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Abstract

We discuss the existence of generalized solutions of the flow of two immis-
cible, incompressible, viscous Newtonian and Non-Newtonian fluids with and
without surface tension in a domain Ω ⊆ R

d, d = 2, 3. In the case without
surface tension, the existence of weak solutions is shown, but little is known
about the interface between both fluids. If surface tension is present, the en-
ergy estimates gives an a priori bound on the (d − 1)-dimensional Hausdorff
measure of the interface, but the existence of weak solutions is open. This
might be due to possible oscillation and concentration effects of the interface
related to instabilities of the interface as for example fingering, emulsification
or just cancellation of area, when two parts of the interface meet. Neverthe-
less we will show the existence of so-called measure-valued varifold solutions,
where the interface is modeled by an oriented general varifold V (t) which is
a non-negative measure on Ω × S

d−1, where S
d−1 is the unit sphere in R

d.
Moreover, it is shown that measure-valued varifold solutions are weak solution
if an energy equality is satisfied.

Key words: Two-phase flow, free boundary value problems, varifold solutions,
measure-valued solutions, surface tension
AMS-Classification: 35Q30, 35Q35, 76D27, 76D45, 76T99

1 Introduction and Main Results

We study the flow of two incompressible, viscous and immiscible fluids like oil and
water inside a bounded domain Ω or in Ω = R

d, d = 2, 3. The fluids fill domains Ω+(t)
and Ω−(t), t > 0, and the interface between both fluids is denoted by Γ(t). The flow is
described using the velocity v : Ω× (0,∞) → R

d and the pressure p : Ω× (0,∞) → R

in both fluids in Eulerian coordinates. We assume the fluids to be of a generalized
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2 1 INTRODUCTION AND MAIN RESULTS

Newtonian type, i.e., the stress tensors are of the form T±(v, p) = 2ν±(|Dv|)Dv− pI
with viscosities ν± depending on the shear rate |Dv| of the fluid, 2Dv = ∇v + ∇vT .
Moreover, we consider the cases with and without surface tension at the interface.
Precise assumptions are made below. Under suitable smoothness assumptions, the
flow is obtained as solution of the system

∂tv + v · ∇v − div T±(v, p) = 0 in Ω±(t), t > 0, (1.1)

div v = 0 in Ω±(t), t > 0, (1.2)

n · T+(v, p) − n · T−(v, p) = κHn on Γ(t), t > 0, (1.3)

V = n · v on Γ(t), t > 0, (1.4)

v = 0 on ∂Ω, t > 0, (1.5)

v|t=0 = v0 in Ω, (1.6)

together with Ω+(0) = Ω+
0 . Here V and H denote the normal velocity and mean

curvature, resp., of Γ(t) taken with respect to the exterior normal n of ∂Ω+(t), and
κ ≥ 0 is the surface tension constant (κ = 0 means no surface tension present).
Equations (1.1)-(1.2) describe the conservation of linear momentum and mass in
both fluids, (1.3) is the balance of forces at the boundary, (1.4) is the kinematic
condition that the interface is transported with the flow of the mass particles, and
(1.5) is the non-slip condition at the boundary of Ω. Moreover, it is assumed that
the velocity field v is continuous along the interface.

Most publications on the mathematical analysis of free boundary value problems
for viscous incompressible fluids study quite regular solutions and often deal with
well-posedness locally in time or global existence close to equilibrium states, cf. e.g.
Solonnikov [29, 30], Beale [3, 4], Tani and Tanaka [33], Shibata and Shimizu [24]
or Abels [1]. These approaches are a priori limited to flows, in which the interface
does not develop singularities and the domain filled by the fluid does not change
its topology. In the present contribution we consider certain classes of generalized
solutions, which allow singularities of the interface and which exist globally in time
for general initial data. For this purpose, we need a suitable weak formulation of
the system above. Testing (1.1) with a divergence free vector field ϕ and using in
particular the jump relation (1.4), we obtain

