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Abstract

Recently, Courbet and Croisille [Math. Model. Numer. Anal., 32, 631-649, 1998] intro-
duced the FV box-scheme for the 2D Poisson problem in the case of triangular meshes.
Generalization to higher degree box-schemes has been published by Croisille and Greff [Nu-
mer. Methods Partial Differential Equations, 18, 355-373, 2002]. These box-schemes are
based on the idea of the finite volume method in that they take the average of the equa-
tions on each cell of the mesh. This gives rise to a natural choice of unknowns located at
the interface of the mesh. Contrary to the finite volume method, these box-schemes are
conservative and use only one mesh. They can be seen as a discrete mixed Petrov-Galerkin
formulation of the Poisson problem. In this paper we focus our interest on box-schemes for
the Poisson problem in 2D on rectangular grids. We discuss the basic F'V box-scheme, and
analyse and interpret it as three different box-schemes. The method is demonstrated by
numerical examples.

1 Introduction

The aim of this paper is to introduce several box-schemes for elliptic problems on rectangular
grids based on the model of [6, 7, 8, 13]. The principle of the box-scheme we intend to discuss
here in the case of rectangular grids goes back to H.B. Keller [17], where a box-scheme for the
heat equation is introduced. In the case of an elliptic system, the principle of the box-schemes
consists of discretizing the mixed form of the equation, by taking the average of the conservation
and the constitutive laws on the same mesh. The convenient FE framework is the one of the
so-called Petrov-Galerkin methods with two trial function spaces (one for the primitive variable
u and one for the flux p = Vu) and two test function spaces. A comprehensive understanding
of this kind of scheme has been introduced in [6, 7, 8] in the case of a triangular mesh. We refer
also to [21] for finite volumes methods connected to Petrov-Galerkin formulation.

Here, we consider a rectangular domain Q@ C R? meshed by a regular grid 7; made of
rectangles (with edges parallel to those of the domain). For the simplicity of the presentation
and since we focus on the design principles of different box-schemes, we restrict ourselves to the
simple Poisson problem —Au = f, for f € L?(Q) with homogeneous boundary conditions. The
mixed form we consider is: Find (u,p) € H}(Q) x Hgiy(Q) such that

(divp + f,v)o0 =0 forallve L*(Q), (1)
(p— Vu,q)oq =0 forall g€ (L*(Q))>.



where the space Hyiy (Q) is Hgiy () = {p € (L*(Q))?; div p € L*(2)}. Asin [6, 8], the discretiza-
tion of (1) is performed by a mixed Petrov-Galerkin scheme called box-scheme. It involves
four discrete spaces: My p, X1 as trial spaces, and M j, Xo ), as test spaces. The box-scheme
reads: Find (up,pp) € My x X1 such that

Z (dinh + f, Uh)O,K =0 forall v, € Mg’h,

KeT, (2)
Z (ph — Vun,qn)o,x =0 for all ¢, € Xoy,.

KeTy,

The uniqueness of the solution of (2) implies in particular the identity of the dimensions
dim Ml,h + dim Xl,h = dim MQJZ + dim X27h . (3)

The starting point of this article is the paper [5] by Courbet, where an original box-scheme on
quadrangles is introduced for the time dependent diffusive problem. We give the interpretation
of that scheme with three different box-schemes, which allows to identify its stability and accu-
racy properties. As is the case on a triangular mesh, the natural choice for the approximation
of the flux py, is the lowest order Raviart-Thomas space. For the unknown u; we use the stan-
dard Q'-Lagrange space, or its nonconforming analogue, Q? . or the so-called P!-nonconforming
quadrilateral finite element, introduced by Park and Sheen [19]. Due to the properties of the
different trial spaces, we can make the link between these three box-schemes explicit. An im-
portant characteristic of these box-schemes is their equivalence with a decoupled formulation
in the unknowns uj, and p; separately. This allows the computation of the discrete flux py in
a cheap way, since it is just given as a function of Vuy and the right-hand side f. This local
reconstruction of the flux p; in each cell is in particular of interest for porous media problems,
e.g. contaminant transport where the velocity is computed by the Darcy law and introduced in a
convection-diffusion equation for the computation of the concentration. This decoupled feature
of the box-scheme extends the observation by Marini [18], that the flux in the mixed FEM can
be recovered in an inexpensive way. Concerning the a posteriori error estimates of the box-
scheme, we refer to the recent work by El Alaoui, Ern, [10, 11]. Finally, let us mention that an
increasing interest in box-schemes has recently appeared [3, 4]. Note that a different possibility
for extending the box-scheme of [6] on rectangles, using the Rannacher-Turek nonconforming
FE space, has been studied in [3, 14, 15].

Let us give now some standard notation. We introduce the mesh dependent norms defined
respectively on the mesh dependent spaces H{ () + My 5 and Haiy(92) + X p:

1/2
ulon = (3 IVulde)
K

Lh = (luldo + uff )72 for all we Hg(Q)+ My,

1/2
pldiv,n = (Z | div p’aK) ! , pllaivs = (g + IplFi.n)/?  for all p € Hapy(Q) + X1 -
K
The geometrical notation is as follows. The rectangles are denoted by K with centre Gx (xx, yx ),
area |K|, and diameter hx. We denote by h the maximum of the diameters of the elements of
the mesh. The sizes of the sides of the rectangle K are |ek .| and |ex ,|. We will write 0K for the
set of edges of K. The sets A; and A, denote the internal and boundary edges respectively. We
define A = A; U Ay to be the set of all edges with global numbering. The number of rectangles



is NE. The number of edges (respectively internal, boundary edges) is NA (respectively NA;,
NAp). The number of vertices (respectively internal, boundary vertices) is NV (respectively NV},
NV4). The Euler relations are

