
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Global existence results for complex hyperbolic

models of bacterial chemotaxis

by

Radek Erban and Hyung Ju Hwang

Preprint no.: 118 2005





Manuscript submitted to Website: http://AIMsciences.org
Discrete and Continuous Dynamical Systems Series B

GLOBAL EXISTENCE RESULTS FOR COMPLEX
HYPERBOLIC MODELS OF BACTERIAL CHEMOTAXIS

Radek Erban∗ and Hyung Ju Hwang†

∗University of Oxford, Mathematical Institute
24-29 St Giles’, Oxford, OX1 3LB, United Kingdom

e-mail: erban@maths.ox.ac.uk

†Trinity College Dublin, School of Mathematics
Dublin 2, Ireland

e-mail: hjhwang@maths.tcd.ie

Abstract. Bacteria are able to respond to environmental signals by changing
their rules of movement. When we take into account chemical signals in the en-
vironment, this behaviour is often called chemotaxis. At the individual-level,
chemotaxis consists of several steps. First, the cell detects the extracellular
signal using receptors on its membrane. Then, the cell processes the signal in-
formation through the intracellular signal transduction network, and finally it
responds by altering its motile behaviour accordingly. At the population level,
chemotaxis can lead to aggregation of bacteria, travelling waves or pattern for-
mation, and the important task is to explain the population-level behaviour
in terms of individual-based models. It has been previously shown that the
transport equation framework [12, 13] is suitable for connecting different levels
of modelling of bacterial chemotaxis. In this paper, we couple the transport
equation for bacteria with the (parabolic/elliptic) equation for the extracellu-
lar signals. We prove global existence of solutions for the general hyperbolic
chemotaxis models of cells which process the information about the extracellu-
lar signal through the intracellular biochemical network and interact by altering
the extracellular signal as well. The conditions for global existence in terms of
the properties of the signal transduction model are given.

1. Introduction. The flagellated bacteria (e.g. Escherichia coli, Salmonella ty-
phimurium, Bacillus subtilis) are single-celled organisms. They are usually too small
to be visible by the naked eye; typically, they have the size of microns (see [25, 18]
for review). The behaviour of a bacterium is primarily influenced by concentrations
of various chemicals inside the cell. Since bacteria are small, we can assume that the
concentrations of the chemicals inside the cytoplasm are uniform. Therefore, we can
suppose that the cells are points. Moreover, to create a mathematical description
of a bacterium, we introduce the vector of internal state variables [12, 13, 10]

y = (y1, y2, . . . , ym)T ∈ R
m, (1)

where yi, i = 1, . . . , m, are concentrations of various chemicals (proteins, receptor
states etc.) inside the cell involved in the processes of interest. The individual
behaviour of a cell primarily depends on the vector y which is a function of time.
Consequently, the state of bacterium is uniquely determined by the vector (t,x,v,y)
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where x ∈ R
N is the position of a cell, v ∈ R

N is its velocity, y ∈ R
m is its internal

state, t is time and N = 1, 2, or 3, is the dimension of the physical space.
During its life, a cell must communicate with its environment in order to find

nutrients, to avoid repellents, to find mates etc. For this purpose, there are receptors
in the cellular membrane which can detect various chemicals in the environment.
We describe the chemicals outside the bacterium by the signaling vector (which
depends on the position of the cell x and time t)

S(x, t) = (S1, S2, . . . , SM )T ∈ R
M . (2)

Then the evolution of the internal state vector y depends also on the signaling vector
S. Since we describe chemical processes, we can assume that y evolves according to
system of ordinary differential equations

dy
dt

= F(S(x),y). (3)

This system formally captures all biochemistry inside the cell and therefore, the
concrete form of the vector function F : R

M × R
m → R

m can be very complicated
depending on the number of details which are included in the model.

Bacterial movement and the signal transduction network (3) will be discussed
in more details in Section 3. From the mathematical point of view, the movement
of the flagellated bacteria can be viewed as a biased random walk. The properties
of this random walk depend on the internal state y and bacterial velocity v. The
classical description of the bacterial movement is the so called velocity jump process
[20, 12, 13]. It means that the bacterium runs with some velocity and at random
instants of time it changes its velocity according to the Poisson process with the
intensity λ(y).

Let f(x,v,y, t) be the density function of bacteria in a (2N + m)−dimensional
phase space with coordinates (x,v,y) where x ∈ R

N is the position of a cell,
v ∈ V ⊂ R

N is its velocity and y ∈ R
m is its internal state, which evolves according

to (3). Thus f(x,v,y, t)dxdvdy is the number of cells with position between x and
x + dx, velocity between v and v + dv, and internal state between y and y + dy.
Then evolution of f is governed by the following transport equation [12, 13]

∂f

∂t
+∇x ·vf +∇y ·F(S(x),y)f = −λ(y)f +

∫
V

λ(y)K(v,v′,y)f(x,v′,y, t)dv′ (4)

where the kernel K(v,v′,y) gives the probability of a change in velocity from v′ to
v, given that a reorientation occurs. We assume that the random velocity changes
are the result of a Poisson process of intensity λ(y) [5]. The kernel K is non-negative
and satisfies the normalization condition∫

V

K(v,v′,y)dv = 1 (5)

where
V is a symmetric compact set in R

N . (6)
Realistic examples of the kernel K(v,v′,y), set V , signal transduction network F
and the turning frequency λ(y) are given in Section 3. They all satisfy the above
basic assumptions.

To write equation (4) in more compact form, we introduce the kernel T defined
as a product of the turning frequency λ and the kernel K, i.e.

T (v,v′,y) = λ (y)K(v,v′,y). (7)
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Moreover, our goal is to couple equation (4) with the realistic system of partial
differential equations for the extracellular signal vector S. We assume that the ex-
ternal signal diffuses. It can be also produced or degraded by bacteria, degraded on
its own or the components of S can react with each other in the extracellular space.
Hence, the general hyperbolic system of interest can be written in the following
form:

∂f

∂t
+ ∇x · vf + ∇y ·F(S(x),y)f =

∫
V

T (v,v′,y)
[
f(v′) − f(v)

]
dv′ (8)

∂S
∂t

= D�S + R(S, n) (9)

where n ≡ n(x, t) is the macroscopic density of individuals at point x ∈ R
N and

time t given as

n(x, t) =
∫

Rm

∫
V

f(x,v,y, t)dvdy, (10)

D is a diagonal M × M matrix which diagonal elements are diffusion constants of
different chemicals in the extracellular signal vector S and the term R : R

M ×R →
R

M describes the creation, reaction and degradation of the signals.
The goal of this paper is to prove global existence results for the system (8) –

(9). We will focus on one-dimensional case in what follows. In Section 2, we will
start with a simple model of the signal transduction (11) which was used previously
[12, 13]. The simple model (11) has the essential properties of the realistic models
of the signal transduction, but it is more tractable from the mathematical point
of view than more complex models of bacterial chemotaxis. We prove the global
existence of solutions of the one-dimensional version of (8) – (9) with the simplified
model of the signal transduction.

