t ∈ TI and all s ∈ row∗(t).
Proof. We use the notation of (3.4) and extend the notation by letting V̂t := Vt,

Qt := I and M̄t,s := χtMχs for all leaf clusters t ∈ LI and all s ∈ row∗(t).
We will first prove

χtMχs − VtV
�
t Mχs =

∑
t∗∈sons∗(t)

Qt∗(I − V̂t∗ V̂
�
t∗ )M̄t∗,s. (4.2)

for all t ∈ TI by induction over # sons∗(t), the number of descendants of t.
If # sons∗(t) = 1, we have sons∗(t) = {t}, which implies sons(t) = ∅ by definition,

i.e., M̄t,s = χtMχs and V̂t = Vt. In this case, equation (4.2) is trivial.
Let n ∈ N, and assume that (4.1) holds for all t ∈ TI with # sons∗(t) ≤ n. Let

t ∈ TI with # sons∗(t) = n + 1. This implies # sons∗(t) > 1, i.e., sons(t) �= ∅. We can
split the error into a part corresponding to the approximation in the sons of t and a
part corresponding to the approximation in t:

χtMχs − VtV
�
t Mχs = χtMχs − QtV̂tV̂

�
t Q�

t Mχs

= χtMχs − QtQ
�
t Mχs + QtQ

�
t Mχs − QtV̂tV̂

�
t Q�

t Mχs

=
∑

t′∈sons(t)

(χt′Mχs − Vt′V
�
t′ Mχs) + Qt(I − V̂tV̂

�
t )Q�

t Mχs

=
∑

t′∈sons(t)

(χt′Mχs − Vt′V
�
t′ Mχs) + Qt(I − V̂tV̂

�
t )M̄t.

For all t′ ∈ sons(t), we have # sons∗(t′) < # sons∗(t), i.e., # sons∗(t) ≤ n, so we can
apply the induction assumption in order to conclude that (4.2) holds for t.

Applying the triangle inequality to (4.2) yields

‖χtMχs − VtV
�
t Mχs‖2 ≤

∑
t∗∈sons∗(t)

‖Qt∗(I − V̂t∗ V̂ �
t∗ )M̄t∗,s‖2,
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and we conclude the proof using the orthogonality of the matrices Qt∗ .
The result of Theorem 4.1 can be improved: by the arguments used in step 3 of

the proof of [1, Theorem 4], we can show that the ranges of all terms in the sum (4.2)
are pairwise orthogonal, therefore we could use Pythagoras’ identity instead of the
triangle inquality to bound the error.

4.2. Blockwise error estimate. For all b = (t, s) ∈ Pfar, we use the optimal
coefficient matrix Sb := V �

t MWs and find

‖χtMχs − VtSbW
�
s ‖2 = ‖χtMχs − VtV

�
t MWsW

�
s ‖2

= ‖χtMχs − VtV
�
t Mχs + VtV

�
t Mχs − VtV

�
t MWsW

�
s ‖2

≤ ‖χtMχs − VtV
�
t Mχs‖2 + ‖VtV

�
t Mχs − VtV

�
t MWsW

�
s ‖2

≤ ‖χtMχs − VtV
�
t Mχs‖2 + ‖χtMχs − χtMWsW

�
s ‖2

= ‖χtMχs − VtV
�
t Mχs‖2 + ‖χsM

�χt − WsW
�
s M�χt‖2. (4.3)

Until now, we have only investigated the influence of the row cluster basis V =
(Vt)t∈TI , i.e., the first term in this estimate.

We can handle the column cluster basis W = (Ws)s∈TJ by applying the algorithm
from Section 3 to the transposed matrix M�, the corresponding transposed block
partition given by

P� := {(s, t) : (t, s) ∈ P}, P�
far = {(s, t) : (t, s) ∈ Pfar},

and a family (ε�s,t)s∈TJ ,t∈TI of error tolerances in R>0.
Combining (4.3) with Theorem 4.1 yields

‖χtMχs − VtSbW
�
s ‖2 ≤

∑
t∗∈sons∗(t)

εt∗,s +
∑

s∗∈sons∗(s)

ε�s∗,t. (4.4)

4.3. Global error estimate. The best approximation of the matrix M in the
H2-matrix format described by the block partition P , the row cluster basis V =
(Vt)t∈TI and the column cluster basis W = (Ws)s∈TJ is given by

M̃ =
∑

b=(t,s)∈Pfar

VtSbW
�
s +

∑
b=(t,s)∈Pnear

χtMχs

with Sb = V �
t MWs for all b = (t, s) ∈ Pfar.