−(v, ∂tϕ)Q − (v0, ϕ|t=0)Ω − (v ⊗ v,∇ϕ)Q

+(S(χ,Dv), Dϕ)Q = κ

∫ ∞

0

〈
HΓ(t), ϕ(t)

〉
dt (1.7)

for all ϕ ∈ C∞
(0)(Ω× [0,∞))d, divϕ = 0, where Q = Ω× (0,∞), χ = χΩ+ , S(1, Dv) =

2ν+(|Dv|)Dv, S(0, Dv) = 2ν−(|Dv|)Dv, and

〈
HΓ(t), ϕ(t)

〉
=

∫

Γ(t)

Hn · ϕ(x, t) dHd−1(x) (1.8)
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Now the aim is to construct generalized solutions in a class of functions determined by
the energy estimate: If v and Γ(t) are sufficiently smooth, then choosing ϕ = vχ[0,T ]

in (1.7) one obtains the energy equality

1

2
‖v(T )‖2

L2(Ω) + κHd−1(Γ(T ))

+

∫ T

0

∫

Ω

S(χ,Dv)Dv dx dt =
1

2
‖v0‖2

L2(Ω) + κHd−1(Γ0) (1.9)

for all T > 0, where Γ0 = ∂Ω+
0 . – Note that d

dt
Hd−1(Γ(t)) = −

∫
Γ(t)

HV dHd−1 =

−〈HΓ(t), v(t)〉 due to (1.4), cf. Lemma 2.3 below. – Now assuming that

ν±(|Dv|) ≥ c|Dv|q−2

for q > 1 the equality above gives a uniform bound of

v ∈ L∞(0,∞;L2
σ(Ω)) ∩ Lq(0,∞; Ẇ 1

q (Ω)),

where we refer to Section 2.2 below for the precise definitions the function spaces in
this section. Moreover, we note that

−〈∇χ(t), ϕ〉 =

∫

Ω(t)

divϕ(x) dx =

∫

Γ(t)

n · ϕ(x) dHd−1(x)

for all ϕ ∈ C∞
0 (Ω)d. Hence the distributional gradient ∇χ(t) is a finite Radon

measure and ‖∇χ(t)‖M(Ω) = Hd−1(Γ(t)). Thus, if κ > 0, χ(t) ∈ BV (Ω) for all t > 0
and the energy equality above gives an a priori estimate of

χ ∈ L∞(0,∞;BV (Ω)).

In the case without surface tension, κ = 0, we only obtain that χ ∈ L∞(Q) is a
priori bounded by one. This motivates to look for weak solutions (v, χ) lying in the
function spaces above, satisfying (1.9) with a suitable substitute of (1.8), such that
(v, χ) solve (1.7) as well as the transport equation

∂tχ+ v · ∇χ = 0 in Q, (1.10)

χ|t=0 = χ0 in Ω (1.11)

for χ0 = χΩ+
0

in a suitable weak sense, where (1.10) is a weak formulation of (1.4),

cf. [17, Lemma 1.2].
In the case without surface tension and for Newtonian fluids, i.e., ν±(|Dv|) ≡

ν± > 0, the existence of weak solutions (even for N -fluids with different densities)
was proven by Nouri and Poupaud [17]. Moreover, Giga and Takahashi [10] consider
the case of a two-phase Stokes flow with ν+ close to ν−. The main difference in
their approach is that (1.10)-(1.11) is replaced by a transport equation for a level set
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function, which is solved in the sense of viscosity solutions. Due to a lack of regularity
in the velocity v only sub- and super-solutions exists, which may differ. This causes
the possibility of “boundary fattening”, cf. [10] for details. – In [17] and the present
contribution the transport equation is solved in the sense of renormalized solutions
due to DiPerna and Lions [9]. But also the result of Nouri and Poupaud does not
give good information for the interface Γ(t) since Ω+(t) = {x ∈ Ω : χ(t) = 1} is
only known to be a measurable set. Moreover, we note that Wagner [35] consider
generalized solutions of a one-phase flow for an ideal, irrotational and incompressible
fluid and that Gomez and Zolésio [11] treated a quasi-stationary two-phase flow for
shear thinning fluids.