In order to study the general case, we first review the relevant biology in Section
3. This will help us to specify the realistic conditions on signal transduction model
(3), turning frequency λ(y), turning kernel K(v,v′,y), set V , diffusion matrix
D and the reaction term R(S, n) in equations (8) –(9). In Section 4, we study
the global existence for the system (8) – (9) for general models of bacterial signal
transduction which are introduced in Section 3. We also consider that equation
(9) is at quasi-equilibrium, i.e. we consider the elliptic equation for the signal in
Section 4.

Hence, this paper consists of two main mathematical results. First, we prove
the global existence of solutions to the problem (8) – (9) for the simplified model
of signal transduction (11) and for the system of parabolic equations (9) for the
extracellular signal (see Section 2, Theorem 1). Then, we prove the global existence
of solutions for the general model of signal transduction (3) coupled with the system
of elliptic equations for the extracellular signal (see Section 4, Theorem 2). The
necessary growth assumptions on turning frequency T (v,v′,y) are given in terms of
the signal derivative along the cell trajectory. It means that the growth estimates on
T include the temporal derivative as well as the spatial derivative of the extracellular
signal. Finally, we provide discussion and comparison with relevant results from the
literature in Section 5.
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2. Global existence for a simplified model of signal transduction. A sim-
plified model of excitation-adaptation dynamics was studied in [12, 13, 22, 9] where
y = (y1, y2)T ∈ R

2 and the right hand side of equation (3) was given as

F ≡
(

F1

F2

)
=

⎛
⎜⎜⎜⎝

g(S(x, t)) − (y1 + y2)
te

g(S(x, t)) − y2

ta

⎞
⎟⎟⎟⎠ (11)

where te and ta are positive constants and g : R
M → [0,∞). We will see in

Section 3 that the simplified model (11) has the essential properties of realistic
signal transduction models. Hence, the model (11) is a natural starting point of
this paper. For simplicity, we work in a one-dimensional physical space, i.e. N = 1,
and the goal of this section is to prove Theorem 1 about the system (8) – (9). In
what follows, we denote Lp(Ω), 1 ≤ p ≤ ∞, Ω ⊂ R

d, the Banach space of measurable
functions with the finite norms

‖h‖Lp =
(∫

Ω

|h(x)|pdx
)1/p

, for 1 ≤ p < ∞, and ‖h‖L∞ = ess sup
Ω

|h(x)|.

We denote W k,p(Ω), 1 ≤ p ≤ ∞, Ω ⊂ R
d, the usual Sobolev space

W k,p(Ω) =
{

h ∈ Lp(Ω) | ∀α ∈ N
d
0, |α| ≤ k ⇒ ∂|α|h

∂xα1
1 xα2

2 . . . xαd

d

∈ Lp(Ω)
}

where α = (α1, α2, . . . , αd) ∈ N
d
0 is a vector of nonnegative integers and |α| =

α1 + α2 + · · · + αd. The norm in W k,p(Ω) is defined as

‖h‖W k,p =
∑

α∈Nd
0 , |α|≤k

∥∥∥∥ ∂|α|h
∂xα1

1 xα2
2 . . . xαd

d

∥∥∥∥
Lp

To simplify mathematical formulas, we will make use of the following notation. For
any function h : R

d → R, ∇h denotes the gradient of h with respect to all variables
and ∇x1x2h is the 2-dimensional gradient vector with respect to the variables x1

and x2 only, i.e.

∇h =
(

∂h

∂x1
,

∂h

∂x2
, . . . ,

∂h

∂xd

)
, and ∇x1x2h =

(
∂h

∂x1
,

∂h

∂x2

)
. (12)

We already made use of this notation in equation (8) where the gradients of the
function f were taken only with respect to the selected parts of the state vector.
In this section, we study the movement of cells in one dimension, i.e. N = 1.
Moreover, we assume that the external signal diffuses and it is produced by bacteria
and degraded on its own. Hence, the system of equations (8) – (9) reads as follows

∂f

∂t
+ ∇x · vf + ∇y · F(S(x),y)f =

∫
V

T (v, v′,y)
[
f(v′) − f(v)

]
dv′ (13)

∂Si

∂t
= di

∂2Si

∂x2
+ kin − k0

i Si, i = 1, . . . , M, (14)

where di, ki and k0
i are positive constants and n ≡ n(x, t) is the macroscopic density

of individuals at point x ∈ R and time t given by (10). Position x and velocity v are
scalars for N = 1, so we do not use bold letters for position and velocity in equation
(13). Otherwise, equation (13) is the same as equation (8). Following notation (12),
symbol ∇xf denotes the partial derivative of distribution function f with respect to
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x. Let us note that (depending on the form of function g in (11)) some extracellular
signals might be attractants and some extracellular signals might be repellents. If
we have sufficient growth estimates on function g and kernel T , we can guarantee
the global existence of solutions of system (13) – (14) as it is shown in the following
theorem.

Theorem 1. Consider that the function F is given by (11). Assume that there
exist non-decreasing positive continuous functions Φ, Ψ ∈ C (R) satisfying

|g(z)| + |∇g(z)| ≤ Φ (|z|) and |T (v, v′,y)| + |∇T (v, v′,y)| ≤ Ψ (|y|) . (15)

Assume that f0 ∈ W 1,1(R × V × R
2) ∩ W 1,∞(R × V × R

2) with compact support
and S0 ∈ [W 1,∞(R)]M with compact support. Then there exist global solutions of
the system (13) – (14) satisfying

f(·, ·, ·, t) ∈ W 1,1(R × V × R
2) ∩ W 1,∞(R × V × R

2), (16)

S(·, t) ∈ [W 1,∞(R)
]M

(17)
and initial conditions f(·, ·, ·, 0) = f0(·, ·, ·) and S(·, 0) = S0(·).

First, the characteristics of the hyperbolic equation (13) are given for N = 1 as
dX

ds
= V,

dV

ds
= 0,

dY
ds

= F(S (X (s) , s) ,Y(s)). (18)

Then along back-time characteristics starting at (x, v,y, t), we have for 0 ≤ s ≤ t,

X (s; x, v,y, t) = x − v (t − s) , (19)

Y (s; x, v,y, t) = y −
∫ t

s

F (S (X(τ), τ) ,Y(τ)) dτ. (20)

Next, we will prove several auxiliary lemmas.

Lemma 1. Derivation of the characteristics (19) and (20) with respect to the initial
conditions gives, for 0 ≤ s ≤ t,

∂X

∂x
= 1,

∂Y
∂y

= exp
[
∂F
∂y

(s − t)
]

where
∂F
∂y

=

⎛
⎜⎜⎜⎝

− 1
te

− 1
te

0 − 1
ta

⎞
⎟⎟⎟⎠ . (21)

Moreover,

det
∂Y
∂y

= exp
[(

1
te

+
1
ta

)
(t − s)

]
≥ 1. (22)

Proof. We differentiate (20) with respect to y to get

∂Y
∂y

= I2 +
∫ s

t

∂F
∂y

∂Y
∂y

(τ) dτ. (23)

where I2 is the 2 × 2 identity matrix. Let

G (s) =
∫ s

t

∂F
∂y

∂Y
∂y

(τ) dτ,

then we have

G′(s) =
∂F
∂y

∂Y
∂y

(s).
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Using (23), we obtain

G′ (s) − ∂F
∂y

G (s) =
∂F
∂y

.