In order to bound the spectral norm of the approximation error, we use the
following generalization of a result given in [11]:

Theorem 4.2 (Global spectral error). Let V = (Vt)t∈TI and W = (Ws)s∈TJ be
cluster bases. Let P be a Csp-sparse block partition. Let (εI,t)t∈TI and (εJ ,s)s∈TJ be
families in R≥0 satisfying

‖χtMχs − VtSbW
�
s ‖2 ≤ ε

1/2
I,t ε

1/2
J ,s for all b = (t, s) ∈ Pfar. (4.5)

Then we have

‖M − M̃‖2 ≤ Csp

∞∑
�=0

max
{
εI,t, εJ ,s : t ∈ T (�)

I , s ∈ T (�)
J

}
. (4.6)
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Proof. Let E := M − M̃ ∈ RI×J , let u ∈ RJ , v := Eu ∈ RI , and introduce

ε� := max
{

εI,t, εJ ,s : t ∈ T (�)
I , s ∈ T (�)

J

}
for all � ∈ N0.

By definition of P and M̃ , we have

E =
∑

b=(t,s)∈Pfar

χtMχs − VtSbWs, ‖χtEχs‖2 ≤ ε
1/2
I,t ε

1/2
J ,s,

and find

‖Eu‖2
2 = 〈Eu, Eu〉2 = 〈Eu, v〉2 =

∑
b=(t,s)∈Pfar

〈χtEχsu, v〉2

≤
∑

b=(t,s)∈Pfar

‖χtEχsu‖2‖χtv‖2 ≤
∑

b=(t,s)∈Pfar

‖χtEχs‖2‖χsu‖2‖χtv‖2

≤
∑

b=(t,s)∈Pfar

ε
1/2
I,t ε

1/2
J ,s‖χsu‖2‖χtv‖2

≤

⎛⎝ ∑
b=(t,s)∈Pfar

εJ ,s‖χsu‖2
2

⎞⎠1/2 ⎛⎝ ∑
b=(t,s)∈Pfar

εI,t‖χtv‖2
2

⎞⎠1/2

.

Using the sparsity assumption, the first sum can be bounded by∑
b=(t,s)∈Pfar

εJ ,s‖χsu‖2
2 ≤ Csp

∑
s∈TJ

εJ ,s‖χsu‖2
2

≤ Csp

∞∑
�=0

ε�

∑
s∈T (�)

J

‖χsu‖2
2 ≤ Csp

∞∑
�=0

ε�‖u‖2
2.

Applying a similar argument to the second sum yields

‖Eu‖2
2 ≤ Csp

( ∞∑
�=0

ε�

)
‖u‖2‖v‖2 = Csp

( ∞∑
�=0

ε�

)
‖u‖2‖Eu‖2,

and this implies our claim.

4.4. Error control. Let ε̂ ∈ R>0 be given. We want the global error ‖M −M̃‖2

in the spectral norm to be bounded by ε̂.
In order to keep the presentation simple, we will focus only on the simple case in

which the error tolerances are connected to the level of clusters and blocks, but not
to individual clusters.

We assume that P is level-consistent, i.e., that

level(t) = level(s) holds for all b = (t, s) ∈ Pfar,

and we introduce

P
(�)
far := {b = (t, s) ∈ Pfar : level(t) = level(s) = �}

for all � ∈ N0. If we let

p := max{� ∈ N0 : P
(�)
far �= ∅} and

ε� := max{‖χtMχs − VtSbW
�
s ‖2 : b = (t, s) ∈ P

(�)
far },
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Theorem 4.2 takes the form

‖M − M̃‖2 ≤ Csp

p∑
�=0

ε�.