ANE = NA; + NA and NE— NA+ NV =1. (4)

The outgoing unitary normal vector to an edge e is v.. More generally, we write v. The
mid-point of an edge e is z. and [u]. denotes the jump of u along e. The gradient of f is
V f=1[0:f,0,f]F and the 2D rotational is curl f = [0, f, —9,f]T. The letter C' denotes some
generic constant independent of the mesh. Let P° be the space of piecewise constant functions,
P! be the space of piecewise affine functions and Q' be the space of bilinear functions. We
define TI° to be the classical projection operator on the piecewise constant functions. Let us
recall the definition of RTY the lowest order space of Raviart-Thomas [20], useful to discretize
the flux p = Vu:
RT = {q) € Haiy(Q) ;qn € RT*(K), VK € Tp},

where the local space RTY(K) is

RTO(K) = PY(K)? + P°(K) < . > + PO(K) < 2 > .

The space RT? is of dimension NA, the degrees of freedom being given by the linear forms

1
Lo(qn) = m /qh ‘vgdo for all a € A.

Note that the normal component py, - v, of p along each interior edge is constant.

The outline of the paper is as follows. In Section 2, we recall briefly (in the particular
case of the Poisson problem) the design principles of Courbet’s scheme. To understand it in a
finite element sense, we introduce in Section 3 a finite element box-scheme based on the relation
between the Courbet space (a space used by Courbet to approximate the unknown w, which
will be defined in the next section) and the standard Q'-Lagrange finite element space. The
approximation of the flux p = Vu is done using the Raviart-Thomas space. However, this box-
scheme seems to be instable. The idea of Section 4 is to build a new box-scheme generalizing
the previous one and based on the inclusion of the space Q'-Lagrange into Q'-nonconforming.
Both unknowns u and p are discretized in nonconforming spaces with respect to H{(£2) and
H éiv(Q). We perform the numerical analysis of the scheme, and its equivalence to a decoupled
problem in w; and pp: a nonconforming scheme in uy and a local reconstruction formula of py,
(in function of up and the data f). Consequently, we can make explicit the link with the box-
scheme of Section 3. It turns out that the solution wy, of the box-scheme is only affine (and not
bilinear) per rectangle. Section 5 is devoted to the development and the analysis of a reduced
box-scheme. We conclude this work with numerical results in Section 6. Note that the most
part of this paper has been presented in [13]. See also [14].

2 Courbet’s box-scheme

2.1 Introduction

In [5], B. Courbet has introduced a box-scheme for the time dependent mixed formulation of
the compressible Navier-Stokes equations. The scheme was intended to extend to a rectangular



grid the well-known box-scheme of H. B. Keller for the heat equation introduced in [17]. In the
case of the Poisson problem, the box-scheme of Courbet is a derivation of the mixed form of the
problem taken as mean value on each rectangle K:

/Kdlvpdx —i—/fdx—()
/pdw—/Vudx—O (5)

u=0o0ondf.

The Courbet box-scheme referred later as (BS1) is: Find u = (ug)aca and p = (pg)aca such
that for all rectangles K of the grid:

) |arpaK+/ fde=0,

acoK
(pa1,K - pa3,K) (|al,K’ua1,K - ’a37K|ua3,K) —0

(BS1) 2 Bl K| 0 (6)
(paz,K _pa4,K) _ (|a2,K’ua2,K - ’a4,K|ua4,K)

=0
2 K| ’

u, =0, Vae A,

\
where the subscripts a1 i, a2 i, a3 x and ay g are related to the edges a1 i, a2 k', a3 x and a4 g
of each rectangle K (see Figure 1). The unknowns u, and p, denote respectively the average of
u and the normal component of the flux p = Vu along an edge a and are located at the interface
of the mesh. This gives 4NE unknowns and 3NE equations. In contrast with the analogous
scheme on triangles introduced in [6], here is a lack of NE equations. Courbet suggests to add
the constraint on each rectangle K as a discrete equation:

Uay + Uaz g = Uag + Uay g - (7)

In particular the mean value of the solution u in each box coincides with its horizontal and
vertical average. Let us denote by Cj the space introduced by Courbet to discretize the unknown

(uas,Kv pas,K)

a3, K
(ua4,K7pa4,K) (uGQ,K7pa2,K)
a4, K as. K
a1 K
(ual,K7 pal,K)
Figure 1: Rectangle K, with edges a; x and unknowns (uq, ,Pa; x ), for i =1,...,4.

u. It is generated by vectors whose size is the number of edges of the domain €2, vanishing at the



boundary, and satisfying the additional condition (7) on each rectangle of the grid. The space
Cy is defined by:

Cy = {(Ua)aeA € RM guch that u, =0 for all a € A, and
Uqy g + Uay ;o = Uag i + Uay 5 ON €ach rectangle K}, (8)
= {(ua)aca, € ]RNAi,uaLK + Uy ;¢ = Uay ¢ + Uay o ON each rectangle K}.

However, the dimension of the space Cjy is dim Cy = NV; = NA; — NE + 1 > NA; — NE. Indeed
the boundary degrees of freedom of the space Cj are not independent. In fact, if u, = 0 for
NAp — 1 boundary edges, then u, = 0 holds on the last one. This implies that the box-scheme
(BS1) does not define a well-posed problem in the sense that the number of unknowns is larger
than the number of equations. Actually, due to the dimension of the space Cy, the number of
unknowns is: Number of unknowns (uq, ps) = NV; + NA = 3NE + 1 whereas there are only
3NE equations. Despite this dimension inconsistency, the numerical results reported in [5] for
the time dependent heat equation prove that there is no drawback in practice.

