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Sparse Convolution Quadrature for Time Domain
Boundary Integral Formulations of the Wave Equation

W. Hackbusch∗ W. Kress† S. Sauter‡

Abstract

Many important physical applications are governed by the wave equation. The for-
mulation as time domain boundary integral equations involves retarded potentials. For
the numerical solution of this problem we employ the convolution quadrature method
for the discretization in time and the Galerkin boundary element method for the space
discretization.

We introduce a simple a-priori cutoff strategy where small entries of the system
matrix are replaced by zero. The threshold for the cutoff is determined by an a-priori
analysis which will be developed in this paper.

This method reduces storage requirements from O
(
M2 N

)
to O

(
M1+s N

)
for some

s ∈ [0, 1[, where N denotes the number of time steps and M is the dimension of the
boundary element space.

1 Introduction

Boundary value problems governed by the wave equation

∂2
t u− ∆u = f

arise in many physical applications such as electromagnetic wave propagation or the computa-
tion of transient acoustic waves. Since such problems are typically formulated in unbounded
domains, the method of integral equations is an elegant tool to transform this partial differ-
ential equation to an integral equation on the bounded surface of the scatterer.

Although this approach goes back to the early 1960s (cf. [13]), the development of fast
numerical methods for integral equations in the field of hyperbolic problems is still in its infan-
cies compared to the vast of fast methods for elliptic boundary integral equations (cf. [27] and
references therein). Existing numerical discretization methods include collocation methods
with some stabilisation techniques (cf. [3] , [4], [8], [9], [10], [25], [26]) and Laplace-Fourier
methods coupled with Galerkin boundary elements in space ([2], [6], [11], [15]). Numerical
experiments can be found, e.g., in [16].
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In [12], a fast version of the marching-on-in-time (MOT) method is presented which is
based on a suitable plane wave expansion of the arising potential which reduces the storage
and computational costs.

The convolution quadrature method for the time discretization has been developed in [20],
[21], [22], [23]. It provides a straightforward way to obtain a stable time stepping scheme
using the Laplace transform of the kernel function.

In this paper, we employ the convolution quadrature method for the time discretization
and a Galerkin boundary element method in space. We present a simple cutoff strategy where
the densely populated Galerkin matrices related to each time step are replaced by sparse
versions where a substantial portion of the stiffness matrix is replaced by zero.

The remainder of the paper is structured into five sections. In Section 2, we briefly in-
troduce the formulation of the wave equation as an integral equation and recall its stability
properties. Section 3 is devoted to the convolution quadrature method for the time discretiza-
tion and the boundary element method for the space discretization. We introduce our a-priori
cutoff strategy to replace small matrix entries by zero and discuss some algorithmic aspects.
In Section 4 , we analyse the effect of the perturbation introduced by the cutoff strategy and
prove the convergence of the corresponding solution. In Section 5, we discuss the complexity
of our method. We show that storage requirements in terms of the number M of unknowns
in space is reduced from M2 to M1+s where s is some number between 0 and 1. Finally, in
Section 6, we summarise the results and give an outlook on future research.

We emphasise that this paper paves the way to introduce and analyse further perturbations
in the space-time discretization. Forthcoming papers will be devoted to panel clustering
techniques for the retarded potential boundary integral equation which will further reduce
the dependence of the computational complexity on M . Another paper will be concerned
with efficient quadrature methods for approximating the remaining matrix entries.

2 Integral Formulation of the Wave Equation

Let Ω ⊂ R
3 be a Lipschitz domain with boundary Γ. In this paper, we present efficient

methods for numerically solving the homogeneous wave equation

∂2
t u = ∆u in Ω × (0, T ) (2.1a)

with initial conditions

u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)

and boundary conditions

u = g on Γ × (0, T ) (2.1c)

on a time interval (0, T ) for some T > 0. For its solution, we employ an ansatz as a single
layer potential

u(x, t) =

∫ t

0

∫
Γ

k(x− y, t− τ)φ(y, τ)dΓydτ , (x, t) ∈ Ω × (0, T ) , (2.2)
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where k(z, t) is the fundamental solution of the wave equation,

k(z, t) =
δ(t− ‖z‖)

4π‖z‖ , (2.3)

δ(t) being the Dirac delta distribution. The ansatz (2.2) satisfies the homogeneous equation
(2.1a) and the initial conditions (2.1b). The extension x → Γ is continuous and hence, the
unknown density φ in (2.2) is determined via the boundary conditions (2.1c), u(x, t) = g(x, t).
This results in the boundary integral equation for φ,

(V φ) (x, t) :=

∫ t

0

∫
Γ

k(x− y, t− τ)φ(y, τ)dΓydτ = g(x, t) ∀(x, t) ∈ Γ × (0, T ) . (2.4)

Existence and uniqueness results for the solution of the continuous problem are proven in
[22]. To recall them, we introduce appropriate norms and spaces. We define the Sobolev
space Hs(Γ), s ≥ 0, in the usual way (see, e.g., [17] or [24]). The range of s for which Hs(Γ)
is defined may be limited, depending on the global smoothness of the surface Γ. Throughout,
we let [−k, k] denote the range of Sobolev indices for which we will prove the inverse estimates
(where k is a positive integer), and we assume that Hs(Γ) is defined for all s ∈ [−k, k], with
the negative order spaces defined by duality in the usual way. (For example, if Γ is a Lipschitz
manifold, then −1 ≤ s ≤ 1 and if Ω is a domain with C∞ boundary then s ∈ ]−∞,∞[). The
norm is denoted by ‖·‖Hs(Γ).

