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Abstract

Recently, Courbet and Croisille [Math. Model. Numer. Anal., 32, 631–649, 1998] intro-
duced the FV box-scheme for the 2D Poisson problem in the case of triangular meshes.
Generalization to higher degree box-schemes has been published by Croisille and Greff [Nu-
mer. Methods Partial Differential Equations, 18, 355–373, 2002]. These box-schemes are
based on the idea of the finite volume method in that they take the average of the equa-
tions on each cell of the mesh. This gives rise to a natural choice of unknowns located at
the interface of the mesh. Contrary to the finite volume method, these box-schemes are
conservative and use only one mesh. They can be seen as a discrete mixed Petrov-Galerkin
formulation of the Poisson problem. In this paper we focus our interest on box-schemes for
the Poisson problem in 2D on rectangular grids. We discuss the basic FV box-scheme, and
analyse and interpret it as three different box-schemes. The method is demonstrated by
numerical examples.

1 Introduction

The aim of this paper is to introduce several box-schemes for elliptic problems on rectangular
grids based on the model of [6, 7, 8, 13]. The principle of the box-scheme we intend to discuss
here in the case of rectangular grids goes back to H.B. Keller [17], where a box-scheme for the
heat equation is introduced. In the case of an elliptic system, the principle of the box-schemes
consists of discretizing the mixed form of the equation, by taking the average of the conservation
and the constitutive laws on the same mesh. The convenient FE framework is the one of the
so-called Petrov-Galerkin methods with two trial function spaces (one for the primitive variable
u and one for the flux p = ∇u) and two test function spaces. A comprehensive understanding
of this kind of scheme has been introduced in [6, 7, 8] in the case of a triangular mesh. We refer
also to [21] for finite volumes methods connected to Petrov-Galerkin formulation.

Here, we consider a rectangular domain Ω ⊂ R
2 meshed by a regular grid Th made of

rectangles (with edges parallel to those of the domain). For the simplicity of the presentation
and since we focus on the design principles of different box-schemes, we restrict ourselves to the
simple Poisson problem −∆u = f , for f ∈ L2(Ω) with homogeneous boundary conditions. The
mixed form we consider is: Find (u, p) ∈ H1

0 (Ω) ×Hdiv(Ω) such that{
(div p+ f, v)0,Ω = 0 for all v ∈ L2(Ω) ,
(p−∇u, q)0,Ω = 0 for all q ∈ (L2(Ω))2.

(1)
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where the spaceHdiv(Ω) isHdiv(Ω) = {p ∈ (L2(Ω))2 ; div p ∈ L2(Ω)}. As in [6, 8], the discretiza-
tion of (1) is performed by a mixed Petrov-Galerkin scheme called box-scheme. It involves
four discrete spaces: M1,h,X1,h as trial spaces, and M2,h, X2,h as test spaces. The box-scheme
reads: Find (uh, ph) ∈M1,h ×X1,h such that⎧⎪⎪⎨

⎪⎪⎩

∑
K∈Th

(div ph + f, vh)0,K = 0 for all vh ∈M2,h ,∑
K∈Th

(ph −∇uh, qh)0,K = 0 for all qh ∈ X2,h .
(2)

The uniqueness of the solution of (2) implies in particular the identity of the dimensions

dim M1,h + dim X1,h = dim M2,h + dim X2,h . (3)

The starting point of this article is the paper [5] by Courbet, where an original box-scheme on
quadrangles is introduced for the time dependent diffusive problem. We give the interpretation
of that scheme with three different box-schemes, which allows to identify its stability and accu-
racy properties. As is the case on a triangular mesh, the natural choice for the approximation
of the flux ph is the lowest order Raviart-Thomas space. For the unknown uh we use the stan-
dard Q1-Lagrange space, or its nonconforming analogue, Q1

nc or the so-called P 1-nonconforming
quadrilateral finite element, introduced by Park and Sheen [19]. Due to the properties of the
different trial spaces, we can make the link between these three box-schemes explicit. An im-
portant characteristic of these box-schemes is their equivalence with a decoupled formulation
in the unknowns uh and ph separately. This allows the computation of the discrete flux ph in
a cheap way, since it is just given as a function of ∇uh and the right-hand side f . This local
reconstruction of the flux ph in each cell is in particular of interest for porous media problems,
e.g. contaminant transport where the velocity is computed by the Darcy law and introduced in a
convection-diffusion equation for the computation of the concentration. This decoupled feature
of the box-scheme extends the observation by Marini [18], that the flux in the mixed FEM can
be recovered in an inexpensive way. Concerning the a posteriori error estimates of the box-
scheme, we refer to the recent work by El Alaoui, Ern, [10, 11]. Finally, let us mention that an
increasing interest in box-schemes has recently appeared [3, 4]. Note that a different possibility
for extending the box-scheme of [6] on rectangles, using the Rannacher-Turek nonconforming
FE space, has been studied in [3, 14, 15].

Let us give now some standard notation. We introduce the mesh dependent norms defined
respectively on the mesh dependent spaces H1

0 (Ω) +M1,h and Hdiv(Ω) +X1,h:

|u|1,h =
(∑

K

|∇u|20,K

)1/2
, ‖u‖1,h = (|u|20,Ω + |u|21,h)1/2 for all u ∈ H1

0 (Ω) +M1,h ,

|p|div,h =
(∑

K

|div p|20,K

)1/2
, ‖p‖div,h = (|p|20,Ω + |p|2div,h)1/2 for all p ∈ Hdiv(Ω) +X1,h .