The observation that dim Cq = NV; suggests that the space Cj is identical to the Q!'-Lagrange
space with homogeneous boundary conditions:

Lemma 2.1 The mapping L defines a bijection between Q};,o and the Courbet space
L: Qé,o — ()
TR — (u(xa))aeA,
where x, denotes the mid-edge of a and Q. is the standard Q'-Lagrange finite element space:
Qe={ueC(Q);ueQ'(K) YK€ Ty}, Q'(K)=Span{l,z,y, zy},
and Q(I;,o its restriction to functions vanishing on 0S).

The proof of the lemma follows from the linearity, injectivity (see Proposition 2.1 hereafter) of
the mapping L, and the dimension equality of the spaces Cy and Q};,o- Before going further with
the stabilization of the box-scheme (BS1), we recall some useful properties of the nonconforming
Q! finite element space and its relation to Q..

2.2 Some properties of the Q! nonconforming space

The nonconforming Q! finite element space denoted by Q.. is defined by:

erzc: {uhELQ(Q); Up, EQl(K) VKE%;/UMKl da:/uhKQdaVazaKlﬂaKg E.Al}

a a

The space erzc,o is the zero boundary space: erzc,o = {uh €Qne; [ updo=0Vae Ab} :
Since the edges of the mesh are parallel to the axis of the domain, the mean value of a function in
Q! along an edge is also the value at the mid-point of the edge. We recall that for all v, € QL
the set of values

pa(vn) = vp(x,) for all a € A with the associated mid-point x,,



does not form a unisolvent set of degrees of freedom [1, 2, 12]. Indeed let n be the function
defined on Q'(K) by:
n: QYK) — R*
P (P(a)) s
It is well-known that the kernel of 7 is of dimension 1, generated by the nonconforming bubble
bi:

4
Kern = Span{bx} , bk(z,y) = Tk rx)(y — yK),

where (zx,yr) is the centre of the rectangle K. It is easy to check that for any K € 7; and
any v € Q' (K), the function bx has the following properties:

/ b do =0, / curlbg - Vodr =0, / (curlbg - v) vdo = 0. (9)
0K K oK
Let ¥ be the vector space generated by the local bubbles:

\I/:{¢;¢‘K=Oq(b](, ag € R VKE'Z}I}.

Then, dim¥ = NE and ¥ C Q}ZQO.

Definition 2.1 Let us define the following element B € QL by B = Z sgn(K)bg, where
KeTy,

sgn(K) takes alternately the values —1, +1 as displayed on the Figure 2.

Figure 2: Sign of K.

B is the so called hourglass-mode introduced by Hansbo in [16], which gives rise to some insta-
bility. By using this definition and the properties of the previous spaces, we prove the following
proposition.

Proposition 2.1 The spaces QL , QL. and U satisfy:

(i) QenN¥=Span{B}, (i1) Qnc=Qc+¥, (iii) Qneo=Qeo® Y.
In particular, dim QL. = NA + 1 and dim erzc,o = NA;.



Proof (i) Let ¢ = Y 7 axbx € QL N VU. The continuity of ¢ through each internal edge
a = 0K; N 0K, implies ag = sgn(K) a, for all K € T, a € R.

(i) Let us define the space M = QL + ¥. Then, M C Q... To prove M = Q. ., we will prove
that dim M = dim Q... Let i be the linear map

. Ol NA
1:Qp. — R

u o (u(Ta)) e u s

where z, is the mid-point of the edge a € A. Using the definitions of ¥ and bg, we prove that
Keri = {u €Ql . u(z,) =0Va e A} cvw, and
Imi = {(u(xa))aeA e RM W(Tag, )+ u(Tar,) = w(Tay,) + u(xaK4)} )

This in turn gives that dimQl. = dim(Keri) + dim(Imi) < NA. Moreover,
dim M = dim Q! +dim ¥ — dim(Q.NW¥) = NV + NE — 1. The Euler relation gives dim M = NA.
M C Q}w, so dim M < dim Q}w. We deduce that dim Q}. = NA, which concludes the proof of
(ii).

The statement (iii) is directly implied by (i) and (ii). [ |
Using the property of B and the continuity of the normal component of the element in RT°, we
deduce the following lemma

Lemma 2.2 Let ® be the vector space generated by the curl of the nonconforming bubble

®=curl¥={¢p= ) pBreurlbg, Bk €R}.
KeT,

Then, ® N RT° = Span{curl(B)}.

Note that the box-scheme (BS1) is a derivation of the mixed formulation of the Laplace equation
on each rectangle K given by the system (5). Since [} curlbg dz = 0 and div(curlbg) = 0 for
any Ox € R, we get from the mixed formulation (5) that for any Ox, we can superpose to py
any function ), Bk curl bx, which is a parasitic mode. Therefore a stabilization of the scheme
has to eliminate that mode.

3 A first stabilization of the Courbet’s box-scheme

We will now give a first stabilization of the box-scheme (BS1) using the finite element inter-
pretation of the space Cy coupled to the Raviart-Thomas space RT° in order to discretize the
unknowns (u,p). We also need to add one additional test function in order to have the right
number of equations. The element B is the simplest choice according to results of the previous
section.

Proposition 3.1 Let us call (BS2) the box-scheme: Find the solution (up,pp) € Q}:’O x RT? of

(BS2) { (divpn + f,vn)o0 =0 Vo, € PY,
(pr — Vun, an)oo = 0 Vg, € Xop, = (P?)? + Span{curl(B)}.