For real r and s ∈ [−k, k], the anisotropic Sobolev space Hr (R;Hs(Γ)) is given by

Hr (R;Hs(Γ)) :=
{
g : Γ × R → R : (1 + |ω|)2r ‖Fg (·, ω)‖2

Hs(Γ) <∞
}
,

where F denotes the Fourier transform with respect to the time variable t ∈ R. The norm in
this space is given by

‖f‖2
Hr(R;Hs(Γ)) :=

∫ ∞
−∞

(1 + |ω|)2r‖Ff(·, ω)‖2
Hs(Γ)dω.

The space Hr
0 (0, T ;Hs (Γ)) is defined by

Hr
0 (0, T ;Hs(Γ)) :=

{
g : [0, T ] × Γ → R : g = g�|[0,T ]

for some g� ∈ Hr (R, Hs (Γ)) with g� ≡ 0 on ]−∞, 0[}
and the norm ‖ · ‖Hr

0 (0,T ;Hs(Γ)) is given by

‖g‖2
Hr

0 (0,T ;Hs(Γ)) := min
{
‖g�‖Hr

0 (R;Hs(Γ)) : g� ∈ Hr (R, Hs (Γ))

with g = g�|[0,T ] and g� ≡ 0 on ]−∞, 0[
}
.

Theorem 2.1 Let g ∈ Hr+2(0, T ;H1/2 (Γ)) for some r ∈ R. Then, (2.4) has a unique
solution φ ∈ Hr(0, T ;H−1/2 (Γ)), with

‖φ‖Hr
0(0,T ;H−1/2(Γ)) ≤ CT‖g‖Hr+2

0 (0,T ;H1/2(Γ)).

For r > 5/2, the pointwise estimate

‖φ(·, t)‖H−1/2(Γ) ≤ CT‖g‖Hr+2
0 (0,T ;H1/2(Γ))

holds for all t ∈ [0, T ].

For a proof, we refer to [2, Prop. 3] resp. [22, (2.23), (2.24)].
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3 Numerical Discretization

3.1 Time Discretization via Convolution Quadrature

For the time discretization, we employ the convolution quadrature approach which has been
developed by Lubich in [20], [21], [22], [23]. We do not recall the theoretical frame work here
but directly apply the approach to the wave equation.

We split the time interval [0, T ] into N + 1 time steps of equal length ∆t = T/N and
compute an approximate solution at the discrete time levels tn = n∆t. The continuous
convolution operator V is replaced by the discrete convolution operator,

(
V ∆tφ∆t

)
n
(x) :=

n∑
j=0

∫
Γ

ω∆t
n−j(x− y)φj

∆t(y)dΓy , (3.1)

for n = 1, . . . , N . The convolution weights ω∆t
n (x) will be defined below (see (3.6)). The

semidiscrete problem is given by(
V ∆tφ∆t)

)
n
(x) = gn

∆t(x) , n = 1, . . . , N, x ∈ Γ, (3.2)

where gn
∆t(x) is some approximation to g(x, tn), or g(x, tn) itself.

Following the approach in [20], [21], [22], the convolution quadrature method is based on
a linear multistep method which, for an ordinary differential equation u′(t) = f(u(t)), can be
formulated as

k∑
j=0

αju
n+j−k = ∆t

k∑
j=0

βjf(un+j−k) , (3.3)

where un ≈ u(tn). Let

γ(ζ) :=

∑k
j=0 αjζ

k−j∑k
j=0 βjζk−j

be the quotient of the generating polynomials of the linear multistep method (3.3).

Definition 3.1 The convolution weights ω∆t
n (x − y) of the convolution quadrature method

(3.2) are given by the coefficients of the power series of the Laplace transform k̂(z, γ(ζ)/∆t) =

(4π‖z‖)−1 exp
(
−γ(ζ)

∆t
‖z‖

)
of (2.3), i.e.,

k̂

(
z,
γ(ζ)

∆t

)
=

∞∑
n=0

ω∆t
n (z)ζn. (3.4)

We employ the second order accurate, A-stable BDF2 scheme which is given by

αBDF2
0 =

3

2
, αBDF2

1 = −2, αBDF2
0 =

1

2
, βBDF2

0 = 1,

i.e.,

γBDF2(ζ) =
1

2

(
ζ2 − 4ζ + 3

)
. (3.5)
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Because the kernel function only depends on the distance d = ‖x− y‖, we write k̂(d, ·) and
ω∆t

n (d) short for k̂(x − y, ·) and ω∆t
n (x − y). The coefficients of the power series (3.4) can be

obtained by the Taylor expansion of k̂(d, γ(ζ)
∆t

) about ζ = 0,

ω∆t
n (d) =

1

n!

∂nk̂(d, γ(ζ)
∆t

)

∂ζn

∣∣∣∣∣
ζ=0

=
1

n!

1

4πd

∂ne−
γ(ζ)
∆t

d

∂ζn

∣∣∣∣∣
ζ=0

.

Using the formula for multiple differentiation of composite functions (see, e.g., [14]), we obtain
the explicit representation

ω∆t
n (d) =

1

n!