Integrating the last equation, we have

G (s) = exp
[
∂F
∂y

(s − t)
]
− I2,

which deduce (21). Computing the determinant of (21), we derive (22).
Q.E.D.

Lemma 2. Let us assume (11) and (15). Then the solution of (18) satisfies

|Y(τ)| ≤ C

{
1 + Φ

(
sup

0≤s≤τ
|S (X (s), s)|

)}
(24)

where C depends on the y-support of f0 and S0, ta, and te.

Proof. Using the assumption (15) and applying the Gronwall inequality to the
ordinary differential equation (18) yields

Y2 (τ) = Y2 (0) exp (−τ/ta) +
1
ta

∫ τ

0

g (S(X (s), s)) exp[(s − τ)/ta]ds

≤ |Y2 (0)| + 1
t2a

Φ
(

sup
0≤s≤τ

|S (X (s), s)|
)

.

In a similar way, we get

Y1 (τ) = Y1 (0) exp (−τ/te) +
1
te

∫ τ

0

{g (S(X (s), s)) − Y2 (s)} exp[(s − τ)/te]ds

≤ |Y1 (0)| + 1
t2e

sup
0≤s≤τ

|Y2 (s)| + 1
t2e

Φ
(

sup
0≤s≤τ

|S (X (s), s)|
)

.

Thus we deduce (24).
Q.E.D.

Lemma 3. If n ∈ L∞([0,∞) : L1 (R) ∩ L2 (R)), then the solution S of the system
of equations (14) satisfies

‖S (t)‖L∞ ≤ C sup
0≤τ≤t

‖n (t)‖L1 = C ‖n (0)‖L1 ,

∥∥∥∥∂S
∂x

(t)
∥∥∥∥

L∞
≤ C

[
1 + ‖n (0)‖L1

(
1 + (ln t)+ +

∣∣∣∣ln
(

sup
0≤τ≤t

‖n (τ)‖L2

)∣∣∣∣
)]

where (·)+ means the positive part and the constant C depends only on ki, k0
i and

di.

Proof. See [16, Lemma 4].
Q.E.D.

Proof of Theorem 1. Integrating (13) along the characteristic (19) – (20) from 0
to t and using (15), we get

f (x, v,y, t) ≤ f0 (X (0) , v,Y (0)) +

+ C

∫ t

0

Ψ (|Y(τ)|) ×
[
f (X(τ), v,Y(τ), τ) +

∫
V

f (X(τ), v′,Y(τ), τ) dv′
]

dτ+
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+
∫ t

0

|∇y · F (S(X (τ)),Y (τ))| f (X (τ) , v,Y (τ) , τ) dτ.

Since ∇y ·F = − 1
te

− 1
ta

, we get (using Lemma 2)

f (x, v,y, t) ≤ f0 (X (0) , v,Y (0)) + C

∫ t

0

f (X (τ) , v,Y (τ) , τ) dτ+ (25)

+C

∫ t

0

Ψ
(

C

[
1 + Φ

(
sup

0≤s≤τ
|S (X (s) , s)|

)])
×

×
[
|V |f (X(τ), v,Y(τ), τ) +

∫
V

f (X(τ), v′,Y(τ), τ) dv′
]

dτ

where C is a constant depending only on support of f0, S0, te and ta. Using Lemma
1, we have (

det
∂Y
∂y

)−1

≤ 1,

(
det

∂X

∂x

)−1

= 1 (26)

and so ∫
R×V ×RM

∫
V

fp (X (τ) , v′,Y (τ) , τ) dv′dxdvdy =

= |V |
∫

fp (X (τ) , v′,Y (τ) , τ)
(

det
∂Y
∂y

)−1(
det

∂X

∂x

)−1

dv′dXdY ≤

≤ |V |
∫

fp (X (τ) , v′,Y (τ) , τ) dv′dXdY.

Taking the p-th power of (25) and integrating over x, v, and y yields

‖f(t)‖
Lp ≤ (27)

≤ ‖f0‖Lp + C

{
1 + Ψ

(
C

[
1 + Φ

(
sup

0≤s≤t

∣∣S (X (s) , s)
∣∣)])}×

∫ t

0

‖f (τ) ‖
Lpdτ.

Lemma 3 implies

sup
0≤τ≤t

‖S (·, τ) ‖
L∞ ≤ C sup

0≤τ≤t
‖n (t) ‖

L1 = C‖n(0)‖
L1 ≤ C‖f0‖L1 . (28)

Consequently, using (27) and (28), we obtain

‖f(t)‖
Lp ≤ ‖f0‖Lp + C

{
1 + Ψ

(
C[1 + Φ(C‖f0‖L1)]

)}×
∫ t

0

‖f(τ)‖
Lpdτ. (29)

Applying the Gronwall inequality, we obtain, for all 1 ≤ p ≤ ∞,

‖f(t)‖
Lp ≤ C

(
ki, k

0
i , di, te, ta, ‖f0‖Lp , supp f0, Ψ, Φ, |V |

)
< ∞. (30)

We now compute a priori estimates on derivatives of f . We differentiate (13) with
respect of x, integrate along the characteristic (19) – (20) from 0 to t and use (15)
to get ∣∣∣∣∂f

∂x
(x, v,y, t)

∣∣∣∣ ≤
∣∣∣∣∂f0

∂x
(X (0) , v,Y (0))

∣∣∣∣+ C

∫ t

0

Ψ (|Y(τ)|)×

×
[
|V |
∣∣∣∣∂f

∂x
(X(τ), v,Y(τ), τ)

∣∣∣∣+
∫

V

∣∣∣∣∂f

∂x
(X(τ), v′,Y(τ), τ)

∣∣∣∣ dv′
]

dτ+

+
∫ t

0

∣∣∇y · F (S(X (τ)),Y (τ))
∣∣ ∣∣∣∣∂f

∂x
(X (τ) , v,Y (τ) , τ)

∣∣∣∣dτ+
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+
∫ t

0

∣∣∣∣∂g

∂z
(S(X (τ)))

∣∣∣∣
∣∣∣∣∂S
∂x

(X (τ) , τ)
∣∣∣∣ |∇yf (X (τ) , v,Y (τ) , τ)| dτ.