(i) The box-scheme (BS2) has 3NE + 1 unknowns.
(ii) The box-scheme (BS2) has a unique solution given by:

(10)



(a) up € Q}:’O is the solution of:

Z (HOVuh,HOVUh)OyK = (Hof, vp)o for all vy, € Qé,o-
KeTy,

(b) pn is given by:

fx ((z—x T—

where i is the solution of a certain sparse linear system.

Proof (i) Using the Euler relation, we get the following identity between the number of un-
knowns and the number of equations:

dim Q7 + dim RT® = NV; + NA = 3NE + 1 = dim P" + dim (X5,) .

(ii) Let (up,pn) € Q};,o x RT be a solution of (BS2). We prove that (uy,, py) satisfies the system
((a),(b)).

(a) Suppose given v, € Qg then ¢, = II'(Vuy) € Xa,. Introducing this value of gy, in (10)2,
afterwards using the decomposition Vuy, g = HOVvh‘ Kk + 0 Vbg for any dx € R and Green’s
formula, we get

> (Vup, Voo = > (pn, T°Vor)ox
K K

= > (pn, Von — 65 Vbk)o.x
K
11
= —Z/ divphvhdx—FZ/ vy P - Vdo (11)
* JK 7 JoK
—1—2/ 0K divpthdw—Z/ ph-VOg b do.
x JK % JoK

Since the mean value of the bubble function bx vanishes and p, € RT°, we have that
Sy 0k divpybr de = 0 and faKph -vdg bg do = 0. On the other hand, the equation (10);
gives divpy g = —11° fik for all K € 7. Therefore the equality (11) becomes:

Z(Vuh,HOVUh)QK = Z/ 1 foy, dz — Z /ph Vg [vp]a do + Z DPh - Vgupdo. (12)
K K K acA; v acAy ’?

Since vy, € Qéo, [vn]a = 0 for all a € A; and vy, = 0 for all a € Ay, the relation (12) becomes
> (Vup, IVun)ox = > [°f vp)ok
K K

which concludes (a).
(b) Any element p;, in RT°(K) can be decomposed as

dinh\K ( T — Tk ) ( T — TK )
= (11° + + : eR.
Ph| K ( ph)|K B Y —yx TK —(y — yK) YK




Using respectively the equations (10); and (10)2, we get divpyx = —H0f|K and
(°pp) x = (I°Vup) k- Then

HOf\K r—x r—
~ vy == (5700 ) (G )
Ph| K ( Uh)\K B Y — YK VYK —(y—yK)

The computation of the coefficient vk is done using (a), the equation (10)2 with
qn = > sgn(K) curl by, and the continuity of the normal component of py,.

This implies that any solution of the box-scheme (BS2) is a solution of the system ((a), (b)),
which is unique (f = 0 in the system ((a),(b)) implies u = 0 and pp = 0). The existence of
solutions of (BS2) is deduced from the uniqueness of the solution, the linearity of the problem,
and the equality between the number of unknowns and equations. |
Remarks:

(i) As proved by Hansbo, [16], the 1-point integration of the gradient of up, (Lemma 3.1 (ii)) is
not sufficient to obtain stability of the scheme.

(ii) The parasitic perturbation ), fx curlbg € ® seems to be controlled globally by the box-
scheme but not locally. As a consequence, we do not get a local reconstruction of the flux py in
each rectangle K.

4 A second stabilization of Courbet’s box-scheme

Due to its possible instability, the box-scheme (BS2) is not totally satisfying. So, we want to
build a box-scheme using larger spaces for both unknowns v and p. The basic idea is to use
the nonconforming space @, containing the Q'-Lagrange space Q. (used in (BS2)) for the
approximation of . For the flux, we consider the space RT? of Raviart-Thomas, supplemented
with the space ® of the rotational of the bubble. Note that those spaces are both nonconform
respectively in Hi(Q) and Hg;,(Q). Also this choice of spaces gives the advantage to get the
number of unknowns proportional to the number of rectangles, i.e. the trial spaces in (2) can
be piecewise polynomial spaces.

4.1 Definition of the box-scheme

Proposition 4.1 Let (BS,.) be the following box-scheme: Find (up,pp) € Qoo % (RT? 4 ®)
being solution of

> (divpy + f,on)o = 0oy € My, = PO,

KeT,

(BSne) " y . (13)
Z (pr — Vun, qn)o,x = 0Vqp € Xop = (PY)2 + P < - > + PO < B > )
KeTy, Yy

(i) The box-scheme (BSy:) has 5NE unknowns.
(ii) The box-scheme (BSye) has a unique solution (up,pn) € Q.o X (RT? + ®) given by:

(a) up, is the solution of the variational problem: Find uy € erzc,o such that

Z (Vup, Vop)ox = (I f,vp)o  for all v, € Qe -
KeTy,



(b) pn is locally given by:

Hof\K < ley. x> (x — zk) ) .

:Vu -
Prjrc = (Vun)ixc lex, x| + leyic? \ lea x| (y — yi)

Note that this box-scheme is nonconform for both unknowns u; and pj,. The test spaces May,
and Xy (in the system (2)) are piecewise polynomial functions. Remark that X is also
Xop = (PY)? 4+ PY(Vbg) + P°(curl bk), in particular, V(M ) C Xop.

Proof (i) By the Euler relations, we prove that:

dim Q..o + dim (RT? + ®) = (NA; + 1) + (NA + NE — 1) = 5 NE = dim X, + dim P°.