Because of the better a priori estimate in the case with surface tension, one might
expect to get better results in this case. But unfortunately the additional mean
curvature term causes severe problems in the construction of weak solution, which
might be related to instabilities of the boundary when fingering or emulsification
takes place, cf. e.g. Joseph and Renardy [13]. The only known results for generalized
solutions in the case of surface tension are due to Plotnikov [20] for a two-dimensional
flow of shear thickening fluids (i.e. q > d = 2 above) and [21] for the case of
compressible fluids as well as Salvi [23] for an incompressible viscous Newtonian
fluid. In Plotnikov’s contributions the mean curvature term is interpreted as the first
variation of a so called general varifold and it is shown that for almost all t > 0
the varifold is supported on a rectifiable closed curved dividing the plane into two
disjoint domains Ω±(t). The latter solutions can be considered as some kind of
measure-valued solution and are related to the solutions constructed in the present
contribution. In [23] no interpretation of the meaning of the mean curvature term
for the constructed weak solution is given.

It is the purpose of this article to introduce a notion of so called measure-valued
varifold solutions of the two-phase flow described above. The definitions are in
the spirit of measure-valued solutions for conservation laws and the flow of non-
Newtonian fluids as studied for example in [12]. Measure-valued solutions were
introduced in order to model possible oscillation and concentration effects on an
infinitesimal scale, which mathematically do not allow to prove the convergence of
a suitable approximation scheme to a weak solution. In the present two-phase flow
we have to deal with possible oscillation/concentration effects of the shear tensor
Dv(x, t) as well as of the boundary Γ(t). Therefore the definition of a measure-valued
varifold solution uses the Young measure generated by the shear tensors Dvε(x, t)
of an approximate sequence (vε, χε), ε > 0, as well as an oriented general (d − 1)-
varifold V (t) generated by the sequence of surfaces Γε(t) of the approximation. Here
a generalized (d− 1)-varifold V is simply a non-negative measure V ∈ M(Ω×S

d−1),
which by disintegration can be represented as a non-negative measure |V | ∈ M(Ω),
corresponding to a surface measure, together with a family of probability measures
Vx, x ∈ Ω, for the normal vector of the “surface” n ∈ S

d−1, which models possible
infinitesimal oscillations of the interface.

Before we come to the precise definitions and results we make the following as-
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sumptions:

Assumption 1.1 We assume that κ > 0 and Ω = R
d or that κ = 0 and Ω ⊆ R

d

is a bounded domain with Lipschitz boundary or Ω = R
d, d = 2, 3. Moreover, let

q > 1 and let ν(j, s), j = 0, 1, be twice continuously differentiable for s > 0 such that
ν(j, s)s2 is continuous at 0 and ν(j, s) satisfy

c0s
q−2 ≤ ν(j, s) ≤ C0s

q−2,
d

ds
(ν(j, s)s) > 0

d2

ds2
(ν(j, s)s2) > 0 (1.12)

for some constants c0, C0 > 0. Finally, we set S(θ, A) = θν(1, |A|)A+(1−θ)ν(0, |A|)A
for every A ∈ R

d×d
sym, θ ∈ [0, 1], and Vq(Ω) = W 1

q,0(Ω)d ∩ Lq
σ(Ω) if Ω is a bounded do-

main and Vq(R
d) =

{
v ∈ Ẇ 1

q (Rd)d : div v = 0
}
.

We note that the simple power law ν(j, s) = νjs
q−2 satisfies the conditions above.