Similarly, differentiating (13) with respect of y1 or y2, integrating along the charac-
teristic (19) – (20) from 0 to t and using (15), we obtain

|∇yf (x, v,y, t)| ≤ |∇yf0 (X(0), v,Y(0))| + C

∫ t

0

Ψ (|Y(X (τ) , τ)|)×

×
{
|V |[ |f |+|∇yf | ] (X(τ), v,Y(τ), τ)+

∫
V

[ |f |+|∇yf | ] (X(τ), v′,Y(τ), τ) dv′
}

dτ+

+C

∫ t

0

∣∣∇y · F (S(X (τ)),Y (τ))
∣∣∣∣∇yf (X (τ) , v,Y (τ) , τ)

∣∣dτ.

If the interior of set V is nonempty, we can also define the derivatives of f with
respect of v for any point in the interior of set V. Differentiating (13) with respect
of v and integrating along the characteristic (19) – (20) from 0 to t, it implies∣∣∣∣∂f

∂v
(x, v,y, t)

∣∣∣∣ ≤
∣∣∣∣∂f0

∂v
(X (0) , v,Y (0))

∣∣∣∣+
∫ t

0

∣∣∣∣∂f

∂x
(X (τ) , v,Y (τ) , τ)

∣∣∣∣ dτ+

+ C

∫ t

0

Ψ (|Y(τ)|) ×
{
|V | |f (X(τ), v,Y(τ), τ)|+

+|V |
∣∣∣∣∂f

∂v
(X(τ), v,Y(τ), τ)

∣∣∣∣+
∫

V

|f (X(τ), v′,Y(τ), τ)| dv′
}

dτ+

+
∫ t

0

∣∣∇y · F (S(X (τ)),Y (τ))
∣∣ ∣∣∣∣∂f

∂v
(X (τ) , v,Y (τ) , τ)

∣∣∣∣dτ.

Using (30), (26), Lemma 3 and Gronwall inequality, we deduce∥∥∥∥∂f

∂x
(t)
∥∥∥∥

Lp

+
∥∥∥∥∂f

∂v
(t)
∥∥∥∥

Lp

+ ‖∇yf(t)‖Lp ≤ (31)

≤ C
(
ki, k

0
i , di, te, ta, ‖f0‖W 1,p

, ‖S (0) ‖
W 1,p

, supp f0, suppS0, Ψ, Φ, |V |
)

< ∞.

Combining (30) and (31), we obtain (16). Using Lemma 3, we get the estimate
(17).

Q.E.D

Remark. Using Sobolev embedding theorems, we get global existence of classical
solutions provided that initial data are smooth.

3. Biological background. In order to study the general system (8) – (9), we
have to first specify realistic assumptions on the parameters of the model. To this
end, we summarize the relevant biological processes in Section 3.1 and we extract
the mathematical assumptions in Section 3.2. These assumptions will be later used
to prove the global existence results in Section 4.
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(a)  no attractant (b)  increasing attractant (or decreasing repellent)

Figure 1. (a) A typical bacterial trajectory when no attractant is
present. (b) Under the influence of an attractant, the cell increases
its time in running in a favourable direction.

3.1. Bacterial chemotaxis. As discussed before, the bacterial movement can be
viewed as a biased random walk. Bacterial motility is commonly provided by flag-
ella, which are long, spiral-shaped protein rods that stick out from the surface of
the cell [25]. The example of flagellated bacterium is the enteric bacterium E.coli
which has 6-8 flagella. It has two modes of behaviour based on counterclockwise
and clockwise flagellar rotation. When the flagella rotate counterclockwise (CCW),
they all point in one direction and consequently the cell moves forward in a straight
“run”. The speed of running is s = 10 − 20µm/sec. Clockwise (CW) rotation of
the flagella causes the flagella to point in different directions, and the cell tumbles
in place. Tumbling reorients the cell, so that it can move in new direction when
running starts again.

For E.coli, the duration of both runs and tumbles are exponentially distributed
with means of 1 sec and 10−1 sec respectively if an extracellular chemical signal is
not present [5]. Under the influence of an attractant, the cell increases its time in
running in a favourable direction – see Figure 1. As the mean time for tumbling
is ten times smaller than the mean time of running, we can often neglect the time
spent tumbling and we can model the movement of the bacterium as a velocity jump
process [20, 12, 13] as we already did in Section 1. It means that the bacterium
runs in some direction and at random instants of time it changes its direction with
mean turning rate λ(y).

Since the bacteria move with more or less constant speed, the set V of all available
velocities might be considered equal to V = sSN−1 where SN−1 is a unit sphere in
R

N and s is the speed of the bacterium. Let us note that set V = sSN−1 satisfies
the general condition (6) (the presented theory works for any set V which satisfy
(6)).

The kernel K(v,v′,y) gives the probability of a change in velocity from v′ to v,
given that a reorientation occurs. The simples possibility is to assume that kernel
is constant, i.e.

K(v,v′,y) =
1
|V | . (32)

This formula satisfies the normalization condition (5). The underlying assumption
behind (32) is that (during the tumble) bacterium simply choose a new direction
randomly which is relatively a good approximation for the bacterial chemotaxis,
although there is also some bias in the direction of the preceding run [4, 3]. More
realistically, one can assume that the turning kernel is a function of the angle
between new and old velocity, i.e.

K(v,v′,y) = k(θ), where cos(θ) =
v · v′

|v| |v′| . (33)
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Whatever the choice of K(v,v′,y) is, we may assume that it is bounded from above
by a constant, i.e.

K(v,v′,y) ≤ C (34)
where C is independent of v, v′ and y. Next, we have to specify the choice of (3)
and the properties of the turning frequency λ(y).

Chemotaxis is the process by which a cell alters its movement in response to an
extracellular chemical signal. From the microscopic (cell) point of view, bacterial
chemotaxis consists of several steps. First, the cell detects the signal using its re-
ceptors. Then the signal information propagates through the signal transduction
biochemical network described by (3). The output of this network is a phosphory-
lated form of the protein CheY (denoted CheY-P) which alters the motor behaviour
of the flagellar motors and consequently, the movement of the cell. CCW is the de-
fault state in the absence of CheY-P, which binds to motor proteins and increases
CW rotation. Attractant binding to a receptor reduces the phosphorylation rate of
CheY and thereby increases the time spent in running state which constitutes the
fast response to a signal called excitation of signal transduction network. Another
important aspect of signal transduction network is adaptation which means that
the response (probability per unit time of CCW/CW rotation of flagella) returns
to baseline levels on a time scale that is slow compared to excitation, provided that
there is no further change in attractant concentration around the cell.