The geometrical notation is as follows. The rectangles are denoted byK with centre GK(xK , yK),
area |K|, and diameter hK . We denote by h the maximum of the diameters of the elements of
the mesh. The sizes of the sides of the rectangle K are |eK,x| and |eK,y|. We will write ∂K for the
set of edges of K. The sets Ai and Ab denote the internal and boundary edges respectively. We
define A = Ai ∪ Ab to be the set of all edges with global numbering. The number of rectangles
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is NE. The number of edges (respectively internal, boundary edges) is NA (respectively NAi,
NAb). The number of vertices (respectively internal, boundary vertices) is NV (respectively NVi,
NVb). The Euler relations are

4NE = NAi +NA and NE −NA+NV = 1. (4)

The outgoing unitary normal vector to an edge e is νe. More generally, we write ν. The
mid-point of an edge e is xe and [u]e denotes the jump of u along e. The gradient of f is
∇ f = [∂xf , ∂yf ]T and the 2D rotational is curl f = [∂yf , −∂xf ]T . The letter C denotes some
generic constant independent of the mesh. Let P 0 be the space of piecewise constant functions,
P 1 be the space of piecewise affine functions and Q1 be the space of bilinear functions. We
define Π0 to be the classical projection operator on the piecewise constant functions. Let us
recall the definition of RT 0 the lowest order space of Raviart-Thomas [20], useful to discretize
the flux p = ∇u:

RT 0 = {qh ∈ Hdiv(Ω) ; qh ∈ RT 0(K), ∀K ∈ Th} ,
where the local space RT 0(K) is

RT 0(K) = P 0(K)2 + P 0(K)
(
x
0

)
+ P 0(K)

(
0
y

)
.

The space RT 0 is of dimension NA, the degrees of freedom being given by the linear forms

La(qh) =
1
|a|

∫
a
qh · νa dσ for all a ∈ A.

Note that the normal component ph · νa of p along each interior edge is constant.
The outline of the paper is as follows. In Section 2, we recall briefly (in the particular

case of the Poisson problem) the design principles of Courbet’s scheme. To understand it in a
finite element sense, we introduce in Section 3 a finite element box-scheme based on the relation
between the Courbet space (a space used by Courbet to approximate the unknown u, which
will be defined in the next section) and the standard Q1-Lagrange finite element space. The
approximation of the flux p = ∇u is done using the Raviart-Thomas space. However, this box-
scheme seems to be instable. The idea of Section 4 is to build a new box-scheme generalizing
the previous one and based on the inclusion of the space Q1-Lagrange into Q1-nonconforming.
Both unknowns u and p are discretized in nonconforming spaces with respect to H1

0 (Ω) and
H1

div(Ω). We perform the numerical analysis of the scheme, and its equivalence to a decoupled
problem in uh and ph: a nonconforming scheme in uh and a local reconstruction formula of ph

(in function of uh and the data f). Consequently, we can make explicit the link with the box-
scheme of Section 3. It turns out that the solution uh of the box-scheme is only affine (and not
bilinear) per rectangle. Section 5 is devoted to the development and the analysis of a reduced
box-scheme. We conclude this work with numerical results in Section 6. Note that the most
part of this paper has been presented in [13]. See also [14].

2 Courbet’s box-scheme

2.1 Introduction

In [5], B. Courbet has introduced a box-scheme for the time dependent mixed formulation of
the compressible Navier-Stokes equations. The scheme was intended to extend to a rectangular
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grid the well-known box-scheme of H. B. Keller for the heat equation introduced in [17]. In the
case of the Poisson problem, the box-scheme of Courbet is a derivation of the mixed form of the
problem taken as mean value on each rectangle K:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
K

div p dx +
∫

K
f dx = 0 ,∫

K
p dx−

∫
K
∇u dx = 0 ,

u = 0 on ∂ Ω .

(5)

The Courbet box-scheme referred later as (BS1) is: Find u = (ua)a∈A and p = (pa)a∈A such
that for all rectangles K of the grid:

(BS1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈∂K

|a| pa,K +
∫

K
f dx = 0 ,

(pa1,K
− pa3,K

)
2

−
(|a1,K |ua1,K

− |a3,K |ua3,K
)

|K| = 0 ,

(pa2,K
− pa4,K

)
2

−
(|a2,K |ua2,K

− |a4,K |ua4,K
)

|K| = 0 ,

ua = 0 , ∀a ∈ Ab ,

(6)

where the subscripts a1,K , a2,K , a3,K and a4,K are related to the edges a1,K , a2,K , a3,K and a4,K

of each rectangle K (see Figure 1). The unknowns ua and pa denote respectively the average of
u and the normal component of the flux p = ∇u along an edge a and are located at the interface
of the mesh. This gives 4NE unknowns and 3NE equations. In contrast with the analogous
scheme on triangles introduced in [6], here is a lack of NE equations. Courbet suggests to add
the constraint on each rectangle K as a discrete equation:

ua1,K
+ ua3,K

= ua2,K
+ ua4,K

. (7)

In particular the mean value of the solution u in each box coincides with its horizontal and
vertical average. Let us denote by C0 the space introduced by Courbet to discretize the unknown

(ua4,K
, pa4,K

) (ua2,K
, pa2,K

)

(ua3,K
, pa3,K

)

(ua1,K
, pa1,K

)

a4,K

a3,K

a2,K

a1,K

Figure 1: Rectangle K, with edges ai,K and unknowns (uai,K , pai,K ), for i = 1, . . . , 4.

u. It is generated by vectors whose size is the number of edges of the domain Ω, vanishing at the
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boundary, and satisfying the additional condition (7) on each rectangle of the grid. The space
C0 is defined by:

C0 =
{
(ua)a∈A ∈ R

NA such that ua = 0 for all a ∈ Ab and
ua1,K

+ ua3,K
= ua2,K

+ ua4,K
on each rectangle K

}
,

=
{
(ua)a∈Ai ∈ R

NAi , ua1,K
+ ua3,K

= ua2,K
+ ua4,K

on each rectangle K
}
.

(8)

However, the dimension of the space C0 is dimC0 = NVi = NAi −NE + 1 > NAi −NE. Indeed
the boundary degrees of freedom of the space C0 are not independent. In fact, if ua = 0 for
NAb − 1 boundary edges, then ua = 0 holds on the last one. This implies that the box-scheme
(BS1) does not define a well-posed problem in the sense that the number of unknowns is larger
than the number of equations. Actually, due to the dimension of the space C0, the number of
unknowns is: Number of unknowns (ua, pa) = NVi + NA = 3NE + 1 whereas there are only
3NE equations. Despite this dimension inconsistency, the numerical results reported in [5] for
the time dependent heat equation prove that there is no drawback in practice.
The observation that dimC0 = NVi suggests that the space C0 is identical to the Q1-Lagrange
space with homogeneous boundary conditions:

Lemma 2.1 The mapping L defines a bijection between Q1
c,0 and the Courbet space

L : Q1
c,0 −→ C0

u �−→
(
u(xa)

)
a∈A ,

where xa denotes the mid-edge of a and Q1
c is the standard Q1-Lagrange finite element space:

Q1
c = {u ∈ C0(Ω) ; u ∈ Q1(K) ∀K ∈ Th } , Q1(K) = Span{1, x, y, xy} ,

and Q1
c,0 its restriction to functions vanishing on ∂Ω.