By picking a parameter ζ1 ∈ R>1 and requiring

ε� ≤ ε̂� := C1ζ
�−p
1 with C1 :=

ζ1 − 1
Cspζ1

ε̂, (4.7)

we get

‖M − M̃‖2 ≤ Csp

p∑
�=0

ε� ≤ Csp
ζ1 − 1
Cspζ1

p∑
�=0

ζ�−p
1 ε̂ = Csp

ζ1 − 1
Cspζ1

p∑
�=0

ζ−�
1 ε̂

≤ Csp
ζ1 − 1
Cspζ1

∞∑
�=0

ζ−�
1 ε̂ =

ζ1 − 1
ζ1

ζ1

ζ1 − 1
ε̂ = ε̂,

so we “only” have to ensure that (4.7) holds, i.e.,

‖χtMχs − VtSbW
�
s ‖2 ≤ ε̂� for all b = (t, s) ∈ P

(�)
far and � ∈ N0.

Due to estimate (4.4), we have

‖χtMχs − VtSbW
�
s ‖2 ≤

∑
t∗∈sons∗(t)

εt∗,s +
∑

s∗∈sons∗(s)

ε�s∗,t.

If we let

ε�∗,� := max{max{εt∗,s : b = (t, s) ∈ P
(�)
far , t∗ ∈ sons∗(t), level(t∗) = �∗},

max{ε�s∗,t : b = (t, s) ∈ P
(�)
far , s∗ ∈ sons∗(s), level(s∗) = �∗}},

this bound takes the form

‖χtMχs − VtV
�
t Mχs‖2 ≤

∞∑
�∗=0

ε�∗,�

(
#
(
sons∗(t) ∩ T (�∗)

I

)
+ #

(
sons∗(s) ∩ T (�∗)

J

))
.

We fix Cson ∈ N satisfying

# sons(t) ≤ Cson, # sons(s) ≤ Cson for all t ∈ TI , s ∈ TJ .

A simple induction proves

#
(
sons∗(t) ∩ T (�∗)

I

)
≤
{

C�∗−�
son if �∗ ≥ �,

0 otherwise
for all �, �∗ ∈ N0 and all t ∈ T (�)

I ,

#
(
sons∗(s) ∩ T (�∗)

J

)
≤
{

C�∗−�
son if �∗ ≥ �,

0 otherwise
for all �, �∗ ∈ N0 and all s ∈ T (�)

J ,

and we get

‖χtMχs − VtV
�
t Mχs‖2 ≤ 2

∞∑
�∗=�

ε�∗,�C
�∗−�
son .
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Fig. 4.1. Choice of weights for p = 5

We pick a second parameter ζ2 ∈ R>1 satisfying ζ2 > Cson and require

ε�∗,� ≤ ε̂�∗,� := C2ζ
�−�∗
2 with C2 :=

ζ2 − Cson

2ζ2
ε̂�, (4.8)

which yields

‖χtMχs − VtSbW
�
s ‖2 ≤ 2

∞∑
�∗=�

ε�∗,�C
�∗−�
son ≤ ζ2 − Cson

ζ2

∞∑
�∗=�

(
Cson

ζ2

)�∗−�

ε̂�

≤ ζ2 − Cson

ζ2

1
1 − Cson/ζ2

ε̂� = ε̂�.

By combining (4.8) with (4.7), we can prove that choosing

εt∗,s ≤ (ζ1 − 1)(ζ2 − Cson)ε̂
2Cspζ1ζ2

ζ
level(s)−p
1 ζ

level(s)−level(t∗)
2 for all t∗ ∈ TI , s ∈ TJ ,

ε�s∗,t ≤
(ζ1 − 1)(ζ2 − Cson)ε̂

2Cspζ1ζ2
ζ
level(t)−p
1 ζ

level(t)−level(s∗)
2 for all s∗ ∈ TJ , t ∈ TI

(cf. Figure 4.1) with ζ1 > 1 and ζ2 > Cson will guarantee that the global error is
bounded by ε̂.

4.5. Model problem. Let us now investigate how we can fulfill the conditions
(4.8) and (4.7) using a cluster basis with polynomial rank distribution for a simple
model problem.