A schematic of the signal transduction pathway is shown in Figure 2 and it can
be described as follows [27, 28, 13]. Aspartate, the attractant most commonly-used

A

S

W
A W

Y P

 CW  bias

Y

P

slow methylation (slow) adaptation: attractant binding increases

(fast) excitation: attractant binding reduces
             autophosphorylation rate of CheA and
             it decreases concetration of CheY−P

    methylation state of receptor and it returns
    phosphorylation rates to baseline levels 

S

Figure 2. Excitation and adaptation in signal transduction path-
way of E. coli (from [10], with permission).

in experiments (denoted S in Figure 2), binds directly to the periplasmic domain
of its receptor, Tar. The cytoplasmic domain of Tar forms a stable complex with
the signaling proteins CheA and CheW (denoted A and W, respectively, in Figure
2), and the stability of this complex is not affected by ligand binding [14]. The
signaling currency is in the form of phosphoryl groups (-P), made available to the
CheY (denoted Y in Figure 2) and CheB (not shown in Figure 2) through autophos-
phorylation of CheA. Receptor complexes have two alternative signaling states. In
the attractant-bound form, the receptor inhibits CheA autokinase activity; in the
unliganded form, the receptor stimulates CheA activity. Consequently, the response
of the signal transduction network to a step increase of the attractant concentration
is as follows. First, the attractant binding to a receptor reduces the autophospho-
rylation rate of CheA. The level of phosphorylated CheA is thus lowered, causing
less phosphate to be transferred to CheY, yielding a lowered level of CheY-P. As a
result, tumbling is suppressed, and the cell’s run length increases. This constitutes
the excitation response of the system. Next slow methylation and demethylation
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reactions begin to influence the response. Ligand-bound receptors are more readily
methylated than unliganded receptors, and the lowered level of CheA-P causes a
decrease in the level of CheB-P, thereby reducing its demethylation activity. As a
result, the equilibrium of the system shifts in the direction of the higher methyla-
tion states. The autophosphorylation rate of CheA is faster when the associated
Tar-CheA-CheW complex is in a higher methylation state, and so there is finally
a shift back toward the receptor states containing CheA-P. As a result, CheY-P
returns to its prestimulus level, and thus so does the CW bias of the cell. This
constitutes the adaptation response. These key steps, excitation via reduction in
CheY-P, when a receptor is occupied, and adaptation via methylation of the recep-
tors, have been already incorporated in the mathematical models of the bacterial
signal transduction [27, 2, 19].

Since the turning rate of bacterium is altered by CheY [8], we can write λ(y) ≡
λ(y1) where y1 denotes the concentration of the phosphorylated form of CheY.
Hence, the individual-based model for bacterial chemotaxis is fully specified by the
equation (3) which is integrated along the trajectory of each cell, and by the y1

component of the solution together with λ = λ(y1). The essential aspects of the
dynamics which must be captured by model (3) are (i) it must exhibit excitation,
which here means a change in the turning frequency λ(y1) in response to a stimulus,
(ii) the bias must return to baseline levels (i.e., the response must adapt) on a time
scale that is slow compared to excitation, and (iii) the signal transduction network
should amplify signals appropriately [6, 26]. The mathematical assumptions on (3)
and λ(y1) are given in Section 3.2.

3.2. Mathematical assumptions on the signal transduction network. The
mathematical model of the signal transduction network (3) can be rewritten in the
following form

dy
dt

= F(C(t),y) where C(t) = S(x(t), t). (35)

The vector function C(t) gives signal values which are seen by a cell along its
trajectory. Time evolution of y in equation (35) is controlled by the input time
dependent vector C(t). Therefore, it is natural to describe the behaviour of F in
terms of the input function C(t).

The mathematical formulation of the adaptation property of the signal trans-
duction network (3) can be written in the following form. There exists a uni-
versal constant y1 such that for any constant signal along the trajectory C0, i.e.
C(t) ≡ C0 = const and for any initial condition y(0) = y0, the solution of the
system (3) satisfies

lim
t→∞ y1(t) = y1. (36)

Formula (36) describes the perfect adaptation. From the application point of view,
it is desirable that the signal transduction model satisfies (at least approximately)
the adaptation property for a reasonably large set of signals. However, the exis-
tence theorems presented in Section 4 do not require perfect adaptation and we
will prove the existence of solutions even for models which do not satisfy (36). It
is worthwhile to note that the simplified model of excitation-adaptation dynamics
(11) from Section 2 satisfied adaptation property (36). In fact, y1(t) → 0 as t → ∞
for any constant signal, i.e. y1 adapts perfectly to any constant stimulus. Moreover,
model (11) describes the excitation-adaptation dynamics as discussed in Section 3.1
provided that we choose te < ta. Here, the time constants te and ta are labeled
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in anticipation of using y1 for the internal response, and y2 as the adaptation vari-
able, and therefore we call te and ta the excitation and adaptation time constant,
respectively [12].

In order to model the random walk of the individual bacterium, we must have a
good understanding of the dependence of the (output) turning rate λ(y1) on the (in-
put) signal function C(t). If the input signal function is constant then the behaviour
of λ(y1) follows the adaptation property. On the other hand, time dependent input
C(t) can introduce large variations in λ(y1). The time derivative of C(t), i.e. the
time derivative of the signal seen by a cell, is equal to

dC
dt

= v · ∂S
∂x

+
∂S
∂t

. (37)

To see what type of conditions on the turning rate λ are reasonable, let us consider
the time independent signal (attractant) with a maximum at the point xm as it
is schematically shown in one dimension in Figure 3 (panel in the middle). We

xmxm xm

density ofextracellulardensity of
signal bacteriabacteria

(b)(a)

Figure 3. Schematic of behaviour of hypothetical cells which “per-
fectly avoid going in wrong directions” (panel on the left) and hy-
pothetical cells which “perfectly follow good directions” (panel on
the right). Details are explained in the text.

consider that bacteria move with the fixed speed either to the right or left and we
discuss the following two simple cases of dependence of output λ(y1) on input C(t).

(a) λ(y1) =
{

1 for dC/dt ≥ 0;
∞ for dC/dt < 0; (b) λ(y1) =

{
0 for dC/dt ≥ 0;
1 for dC/dt < 0.

Let us note that cases (a) and (b) are considered as definitions of the input-output
behaviour in two extreme cases (these definitions are not connected with any un-
derlying differential equation in this example).

First, suppose that a bacterium is at the position x < xm. If we use input-output
behaviour (a), then the cell goes to the right. It sometimes “turns” to the left but
it instantly turns back. So, the cell spends all the time going to the right, and case
(a) is an example of the individual-based model where cells perfectly avoid going in
wrong directions. If we use input-output behaviour (b), then the right going cells
never turn (for x < xm). Hence, case (b) is an example of the individual-based
model where cells perfectly follow good directions. Both cases (a) and (b) describe
the simple transport of bacteria for x < xm. The difference of these models is when
cells reach the maximum of the signal xm. In case (a), cells instantly turn back.
It means that the final positions of all bacteria are equal to xm and a Dirac-like
distribution is created in finite time (see Figure 3, panel on the left). In case (b),
cells continue movement to the region x > xm and the final distribution profile is
smooth, as shown schematically in Figure 3 (panel on the right).