Before defining generalized solutions of the two-phase flow with surface tension
we need some notation: An (oriented) general varifold is a non-negative V ∈ M(Rd×
S

d−1). For such a general varifold V

〈δV, ϕ〉 =

∫

Rd×Sd−1

(I − s⊗ s) : ∇ϕ(x) dV (x, s), ϕ ∈ C1
0(Rd), (1.13)

denotes its first variation. Moreover, let Q := Ω × (0,∞), Qt = Ω × (0, t), and let
(., .)M denote the L2-scalar product on M .

Definition 1.2 (Measure-Valued Varifold Solutions)
Let κ > 0 and let Assumption 1.1 hold. Then v ∈ L∞(0,∞;L2

σ(Rd))∩Lq(0,∞;Vq(R
d)),

χ ∈ L∞(0,∞;BV (Rd; {0, 1})), µ ∈ L∞
ω (Q;Prob(Rd×d

sym)), and V ∈ L∞
ω (0,∞;M(Rd ×

S
d−1)), V (t) ≥ 0 for a.e. t > 0, is called a measure-valued varifold solution of the

two-phase flow for initial data v0 ∈ L2
σ(Rd), χ0 = χΩ+

0
for a bounded domain Ω+

0 ⋐ R
d

of finite perimeter if

− (v, ∂tϕ)Q − (v0, ϕ(0))Rd − (v ⊗ v,∇ϕ)Q

+

(∫

R
d×d
sym

S(χ, λ) dµx,t(λ), Dϕ

)

Q

= −κ
∫ T

0

〈δV (t), ϕ(t)〉 dt (1.14)

for all ϕ ∈ C∞
(0)(R

d × [0,∞))d with divϕ = 0, if

∫

Rd×Sd−1

s · ψ(x) dV (t)(x, s) = −
∫

Rd

ψ d∇χ(t), ψ ∈ C0(R
d)d, (1.15)

∫

R
d×d
sym

λ dµx,t(λ) = Dv(x, t) (1.16)
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for almost all (x, t) ∈ Q, if χ is the unique renormalized solution of the transport
equation (1.10)-(1.11), cf. Section 2.5 below, and if (v, χ, V, µ) satisfies the general-
ized energy inequality

1

2
‖v(t)‖2

2 +κ‖V (t)‖M +

∫

Qt

∫
S(χ, λ) : λ dµx,τ d(x, τ) ≤

1

2
‖v0‖2

2 +κ‖∇χ0‖M (1.17)

for almost all t ∈ (0,∞).

Remark 1.3 1. If V (t) is obtained from a C1-surface Γ(t) in the natural manner,
〈δV (t), .〉 coincides with the first variation of Hd−1⌊Γ(t), cf. Section 2.3 below.

2. Note that by the assumption on ν(j, s), λ 7→ S(χ, λ) : λ, λ ∈ R
d×d
sym, is a

strictly convex function. Therefore by the generalized Jensen inequality, cf.
(2.4) below, and (1.16)

∫

Qt

S(χ,Dv) : Dv d(x, τ) ≤
∫

Qt

∫
S(χ, λ) : λ dµx,τ d(x, τ) (1.18)

for almost all (x, τ) ∈ Qt with equality if and only if µx,τ = δDv(x,τ).

3. Let (Vx(t), |V (t)|), x ∈ R
d, denote the disintegration of V (t) ∈ M(Rd ×

S
d−1) into a non-negative measure |V (t)| and a family of probability measures
Vx(t) ∈ M(Sd−1) as described in Section 2.3 below. Then (1.15) implies that
|∇χ(t)|(A) ≤ |V (t)|(A) for all open sets A and almost all t ∈ (0,∞), cf. (2.2)
below. Hence |∇χ(t)| is absolutely continuous with respect to |V (t)| and

∫

Rd

f(x) d|∇χ(t)| =

∫

Rd

f(x)θt(x) d|V (t)|, f ∈ C0(R
d),

for a |V (t)|-measurable function θt : R
d → [0,∞) with |θt(x)| ≤ 1 almost ev-

erywhere. In particular, this implies supp∇χt ⊆ suppV (t) and ‖∇χ(t)‖M ≤
‖V (t)‖M for almost all t ∈ (0,∞). Hence every measure-valued varifold solu-
tion satisfies the energy inequality