Let p ∈ N and n := 2p. We consider the matrix G ∈ Rn×n defined by

Gij :=
∫ i/n

(i−1)/n

∫ j/n

(j−1)/n

log |x − y| dy dx for all i, j ∈ {1, . . . , n}. (4.9)

We define the cluster tree TI for the index set I := {1, . . . , n} by successive bisection:
if a cluster t corresponds to an index set t̂ = {a, . . . , b} with more than one element, it
has two sons s1 and s2 with ŝ1 = {a, . . . , �(a+b)/2�−1} and ŝ2 = {�(a+b)/2�, . . . , b}.
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The support of a cluster t with t̂ = {a, . . . , b} is given by Ωt = [(a − 1)/n, b/n],
and two clusters t, s ∈ TI are admissible if

max{diam(Ωt), diam(Ωs)} ≤ dist(Ωt, Ωs)

holds.
We will now investigate the condition (3.1). Let (t+, s) ∈ Pfar, and let t ∈

sons∗(t+). We let x0 ∈ Ωt be the center of Ωt, and due to

∂νg

∂xν
(x0, y) =

(−1)ν−1(ν − 1)!
(x0 − y)ν

for all ν ∈ N, (4.10)

the Taylor expansion of g(x, y) := log |x − y| in the x variable is given by

g̃(x, y) := log |x0 − y| +
kt−1∑
ν=1

(−1)ν−1

ν

(x − x0)ν

(x0 − y)ν
.

Replacing g by g̃ in (4.9) yields

G̃ij :=
∫ i/n

(i−1)/n

1 dx︸ ︷︷ ︸
=:At,i0

∫ j/n

(j−1)/n

log |x0 − y| dy︸ ︷︷ ︸
=:Bt,s,0j

+
kt−1∑
ν=1

∫ i/n

(i−1)/n

(x − x0)ν dx︸ ︷︷ ︸
=:At,iν

∫ j/n

(j−1)/n

(−1)ν−1

ν(x0 − y)ν
dy︸ ︷︷ ︸

=:Bt,s,νj

= (AtBt,s)ij ,

i.e., we have found a rank kt approximation of G|t̂×ŝ.
Let us now take a look at the approximation error. Due to (4.10), we have

|g(x, y) − g̃(x, y)| ≤
(

diam(Ωt)
2 dist(Ωt+ , Ωs)

)kt

for all x ∈ Ωt and all y ∈ Ωs. Let � := level(t+) = level(s) and �∗ := level(t). Since
we have constructed the cluster tree by bisection, we find

diam(Ωt) = 2�−�∗ diam(Ωt+), (4.11)

and the admissibility of (t+, s) implies

diam(Ωt)
2 dist(Ωt+ , Ωs)

= 2�−�∗ diam(Ωt+)
2 dist(Ωt+ , Ωs)

≤ 2�−�∗−1,

so we get the error bound

|g(x, y) − g̃(x, y)| ≤ (2�−�∗−1)kt = 2−kt(�
∗−�+1),

which holds uniformly for all x ∈ Ωt and all y ∈ Ωs.
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For all u, v ∈ RI , this means

|〈χt(G − G̃)χsu, v〉| ≤
∑
i∈t̂

∑
j∈ŝ

|uj ||vi|
∫ i/n

(i−1)/n

∫ j/n

(j−1)/n

|g(x, y) − g̃(x, y)| dy dx

≤ 1
n2

2−kt(�
∗−�+1)

∑
i∈t̂

|vi|
∑
j∈ŝ

|uj|

≤ 1
n

(#t̂)1/2(#ŝ)1/2

n
2−kt(�

∗−�+1)‖χsu‖2‖χtv‖2

=
1
n
|Ωt|1/2|Ωs|1/22−kt(�

∗−�+1)‖χsu‖2‖χtv‖2. (4.12)

By construction, we have |Ωt| = 2−�∗ , |Ωs| = 2−�, and conclude

‖χtGχs − AtBt,s‖2 ≤ 1
n

2−kt(�
∗−�+1)2−�∗/22−�/2. (4.13)

According to the previous section, we have to satisfy an error estimate of the type

‖χtGχs − AtBt,s‖2 ≤ Cζ�−p
1 ζ�−�∗

2 .