The previous simple example shows that singularities might develop if the turning
rate is too large (without a reasonable control by the signal change), as in case (a)
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where cells perfectly avoid going in wrong directions. This observation suggests for
growth conditions on λ(y1) from above which prevent formation of singularities.
The necessary conditions on the turning frequency λ(y1) is λ(y1) ≥ 0 and our
heuristic conclusions can be incorporated to the following growth estimate

λ(y1) ≤ C

(
1 + Λ (|C|) +

∣∣∣∣dCdt

∣∣∣∣
)

, (38)

where Λ (·) ∈ C (R) is a non-negative, nondecreasing continuous function. The
verification of growth estimate (38) depends on the particular form of F(·, ·) and
λ(·). For example, if (3) and λ(·) satisfy

|y1| ≤ C1

(
1 +

∣∣∣∣dCdt

∣∣∣∣
ω)

, λ(y1) ≤ C2(1 + |y1|σ), ωσ ≤ 1, (39)

then (38) follows. There are several other conditions on F(·, ·) and λ(·) which also
guarantee growth estimate (38). Hence, we do not formulate our growth estimates
in terms of F(·, ·) and λ(·), but we simply assume (38) directly in our existence
theorems. Using formula (7), we can formulate the estimate (38) also in terms of
the kernel T (v,v′,y).

Using estimate (34) and definition (7), we can write the growth assumption on
T in the following form

T (v, v′,y) ≤ C|λ(y1)|. (40)

We also have to assume a growth assumption of ∇y·F. In Theorem 2, we assume
that there exists a non-negative, nondecreasing continuous function Π (·) ∈ C (R)
satisfying

|∇y·F (z,y)| ≤ C (1 + Π (|z|)) . (41)

Notice that our simple model (11) satisfies (41). A different condition on ∇y·F is
studied also in Corollary 1.

3.3. Mathematical assumptions on the dynamics of the extracellular sig-
nals. Various forms of R(S, n) can be considered. The simplest case from the
mathematical point of view is when the extracellular signals are nutrients which are
consumed by cells, i.e.

R(S, n) = −KSn (42)

where K is a diagonal nonnegative M × M matrix (with rate constants on the
diagonal). One can also assume that the cells produce signals which are degraded
at some rate, i.e.

R(S, n) = n[k1, k2, . . . , kM ]T − KS (43)

where k1, . . . , kM are rates of production of the different components of the signal
and K is a diagonal nonnegative M × M matrix. If we allow the nondiagonal
terms in matrix K, then the extracellular coupling of the signals (e.g. reactions
between signals) is added to the model. One can also consider that some signals
can be produced by cells and some signals can be degraded by cells, i.e. effectively
combining (42) and (43). Moreover, we can also assume that some signals can be
attractants while other signals can be repellents etc.

Depending on the model system, there are many possibilities to specify the dy-
namics of the extracellular signal. In what follows, we use (43). However, it is
possible to modify and prove the following existence theorems using different evo-
lution equations for the extracellular signal too. The only requirement is that the
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evolution equation for the extracellular signal must satisfy suitable growth estimates
similar to the estimates which are proven in Lemma 6 for (43).

4. Global existence for the general signal transduction models. In this
section, we prove global existence results using the framework of Sections 3.2 and
3.3. We will work in one-dimensional physical space, i.e. N = 1 and we first
assume the case of elliptic equations for the extracellular signals. Hence, system of
equations (8) – (9) reads as follows

∂f

∂t
+ ∇x · vf + ∇y · F(S(x),y)f =

∫
V

T (v, v′,y)
[
f(v′) − f(v)

]
dv′, (44)

di
∂2Si

∂x2
+ kin − k0

i Si = 0, i = 1, . . . , M, (45)

where di, ki and k0
i are positive constants and n ≡ n(x, t) is the macroscopic density

of individuals at point x ∈ R and time t given by (10). Now, we can formulate the
existence theorem.

Theorem 2. Let us assume (38), (40) and (41). Assume that f0 ∈ L1 ∩ L∞(R ×
V ×R

m) and let initial condition S0 ∈ [W 2,p(R)]M satisfies (45). Then there exists
a global solution of system (44) – (45) satisfying, for all t ≥ 0

f(·, ·, ·, t) ∈ L1 ∩ L∞(R × V × R
m), (46)

S(·, t) ∈ [W 2,p(R)]M , for all 1 ≤ p < +∞, (47)

and initial conditions f(·, ·, ·, 0) = f0(·, ·, ·) and S(·, 0) = S0(·).

Remark. To avoid technicalities, we focus in Theorem 2 only on Lp estimates of f .
The results could be extended to W k,p estimates under suitable growth assumptions
on derivatives of T (v, v′, y) and F.

In order to prove Theorem 2, we formulate some auxiliary lemmas. We start with
the generalization of the Gronwall inequality.

Lemma 4. Let a (s) and b (s) be positive integrable functions on [0, t]. Let w (t) be
positive and differentiable in t, and satisfy

w′ ≤ a (t)w ln w + b (t)w.

Then

w (t) ≤
[
w (0) exp

(∫ t

0

b (s) e−
R

s
0 a(τ)dτds

)]exp(
R t
0 a(s)ds)

.

Proof. See [16, Lemma 4].

The characteristics of the hyperbolic equation (44) are given for N = 1 as the
solution of (18). The back-in-time characteristics starting at (x, v,y, t) are given as

X (s; x, v,y, t) = x − v (t − s) , (48)

Y (s; x, v,y, t) = y −
∫ t

s

F (S (X(τ), τ) ,Y(τ)) dτ. (49)

The generalization of Lemma 1 is given as the following Lemma.
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Lemma 5. Derivation of the characteristics (48) and (49) with respect to the initial
conditions gives

∂X

∂x
= 1 and

∂Y
∂y

= exp
[
−
∫ t

s

∂F
∂y

(S (X(τ), τ) ,Y(τ)) dτ

]
. (50)

Moreover,

det
∂Y
∂y

= exp
[
−
∫ t

s

∇y ·F (S (X(τ), τ) ,Y(τ)) dτ

]
. (51)

Proof. We differentiate (49) with respect to y to get

∂Y
∂y

= Im +
∫ s

t

∂F
∂y

(S (X(τ), τ) ,Y(τ))
∂Y
∂y

(τ) dτ. (52)

where Im is the m × m identity matrix. Let

G (s) =
∫ s

t

∂F
∂y

(S (X(τ), τ) ,Y(τ))
∂Y
∂y

(τ) dτ,

then we have

G′ (s) − G (s)
∂F
∂y

(S (X(τ), τ) ,Y(τ)) =
∂F
∂y

(S (X(τ), τ) ,Y(τ)) .

Integrating the last equation, we obtain (50). Since the determinant of the expo-
nential of the matrix is the exponential of the trace of the matrix, we have

det
∂Y
∂y

= exp
[
trace

(
−
∫ t

s

∂F
∂y

(S (X(τ), τ) ,Y(τ)) dτ

)]
=

= exp
[
−
∫ t

s

∇y · F (S (X(τ), τ) ,Y(τ)) dτ

]
.

Hence, we have proved (51).
Q.E.D.