The proof of the lemma follows from the linearity, injectivity (see Proposition 2.1 hereafter) of
the mapping L, and the dimension equality of the spaces C0 and Q1

c,0. Before going further with
the stabilization of the box-scheme (BS1), we recall some useful properties of the nonconforming
Q1 finite element space and its relation to Q1

c .

2.2 Some properties of the Q1 nonconforming space

The nonconforming Q1 finite element space denoted by Q1
nc is defined by:

Q1
nc =

{
uh ∈ L2(Ω) ; uh ∈ Q1(K) ∀K ∈ Th ;

∫
a
uh|K1

dσ =
∫

a
uh|K2

dσ ∀a = ∂K1 ∩ ∂K2 ∈ Ai

}
.

The space Q1
nc,0 is the zero boundary space: Q1

nc,0 =
{
uh ∈ Q1

nc ;
∫
a uh dσ = 0 ∀a ∈ Ab

}
.

Since the edges of the mesh are parallel to the axis of the domain, the mean value of a function in
Q1 along an edge is also the value at the mid-point of the edge. We recall that for all vh ∈ Q1

nc,
the set of values

pa(vh) = vh(xa) for all a ∈ A with the associated mid-point xa,
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does not form a unisolvent set of degrees of freedom [1, 2, 12]. Indeed let η be the function
defined on Q1(K) by:

η : Q1(K) −→ R
4

p �−→
(
p(xa)

)
a∈∂K

.

It is well-known that the kernel of η is of dimension 1, generated by the nonconforming bubble
bK :

Ker η = Span{bK} , bK(x, y) =
4
|K|(x− xK)(y − yK),

where (xK , yK) is the centre of the rectangle K. It is easy to check that for any K ∈ Th and
any v ∈ Q1(K), the function bK has the following properties:∫

∂K
bK dσ = 0 ,

∫
K

curl bK · ∇v dx = 0 ,
∫

∂K
(curl bK · ν) v dσ = 0. (9)

Let Ψ be the vector space generated by the local bubbles:

Ψ = {ψ ;ψ|K = αKbK , αK ∈ R ∀K ∈ Th} .

Then, dimΨ = NE and Ψ ⊆ Q1
nc,0.

Definition 2.1 Let us define the following element B ∈ Q1
c by B =

∑
K∈Th

sgn(K)bK , where

sgn(K) takes alternately the values −1, +1 as displayed on the Figure 2.

−

K

−

−

+

−

+

−

+

+

−

+

−

+

−

Figure 2: Sign of K.

B is the so called hourglass-mode introduced by Hansbo in [16], which gives rise to some insta-
bility. By using this definition and the properties of the previous spaces, we prove the following
proposition.

Proposition 2.1 The spaces Q1
c , Q

1
nc and Ψ satisfy:

(i) Q1
c ∩ Ψ = Span{B}, (ii) Q1

nc = Q1
c + Ψ, (iii) Q1

nc,0 = Q1
c,0 ⊕ Ψ.

In particular, dimQ1
nc = NA+ 1 and dimQ1

nc,0 = NAi.
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Proof (i) Let ψ =
∑

K∈Th
αKbK ∈ Q1

c ∩ Ψ. The continuity of ψ through each internal edge
a = ∂K1 ∩ ∂K2 implies αK = sgn(K)α, for all K ∈ Th, α ∈ R.
(ii) Let us define the space M = Q1

c + Ψ. Then, M ⊆ Q1
nc. To prove M = Q1

nc, we will prove
that dimM = dimQ1

nc. Let i be the linear map

i : Q1
nc −→ R

NA

u �−→
(
u(xa)

)
a∈A ,

where xa is the mid-point of the edge a ∈ A. Using the definitions of Ψ and bK , we prove that

Ker i =
{
u ∈ Q1

nc; u(xa) = 0 ∀a ∈ A
}
⊆ Ψ , and

Im i =
{
(u(xa))a∈A ∈ R

NA ; u(xaK1
) + u(xaK3

) = u(xaK2
) + u(xaK4

)
}
.

This in turn gives that dimQ1
nc = dim(Ker i) + dim(Im i) ≤ NA. Moreover,

dimM = dimQ1
c +dimΨ−dim(Q1

c ∩Ψ) = NV +NE−1. The Euler relation gives dimM = NA.
M ⊆ Q1

nc, so dimM ≤ dimQ1
nc. We deduce that dimQ1

nc = NA, which concludes the proof of
(ii).
The statement (iii) is directly implied by (i) and (ii). �
Using the property of B and the continuity of the normal component of the element in RT 0, we
deduce the following lemma

Lemma 2.2 Let Φ be the vector space generated by the curl of the nonconforming bubble

Φ = curlΨ = {φ =
∑

K∈Th

βK curl bK , βK ∈ R} .

Then, Φ ∩RT 0 = Span{curl
(
B

)
}.

Note that the box-scheme (BS1) is a derivation of the mixed formulation of the Laplace equation
on each rectangle K given by the system (5). Since

∫
K curl bK dx = 0 and div(curl bK) = 0 for

any βK ∈ R, we get from the mixed formulation (5) that for any βK , we can superpose to ph

any function
∑

K βK curl bK , which is a parasitic mode. Therefore a stabilization of the scheme
has to eliminate that mode.

3 A first stabilization of the Courbet’s box-scheme

We will now give a first stabilization of the box-scheme (BS1) using the finite element inter-
pretation of the space C0 coupled to the Raviart-Thomas space RT 0 in order to discretize the
unknowns (u, p). We also need to add one additional test function in order to have the right
number of equations. The element B is the simplest choice according to results of the previous
section.