1

4πd

(
d

2∆t

)n/2

e−
3d

2∆tHn

(√
2d

∆t

)
, (3.6)

where Hn are the Hermite polynomials.

3.2 Space Discretization. Galerkin Boundary Element Methods

In the previous section, we have derived the semidiscrete problem: For n = 1, 2, . . . , N, find
φn

∆t ∈ H−1/2 (Γ) such that

n∑
j=0

∫
Γ

ω∆t
n−j(x− y)φj

∆t(y)dΓy = gn
∆t(x), n = 1, . . . , N , x ∈ Γ. (3.7)

For the space discretization, we employ a Galerkin boundary element method. Let G be a
regular (in the sense of Ciarlet [5]) boundary element mesh on Γ consisting of shape regular,
possibly curved triangles. For a triangle τ ∈ G, the (regular) pullback to the reference tri-
angle τ̂ := conv

{(
0
0

)
,
(
1
0

)
,
(
0
1

)}
is denoted by χτ : τ̂ → τ . The space of piecewise constant,

discontinuous functions is

S−1,0 := {u ∈ L∞ (Γ) : ∀τ ∈ G : u|τ ∈ P0} ,

and, alternatively, we consider the space of continuous, piecewise linear functions

S0,1 :=
{
u ∈ C0 (Γ) : ∀τ ∈ G : (u ◦ χτ )|τ ∈ P1

}
for the space discretization. As a basis for S−1,0, we choose the characteristic functions for
the panels τ ∈ G, while the basis for S0,1 consists of the standard hat functions, lifted to the

surface Γ. The general notation is S for the boundary element space and (bi)
M
i=1 for the basis.

The mesh width is given by

h := max
τ∈G

hτ , where hτ := diam τ.

For the space-time discrete solution at time tn we employ the ansatz

φn
∆t,h(y) =

M∑
i=1

φn,ibi(y) , (3.8)
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where φn = (φn,i)
M
i=1 ∈ R

M are the nodal values of the discrete solution at time step tn. The

collection of these solution vectors is denoted by
−→
φ n := (φi)

n
i=0 ∈ R

(n+1)M . Note that we
always include φ0 in this vector, although it is always 0.

For the Galerkin boundary element method, we replace φj
∆t in (3.7) by some φj

∆t,h ∈ S
and impose the integral equation not pointwise but in a weak form: Find φn

∆t,h ∈ S of the
form (3.8) such that

n∑
j=0

M∑
i=1

φj,i

∫
Γ

∫
Γ

ω∆t
n−j(x− y)bi(y)bk(x)dΓydΓx =

∫
Γ

gn
∆t(x)bk(x)dΓx (3.9)

for all 1 ≤ k ≤M and n = 1, . . . , N . This can be written as a linear system

n∑
j=0

An−jφj = gn , n = 1, . . . , N , (3.10)

with

(An)k,i :=

∫
Γ

∫
Γ

ω∆t
n (x− y)bi(y)bk(x)dΓydΓx ,

and

(gn)k =

∫
Γ

gn
∆t(x)bk(x)dΓx .

3.3 Algorithmic Realization

The linear systems in (3.10) can be written in the compact block form

−→
AN

−→
φ N := −→g n, (3.11)

where, for 0 ≤ n ≤ N , the block matrix
−→
A n ∈ R

(n+1)M×R
(n+1)M and the vector −→g n ∈ R

(n+1)M

are defined by

−→
A n :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 0 . . . 0

A1 A0
. . .

...

A2 A1
. . .

... A2
. . .

. . .
. . .

. . .
. . . 0

An . . . A2 A1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and −→g n :=

⎛⎜⎜⎜⎝
g0

g1
...

gn

⎞⎟⎟⎟⎠ . (3.12)

The matrices Aj have dimension M ×M and are fully populated. The straightforward pro-
cedure for solving this system is given by the following recursion.

For n = 1, 2, . . . , one computes

wn := gn −
n−1∑
i=0

An−iφi (3.13)
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and then solves the system

A0φn = wn. (3.14)

This naive procedure requires O (N2M2) operations. If we assume that a fast iterative proce-
dure is employed which solves (3.14) in O (M2) operations, the total amount of work is given
by

O
(
N2M2

)︸ ︷︷ ︸
(3.13)

+O
(
NM2

)︸ ︷︷ ︸
(3.14)

.

The computational costs for (3.13) can be decreased by using the following algorithm, de-
scribed in [18]. The procedure depends on a (small) control parameter r.

For 0 ≤ n ≤ N , we introduce the block matrix
−→
B n ∈ R

(n+1)M × R
(n+1)M by

−→
B n =

⎛⎜⎜⎜⎜⎜⎜⎝

An+1 An . . . A2 A1

An+2
. . . A2

...
. . .

. . .
...

. . .
. . . An

A2n+1 . . . An+2 An+1

⎞⎟⎟⎟⎟⎟⎟⎠
Algorithm 3.2 (Recursive solver for block tridiagonal system)

Comment: Main program
begin−→w N := −→g N ;

−→
φ N := 0; solve triangular(0, N);

end;

Comment: The recursive subroutine solve triangular is defined as follows.

procedure solve triangular(a, b : integer) ;
begin

if b− a ≤ r − 1 then solve1

−→
A b−a (φn)b

n=a = (wn)b
n=a (3.15)

else begin
m :=

⌈
b+a
2

⌉
;

solve triangular(a,m− 1) ;
evaluate

(wn)b
n=m = (wn)b

n=m −−→
B b−a (φn)b

n=a ; (3.16)

solve triangular(m, b)
end end;

Some remarks are important for the performance of this algorithm.