Next, we present the growth estimates on the extracellular signal S and on its
derivatives. The time and space derivatives of the signal vector S are controlled
by logarithm of the L2-norm of the cell density. Note that the analogous result
was also shown in [16, Lemma 4] for the parabolic equation for the extracellular
signal. The difference between [16, Lemma 4] and Lemma 6 is that we prove also
the estimate on the time derivative as well as the estimate on the space derivative
of the signal.

Lemma 6. If n ∈ L∞([0,∞) : L1 (R)∩L2 (R)), then the solution S in (45) satisfies

‖S (t)‖L∞ ≤ C ‖n (t)‖L1 = C ‖n (0)‖L1 ,∥∥∥∥∂S
∂x

(t)
∥∥∥∥

L∞
≤ C [1 + ‖n (0)‖L1 {1 + ln (‖n(t)‖L2 + 1)}] , (53)

∥∥∥∥∂S
∂t

(t)
∥∥∥∥

L∞
≤ C [1 + ‖n (0)‖L1 {1 + ln (‖n(t)‖L2 + 1)}] . (54)

where the constant C depends only on ki, k0
i , di and V .



16 RADEK ERBAN AND HYUNG JU HWANG

Proof. Let 1 ≤ i ≤ M. Taking the Fourier transform of (45) in the x−variable, we
obtain

Ŝi (ξ, t) =
ki

di

n̂ (ξ, t)
ξ2 + k0

i /di
.

Thus we have

‖Si(t)‖L∞ ≤
∥∥∥Ŝi(t)

∥∥∥
L1

≤ ki

di
‖n̂(t)‖L∞

∫ ∞

−∞

1
ξ2 + k0

i /di
dξ

≤ C

(
ki

di
,
k0

i

di

)
‖n(t)‖L1 = C

(
ki

di
,
k0

i

di

)
‖n(0)‖L1 .

Next we estimate the x−derivative of the signal as follows.∥∥∥∥∂Si

∂x
(t)
∥∥∥∥

L∞
≤
∥∥∥ξŜi(t)

∥∥∥
L1

≤ ki

di

∫ ∞

−∞

|ξ| |n̂ (ξ, t)|
ξ2 + k0

i /di
dξ =

ki

di
{I1 + I2} ,

where I1 =
∫
|ξ|≤‖n(t)‖2

L2

|ξ| |n̂ (ξ, t)|
ξ2 + k0

i /di
dξ and I2 =

∫
|ξ|≥‖n(t)‖2

L2

|ξ| |n̂ (ξ, t)|
ξ2 + k0

i /di
dξ.

First, we estimate the integral I1. We obtain

I1 ≤ ‖n̂(t)‖L∞

∫
|ξ|≤‖n(t)‖2

L2

|ξ|
ξ2 + k0

i /di
dξ =

= ‖n̂(t)‖L∞ ln
(‖n(t)‖4

L2

k0
i /di

+ 1
)
≤ ‖n(t)‖L1 ln

(‖n(t)‖4
L2

k0
i /di

+ 1
)

We use Hölder’s inequality with p = q = 2 to estimate I2 as

I2 ≤ ‖n̂(t)‖L2

(∫
|ξ|≥‖n(t)‖2

L2

(
ξ

ξ2 + k0
i /di

)2

dξ

)1/2

≤ ‖n(t)‖L2

(∫
|ξ|≥‖n(t)‖2

L2

ξ−2dξ

)1/2

≤ √
2.

By combining the estimates for I1 and I2, we obtain (53). In order to estimate the
time derivative of the extracellular signal, we take the time derivative of (45) and
apply the Fourier transform in the x−variable to get

∂Ŝi

∂t
(ξ, t) =

ki

di

∂n̂

∂t
(ξ, t)

1
ξ2 + k0

i /di
.

By integrating (44) over v and y, we get
∂n

∂t
= − ∂j

∂x
where j (x, t) =

∫∫
V ×Rm

vf (x, v,y, t) dvdy.

Thus we have
∂Ŝi

∂t
(ξ, t) =

ki

di

−iξĵ (ξ, t)
ξ2 + k0

i /di
.

Then we have ∥∥∥∥∂Si

∂t
(t)
∥∥∥∥

L∞
≤
∥∥∥∥∥∂Ŝi

∂t
(t)

∥∥∥∥∥
L1

≤ ki

di

∫ ∞

−∞

|ξ| |ĵ (ξ)|
ξ2 + k0

i /di
dξ.

Notice that

‖ĵ(t)‖L∞ ≤ ‖j(t)‖L1 ≤
∫∫∫

R×V ×Rm

|v| f (x, v,y, t) dxdvdy ≤
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≤ C (V ) ‖n (t)‖L1 = C (V ) ‖n(0)‖L1 ,

‖ĵ(t)‖L2 = ‖j(t)‖L2 ≤
(∫

R

(∫∫
V ×Rm

|v| f (x, v,y, t) dvdy
)2

dx

)1/2

≤

≤ C (V ) ‖n (t)‖L2

where we have used that V is compact. Using similar ideas as in the proof of
estimate (53), we prove (54).

Q.E.D.

Lemma 7. Let F satisfy (41). Then the characteristics (48) – (49) satisfy for all
0 ≤ s ≤ t, [

det
∂Y
∂y

(s)
]−1

≤ exp
[
Ct
{
1 + Π (C ‖f0‖L1)

}]
. (55)

Proof. Using Lemma 5 and (41), we obtain[
det

∂Y
∂y

(s)
]−1

= exp
[∫ t

s

∇y ·F (S (X(τ), τ) ,Y(τ)) dτ

]
≤

≤ exp
[
C

∫ t

s

1 + Π (|S (X(τ), τ)|) dτ

]
≤ exp

[
Ct

{
1 + Π

(
sup

0≤τ≤t
‖S (τ)‖L∞

)}]
.

Using Lemma 6, we deduce (55).
Q.E.D.

Proof of Theorem 2. Using (38) and (40), we obtain

T (v, v′,y) ≤ C

(
1 + Λ (|C|) +

∣∣∣∣dCdt

∣∣∣∣
)

. (56)

Integrating (44) along the characteristic (48) – (49) from 0 to t and using (56), we
obtain

f (x, v,y, t) ≤ f0 (X (0) , v,Y (0)) +

+ C (V )
∫ t

0

{(
1 +

[
Λ (|S|) +

∣∣∣∣∂S
∂t

∣∣∣∣+
∣∣∣∣∂S
∂x

∣∣∣∣
]

(X (τ) , τ)
)
×

×
∫

V

f (X(τ), v′,Y(τ), τ) dv′
}

dτ+

+
∫ t

0

∣∣∇y · F (S(X (τ)),Y (τ))
∣∣f (X (τ) , v,Y (τ) , τ) dτ,

where we used that V is compact. By virtue of assumption (41), |∇y ·F| is bounded
by C (1 + Π (|S (X(τ), τ)|)) . Thus we have

f (x, v,y, t) ≤ f0 (X (0) , v,Y (0)) + (57)

+ C (V )
∫ t

0

{(
1 +

[
Λ (|S|) +

∣∣∣∣∂S
∂t

∣∣∣∣+
∣∣∣∣∂S
∂x

∣∣∣∣
]

(X (τ) , τ)
)
×

×
∫

V

f (X(τ), v′,Y(τ), τ) dv′
}

dτ+

+C(V )
∫ t

0

(1 + Π (|S (X(τ), τ)|)) f (X (τ) , v,Y (τ) , τ) dτ.