(ii) Let us prove that any (us,pp) € Qe X (RT® 4 @) satisfying the equations (BSy.) fulfils
the system ((a),(b)).

(a) Let vy € Q}LC,O' Let gy, = Vv, € Xy, in equation (13)2. By integration by parts

Z(Vuh,VUh = —Z/ dlvphvhdx—l—Z/ (pn - v) vpdo.

K

Moreover, since divpyx € P(K), the equation (13); gives divpyx = —II°fx. Hence,
pn € RTY + & can be written as p, = pp, + >k Br curlbg, with py, € RT°. This implies
that

Z(Vuh,Vvh)(),K = Z(H fion 0K+Z/ (pn + Bk curlbg) - v vy, do

K

= (I°f, vy, OQ+Z/ Dp, Vvhda+2/ O curlbg - v vy, do .

Using the properties (9) of the bubble bx and the continuity of the normal component of elements
pn € RT? C Hg;y(2), we obtain

> (Vun, Vunlox = (°fvn)oa+ Z/ph Vo up do — Z/ph Va [Un]a

K a€Ay acA;

Since up € Q.o and py, - va € PO(a),
/;ﬁh-l/auhdaz() foralla € A, and /ﬁh-l/a[uh]adaz() for all a € A;,
a a

which concludes (a). In particular, for v, = bx € Qy..0,

(Vun, Vogox = (I°f,bx)ox -

The mean value of bx equals 0 on each rectangle, hence (HO fibi)ok = 0. Also, Vuy, is locally
written as (Vup)|x = (v up) |k + dx Vbg, where dk is given by uy. We deduce that
0= (V up , V bK)O,K = ((HOV uh)‘K +dig Vb, V bK)O,K
= ((I°Vup) ik, Vbg)ox +dx|Vbk[§ & -

=0

10



It means that dx = 0 or equivalently that the bubble component of the solution wu; vanishes. In
particular, (Vup)x = (I1°V up) k.
(b) Since p, € RT? + ®, we have py, = py + >k Br curlbg with pp, € Haiy(€2). Again for each
rectangle K, divp, g = —Hof‘K and div(curlbg) = 0, so that
div py, = divp, = —II°F .
The equation (13)y implies (I%py)|x = (II°Vup)x = (Vup)x. On the other hand,
diVPh\K < T—TK ) ~ T —TK =
Ph|K (Ipn) > — BK —(y— yx) BK
This is equivalent to

B fix (@ -z 3 T —TK
prr = (Vup)x — 9 Y — YK + 0K ~(Y—yK) )’

Ph,1 Ph,2

For evaluating the coefficient By, we use the equation (13)2 with g, = curlbg:
/ (Ph1 + Pho — Vuy) - curlbg de = 0. (14)
K

We know by (9) that [, Vuy, - curlbg dz = 0. Inserting the value of pj 1, the equation (14)
becomes

2110 £ ¢
/ ph2-curlbg dr = | / (z—2x)’ — (y—yx)* dz.
K K| Jk
Using the following identities
Sz —ar)? = Blle, k>, [y —yx)? = Blle, k2, (15)

and the definition of py, o, give

i — ik Jea,ic]” — leyrc|?
2 ewx*+ ey x*

We have proved that a solution (up, pp) of the box-scheme (BS,,.) is also solution of the problem
((a),(b)), which is unique. This proves the uniqueness of the solution of the box-scheme (BS),).
The linearity and the equality between the number of unknowns and the number of equations
permit to conclude existence and uniqueness of the solution of the box-scheme (BS,,.) and its
equivalence with the formulation ((a),(b)). This concludes (ii). [ |

The previous result states that the box-scheme (B.S,,.) is well-posed and equivalent to a single
scheme in uj alone and an explicit reconstruction formula for p,. More precisely, uy is the
solution of the nonconforming variational formulation for the problem —Awu = TI°f. It also
generalizes the previous box-scheme (BS2) and addresses the above instability problem. This
box-scheme seems to be a generalization on rectangles of the box-scheme ((up, pp) € P,}QO x RT")

11



of Courbet and Croisille, [6]. Contrary to the triangles case, here the unknowns are not located
at the interface of the mesh. Nevertheless in the particular case of a uniform grid consisting of
squares, Bx = 0 on each K, p; can be written in the square K as

HOf\K r—TK
prix = (Vun) |k — 5 < A ) ;

which is the formulation of p;, in the box-scheme of Courbet-Croisille on triangles.

4.2 Numerical analysis

In this section, we provide the stability and the optimal a priori error estimates for the box-
scheme (BS.).

Lemma 4.1 (Discrete Poincaré lemma) There exists a constant C > 0 independent of §2
such that for all u € erw,o + H (),

lulo,o < Clulip -
Proof ([13]) Let u € Q.o+ Hj(€2). Then

u, Q
lulpo = sup M. (16)

ger2@) 19log

For g € L*(Q), there exists p € H(Q)? such that divp = g and ||p||1.0 < Clg|a. By replacing
g by this value in (16) and using Green’s formula, we get

(U,Q)O,Q:(U,din)o,QZ—Z/ Vu-pdw—i—Z/ p-rvudo. (17)
K VK K JOK

(4) (B)

First, we obtain [(A)] = |> x [ Vu - pdz| < |u|ipplie. Let us estimate |(B)|. Since
p € (HY(Q))? N Haiv (),

(B):ZK:/aKp-l/uda:Z/p-yauda—Z/p-l/a[u]ada. (18)

acAy ' ? acd;”

1
nc,0’