1Notation: (φn)b
n=a := (φa, φa+1, . . . , φb)

ᵀ.
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1. The solution of the block tridiagonal system (3.15) for computing (φn)b
n=a is solved by

backward substitution in a straightforward manner. The computational cost is bounded
by O (r2M2) operations.

2. For the evaluation of the convolution
−→
B b−a (φn)b

n=a in (3.16), the discrete Fourier trans-
form (see, e.g., [19]) should be employed. The total cost for evaluating (3.16) is
O (M2 (b− a) log (b− a)).

3. The procedure solve triangular calls itself two times with dimension cut in half. The
total computational cost sums up O (

M2N log2N
)

(cf. [19]).

3.4 Sparse approximation of the matrices An

We recall the definition of the matrix An ,

(An)i,j =

∫
supp(bi)

∫
supp(bj )

ω∆t
n (x− y)bi(x)bj(y)dΓydΓx , (3.17)

where supp(bi) denotes the support of the basis function bi. The matrices An are full matrices.
However, it turns out that a substantial part of the matrix entries is small and can be replaced
by 0. In Section 4.3 we determine, depending on a tolerance ε > 0, the interval I∆t

n,ε :=
[tn − c∆t

n,ε, tn + c∆t
n,ε] ∩ [0, diamΓ] such that

|ω∆t
n (d)| ≤ ε

4πd
, ∀d /∈ I∆t

n,ε . (3.18)

The result of this analysis yields

c∆t
n,ε = 3

√
∆t

√
tn log

1

ε
. (3.19)

Let Pε ⊂ {1, . . . ,M} × {1, . . . ,M} be defined by

Pε :=
{
(i, j) : ∃ (x, y) ∈ supp bi ∩ supp bj : ‖x− y‖ ∈ I∆t

n,ε

}
. (3.20)

This induces a sparse approximation Ãn by

(Ãn)i,j :=

{
(An)i,j if (i, j) ∈ Pε,
0 otherwise.

(3.21)

The space-time discretization with sparse matrix approximations is given by replacing the
matrices An in (3.12) by the sparse versions (3.21) and plugging the corresponding solution(
φ̃0, φ̃1, . . . , φ̃N

)ᵀ
into the basis representation

φ̃n
∆t,h :=

M∑
i=1

φ̃n,ibi. (3.22)
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4 Convergence Analysis

The convergence analysis consists of three parts. In Section 4.1, the analysis of the space-time
discretization without sparse matrix approximation is given. The sparse approximation of
the matrices An induces a perturbation in the space discretization and in Section 4.2, we
analyse the effect of such perturbations on the overall discretization error. The size of the
perturbation depends on the smallness of the function ω∆t

n outside the interval I∆t
n,ε. In Section

4.3, we determine the interval I∆t
n,ε such that the arising perturbation error is in balance with

the overall discretization error.

4.1 Error Estimates for the space-time discretization without sparse
matrix approximation

For the semidiscrete solution φn
∆t of (3.2), the following theorem holds [22].

Theorem 4.1 For smooth, compatible data g, for 0 ≤ ∆t ≤ ∆t∗, ∆t∗ arbitrary, the error
satisfies (

∆t

N∑
n=0

‖φn
∆t(·) − φ(·, tn)‖2

H−1/2(Γ)

)1/2

≤ C∆t∗∆t
2‖g‖H5

0(0,T ;H1/2(Γ)) .

The A-stability of the linear multistep method is inherited to the convolution quadrature
method, i.e., all ∆t∗ are permitted in the above estimate.

Let
(
φn

k,h

)N

n=0
be the sequence of solutions of (3.9) at the time levels tn, n = 0, 1, . . . , N .

We quote from [22] the convergence theorem.

Theorem 4.2 For smooth compatible data g, the fully discrete method (3.9) (Galerkin in
space, operational quadrature in time) is unconditionally stable and the solution φn

∆t,h ∈
Sm−1,m, 0 ≤ n ≤ N , m ∈ {0, 1}, satisfies the error estimate∥∥φ (·, tn) − φn

∆t,h (·)∥∥
H−1/2(Γ)

≤ Cg

(
∆t2 + hm+3/2

)
.

As an immediate consequence of this theorem, we see that the spatial and temporal errors are
balanced if

∆t2 ∼ hm+3/2. (4.1)

4.2 Perturbations in the space discretization

In this subsection, we study the influence of replacing the matrices An by the sparse approx-
imation Ãn. Our perturbation analysis is based on the theory which was developed in [22].
For this, we introduce the time continuous, space discrete problem which is given by: Find
φh : [0, T ] → S such that∫ t

0

∫
Γ

∫
Γ

k(x− y, t− τ)φh(y, τ)ψh (x) dΓydΓxdτ =

∫
Γ

g(x, t)ψh (x) dΓx ∀ψh ∈ S. (4.2)

Recall the definition of the one-sided Laplace transform

f̂ (s) := (Lf) (s) :=

∫ ∞
0

e−stf (t) dt.
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(Convention: If a function depends on space and time variables, the Laplace transform is
always applied to the time variable.) Applying this transformation to (4.2) and using the rule
for the Laplace transform of convolutions, we obtain (cf. [22])∫