Proposition 3.1 Let us call (BS2) the box-scheme: Find the solution (uh, ph) ∈ Q1
c,0 ×RT 0 of

(BS2)
{

(div ph + f, vh)0,Ω = 0 ∀vh ∈ P 0 ,

(ph −∇uh, qh)0,Ω = 0 ∀qh ∈ X2,h = (P 0)2 + Span{curl(B)}. (10)

(i) The box-scheme (BS2) has 3NE + 1 unknowns.
(ii) The box-scheme (BS2) has a unique solution given by:
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(a) uh ∈ Q1
c,0 is the solution of:∑

K∈Th

(Π0∇uh,Π0∇vh)0,K = (Π0f, vh)0,Ω for all vh ∈ Q1
c,0 .

(b) ph is given by:

ph|K = (Π0∇uh)K −
Π0f|K

2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)
,

where γK is the solution of a certain sparse linear system.

Proof (i) Using the Euler relation, we get the following identity between the number of un-
knowns and the number of equations:

dim Q1
c,0 + dim RT 0 = NVi +NA = 3NE + 1 = dim P 0 + dim (X2,h) .

(ii) Let (uh, ph) ∈ Q1
c,0×RT 0 be a solution of (BS2). We prove that (uh, ph) satisfies the system

((a),(b)).
(a) Suppose given vh ∈ Q1

c,0 then qh = Π0(∇vh) ∈ X2,h. Introducing this value of qh in (10)2,
afterwards using the decomposition ∇vh|K = Π0∇vh|K + δK∇bK for any δK ∈ R and Green’s
formula, we get∑

K

(∇uh,Π0∇vh)0,K =
∑
K

(ph,Π0∇vh)0,K

=
∑
K

(ph,∇vh − δK∇bK)0,K

= −
∑
K

∫
K

div ph vh dx+
∑
K

∫
∂K

vh ph · ν dσ

+
∑
K

∫
K
δK div ph bK dx−

∑
K

∫
∂K

ph · ν δK bK dσ .

(11)

Since the mean value of the bubble function bK vanishes and ph ∈ RT 0, we have that∫
K δK div ph bK dx = 0 and

∫
∂K ph · ν δK bK dσ = 0. On the other hand, the equation (10)1

gives div ph|K = −Π0f|K for all K ∈ Th. Therefore the equality (11) becomes:

∑
K

(∇uh,Π0∇vh)0,K =
∑
K

∫
K

Π0fvh dx−
∑
a∈Ai

∫
a
ph · νa [vh]a dσ +

∑
a∈Ab

∫
a
ph · νa vh dσ . (12)

Since vh ∈ Q1
c,0, [vh]a = 0 for all a ∈ Ai and vh|a = 0 for all a ∈ Ab, the relation (12) becomes∑

K

(∇uh,Π0∇vh)0,K =
∑
K

(Π0f, vh)0,K ,

which concludes (a).
(b) Any element ph in RT 0(K) can be decomposed as

ph|K = (Π0ph)|K +
div ph|K

2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)
, γK ∈ R .
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Using respectively the equations (10)1 and (10)2, we get div ph|K = −Π0f|K and
(Π0ph)|K = (Π0∇uh)|K . Then

ph|K = (Π0∇uh)|K −
Π0f|K

2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)
.

The computation of the coefficient γK is done using (a), the equation (10)2 with
qh =

∑
K sgn(K) curl bK , and the continuity of the normal component of ph.

This implies that any solution of the box-scheme (BS2) is a solution of the system ((a), (b)),
which is unique (f = 0 in the system ((a),(b)) implies uh = 0 and ph = 0). The existence of
solutions of (BS2) is deduced from the uniqueness of the solution, the linearity of the problem,
and the equality between the number of unknowns and equations. �
Remarks:
(i) As proved by Hansbo, [16], the 1-point integration of the gradient of uh, (Lemma 3.1 (ii)) is
not sufficient to obtain stability of the scheme.
(ii) The parasitic perturbation

∑
K βK curl bK ∈ Φ seems to be controlled globally by the box-

scheme but not locally. As a consequence, we do not get a local reconstruction of the flux ph in
each rectangle K.

4 A second stabilization of Courbet’s box-scheme

Due to its possible instability, the box-scheme (BS2) is not totally satisfying. So, we want to
build a box-scheme using larger spaces for both unknowns u and p. The basic idea is to use
the nonconforming space Q1

nc,0 containing the Q1-Lagrange space Q1
c,0 (used in (BS2)) for the

approximation of u. For the flux, we consider the space RT 0 of Raviart-Thomas, supplemented
with the space Φ of the rotational of the bubble. Note that those spaces are both nonconform
respectively in H1

0 (Ω) and Hdiv(Ω). Also this choice of spaces gives the advantage to get the
number of unknowns proportional to the number of rectangles, i.e. the trial spaces in (2) can
be piecewise polynomial spaces.

4.1 Definition of the box-scheme

Proposition 4.1 Let (BSnc) be the following box-scheme: Find (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ)

being solution of

(BSnc)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
K∈Th

(div ph + f, vh)0,K = 0 ∀vh ∈M2,h = P 0 ,

∑
K∈Th

(ph −∇uh, qh)0,K = 0 ∀qh ∈ X2,h = (P 0)2 + P 0

(
y
x

)
+ P 0

(
x
−y

)
.

(13)

(i) The box-scheme (BSnc) has 5NE unknowns.
(ii) The box-scheme (BSnc) has a unique solution (uh, ph) ∈ Q1

nc,0 × (RT 0 + Φ) given by:

(a) uh is the solution of the variational problem: Find uh ∈ Q1
nc,0 such that∑

K∈Th

(∇uh,∇vh)0,K = (Π0f, vh)0,Ω for all vh ∈ Q1
nc,0 .
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(b) ph is locally given by:

ph|K = (∇uh)|K −
Π0f|K

|ex,K |2 + |ey,K |2

(
|ey,K |2(x− xK)
|ex,K |2(y − yK)

)
.

Note that this box-scheme is nonconform for both unknowns uh and ph. The test spaces M2,h

and X2,h (in the system (2)) are piecewise polynomial functions. Remark that X2,h is also
X2,h = (P 0)2 + P 0(∇bK) + P 0(curl bK), in particular, ∇(M1,h) ⊆ X2,h.
Proof (i) By the Euler relations, we prove that:
dim Q1

nc,0 + dim (RT 0 + Φ) = (NAi + 1) + (NA +NE − 1) = 5NE = dim X2,h + dim P 0 .