Let p-7, = ﬁ [, p-vado be the mean value of p- v, along the edge a. Since u € Hg () +Q
by the property of Q}LC,O to satisfy the patch-test, we have

/p-uauda:O foralla € A, and /p'ya[u]adazo for all a € A;.

a

Therefore, the equality (18) becomes:

;/Mp.mdg = Y [on-rmude = [ 0ov- 7 dado

ac Ay a€A; @
- ZZ/(p-ye—p-—l/e)udU.
K ecdK”®
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The Lemma of Crouzeix-Raviart [9], gives

| / (p- ve — P7) udo| < C hicluly.x [Pl -
e

Then,
an =13 j/ p-vudo| < AChJulLp plig-
~ Jox

Finally,
|(u, 9)o,a < (4Ch + 1D)|ulip |plie < 4 Ch+1)|uliy |pl

<C(M)glo,0

1,0 -
]

Proposition 4.2 (Stability) The solution (up,pn) € QTILC,O x (RT°+®) of the problem (BSp.)
satisfies the stability estimate:

lunlip + [[prlldiv.e < Clfloq-

Proof Using the formulation of Proposition 4.1 with v, = wuy, applying Cauchy-Schwarz in-
equality and Poincaré inequality give

[unllLn < CQ) [floa-

On the other hand, the local formula (b) from Proposition 4.1 for p, and the identity divp, =
—TI°f imply ||pallaiv.n < C|flo.n- This concludes the proof. [ ]

Proposition 4.3 (A priori error estimates) Let (u,p) € HE(Q) x Haiy(2) be the solution of
the continuous problem (1) and (up,pn) € Qoo X (RT® + @) be the solution of the box-scheme
(BSye). If f € HY(R), we have:

(1) |u—wuplin < Chlflon (i1) |u—uploo < CRA(|floq + |fl1)

. 19
(iii) |p—paloc < Chlfloe (i) |p—palawn < Chiflio. (19)

Proof (i) Let us introduce the bilinear form ay, defined for all u, v € H}(Q) + QL. by

nc,0

an(u,v) = Y (Vu, Voo -
KeT,

Then we obtain the classical inequality

lu—wuplip <2 inf  |u—wpl1p+  sup lap (up, — u,wp)|
whEQs . o wheQl, ’wh|l,h

The estimation of the consistency error is deduced from the variational formulation from Propo-
sition 4.1:

sup lapn (up, — u, wp)|

wneQl, o whlin

< Chlfloa- (20)

13



By using the Q'-Lagrange interpolation, we get

inf |u—wh|17h S C’h!u|27g.
wheQ’}LC,O

This concludes (i).

(ii) is proved by using the Aubin-Nitsche argument and the result (i).

(iii) is a deduction of the local formula p;, given by Proposition 4.1, (ii).

(iv) results from divp = — f and divp, = —II°f. |

4.3 Link to the box-scheme (BS2)

We already mentioned that the 1-point integration of the gradient of uy is not sufficient to
obtain the stability of the scheme (see Section 2.1). Nevertheless, the addition of the local
bubble in both trial and test spaces permits to overcome the previous difficulty, as we have just
observed. In this sense, the nonconforming bubble is a stabilization parameter. Moreover, from
the decomposition of the space Q}LC,O given in Proposition 2.1, we deduce the following result:

Lemma 4.2 (Link to the box-scheme (BS2)) The solution (un,pn) € Q.o % (RT® + @)
of the boz-scheme (BSy.) is given as a function of the solution (up,pp) € Qé,o x RTO of the
bozx-scheme (BS2) by

up, = Up + Z@Kb;( and ph:;ﬁh—i—ZﬁKcurle,

KeTy, KeTy,
where
3|K| 1 -
Pn — Vi, Vb )oK »
T Tear Pt e Jo
3|K| 1

Br =

1 ’e K’2 n ’e KP (ﬁh — Vg, curl bK)O,K .
17 y)

Proof Let (un, pn) € Qf x RT be the solution of the box-scheme (BS2). We are looking for
(ak, Br) ke, such that

thﬁh-i-ZOéKbK ; phZﬁfﬁ‘ZﬁK curl b
K K

define the solution (uy, p) € QL o x (RT+®) of the box-scheme (BS,,.). Due to divp, = div py,

nc,0

the equation (BS))1 is valid for py. Let us suppose that (uy, py) satisfies the equation (B.S),.)s.
By the definition of (up,pp) and since (up, pp,) satisfies the equation (BS2)a,

> (on— Vun,qn)ox =0 for all g, € P'(Vbg) + PP(curlb). (21)
KeT,

By taking g, = Vbg in (21), we get

0= (pn — Vup, qn)o,xk = (pn — Vin, Vb )o,x + (B curlbi, Vbk)o,x — (ax Vbi, Vbk)o K -

14



Since (curlbg, Vbg)o,x = 0, we deduce the formula of ax on each rectangle K. Then for each
K, ak is uniquely determined by the unique solution (up,pp) of the box-scheme (BS2). In the
same way, by taking ¢, = curlbg in the equation (21), we get

0= (ph — Vuh,curl bK)O,K = (ﬁh — Vuh,curl bK)O,K + (,6}( curl bK,curl bK)O,K

and deduce the formula for Sx. Then with this definition of the coefficients a g, Ok, we prove
that (up,pn) € erzc,o x (RT° 4 ®) is the unique solution of the box-scheme (BS,.). [ |

5 A simplified stabilized box-scheme

In this section, we investigate a new way to stabilize the box-scheme (BS1). In fact it seems
that the solution of the previous box-scheme is locally in P(K) x (RT°(K) + ®) (see the proof
of Proposition 4.1). We are looking for a space locally in P'(K) instead of Q*(K) with the
same continuity properties as Q}w,o- The space ]\A/fl,h recently introduced by Park and Sheen [19]
fulfils those conditions:

M, = {u € L*(Q);vx € PHK)VK €T ; /uKl dr = /U|K2 dr Ya = 0K N 0K, € Ai}.

a a

Its dimension is dim Ml,h = 3NE — NA; = NV — 1, since there are three unknowns for each
rectangle subject to INA; independent continuity relations. The corresponding space with ho-
mogeneous boundary is

Ml,h,o ={ve JT/[/L;Z; /vdx =0Va € Ay} .