1

2
‖v(t)‖2

2 + κ‖∇χ(t)‖M + (S(χ,Dv), Dv)Ωt
≤ 1

2
‖v0‖2

2 + κ‖∇χ0‖M (1.19)

for almost all t > 0. Moreover, if E(t) = {x ∈ R
d : χ(x, t) = 1}, t > 0, then

E(t) is for almost every t > 0 a set of finite perimeter, cf. Section 2.4 below,
and (1.15) yields the relation

∫

Sd−1

s dVx(t)(s) =

{
θt(x)n(x) if x ∈ ∂∗Et

0 else

for |V (t)|-almost every x ∈ R
d and almost every t > 0, where n = − ∇χ(t)

|∇χ(t)|
is

the exterior normal of the reduced boundary ∂∗Et of Et and χ(t) = χEt
. – In

other words, the expectation of Vx(t) is proportional to the normal n on the
interface and zero inside the fluid.
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4. In general, it is an open problem whether V (t) is a so-called countably (d− 1)-
rectifiable varifold, which implies that Vx(t) is a Dirac measure for |V (t)|-almost
every x. Then V (t) can naturally be identified with a countably (d − 1)-
rectifiable set – a “surface” – equipped with a density θt ≥ 0. So far we
can only give a sufficient condition for the rectifiability of V (t) in terms of a
regularity condition for the pressure p(t) or the first variation δV (t). See the
Appendix A below for details.

An open question is whether there are measure-valued varifold solutions such
that the first variation 〈δV, .〉 coincides with the negative mean curvature functional
associated to χ(t), which is defined below, and such that µx,t coincides with the Dirac
measure δDv(x,t) almost everywhere. If this is the case, we call it a weak solution:

Definition 1.4 (Weak Solutions)
Let (v, χ, V, µ) be a measure-valued varifold solution of the two-phase flow in the
sense of Definition 1.2. Then (v, χ, V ) is called a varifold solution if µx,t = δDv(x,t)

for almost all (x, t) ∈ Q. If (v, χ, V ) is a varifold solution, then (v, χ) is called a
weak solution of the two-phase flow if

〈δV (t), ψ〉 = −〈Hχ(t), ψ〉 =

∫

Rd

Tr(Pτ∇ψ) d|∇χ(t)| for all ψ ∈ C∞
0,σ(Rd)

and for almost all t ∈ (0,∞), where Pτ = I − ∇χ(t)
|∇χ(t)|

⊗ ∇χ(t)
|∇χ(t)|

, cf. (2.5) below.

From the definitions one derives the following general properties of measure-valued
varifold solutions:

Proposition 1.5 (Properties of Measure-Valued Varifold Solutions)
Let (v, χ, V, µ) be a measure-valued varifold solution. Then:

1. If (v, χ, V ) satisfies the energy equality

1

2
‖v(t)‖2

2 + κ‖∇χ(t)‖M + (S(χ,Dv), Dv)Qt
=

1

2
‖v0‖2

2 + κ‖∇χ0‖M (1.20)

for almost all t ∈ (0,∞), then (v, χ) is a weak solution. Moreover, if (1.20)
holds with ‖∇χ(t)‖M replaced by ‖V (t)‖M, then (v, χ, V ) is a varifold solution.

2. If q > d, then χ ∈ BV (QT ) for every 0 < T <∞.

Our main result concerns existence of measure-valued varifold solutions with some
additional properties:

THEOREM 1.6 (Existence of Measure-Valued Varifold Solutions)
Let q > 2d

d+2
, let v0 ∈ L2

σ(Rd), let Ω+
0 ⋐ R

d be a bounded C1-domain, and let χ0 :=
χΩ+

0
. Then there is a measure-valued varifold solution (v, χ, V, µ) of the two-phase

flow as in Definition 1.2. Moreover,
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1. If d = 2 or q > d, then suppV (t) ⊆ BR(0) for all t ∈ [0, T ] for some R =
R(T, χ0, v0) and arbitrary T > 0.