(ii) Let us prove that any (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) satisfying the equations (BSnc) fulfils

the system ((a),(b)).
(a) Let vh ∈ Q1

nc,0. Let qh = ∇vh ∈ X2,h in equation (13)2. By integration by parts

∑
K

(∇uh , ∇ vh)0,K = −
∑
K

∫
K

div ph vh dx+
∑
K

∫
∂K

(ph · ν) vh dσ .

Moreover, since div ph|K ∈ P 0(K), the equation (13)1 gives div ph|K = −Π0f|K. Hence,
ph ∈ RT 0 + Φ can be written as ph = p̄h +

∑
K βK curl bK , with p̄h ∈ RT 0. This implies

that∑
K

(∇uh , ∇ vh)0,K =
∑
K

(Π0f, vh)0,K +
∑
K

∫
∂K

(p̄h + βK curl bK) · ν vh dσ

= (Π0f, vh)0,Ω +
∑
K

∫
∂K

p̄h · ν vh dσ +
∑
K

∫
∂K

βK curl bK · ν vh dσ .

Using the properties (9) of the bubble bK and the continuity of the normal component of elements
ph ∈ RT 0 ⊂ Hdiv(Ω), we obtain

∑
K

(∇uh , ∇ vh)0,K = (Π0f, vh)0,Ω +
∑
a∈Ab

∫
a
p̄h · νa uh dσ −

∑
a∈Ai

∫
a
p̄h · νa [uh]a dσ .

Since uh ∈ Q1
nc,0 and ph · νa ∈ P 0(a),∫

a
p̄h · νa uh dσ = 0 for all a ∈ Ab and

∫
a
p̄h · νa [uh]a dσ = 0 for all a ∈ Ai ,

which concludes (a). In particular, for vh = bK ∈ Q1
nc,0,

(∇uh , ∇ bK)0,K = (Π0f, bK)0,K .

The mean value of bK equals 0 on each rectangle, hence (Π0f, bK)0,K = 0. Also, ∇uh is locally
written as (∇uh)|K = (Π0∇uh)|K + dK ∇bK , where dK is given by uh. We deduce that

0 = (∇uh , ∇ bK)0,K = ((Π0∇uh)|K + dK ∇bK , ∇ bK)0,K

= ((Π0∇uh)|K , ∇ bK)0,K︸ ︷︷ ︸
=0

+dK |∇bK |20,K .
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It means that dK = 0 or equivalently that the bubble component of the solution uh vanishes. In
particular, (∇uh)|K = (Π0∇uh)|K .
(b) Since ph ∈ RT 0 + Φ, we have ph = p̄h +

∑
K βK curl bK with p̄h ∈ Hdiv(Ω). Again for each

rectangle K, div ph|K = −Π0f|K and div(curl bK) = 0, so that

div ph = div p̄h = −Π0f .

The equation (13)2 implies (Π0ph)|K = (Π0∇uh)|K = (∇uh)|K . On the other hand,

ph|K = (Π0ph)|K +
div ph|K

2

(
x− xK

y − yK

)
+ β̃K

(
x− xK

−(y − yK)

)
, β̃K ∈ R .

This is equivalent to

ph|K = (∇uh)|K −
Π0f|K

2

(
x− xK

y − yK

)
︸ ︷︷ ︸

ph,1

+ β̃K

(
x− xK

−(y − yK)

)
︸ ︷︷ ︸

ph,2

.

For evaluating the coefficient β̃K , we use the equation (13)2 with qh = curl bK :∫
K

(ph,1 + ph,2 −∇uh) · curl bK dx = 0 . (14)

We know by (9) that
∫
K ∇uh · curl bK dx = 0. Inserting the value of ph,1, the equation (14)

becomes ∫
K
ph,2 · curl bK dx =

2Π0f|K
|K|

∫
K

(x− xK)2 − (y − yK)2 dx .

Using the following identities∫
K(x− xK)2 = |K|

12 |ex,K |2 ,
∫
K(y − yK)2 = |K|

12 |ey,K |2 , (15)

and the definition of ph,2, give

β̃K =
Π0f|K

2
|ex,K |2 − |ey,K |2
|ex,K |2 + |ey,K |2 .

We have proved that a solution (uh, ph) of the box-scheme (BSnc) is also solution of the problem
((a),(b)), which is unique. This proves the uniqueness of the solution of the box-scheme (BSnc).
The linearity and the equality between the number of unknowns and the number of equations
permit to conclude existence and uniqueness of the solution of the box-scheme (BSnc) and its
equivalence with the formulation ((a),(b)). This concludes (ii). �

The previous result states that the box-scheme (BSnc) is well-posed and equivalent to a single
scheme in uh alone and an explicit reconstruction formula for ph. More precisely, uh is the
solution of the nonconforming variational formulation for the problem −∆u = Π0f . It also
generalizes the previous box-scheme (BS2) and addresses the above instability problem. This
box-scheme seems to be a generalization on rectangles of the box-scheme ((uh, ph) ∈ P 1

nc,0×RT 0)
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of Courbet and Croisille, [6]. Contrary to the triangles case, here the unknowns are not located
at the interface of the mesh. Nevertheless in the particular case of a uniform grid consisting of
squares, β̃K = 0 on each K, ph can be written in the square K as

ph|K = (∇uh)|K −
Π0f|K

2

(
x− xK

y − yK

)
,

which is the formulation of ph in the box-scheme of Courbet-Croisille on triangles.

4.2 Numerical analysis

In this section, we provide the stability and the optimal a priori error estimates for the box-
scheme (BSnc).

Lemma 4.1 (Discrete Poincaré lemma) There exists a constant C > 0 independent of Ω
such that for all u ∈ Q1

nc,0 +H1
0 (Ω),

|u|0,Ω ≤ C|u|1,h .