Its dimension is also dim Ml,h,o = NA— NE — (NA,—1) = NV;. Note that this space satisfies the
additional condition (7) of Courbet. However in contrast to the space Q., it does not contain the
nonconforming bubble. The space M 3, o is by definition included into Q}mo. Similarly to Lemma

2.1, we deduce from the linearity and the injectivity of L and the equality dim Ml,h,l) = dim Cj
the following lemma.

Lemma 5.1 The mapping L defines a bijection between Ml,h,o and the Courbet space Cy:

L3Ml,h,0 I Co

U — (u(xa))aeA.
Definition 5.1 Let (BS3) be the box-scheme: Find (up,pp) € Ml,h,ﬂ x (RT° 4 ®) such that:

Z (divpn + f,on)ox = 0 Vo, € PO,

(BS3) { KT 0 (22)
> (pn—Vunagn)ox = 0 Vg, € Xop = (P)* + @,
KeTy,

The box-scheme has 4NE unknowns.

15



Indeed dim M, 5, + dim(RT® + ®) = NV; + NA + NE — 1 = 4NE = dim P° + dim Xy ,.

Lemma 5.2 Link to the box-scheme (BS,,.) The solution (i, pr) € MI,h,OX (RT°+®) of the
bozx-scheme (BS3) is unique and given as a function of the solution (up,pp) € Q}zc,o X (RT° + @)
of the box-scheme (BSy.) by

up =up and  pp = pp.

Proof Any solution (uy,pn) € Ml,h,l) x (RT" 4 ®) of the box-scheme (BS3) is included in

TILC,O x (RT® + ®) and satisfies the equations (13). By uniqueness of the solution of the box-
scheme (BS,,.) and the linearity of the scheme (BS3), we deduce the result. [ |
Note that we rediscover that uy, € Q}zc,o in the scheme (BS,,) is locally in P!(K) (see the proof
of Proposition 4.1). In particular, this means that the bilinear term “zy” is not needed. In fact
the solution of the box-scheme (B.S,,) is already the solution of the box-scheme (BS3).

Corollary 5.1 The boz-scheme (BS3) has a unique solution (up,pp) € Ml,h,o x (RT®+®) such
that .
(a) up € Mjp is the solution of:

Z (Vup, Vop)ox = (Hof, vpo  for all vy € ]\A/fl,h,o.
KeT,

(b) py is locally given by:

H0f|K < ley.x |2 (x — zk) ) .

f— V’LL -
Prixc = (Vun)jxc leaic|? + ey ? \ leax*(y — yx)

1

Proof This result is deduced from the previous lemma and Proposition 4.1, since M, 1,h,0 C @5 0

Corollary 5.2 (A priori error estimates) Let (u,p) € H}(2) x Hgiy(Q) be the solution of
the continuous problem (1) and (up,pp) € My po % (RT? + ®) be the solution of the boz-scheme
(BS3). If f € HY(), we have:

(1) |u—wuplin < Chlflon (i) |u—unloo < Ch3(|floq + |flia) (23)
(i13) |p—pnloo < Ch|floa  (iv) |[p—Dpuldve < Ch|flia-

6 Numerical results

In this section we present several numerical results which demonstrate the theoretical conver-
gence rates obtained for the box-scheme of Section 4. We compute the error estimates for the
unknown wu and the flux p of the box-scheme (BS,,.) on two different domains € meshed by
rectangles. The solution of the box-scheme (BS,,) is computed according to the decoupled for-
mulation given in Proposition 4.1. The unknown u is the solution of the variational formulation,
whereas p is deduced from the local reconstruction on each rectangle. From the computed error,
we deduce numerical convergence rate for each solution of each test. The results for each test
case are reported in the Tables 1 to 5.

The test cases 1 and 2 of Section 6.1 are given on the unit square domain Q = [0, 1]> meshed
by squares. Whereas Section 6.2 is devoted to the computation of the error estimates of the
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box-scheme (BS,.) on = [0,1]2 meshed by rectangles. Finally in Paragraph 6.3, we present
two test cases on the L-shaped domain 2 = [0,2] x [0,1] U[1,2] x [1,2], meshed by squares. All
the computed convergence rates are in agreement with the theoretical ones given in Proposition
4.3.

6.1 Square domain meshed by squares
The domain € is meshed by four different regular grids made of 100, 225, 400 and 900 squares.

1. Test case 1: In this first example, the source term f and the Dirichlet data g are chosen
such that u(z,y) = x (1 — z) sin(mwy) is the exact solution of the Poisson problem

(24)

—Au = f on Q,
u =g on OJQ.