Γ

∫
Γ

k̂(x− y, s)φ̂h(y, s)ψh (x) dΓydΓx =

∫
Γ

ĝ(x, s)ψh (x) dΓx ∀ψh ∈ S ∀s ∈ Iσ, (4.3)

where Iσ := {σ + iu : u ∈ R} for some σ > 0. The Laplace transform of k is given by

k̂ (z, s) =
e−s‖z‖

4π ‖z‖ ,

and φ̂h is the Laplace transform of φh. For s ∈ Iσ, we define the operator Vh (s) : S → S by

(Vh (s)ϕh, ψh)L2(Γ) :=

∫
Γ

∫
Γ

k̂(x− y, s)ϕh(y)ψh (x) dΓydΓx ∀ϕh, ψh ∈ S.

Let Ph : H1/2 (Γ) → S denote the orthogonal projection, i.e.,

(Phf, ψh)L2(Γ) := (f, ψh)L2(Γ) ∀ψh ∈ S.

With these notations at hand, the time continuous, space discrete problem (4.3) can be written
in the compact form: Find φ̂h : Iσ → S such that(

Vh (s) φ̂h (s) , ψh

)
L2(Γ)

= (Phĝ (·, s) , ψh)L2(Γ) ∀ψh ∈ S ∀s ∈ Iσ.

The time discretization can be described by replacing s in Vh (s) by γ
(
e−s∆t

)
/∆t: Find

φ̂∆t,h : Iσ → S such that(
V∆t,h (s) φ̂∆t,h (s) , ψh

)
L2(Γ)

= (Phĝ (·, s) , ψh)L2(Γ) ∀ψh ∈ S ∀s ∈ Iσ, (4.4)

where V∆t,h (s) := Vh

(
γ
(
e−s∆t

)
/∆t

)
.

Remark 4.3 The solution φn
∆t,h at time step tn = n∆t (cf. (3.8)) can be written by means

of the inverse Laplace transform as

φn
∆t,h =

(
L−1φ̂∆t,h

)
(tn) .

Next, we express the solution φ̃n
∆t,h of (3.22) in a similar fashion. Our cutoff strategy is based

on the approximation of the coefficients ω∆t
n (d) in the power series

k̂(d,
γ(ζ)

∆t
) =

∞∑
n=0

ω∆t
n (d) ζn

by

ω̃∆t
n (d) :=

{
ω∆t

n (d) d ∈ I∆t
n,ε,

0 d /∈ I∆t
n,ε.

10



Let

G (d, s) := k̂

(
d,

γ(e−s∆t)
∆t

)
=
∑∞

n=0 ω
∆t
n (d) e−s∆tn,

G̃ (d, s) :=
∑∞

n=0 ω̃
∆t
n (d) e−s∆tn.

(4.5)

For s ∈ Iσ, let Ṽ∆t,h (s) : S → S be the operator defined by(
Ṽ∆t,h (s)ϕh, ψh

)
L2(Γ)

:=

∫
Γ

∫
Γ

G̃ (‖x− y‖ , s)ϕh(y)ψh (x) dΓydΓx ∀ϕh, ψh ∈ S .

Consider the problem: Find ̂̃φ∆t,h (s) ∈ S such that(
Ṽ∆t,h (s)

̂̃
φ∆t,h (s) , ψh

)
L2(Γ)

= (Phĝ (·, s) , ψh)L2(Γ) ∀ψh ∈ S ∀s ∈ Iσ. (4.6)

Then the solution φ̃n
∆t,h of (3.22) can be expressed by means of the inverse Laplace transform

φ̃n
∆t,h :=

(
L−1̂̃φ∆t,h

)
(tn) .

By combining (4.4) and (4.6) we see that the Laplace transform of the error e∆t,h := φ̃∆t,h −
φ∆t,h satisfies

(V∆t,h (s) ê∆t,h (s) , ψh)L2(Γ) =
((
V∆t,h (s) − Ṽ∆t,h (s)

) ̂̃φ∆t,h (s) , ψh

)
L2(Γ)

∀ψh ∈ S, ∀s ∈ Iσ.

This leads to the estimate

‖ê∆t,h (s)‖H−1/2(Γ) ≤
∥∥V −1

∆t,h (s)
∥∥

H−1/2(Γ)←H1/2(Γ)

∥∥∥(V∆t,h (s) − Ṽ∆t,h (s)
) ̂̃φ∆t,h (s)

∥∥∥
H1/2(Γ)

(4.7)

for all s ∈ Iσ.
In order to estimate the terms in (4.7), we need the following estimate of ‖V −1(s)‖H−1/2(Γ)←H1/2(Γ)

(cf. [22, (2.20)]): Let σ > 0. Then, there exists M(σ), such that

‖V −1(s)‖H−1/2(Γ)←H1/2(Γ) ≤ M(σ)|s|2 ∀ Re(s) > σ . (4.8)

Lemma 4.4 Let the time discretization be based on convolution quadrature with the BDF2
scheme. Then, for σ > 0 there exists cσ > 0 independent of the discretization parameters
∆t, h such that ∥∥V −1

∆t,h (s)Ph

∥∥
H−1/2(Γ)←H1/2(Γ)