Proof ([13]) Let u ∈ Q1
nc,0 +H1

0 (Ω). Then

|u|0,Ω = sup
g∈L2(Ω)

|(u, g)0,Ω|
|g|0,Ω

. (16)

For g ∈ L2(Ω), there exists p ∈ H1(Ω)2 such that div p = g and ‖p‖1,Ω ≤ C|g|Ω. By replacing
g by this value in (16) and using Green’s formula, we get

(u, g)0,Ω = (u,div p)0,Ω = −
∑
K

∫
K
∇u · p dx

︸ ︷︷ ︸
(A)

+
∑
K

∫
∂K

p · ν u dσ .
︸ ︷︷ ︸

(B)

(17)

First, we obtain |(A)| = |
∑

K

∫
K ∇u · p dx | ≤ |u|1,h |p|1,Ω. Let us estimate |(B)|. Since

p ∈ (H1(Ω))2 ∩Hdiv(Ω),

(B) =
∑
K

∫
∂K

p · ν u dσ =
∑
a∈Ab

∫
a
p · νa u dσ −

∑
a∈Ai

∫
a
p · νa [u]a dσ . (18)

Let p · νa = 1
|a|

∫
a p · νa dσ be the mean value of p · νa along the edge a. Since u ∈ H1

0 (Ω)+Q1
nc,0,

by the property of Q1
nc,0 to satisfy the patch-test, we have∫

a
p · νa u dσ = 0 for all a ∈ Ab and

∫
a
p · νa [u]a dσ = 0 for all a ∈ Ai .

Therefore, the equality (18) becomes:

∑
K

∫
∂K

p · ν u dσ =
∑
a∈Ab

∫
a
(p · νa − p · νa)u dσ −

∑
a∈Ai

∫
a
(p · νa − p · νa) [u]a dσ

=
∑
K

∑
e∈∂K

∫
e
(p · νe − p · νe)u dσ .

12



The Lemma of Crouzeix-Raviart [9], gives

|
∫

e
(p · νe − p · νe)u dσ| ≤ C hK |u|1,K |p|1,K .

Then,

|(II)| = |
∑
K

∫
∂K

p · ν u dσ| ≤ 4Ch|u|1,h |p|1,Ω .

Finally,
|(u, g)0,Ω| ≤ (4Ch+ 1)|u|1,h |p|1,Ω ≤ (4Ch+ 1)|u|1,h ‖p‖1,Ω .︸ ︷︷ ︸

≤C(Ω)|g|0,Ω

�

Proposition 4.2 (Stability) The solution (uh, ph) ∈ Q1
nc,0×(RT 0+Φ) of the problem (BSnc)

satisfies the stability estimate:

‖uh‖1,h + ‖ph‖div,h ≤ C|f |0,Ω.

Proof Using the formulation of Proposition 4.1 with vh = uh, applying Cauchy-Schwarz in-
equality and Poincaré inequality give

‖uh‖1,h ≤ C(Ω) |f |0,Ω .

On the other hand, the local formula (b) from Proposition 4.1 for ph and the identity div ph =
−Π0f imply ‖ph‖div,h ≤ C|f |0,Ω. This concludes the proof. �

Proposition 4.3 (A priori error estimates) Let (u, p) ∈ H1
0 (Ω)×Hdiv(Ω) be the solution of

the continuous problem (1) and (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) be the solution of the box-scheme

(BSnc). If f ∈ H1(Ω), we have:

(i) |u− uh|1,h ≤ Ch|f |0,Ω (ii) |u− uh|0,Ω ≤ Ch2(|f |0,Ω + |f |1,Ω)
(iii) |p− ph|0,Ω ≤ Ch|f |0,Ω (iv) |p− ph|div,h ≤ Ch|f |1,Ω .

(19)

Proof (i) Let us introduce the bilinear form ah defined for all u, v ∈ H1
0 (Ω) +Q1

nc,0 by

ah(u, v) =
∑

K∈Th

(∇u,∇v)0,K .

Then we obtain the classical inequality

|u− uh|1,h ≤ 2 inf
wh∈Q1

nc,0

|u−wh|1,h + sup
wh∈Q1

nc,0

|ah(uh − u,wh)|
|wh|1,h

.

The estimation of the consistency error is deduced from the variational formulation from Propo-
sition 4.1:

sup
wh∈Q1

nc,0

|ah(uh − u,wh)|
|wh|1,h

≤ C h |f |0,Ω . (20)
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By using the Q1-Lagrange interpolation, we get

inf
wh∈Q1

nc,0

|u− wh|1,h ≤ Ch|u|2,Ω .

This concludes (i).
(ii) is proved by using the Aubin-Nitsche argument and the result (i).
(iii) is a deduction of the local formula ph given by Proposition 4.1, (ii).
(iv) results from div p = −f and div ph = −Π0f . �

4.3 Link to the box-scheme (BS2)

We already mentioned that the 1-point integration of the gradient of uh is not sufficient to
obtain the stability of the scheme (see Section 2.1). Nevertheless, the addition of the local
bubble in both trial and test spaces permits to overcome the previous difficulty, as we have just
observed. In this sense, the nonconforming bubble is a stabilization parameter. Moreover, from
the decomposition of the space Q1

nc,0 given in Proposition 2.1, we deduce the following result:

Lemma 4.2 (Link to the box-scheme (BS2)) The solution (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ)

of the box-scheme (BSnc) is given as a function of the solution (ūh, p̄h) ∈ Q1
c,0 × RT 0 of the

box-scheme (BS2) by

uh = ūh +
∑

K∈Th

αK bK and ph = p̄h +
∑

K∈Th

βK curl bK ,

where

αK =
3|K|

4
1

|ex,K |2 + |ey,K |2 (p̄h −∇ūh,∇bK)0,K ,

βK = −3|K|
4

1
|ex,K |2 + |ey,K |2 (p̄h −∇ūh, curl bK)0,K .

Proof Let (ūh, p̄h) ∈ Q1
c,0 × RT 0 be the solution of the box-scheme (BS2). We are looking for

(αK , βK)K∈Th
such that

uh = ūh +
∑
K

αK bK , ph = p̄h +
∑
K

βK curl bK

define the solution (uh, ph) ∈ Q1
nc,0×(RT 0+Φ) of the box-scheme (BSnc). Due to div ph = div p̄h,

the equation (BSnc)1 is valid for ph. Let us suppose that (uh, ph) satisfies the equation (BSnc)2.
By the definition of (uh, ph) and since (ūh, p̄h) satisfies the equation (BS2)2,∑

K∈Th

(ph −∇uh, qh)0,K = 0 for all qh ∈ P 0(∇bK) + P 0(curl bK). (21)