The results for the box-scheme (up,pn) € Q.o X (RT® + ®) defined by (BSy.), are given
in Table 1. The error for the unknown u is of order 1 in the semi-norm |- |; j, and of order
2 for the L?-norm. For p we get also order 1 in the L?-norm. The numerical results are of
order of those computed theoretically in Proposition 4.3.

nb rect. |u — uplo.0 |u — upl1p |p — prloo | space step h
100 2.261 x 1073 | 7.567 x 1072 | 7.976 x 1072 0.1414
225 1.008 x 1073 | 5.053 x 1072 | 5.326 x 102 0.09428
400 5.677 x 10~% | 3.792 x 102 | 3.997 x 102 0.07071
900 2.525 x 1074 | 2.529 x 102 | 2.665 x 102 0.04714

conv. rate 1.996 0.9977 0.9979

Table 1: Box-scheme (BSye): (un,pn) € Qpeg % (RT? + ®) for Test 1.

2. Test case 2: Our second example is a test case proposed by Douglas et al., [1]. The source
term and the boundary conditions are chosen such that
u(z,y) = exp(—100 ((z — 1/4)? + (y — 1/3)?)) is the exact solution of the problem (24). It
concerns a Gaussian pulse centred at the point (xg,yo) = (i, %) The error estimates for
both unknowns w and p = Vu are given in Table 2 for the box-scheme
(uh,Ph) € Qpeo X (RT® + ®). The convergence rates are a little bit lower than expected
(1.8 instead of 2 for u in the L2-norm and 0.97 instead of 1 for p in the L2norm), but still
close to the a priori error estimates of Proposition 4.3. This is due to the high gradient of

the exact solution at the point (xg,yo).

6.2 Square domain meshed by rectangles

In this example, we consider the domain € = [0, 1]?> meshed by rectangles and the solution
u(z,y) = (1 —x)y (1 —y) exp(5x) of the problem (24), where the right-hand side and the
Dirichlet conditions are computed using the exact solution w. The grid is made of n, x n,
rectangles where n, and n, are the number of subdivisions of the segment [0, 1] in each direction
(Oz) and (O,). We compute the solution (up,pp) for (nz,n,) taking the values (20,5), (40,10),
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nb rect. lu—wuploo | |[u—unlin | P —Prloo | space step h
100 3.927 x 1072 0.9945 1.035 0.1414
225 1.990 x 10~2 0.6885 0.7112 0.09428
400 1.174 x 1072 0.5148 0.5333 0.07071
900 5.401 x 1073 0.3422 0.3553 0.04714

conv. rate 1.808 0.9737 0.9751

Table 2: Box-scheme (BSye): (un,pn) € Qpeg X (RT? + ®) for Test 2.

(80,20) and (100,25), i. e. 100, 400, 1600 and 2500 rectangles. The exact solution presents a
boundary layer at x = 1. Nevertheless the computed solution u;, and the discrete flux p, of
(BSyc) seem to take it into account. The convergence rate between the exact and the discrete
solution for both unknowns v and p = Vu are assembled in Table 3. The numerical results are
really satisfying the theoretical estimates of Proposition 4.3.

nb rect. |lu—unlo,o | |[u—uplin | [P —Dpulogn | space step h

20 x5 3.386 x 102 1.979 1.586 0.2061
40 x 10 8.488 x 103 1.001 0.7991 0.1031
80 x 20 2.124 x 103 0.5020 0.4003 0.05154
100 x 25 | 1.359 x 103 0.4017 0.3203 0.04123
conv. rate 1.998 0.9911 0.9942

Table 3: Box-scheme (BSyc): (un,pn) € Qpeg X (RT? + ®) for Test 3.

6.3 Tests cases on an L-shaped domain

In this case we consider a different domain Qr, given by the square [0,2] x [0,2] without the
part [0,1] x [1,2]. We obtain an L-shaped domain. We compute the solution (up,py) of the
box-scheme (B.S,,.) associated with the Poisson problem (24). The data f and g are chosen such
that u is the exact solution of (24). The computed results conform to the theoretical ones.

1. Test case 4: The exact solution is u(z,y) =z (2 —z)y (2 — y).
Convergence rates of the error for both unknowns u and p = Vu are given in Table 4.

nb rect. |u — uplo.0 |u — upl1p |p — prlon | space step h
75 1.351 x 1072 0.2799 0.2804 0.2828
300 3.402 x 1073 0.1399 0.1400 0.1414
675 1.506 x 1073 | 9.325 x 1072 | 9.326 x 102 0.09428

conv. rate 1.996 1.000 1.002

Table 4: Box-scheme (BSye): (un,pn) € Qpeo % (RT? + ®) for Test 4.
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2. Test case 5: The exact solution is u(x,y) = z (2 — z) y? (2 — y) sin(z + 2y).
Convergence rate and error for both unknowns u and p = Vu are given in Table 5.

nb rect. lu—wuploo | |[u—unli,n | P —Prloo | space step h
75 3.368 x 102 0.5089 0.5215 0.2828
300 8.613 x 1073 0.2543 0.2616 0.1414
675 3.813 x 1073 0.1688 0.1739 0.09428

conv. rate 1.981 1.004 0.9993

Table 5: Box-scheme (BSyc): (un,pn) € Qpeg X (RT? + ®) for Test 5.

6.4 Conclusion

The numerical results for the box-scheme (BS,.) are really consistent with the a priori error
estimates of Proposition 4.3. The results obtained for the box-scheme (BS,,.) could be computed
analogously by the box-scheme (BS3).

The local formulation of the flux pj, of each box-scheme suggests consideration of a more relevant
finite element space for the approximation of the flux. It might be interesting to consider a flux
space locally in (P°(K))?+ P°(K) ( exyllz = 2i) > for each rectangle K, submitted to some

ek s (y — YK)
continuity constraints.
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