≤ cσ
1

∆t2
∀s ∈ Iσ . (4.9)

Proof. From [22, (5.17)] we deduce the estimate∥∥V −1
∆t,h (s)Ph

∥∥
H−1/2(Γ)←H1/2(Γ)

=
∥∥V −1

h

(
γ
(
e−s∆t

)
/∆t

)
Ph

∥∥
H−1/2(Γ)←H1/2(Γ)

≤M(σ0)

∣∣∣∣∣γ
(
e−s∆t

)
∆t

∣∣∣∣∣
2

∀s ∈ Iσ (4.10)
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for σ0 such that Re
(

γ(e−s∆t)
∆t

)
> σ0 ∀s ∈ Iσ. σ0 can be chosen independent of ∆t. The

estimate now follows due to the boundedness of |γ(e−s∆t)|.
Next, we turn to the second factor in the right-hand side of (4.7). For the following lemma,

we need an inverse inequality which holds for our boundary element spaces (cf. [7]), while
the constant depends on the quasiuniformity of the mesh. Let Cinv > 0 denote the smallest
constant such that

‖ψh‖L2(Γ) ≤ Cinvh
−1/2 ‖ψh‖H−1/2(Γ) ∀ψh ∈ S (4.11)

holds.

Lemma 4.5 Let the time discretization be based on convolution quadrature with the BDF2
scheme. Then

∥∥∥(V∆t,h (s) − Ṽ∆t,h (s)
) ̂̃
φ∆t,h (s)

∥∥∥
H1/2(Γ)

≤ c∆εh
−1

1 − e−σ∆t

∥∥∥̂̃φ∆t,h (s)
∥∥∥

H−1/2(Γ)
∀s ∈ Iσ . (4.12)

The constant c∆ is associated with the Laplace operator and Cinv and is independent of the
discretization parameters ∆t and h .

Proof. For any φh ∈ S, the difference
(
V∆t,h (s) − Ṽ∆t,h (s)

)
φ̂h(s) can be written in the form∥∥∥(V∆t,h (s) − Ṽ∆t,h (s)

)
φ̂h(s)

∥∥∥
H1/2(Γ)

= sup
ϕh∈S\{0}

‖ϕh‖H−1/2(Γ)
=1

∣∣∣∣∫
Γ

∫
Γ

δ (‖x− y‖) φ̂h (y, s)ϕh (x) dΓydΓx

∣∣∣∣ ,
where (cf. (4.5))

δ (d) :=
∞∑

n=0

(
ω∆t

n (d) − ω̃∆t
n (d)

)
e−s∆tn.

From the construction of our cutoff strategy (cf. (3.18)) we deduce

|δ (d)| ≤ ε

4πd

∞∑
n=0

e−σ∆tn =
ε

4πd (1 − e−σ∆t)
.

By using the well known L2-continuity of the single layer potential for the Laplacian, we
obtain∥∥∥(V∆t,h (s) − Ṽ∆t,h (s)

)
φ̂h(s)

∥∥∥
H1/2(Γ)

≤ ε

1 − e−σ∆t
sup

ϕh∈S\{0}
‖ϕh‖H−1/2(Γ)

=1

∫
Γ

∫
Γ

∣∣∣φ̂h (y, s)
∣∣∣ |ϕh (x)|

4π ‖x− y‖ dΓydΓx

≤ Cεh−1/2

1 − e−σ∆t
‖φh‖L2(Γ)

≤ c∆εh
−1

1 − e−σ∆t
‖φh‖H−1/2(Γ) .

Finally, we investigate the existence and boundedness of the solution φ̃∆t,h. We do not
employ the possible smoothness of φ̃∆t,h with respect to time since only the constants in the
convergence and complexity estimates would be improved but not the rates.
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Lemma 4.6 Let the time discretization be based on convolution quadrature with the BDF2
scheme. Then given σ > 0, for all cutoff parameters ε in (3.21) with 0 < ε < 1−e−σ∆t

2c∆cσ
h∆t2,

the solution φ̃∆t,h in (3.22) exists and satisfies the stability estimate∥∥∥̂̃φ∆t,h (s)
∥∥∥

H−1/2(Γ)
≤ 2cσ∆t−2 ‖ĝ (s)‖H1/2(Γ) ∀s ∈ Iσ.

Proof. We start with the splitting

Ṽ∆t,h (s) = V∆t,h (s) (I −X (s)) with X (s) := V −1
∆t,h (s)

(
V∆t,h (s) − Ṽ∆t,h (s)

)
.

Lemmata 4.4 and 4.5 imply

‖X (s)‖H−1/2(Γ)←H−1/2(Γ) ≤ c∆cσ
1

∆t2
εh−1

1 − e−σ∆t
.

By choosing 0 < ε < 1−e−σ∆t

2c∆cσ
h∆t2, we obtain ‖X (s)‖H−1/2(Γ)←H−1/2(Γ) < 1/2 uniformly for all

s ∈ Iσ. This directly implies the stability estimate∥∥∥Ṽ −1
∆t,h (s)Ph

∥∥∥
H1/2(Γ)←H−1/2(Γ)

≤ 2
∥∥V −1

∆t,h (s)Ph

∥∥
H1/2(Γ)←H−1/2(Γ)

≤ 2cσ∆t−2.

The combination of Lemmata 4.4, 4.5, and 4.6 leads to the convergence estimate of the
solution φ̃∆t,h.