By taking qh = ∇bK in (21), we get

0 = (ph −∇uh, qh)0,K = (p̄h −∇ūh,∇bK)0,K + (βK curl bK ,∇bK)0,K − (αK ∇bK ,∇bK)0,K .
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Since (curl bK ,∇bK)0,K = 0, we deduce the formula of αK on each rectangle K. Then for each
K, αK is uniquely determined by the unique solution (ūh, p̄h) of the box-scheme (BS2). In the
same way, by taking qh = curl bK in the equation (21), we get

0 = (ph −∇uh, curl bK)0,K = (p̄h −∇ūh, curl bK)0,K + (βK curl bK , curl bK)0,K

and deduce the formula for βK . Then with this definition of the coefficients αK , βK , we prove
that (uh, ph) ∈ Q1

nc,0 × (RT 0 + Φ) is the unique solution of the box-scheme (BSnc). �

5 A simplified stabilized box-scheme

In this section, we investigate a new way to stabilize the box-scheme (BS1). In fact it seems
that the solution of the previous box-scheme is locally in P 1(K)× (RT 0(K) + Φ) (see the proof
of Proposition 4.1). We are looking for a space locally in P 1(K) instead of Q1(K) with the
same continuity properties as Q1

nc,0. The space M̃1,h recently introduced by Park and Sheen [19]
fulfils those conditions:

M̃1,h =
{
v ∈ L2(Ω); v|K ∈ P 1(K)∀K ∈ Th ;

∫
a
v|K1

dx =
∫

a
v|K2

dx ∀a = ∂K1 ∩ ∂K2 ∈ Ai

}
.

Its dimension is dim M̃1,h = 3NE − NAi = NV − 1, since there are three unknowns for each
rectangle subject to NAi independent continuity relations. The corresponding space with ho-
mogeneous boundary is

M̃1,h,0 = {v ∈ M̃1,h;
∫

a
v dx = 0∀a ∈ Ab} .

Its dimension is also dim M̃1,h,0 = NA−NE−(NAb−1) = NVi. Note that this space satisfies the
additional condition (7) of Courbet. However in contrast to the space Q1

c , it does not contain the
nonconforming bubble. The space M̃1,h,0 is by definition included intoQ1

nc,0. Similarly to Lemma
2.1, we deduce from the linearity and the injectivity of L and the equality dim M̃1,h,0 = dimC0

the following lemma.

Lemma 5.1 The mapping L defines a bijection between M̃1,h,0 and the Courbet space C0:

L : M̃1,h,0 −→ C0

u �−→
(
u(xa)

)
a∈A .

Definition 5.1 Let (BS3) be the box-scheme: Find (uh, ph) ∈ M̃1,h,0 × (RT 0 + Φ) such that:

(BS3)

⎧⎪⎪⎨
⎪⎪⎩

∑
K∈Th

(div ph + f, vh)0,K = 0 ∀vh ∈ P 0 ,∑
K∈Th

(ph −∇uh, qh)0,K = 0 ∀qh ∈ X2,h = (P 0)2 + Φ .
(22)

The box-scheme has 4NE unknowns.
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Indeed dim M̃1,h + dim(RT 0 + Φ) = NVi +NA+NE − 1 = 4NE = dimP 0 + dimX2,h.

Lemma 5.2 Link to the box-scheme (BSnc) The solution (ũh, p̃h) ∈ M̃1,h,0×(RT 0+Φ) of the
box-scheme (BS3) is unique and given as a function of the solution (uh, ph) ∈ Q1

nc,0× (RT 0 +Φ)
of the box-scheme (BSnc) by

ũh = uh and p̃h = ph .

Proof Any solution (ũh, p̃h) ∈ M̃1,h,0 × (RT 0 + Φ) of the box-scheme (BS3) is included in
Q1

nc,0 × (RT 0 + Φ) and satisfies the equations (13). By uniqueness of the solution of the box-
scheme (BSnc) and the linearity of the scheme (BS3), we deduce the result. �
Note that we rediscover that uh ∈ Q1

nc,0 in the scheme (BSnc) is locally in P 1(K) (see the proof
of Proposition 4.1). In particular, this means that the bilinear term “x y” is not needed. In fact
the solution of the box-scheme (BSnc) is already the solution of the box-scheme (BS3).

Corollary 5.1 The box-scheme (BS3) has a unique solution (uh, ph) ∈ M̃1,h,0×(RT 0 +Φ) such
that
(a) uh ∈ M̃1,h,0 is the solution of:∑

K∈Th

(∇uh,∇vh)0,K = (Π0f, vh)0,Ω for all vh ∈ M̃1,h,0 .

(b) ph is locally given by:

ph|K = (∇uh)|K −
Π0f|K

|ex,K |2 + |ey,K |2

(
|ey,K |2(x− xK)
|ex,K |2(y − yK)

)
.

Proof This result is deduced from the previous lemma and Proposition 4.1, since M̃1,h,0 ⊂ Q1
nc,0.

Corollary 5.2 (A priori error estimates) Let (u, p) ∈ H1
0 (Ω) × Hdiv(Ω) be the solution of

the continuous problem (1) and (uh, ph) ∈ M̃1,h,0 × (RT 0 + Φ) be the solution of the box-scheme
(BS3). If f ∈ H1(Ω), we have:

(i) |u− uh|1,h ≤ Ch|f |0,Ω (ii) |u− uh|0,Ω ≤ Ch2(|f |0,Ω + |f |1,Ω)
(iii) |p− ph|0,Ω ≤ Ch|f |0,Ω (iv) |p− ph|div,h ≤ Ch|f |1,Ω .

(23)

6 Numerical results

In this section we present several numerical results which demonstrate the theoretical conver-
gence rates obtained for the box-scheme of Section 4. We compute the error estimates for the
unknown u and the flux p of the box-scheme (BSnc) on two different domains Ω meshed by
rectangles. The solution of the box-scheme (BSnc) is computed according to the decoupled for-
mulation given in Proposition 4.1. The unknown u is the solution of the variational formulation,
whereas p is deduced from the local reconstruction on each rectangle. From the computed error,
we deduce numerical convergence rate for each solution of each test. The results for each test
case are reported in the Tables 1 to 5.
The test cases 1 and 2 of Section 6.1 are given on the unit square domain Ω = [0, 1]2 meshed
by squares. Whereas Section 6.2 is devoted to the computation of the error estimates of the
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box-scheme (BSnc) on Ω = [0, 1]2 meshed by rectangles. Finally in Paragraph 6.3, we present
two test cases on the L-shaped domain Ω = [0, 2] × [0, 1] ∪ [1, 2] × [1, 2], meshed by squares. All
the computed convergence rates are in agreement with the theoretical ones given in Proposition
4.3.