2. If q > d = 2, then (v, χ, V ) is a varifold solution and supp |V (t)| = Γ∗
t is a

compact rectifiable set and |V (t)| ≥ H1⌊Γ∗
t for almost all t > 0. Moreover,

dH(Γ∗
t1
,Γ∗

t2
) ≤ C|t1 − t2|

1
q′ for all 0 ≤ t1, t2 <∞,

where dH(., .) denotes the Hausdorff distance.

Remark 1.7 The case q > d = 2 was already studied by Plotnikov in [20], where a
similar result is shown, but his definition of a varifold solution is different: Properties
of V (t) and supp |V (t)| = Γ∗

t , which can be shown for q > d = 2, are taken as part
of the definition of a varifold solution. In particular, it is needed that suppV (t) is
a compact 1-rectifiable set separating the plane into two open set ω0(t) and ω1(t).
Moreover, the relation (1.15) is not used. Instead χ(t) is taken as the characteristic
function of the set ω0(t) and it solves the transport equation in the weak sense.
Furthermore, it is required that the space-time interface

⋃
t∈[0,T ] Γ

∗
t × {t} has for

almost every t ∈ [0, T ] and every x ∈ Γ∗
t a tangent plane containing (v, 1). Finally,

no energy estimate is part of the definition. – See [20] for details.

Remark 1.8 We note that in the case of a Newtonian fluid, i.e. ν(j, |Dv|) ≡ νj.
The proof of Theorem 1.6 yields a conditional existence result for weak solutions if
there is no loss of area during passing to the limit in the approximation scheme, i.e.
limk→∞ ‖∇χk(t)‖ = ‖∇χ(t)‖ for almost all t > 0. Then the arguments in the proof
of Proposition 1.5 or a convergence theorem by Reshetnjak [2, Theorem 2.39] shows
that (v, χ) is a weak solution. Such kind of results are known for example for the
mean curvature flow by Luckhaus and Sturzenhecker [16] and for the multi-phase
Mullins-Sekerka problem by Bronsard, Garcke, and Stoth [6].

Theorem 1.6 is proved by first constructing solutions to an approximate system
for every ε > 0 and then pass to the limit ε → 0 for a suitable subsequence. The
approximate system is derived by replacing 〈δV (t), .〉 by 〈δV (t),Ψε.〉 in (1.14) and
replacing v·∇χ by Ψεv·∇χ in (1.10), where Ψε is a suitable smoothing operator. This
preserves the energy estimate. Moreover, the convective term in (1.14) is smoothed
suitably. Using the same approximation scheme we extend the result of Nouri and
Poupaud [17] of existence of weak solution of a two-phase flow if Newtonian fluids
(q = 2 and ν(j, s) = νj) to a class of non-Newtonian fluids:

THEOREM 1.9 (Existence of Weak Solution, κ = 0)
Let d = 2, 3, let q ≥ 2d

d+2
+1 or let q = 2 and ν(j, s) = νj, and let Assumption 1.1 hold.

Moreover, let v0 ∈ L2
σ(Ω), χ0 ∈ L∞(Ω; {0, 1}), f ∈ Lq′(0,∞;Vq(Ω)′). Then there are

v ∈ L∞(0,∞;L2
σ(Ω))∩Lq(0,∞;Vq(Ω)) and χ ∈ L∞(Q; {0, 1}), Q := Ω× (0,∞), that

are a weak solution of the two-phase flow without surface tension in the sense that

−(v, ∂tϕ)Q − (v0, ϕ(0))Ω − (v ⊗ v,∇ϕ)Q + (S(χ,Dv), Dϕ)Q = 〈f, ϕ〉 (1.21)
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for all ϕ ∈ C∞
(0)(Ω × [0,∞))d with divϕ = 0, χ is the unique renormalized solution

of the transport equation of (1.10)-(1.11), and (1.17) holds for almost all t > 0 with
κ = 0.