Theorem 4.7 Let the time discretization be based on convolution quadrature with the BDF2
scheme. We assume that the exact solution φ (·, t) is in Hm+1 (Γ) for any t ∈ [0, T ]. Then for

all cutoff parameters ε in (3.21) with 0 < ε < 1−e−σ∆t

2c∆cσ
h∆t2, the solution φ̃∆t,h in (3.22) exists

and satisfies the error estimate∥∥∥φ̃n
∆t,h − φ (·, tn)

∥∥∥
H−1/2(Γ)

≤ Cg(tn)
(
εh−1∆t−5 + ∆t2 + hm+3/2

)
.

where Cg depends on the right hand side g and on σ.

Proof. We employ the splitting

φ̃n
∆t,h − φ (tn) = en

∆t,h +
(
φn

∆t,h − φ (tn)
)
.

The estimate [22, Theorem 5.4] implies, for the second summand,∥∥φn
∆t,h − φ (tn)

∥∥
H−1/2(Γ)

≤ Chm+3/2.

The first summand can be estimated by combining Lemmata 4.4, 4.5, and 4.6

‖ê∆t,h (s)‖H−1/2(Γ) ≤ 2c2σc∆h
−1∆t−4 ε

1 − e−σ∆t
‖ĝ (·, s)‖H1/2(Γ)

≤ Cσεh
−1∆t−5 ‖ĝ (·, s)‖H1/2(Γ) ∀s ∈ Iσ.

From this, the estimate of the perturbation φ̃∆t,h − φ∆t,h in the original time space follows
from the Laplace inversion formula.
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Corollary 4.8 Let the assumptions as in Theorem 4.7 be satisfied. Let

∆t2 ∼ hm+3/2

and choose

ε ∼ h7m/2+25/4.

Then the solution φ̃n
∆t,h exists and converges with optimal rate∥∥∥φ̃n

∆t,h − φ (·, tn)
∥∥∥

H−1/2(Γ)
≤ Cg(tn)hm+3/2 ∼ Cg(tn)∆t2.

4.3 Approximation of ωn by cutoff

In this section, we analyse the approximation of the convolution functions

ω∆t
n (d) =

1

n!

∂n

∂ζn

e−γ(ζ) d
∆t

4πd

∣∣∣∣∣
ζ=0

,

where

γ(ζ) =
1

2
(ζ2 − 4ζ + 3) .

Recall the explicit formula as in (3.6)

ω∆t
n (d) =

1

n!

1

4πd

(
d

2∆t

)n/2

e−
3d

2∆tHn

(√
2d

∆t

)
, (4.13)

where Hn are the Hermite polynomials. For n = 0, we have

ω∆t
0 (d) =

e−
3
2

d
∆t

4πd
,

with a singularity at d = 0 and, for n = 1,

ω∆t
1 (d) =

1

∆t

e−
3
2

d
∆t

2π
.

In Figure 1, we plot ω∆t
n (d) for ∆t = 1 and different n. The convolution functions are

approximately scaled and translated versions of each other. To find an estimate for ω∆t
n (d),

we employ the ansatz

|ω∆t
n (d)| ≤ 1

4πd
σnΩn

(
f∆t

n (d)
)
,

with some scaling factors σn, some translation functions f∆t
n (d), and a function Ωn(x) that

converges towards a function Ω(x) as n→ ∞.
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Figure 1: The convolution weights ω∆t
n (d) for ∆t = 1 and different values of n.
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100(d) (solid line) and 1

4πd
σnΩn (dashed line)

Lemma 4.9 For n ≥ 1, let

Ωn(x) =

(
x√
n

+ 1

)n/2

e−
x
√

n
2 and σn =

k

(2πn)1/4

with k ≈ 1.086435. Then

|ω∆t
n (d)| ≤ 1

4πd
σnΩn

(
d− tn√
∆t

√
tn

)
.

Proof. To obtain an estimate for |ω∆t
n (d)|, we use the following estimate, see [1, (22.14.17)],

|Hn(x)| < ex2/2k2n/2
√
n!

with k ≈ 1.086435. Applying this to (4.13) yields

|ω∆t
n (d)| ≤ k

4πd

(
d

∆t

)n/2
e−

d
2∆t√

n!
.

For n ≥ 1, Stirling’s formula leads to 1√
n!

≤ ( e
n)

n/2

(2πn)1/4 , and we obtain

|ω∆t
n (d)| ≤ k

4πd

en/2
(

d
tn

)n/2

(2πn)1/4
e−

d
2∆t =

k

4πd

1

(2πn)1/4
Ωn

(
d− tn√
∆t

√
tn

)
.

Lemma 4.10 There holds

lim
n→∞

Ωn(x) = e−x2/4 .

Proof. The logarithm of Ωn can be written as

log Ωn(x) =
n

2
log (1 +

x√
n

) − x
√
n

2

=
n

2

∞∑
k=1

(−1)k+1

k

(
x√
n

)k

− x
√
n

2

= −1

4
x2 +

∞∑
k=3

1

3

(−1)k+1

2k

(
xk

n
k
2
−1

)
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from which we conclude that

lim
n→∞

log Ωn(x) = −1

4
x2

holds. Thus the statement of the lemma follows.

Remark 4.11 Ωn(x) is decreasing for increasing n. Thus, Ωn(x) ≥ e−x2/4.