In order to do this, we let kt := α + β(p − level(t)) = α + β(p − �∗) for suitable
parameters α, β ∈ N and can see that

2−kt(�
∗−�+1) = 2−(α+β(p−�∗))(�∗−�+1) ≤ 2−α−β(p−�∗)−α(�∗−�) = 2−α2β(�∗−p)2α(�−�∗)

holds, so choosing α ≥ 1/2 + log2 ζ2 + log2 ζ1 and β ≥ 1 + log2 ζ1 ensures

2−kt(�
∗−�+1) ≤ 2−α2β(�∗−p)2α(�−�∗) ≤ 2−αζ�∗−p

1 ζ�−�∗
2 2�∗−p2(�−�∗)/2ζ�−�∗

1

= 2−αζ�−p
1 ζ�−�∗

2 2�∗−p2(�−�∗)/2

For this choice of kt, the error bound (4.13) yields

‖χtMχs − AtBt,s‖2 ≤ 1
n

2−α2−pζ�−p
1 ζ�−�∗

2 =
2−α

n2
ζ�−p
1 ζ�−�∗

2 . (4.14)

If necessary, we can increase α in order to ensure 2−α/n2 ≤ C.
In standard error estimates for the constant-rank case, we will only see a factor

of 1/n, which corresponds to the scaling of the basis functions in the L2-norm, so we
have to increase α to keep the matrix error consistent with the discretization error. In
our estimate (4.14), we get a factor 1/n2, which means that the L2-error of the matrix
approximation will behave like 1/n, i.e., will be consistent with the discretization error
without any modification of α or β.

We owe the additional factor 1/n to the fact that the clusters shrink rapidly
enough when the level is increased: in (4.11), we exploit the fact that the diameters
of their supports decrease by a fixed factor, and in (4.13), we make use of the fact that
the Lebesgue measure of the supports also decreases. In the one-dimensional model
case, both properties coincide.

Our error estimate (4.14) matches the requirements of (3.1) with (4.7) and (4.8),
and by adapting C, ζ1 and ζ2, we can ensure that

‖Mt − AtBt‖2 ≤ 1
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SLP DLP
n ε̂ Mem M/n ε Mem M/n ε

256 1.5−5 119.4 0.47 3.5−6 102.2 0.40 2.0−7

512 3.8−6 247.3 0.48 1.2−6 207.1 0.40 5.0−8

1024 9.5−7 504.1 0.49 2.7−7 413.8 0.40 1.3−8

2048 2.4−7 1007.7 0.49 8.0−8 827.8 0.40 3.3−9

4096 6.0−8 2027.4 0.49 2.2−8 1654.1 0.40 8.2−10

8192 1.5−8 4062.2 0.50 6.2−9 3308.8 0.40 2.1−10

16384 3.7−9 8307.7 0.51 1.2−9 6606.3 0.40 5.2−11

32768 9.3−10 16654.0 0.51 3.0−10 13223.1 0.41 1.3−11

Table 5.1

Approximation results for the unit disc

also holds for

Bt :=
∑

s∈row∗(t)

ε−1
t,s Bt,s,

i.e., we have found a rank kt approximation of Mt which satisfies (3.2). If sons(t) �= ∅,
the orthogonality of Qt implies

‖M̄t − Q�
t AtBt‖2 = ‖QtQ

�
t (Mt − AtBt)‖2 ≤ ‖Mt − AtBt‖2 ≤ 1

i.e., we have also found a rank kt approximation of M̄t. Since our algorithm computes
the optimal approximations of Mt and M̄t, respectively, it will construct a cluster
basis which is at least as good as the one we have found using the Taylor expansion.

5. Numerical experiments. We apply the algorithm of Section 3 to the bound-
ary integral operators

V [u](x) := − 1
2π

∫
Γ

log ‖x − y‖u(y) dy, K[u](x) :=
1
2π

∫
Γ

〈x − y, n(y)〉
‖x − y‖2

u(y) dy,

where Γ is the boundary curve of a two-dimensional domain Ω and n is the outward
normal vector of Ω on Γ.

V and K are the classical single and double layer potential operators. We discretize
them by using Galerkin’s method with n piecewise constant basis functions on a
polygonal approximation of Γ in order to get matrices Vn and Kn.

These matrices are then compressed using our algorithm with a prescribed pre-
cision of ε̂ := n−2, which corresponds to a convergence of O(h) in the L2-norm, and
parameters ζ1 = ζ2 = 3.