Remark 1.10 In the case of a two-phase flow for the Stokes equation, i.e. the
convective term v · ∇v is neglected and (1.21) is replaced by

−(v, ∂tϕ)Q − (v0, ϕ(0))Ω + (S(χ,Du), Dϕ)Q = 〈f, ϕ〉, (1.22)

the same result as above holds for all q > 2d
d+2

. Comments on the prove are given in
Remark 5.5 below.

The structure of the article is as follows: After studying the necessary prelimi-
naries in Section 2, we first prove Proposition 1.5 in Section 3. Then we introduce
the approximate system for the two-phase flow in Section 4 and prove existence of
solutions for it. Using these solutions we pass to the limit in Section 5 and prove the
Theorems 1.6 and 1.9. Finally in the appendix, we present a rectifiability criterion
for the varifold in the two-phase flow, which is based on a new rectifiability result for
varifolds due to Luckhaus [15].
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improve the presentation of this article.

2 Preliminaries

2.1 Notation

The set of all symmetric d × d-matrices is denoted by R
d×d
sym. For A,B ∈ R

d×d
sym we

denote A : B = Tr(AB) and |A| =
√
A : A, where Tr denotes the trace of matrices.

Given a ∈ R
d we define a⊗a ∈ R

d×d
sym as the matrix with the entries aiaj, i, j = 1, . . . , d.

The dual of a topological vector space V is denoted by V ′. If v ∈ V and v′ ∈ V ′,
then 〈v, v′〉 ≡ 〈v, v′〉V,V ′ := v′(v) denotes the duality product. If A : V → W is a
continuous linear operator, A′ : W ′ → V ′ denotes its adjoint.

For a given set A ⊂ R
d, we define its ε-neighborhood Aε, ε > 0, as Aε =⋃

x∈ABε(x). Moreover, for given compact sets A,B ⊂ R
d the Hausdorff distance

is defined as
dH(A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}.
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If A ⊂ R
d is a compact set, then K(A) = {B ⊆ A : B closed} equipped with the

Hausdorff distance is a compact metric space, cf. e.g. [7, Proposition 2.4.4.].

2.2 Function Spaces

Spaces of integrable functions: If M ⊆ R
d is measurable, Lq(M), 1 ≤ q ≤ ∞

denotes the usual Lebesgue-space and ‖.‖q its norm. Moreover, Lq(M ;X) denotes
its vector-valued variant of strongly measurable q-integrable functions/ essentially
bounded functions, where X is a Banach space. More generally, if X is a Fréchet
space, then f ∈ Lq(M ;X) if f is strongly measurable and q-integrable/essentially
bounded with respect to all the semi-norms of X. For a subset N ⊂ X we denote
by Lq(M ;N) the set of all f ∈ Lq(M ;X) with f(x) ∈ N for almost all x ∈ M .
Furthermore, f ∈ Lq

loc([0,∞);X) if and only if f ∈ Lq(0, T ;X) for every T > 0. If
Ω ⊆ R

d is a domain, then f ∈ Lq
loc(Ω) if and only if f ∈ Lq(Ω ∩ B) for every ball

B with B ∩ Ω 6= ∅. For any measurable set A ⊂ R
d, χA denotes its characteristic

function.
Recall that, if X is a Banach space with the Radon-Nikodym property, then

Lq(M ;X)′ = Lq′(M ;X ′) for every 1 ≤ q <∞

by means of the duality product

〈f, g〉 =

∫

M

〈f(x), g(x)〉 dx

for f ∈ Lq(M ;X), g ∈ Lq′(M ;X ′). If X is reflexive or X ′ is separable, then X has
the Radon-Nikodym property, cf. Diestel and Uhl [8].