In Section 3.4, we have introduced a sparse approximation of An by replacing ω∆t
n (d) by zero

outside an interval I∆t
n,ε = [tn − c∆t

n,ε, tn + c∆t
n,ε]. To determine I∆t

n,ε such that

|ω∆t
n (d)| ≤ ε

4πd
∀d /∈ I∆t

n,ε ,

we first seek an interval Ĩn,ε, such that

Ωn(x) ≤ Cε ∀x /∈ Ĩn,ε. (4.14)

Simple analysis show that Ωn has one maximum at x = 0 and is strictly monotonously
increasing for x < 0 and strictly monotonously decreasing for x > 0. Since Ωn (x) is decreasing
with increasing n ≥ 1 a sufficient condition for Ωn (x) ≤ Cε is Ω1 (x) ≤ ε. This leads to the
condition

Ω1 (x) =
√
x+ 1e−

1
2
x ≤ Cε.

If we choose

c̃ = 3 log
1

ε
, (4.15)

inequality (4.14) is satisfied for all x /∈ Ĩn,ε := [−c̃, c̃] with C =
√

3e−1/3.

Lemma 4.12 Let n ≥ 1 and c∆t
n,ε =

√
∆t

√
tnc̃ with c̃ as in (4.15). For I∆t

n,ε := [tn − c∆t
n,ε, tn +

c∆t
n,ε], there holds

|ω∆t
n (d)| ≤ ε

4πd
∀d /∈ I∆t

n,ε.

For n = 0 and I∆t
0,ε :=

[
0, 2

3
∆t log 1

ε

]
there holds

|ω∆t
0 (d)| ≤ ε

4πd
∀d /∈ I∆t

n,ε.

Proof. We have

|ω∆t
n (d)| ≤ k

4πd

1

(2πn)1/4
Ωn(

d− tn√
∆t

√
tn

) ≤ ε

4πd

since d−tn√
∆t
√

tn
/∈ [−c̃, c̃]. For n = 0, we have

ω∆t
0 (d) =

e−
3
2

d
∆t

4πd

and the condition d ≥ 2
3
∆t log 1

ε
implies

e−
3
2

d
∆t

4πd
≤ ε

4πd
.
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5 Complexity Estimates

Next, we determine the storage requirements for the matrices Ãn. For the boundary element
mesh we assume that the dimension of the boundary element space satisfies

c1h
−2 ≤M ≤ C1h

−2. (5.1)

A further assumption is related to the surface Γ and the mesh G. We assume that there is a
moderate constant C such that for any 1 ≤ i ≤M , the subset

Pi := {j ∈ {1, . . . ,M} : (i, j) ∈ Pε} ,
with Pε as in (3.20), satisfies

�Pi ≤ Cmax

{
1,

√
∆tt

3/2
n

h2
logM

}
. (5.2)

This assumption can be derived from two assumptions, namely, that the area of

Ri,n :=
{
y ∈ Γ : ∃x ∈ supp bi : ‖x− y‖ ∈ I∆t

n,ε

}
satisfies |Ri,n| ≤ C

√
∆tt

3/2
n | log(ε)| and that ch2 ≤ supp bj ≤ Ch2.

Theorem 5.1 The number of nonzero entries in the sparse approximation Ãn is bounded
from above

• for piecewise constant boundary elements by

Ct3/2
n M1+ 13

16 logM . (5.3a)

For the first time steps, tn = q∆t, where q = O (logM), we obtain the improved upper
bound

CM1+ 1
4 log3/2 M . (5.3b)

• For piecewise linear boundary elements, the number of nonzero entries is bounded by

Ct3/2
n M1+ 11

16 logM . (5.3c)

For the first time steps, tn = q∆t, where q = O (logM), the improved upper bounded is

CM . (5.3d)

Proof. The number of nonzero matrix entries in Ã can be estimated by using (5.2)

M∑
i=1

�Pi ≤ CM max
{

1,
√

∆tt3/2
n h−2 logM

}
.

The relation (4.1) allows to substitute
√

∆t and the combination with (5.1) yields

M∑
i=1

�Pi ≤ CM max
{

1, t3/2
n M

13
16
− 1

8
m logM

}
.
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The improved estimates follow by using the relation (∆t)3/2 ≤ CM−
3
8
m− 9

16 .
Note that the solution of (3.11) requires that N linear systems of the form

A0φn = r.h.s.

have to be solved. If the dimension M is large, iterative methods have to be employed for this
purpose which require a matrix-vector multiplication in each iteration step. In this light, the
improved estimates (5.3b), (5.3d) of the number of nonzero matrix entries for Ã0 accelerate
this solution process.

6 Conclusions

In this paper, we have followed the convolution quadrature approach by Lubich and combined
it with a Galerkin BEM for solving the retarded potential boundary integral formulation of
the wave equation. We have presented a simple a-priori cutoff strategy where the number of
matrix elements which have to be computed is substantially reduced and a significant portion
of the matrix is replaced by zero. A perturbation analysis established the stability of the
perturbed problem.

In two forthcoming papers, we will develop a variant of the panel clustering method for the
wave equation in order to further reduce the storage and computational costs. In addition,
efficient quadrature methods will be introduced and the effect of these additional perturbations
will be analysed. The analysis will be based on the perturbation analysis developed in Section
4.2.
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