In the first experiment, we investigate the behaviour of our method for the unit
disc Ω = {x ∈ R2 : ‖x‖2 < 1}. In this situation, i.e., for a smooth boundary,
the optimal complexity of variable-order schemes has been proven [18, 7, 19], so we
only have to check whether our algorithm is able to recover this optimal behaviour.
The numerical results are listed in Table 5.1. The first columns give the number of
degrees of freedom n and the prescribed accuracy ε̂ = n−2. The columns labeled
“Mem” contain the total storage requirements in KB, the columns labeled “M/n”
the storage requirements per degree of freedom, and the columns labeled “ε” give
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SLP DLP
n ε̂ Mem M/n ε Mem M/n ε

256 1.5−5 161.8 0.63 1.3−6 164.3 0.64 4.0−6

512 3.8−6 320.4 0.63 2.3−7 330.2 0.64 2.2−6

1024 9.5−7 651.2 0.64 1.0−7 665.1 0.65 1.5−7

2048 2.4−7 1330.5 0.65 1.5−8 1320.9 0.64 3.3−8

4096 6.0−8 2722.2 0.66 4.1−9 2608.8 0.64 1.7−8

8192 1.5−8 5449.7 0.67 9.5−10 5114.7 0.62 8.4−9

16384 3.7−9 11007.8 0.67 2.3−10 10020.0 0.61 2.7−10

32768 9.3−10 22353.6 0.68 6.0−11 19664.6 0.60 1.4−10

Table 5.2

Approximation results for the unit square

the approximation error. We can see that ε is always below ε̂ and that the storage
requirements grow only linearly, so our method works as predicted.

In our second experiment, we apply our algorithm to the unit square Ω = [−1, 1]2

with a uniform mesh (a graded mesh yields similar results if the cluster tree is con-
structed in the correct way). In this situation, a standard variable-order approxima-
tion scheme will not work due to the reduced smoothness of the integral kernel. The
numbers in Table 5.2 show that our adaptive scheme can handle this case. This is due
to the fact that our algorithm can increase the rank close to the edges of Ω in order
to ensure the desired accuracy without giving up the overall optimal complexity.

In a third experiment, we consider the recompression of a variable-order approx-
imation constructed by the explicit approach described in [7]: Approximating the
kernel function of the single layer potential by reinterpolation yields an H2-matrix
satisfying ‖G − G̃‖2 � h3. Since the approximation scheme is based on general poly-
nomial interpolation, it cannot take the special properties of the geometry and the
kernel function into account, therefore the resulting ranks will not be optimal. In
order to improve the efficiency, we apply a suitably modified variant (cf. [2, Chapter
6.6]) of our algorithm to the initial approximation constructed by interpolation. Due
to the fact that the original approximation is already available as an H2-matrix, the
recompression can be accomplished in O(n) operations. Table 5.3 gives the results
of this experiment: The columns “n”, “ε̂”, “M/n”, and “ε” have the same mean-
ing as before, the total storage requirements in the column “Mem” are now given in
MBytes instead of KBytes, the new columns “Build” and “MVM” contain the time
(in seconds, measured on one UltraSPARC IIIcu processor running at 900 MHz in
a SunFire 6800 computer) for the construction of the approximation (including the
time-consuming quadrature of singular integrals for the nearfield) and for one matrix-
vector multiplication. We can see that time and storage requirements are in O(n) and
that the approximation error behaves like O(h3).

The first experiment shows that the algorithm works as expected, the second
experiment demonstrates that it even works in situations where the standard analysis
does not apply, and the third experiment indicates that the algorithm can be used to
improve the efficiency of other compression schemes. Using the approach described
in [2, Chapters 6.5 and 6.7], it can be combined with the very flexible and general
hierarchical matrix techniques [14] to reduce storage requirements without sacrificing
the “black box” nature of some of these methods.
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n ε̂ Build Mem M/n MVM ε
512 5.5−4 1.0 1.7 3.5 < 0.01 2.9−4

2048 7.1−5 6.9 7.3 3.6 0.02 1.2−4

8192 8.9−6 43.1 30.7 3.8 0.18 6.0−6

32768 1.1−6 267.9 142.9 4.5 0.84 6.7−7

131072 1.4−7 1574.9 590.5 4.6 3.49 8.2−8

524288 1.8−8 8271.4 2449.4 4.8 15.60 9.8−9

2097152 2.2−9 38640.7 9921.5 4.8 65.74 1.2−9

Table 5.3

Approximation results for the unit sphere
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