Using Lemma 7, we obtain for t ≥ 0,∫
R×V ×RM

∫
V

fp (X (τ) , v′,Y (τ) , τ) dv′dxdvdy =
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= |V |
∫

fp (X (τ) , v′,Y (τ) , τ)
(

det
∂Y
∂y

)−1(
det

∂X

∂x

)−1

dv′dXdY ≤

≤ |V | eCt

∫
fp (X (τ) , v′,Y (τ) , τ) dv′dXdY.

We take the p-th power of (57) and integrate over x, v, and y to get for t ≥ 0,

‖f(t)‖Lp ≤ ‖f0‖Lp + C (V )eCt

∫ t

0

{
(1 + Λ (‖S (τ)‖L∞) + Π (‖S (τ)‖L∞) + (58)

+
∥∥∥∥∂S

∂t
(τ)
∥∥∥∥

L∞
+
∥∥∥∥∂S

∂x
(τ)
∥∥∥∥

L∞

}
× ‖f (τ) ‖Lpdτ.

Using Lemma 6, we get for all 0 ≤ t ≤ T and with p = 2

‖f(t)‖L2 ≤ ‖f0‖L2+CeCt

∫ t

0

[1 + ‖n (0)‖L1 {1 + ln (‖n(τ)‖L2 + 1)}]×‖f(τ)‖L2}dτ ≤
(59)

≤ ‖f0‖L2 + CeCt

∫ t

0

[1 + ‖f (0)‖L1 {1 + ln (‖f(τ)‖L2 + 1)}] × ‖f(τ)‖L2}dτ.

By applying the Gronwall Lemma 4 to (59), we obtain for t ≥ 0,

‖f(t)‖L2 ≤ C
(
ki, k

0
i , di, Λ, Π, V, ‖f0‖L1 , ‖f0‖L2

)
< ∞,∥∥∥∥∂S

∂x
(t)
∥∥∥∥

L∞
≤ C

(
ki, k

0
i , di, Λ, Π, V, ‖f0‖L1 , ‖f0‖L2

)
< ∞, (60)

where we used Lemma 6 to get estimate (60). We now apply (60) to (58) and we
get (for t ≥ 0 and for all 1 ≤ p ≤ ∞)

‖f(t)‖Lp ≤ C
(
ki, k

0
i , di, Λ, Π, V, ‖f0‖L1, ‖f0‖L2 , ‖f0‖L2

)
< ∞, (61)

i.e. we have obtained (46). Using the elliptic equation (45), the second derivative
of the extracellular signal can be expressed as

∂2Si

∂x2
= −ki

di
n +

k0
i

di
Si. (62)

Using (61) and the elliptic theory, we deduce (47). Thus we complete the proof of
Theorem 2.

Q.E.D.

We conclude this section with two corollaries. They provide other conditions for
the global existence of solutions. The proofs are omitted because they are similar
to proofs of Theorem 1 and Theorem 2.

Corollary 1. Assume (39) and (40). Suppose there exists a non-negative, nonde-
creasing continuous function Π(·) ∈ C (R) and γ > 0 with ωγ ≤ 1 satisfying

∇y·F ≤ 0 and ∇y·F (z,y) ≤ C (1 + Π (|z|) + |y|γ) (63)

Assume that f0 ∈ L1∩L∞(R×V ×R
m) and let the initial condition S0 ∈ [W 2,p(R)]M

satisfy (45). Then there exists a global solution of the system (44) – (45) satisfying,
for all t ≥ 0

f(·, ·, ·, t) ∈ L1 ∩ L∞(R × V × R
m),

S(·, t) ∈ [W 2,p(R)]M , for all 1 ≤ p < +∞
and initial conditions f(·, ·, ·, 0) = f0(·, ·, ·) and S(·, 0) = S0(·).
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Corollary 2. Assume

λ(y1) ≤ C, T (v, v′,y) ≤ C(1 + |λ(y1)|). (64)

We further assume that F satisfies either (41) or (63). Assume that f0 ∈ L1 ∩
L∞(R×V ×R

m) and S0 ∈ [W 1,∞(R)]M with compact support. Then there exists a
global solution of system of equations (44) and (14) satisfying

f(·, ·, ·, t) ∈ L1 ∩ L∞(R × V × R
m),

S(·, t) ∈ [W 1,∞(R)
]M

and initial conditions f(·, ·, ·, 0) = f0(·, ·, ·) and S(·, 0) = S0(·).

5. Discussion. The simplified model of the bacterial signal transduction was stud-
ied in [12, 13] where equation (3) was given as (11). Using model (11) for the steady
extracellular signal, one can derive the closed macroscopic (Keller-Segel, chemo-
taxis) equation for some parameter regimes. See [12] in 1D and [13] in 2D/3D.
Hence, the transport equation framework can be used to study the macroscopic
behaviour in terms of microscopic parameters for the steady extracellular signals
and simplified models of the signal transduction.

Here, we focused on more complex models where we coupled the complex trans-
port equation (8) with the parabolic or elliptic equation for the signal (9). The
starting point of the analysis of such complex models is the existence theory. In
this paper, we provided several sets of sufficient conditions for the global existence
of solutions of system (8) – (9). There are many open questions remaining, e.g. the
existence theory in N -dimensional physical space. It is also not clear whether one
can derive the closed evolution equation for the density of cells n(x, t) as we did for
the simple case of noninteracting particles [12, 13]. If we are not able to derive the
macroscopic equations then suitable computational approaches have to be used to
study the macroscopic behaviour of bacteria [11].

There are several related results on kinetic models of the cellular movement.
They often do not take the intracellular dynamics into account. Kinetic models
were derived in [1, 20] using stochastic models of the movement of cells like bacteria
or leukocytes. Reference [21] addresses the formal diffusion limit of kinetic models to
the classical Keller-Segel model. The discussion on issues of aggregation, blow-up,
and collapse for certain class of random walks can be found in [23]. A Boltzmann-
type kinetic model for chemotaxis without the internal dynamics coupled with an
elliptic equation for the extracellular signal is studied in [7] where global existence
and rigorous diffusion limit to the Keller-Segel model were proven. In [15, 17],
a more general kinetic model was treated in two and three dimensions. A one-
dimensional hyperbolic model was studied in [16]. The papers [15, 16, 17] took into
account the effect of the gradient and the temporal derivative of the chemical signal
and showed the global existence of smooth solutions with smooth initial data as well
as the rigorous diffusive limit to the classical Keller-Segel model. However, all the
rigorous global existence results so far have not included the temporal derivative of
the signal in the growth condition of the turning frequency as we did in this paper.
See also [24] for more related works.
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