6.1 Square domain meshed by squares

The domain Ω is meshed by four different regular grids made of 100, 225, 400 and 900 squares.

1. Test case 1: In this first example, the source term f and the Dirichlet data g are chosen
such that u(x, y) = x (1 − x) sin(π y) is the exact solution of the Poisson problem{

−∆u = f on Ω ,
u = g on ∂Ω .

(24)

The results for the box-scheme (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) defined by (BSnc), are given

in Table 1. The error for the unknown u is of order 1 in the semi-norm | · |1,h and of order
2 for the L2-norm. For p we get also order 1 in the L2-norm. The numerical results are of
order of those computed theoretically in Proposition 4.3.

nb rect. |u− uh|0,Ω |u− uh|1,h |p− ph|0,Ω space step h

100 2.261 × 10−3 7.567 × 10−2 7.976 × 10−2 0.1414
225 1.008 × 10−3 5.053 × 10−2 5.326 × 10−2 0.09428
400 5.677 × 10−4 3.792 × 10−2 3.997 × 10−2 0.07071
900 2.525 × 10−4 2.529 × 10−2 2.665 × 10−2 0.04714

conv. rate 1.996 0.9977 0.9979

Table 1: Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 1.

2. Test case 2: Our second example is a test case proposed by Douglas et al., [1]. The source
term and the boundary conditions are chosen such that
u(x, y) = exp

(
−100 ((x− 1/4)2 + (y− 1/3)2)

)
is the exact solution of the problem (24). It

concerns a Gaussian pulse centred at the point (x0, y0) = (1
4 ,

1
3). The error estimates for

both unknowns u and p = ∇u are given in Table 2 for the box-scheme
(uh, ph) ∈ Q1

nc,0 × (RT 0 + Φ). The convergence rates are a little bit lower than expected
(1.8 instead of 2 for u in the L2-norm and 0.97 instead of 1 for p in the L2-norm), but still
close to the a priori error estimates of Proposition 4.3. This is due to the high gradient of
the exact solution at the point (x0, y0).

6.2 Square domain meshed by rectangles

In this example, we consider the domain Ω = [0, 1]2 meshed by rectangles and the solution
u(x, y) = x (1 − x) y (1 − y) exp(5x) of the problem (24), where the right-hand side and the
Dirichlet conditions are computed using the exact solution u. The grid is made of nx × ny

rectangles where nx and ny are the number of subdivisions of the segment [0, 1] in each direction
(Ox) and (Oy). We compute the solution (uh, ph) for (nx, ny) taking the values (20,5), (40,10),
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nb rect. |u− uh|0,Ω |u− uh|1,h |p − ph|0,Ω space step h
100 3.927 × 10−2 0.9945 1.035 0.1414
225 1.990 × 10−2 0.6885 0.7112 0.09428
400 1.174 × 10−2 0.5148 0.5333 0.07071
900 5.401 × 10−3 0.3422 0.3553 0.04714

conv. rate 1.808 0.9737 0.9751

Table 2: Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 2.

(80,20) and (100,25), i. e. 100, 400, 1600 and 2500 rectangles. The exact solution presents a
boundary layer at x = 1. Nevertheless the computed solution uh and the discrete flux ph of
(BSnc) seem to take it into account. The convergence rate between the exact and the discrete
solution for both unknowns u and p = ∇u are assembled in Table 3. The numerical results are
really satisfying the theoretical estimates of Proposition 4.3.

nb rect. |u− uh|0,Ω |u− uh|1,h |p − ph|0,Ω space step h
20 × 5 3.386 × 10−2 1.979 1.586 0.2061
40 × 10 8.488 × 10−3 1.001 0.7991 0.1031
80 × 20 2.124 × 10−3 0.5020 0.4003 0.05154
100 × 25 1.359 × 10−3 0.4017 0.3203 0.04123

conv. rate 1.998 0.9911 0.9942

Table 3: Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 3.

6.3 Tests cases on an L-shaped domain

In this case we consider a different domain ΩL, given by the square [0, 2] × [0, 2] without the
part [0, 1] × [1, 2]. We obtain an L-shaped domain. We compute the solution (uh, ph) of the
box-scheme (BSnc) associated with the Poisson problem (24). The data f and g are chosen such
that u is the exact solution of (24). The computed results conform to the theoretical ones.

1. Test case 4: The exact solution is u(x, y) = x (2 − x) y (2 − y).
Convergence rates of the error for both unknowns u and p = ∇u are given in Table 4.

nb rect. |u− uh|0,Ω |u− uh|1,h |p− ph|0,Ω space step h

75 1.351 × 10−2 0.2799 0.2804 0.2828
300 3.402 × 10−3 0.1399 0.1400 0.1414
675 1.506 × 10−3 9.325 × 10−2 9.326 × 10−2 0.09428

conv. rate 1.996 1.000 1.002

Table 4: Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 4.
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2. Test case 5: The exact solution is u(x, y) = x (2 − x) y2 (2 − y) sin(x+ 2y).
Convergence rate and error for both unknowns u and p = ∇u are given in Table 5.

nb rect. |u− uh|0,Ω |u− uh|1,h |p − ph|0,Ω space step h
75 3.368 × 10−2 0.5089 0.5215 0.2828
300 8.613 × 10−3 0.2543 0.2616 0.1414
675 3.813 × 10−3 0.1688 0.1739 0.09428

conv. rate 1.981 1.004 0.9993

Table 5: Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 5.

6.4 Conclusion

The numerical results for the box-scheme (BSnc) are really consistent with the a priori error
estimates of Proposition 4.3. The results obtained for the box-scheme (BSnc) could be computed
analogously by the box-scheme (BS3).
The local formulation of the flux ph of each box-scheme suggests consideration of a more relevant
finite element space for the approximation of the flux. It might be interesting to consider a flux

space locally in (P 0(K))2 +P 0(K)
(

|eK,y|(x− xK)
|eK,x|(y − yK)

)
for each rectangle K, submitted to some

continuity constraints.
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