Moreover, recall the Lemma of Aubin-Lions: If X0 →֒→֒ X1 →֒ X2 are Banach
spaces, 1 < p <∞, 1 ≤ q <∞, and I ⊂ R is a bounded interval, then

{
v ∈ Lp(I;X0) :

dv

dt
∈ Lq(I;X2)

}
→֒→֒ Lp(I;X1). (2.1)

See J.-L. Lions [14] for the case q > 1 and Simon [26] or Roub́ıček [22] for q = 1.
Furthermore, we note that, if Y = X ′ is a dual space, then L∞

ω (Q;Y ) for open
Q ⊆ R

N is defined as all weak-∗ measurable functions ν : Q→ Y , i.e.,

x 7→ 〈νx, F (x, .)〉 = 〈νx, F (x, .)〉X′,X

is measurable for each F ∈ L1(Q;X), such that

‖ν‖L∞
ω (Q;Y ) := ess supx∈Q‖νx‖Y <∞.

Sobolev and Bessel potential spaces: Wm
q (Ω), m ∈ N0, 1 ≤ q ≤ ∞, denotes

the usual Lq-Sobolev space, Wm
q,loc(Ω) its local version, Wm

q,0(Ω) the closure of C∞
0 (Ω)



2.3 Measures, Disintegration and Young Measures 11

in Wm
q (Ω), W−m

q (Ω) = (Wm
q′,0(Ω))′, and f ∈ W−m

q,loc(Ω) if f ∈ W−m
q (Ω ∩ B) for every

ball B ⊂ R
d. The L2-Bessel potential spaces are denoted by Hs(Ω), s ∈ R, which is

defined as restriction of distributions in Hs(Rd) to Ω, cf. Triebel [34, Section 4.2.1].
Finally, Ẇ 1

q (Ω) = {f ∈ Lq
loc(Ω) : ∇f ∈ Lq(Ω)}, normed in the obvious way, denotes

the homogeneous Sobolev space of first order, where functions differing by a constant
are identified.

Spaces of continuous functions: The usual spaces of continuous, Hölder contin-
uous, k-times differentiable and smooth functions on an open or closed set A are
denoted by C(A), Cα(A), 0 < α ≤ 1, Ck(A), and C∞(A), respectively, Furthermore,
C∞

0 (Ω) ≡ D(Ω) denotes the space of smooth and compactly supported functions
on Ω and C0(Ω), Ck

0 (Ω) denote the closure of C∞
0 (Ω) in the corresponding norms.

Moreover, if A ⊂ R
d is a set, then

C∞
(0)(A) =

{
f : A→ R : f = F |A, F ∈ C∞

0 (Rd), supp f ⊆ A
}

equipped with the quotient topology. If A is an open set, a subscript b as in Ck
b (Rd)

indicates that the functions and their derivatives are required to be bounded.

Spaces of solenoidal functions: In the following C∞
0,σ(Ω) denotes the space of all

divergence free vector fields in C∞
0 (Ω)d and Lq

σ(Ω) is its closure in the Lq-norm. The
corresponding Helmholtz projection is denoted by PLq

σ
or just Pσ, cf. e.g. Simader

and Sohr [25].
Finally, recall that Vq(R

d) = {v ∈ Ẇ 1
q (Rd)d : div f = 0} and Vq(Ω) = W 1

q,0(Ω) ∩
Lq

σ(Ω) if Ω is a bounded domain. In both cases Vq will be normed by ‖v‖Vq(Ω) =
‖Dv‖Lq(Ω). By Korn’s inequality this norm is equivalent to the standard norms.

Spaces of measures and functions of bounded variations: These spaces are
defined in the beginning of the Sections 2.3 and 2.4.

2.3 Measures, Disintegration and Young Measures

Let X be a locally compact separable metric space and let C0(X; Rm) by the closure
of compactly supported continuous functions f : X → R

m, m ∈ N, in the supremum
norm. Moreover, denote by M(X; Rm) the space of all finite R

m-valued Radon mea-
sures, M(X):= M(X;R), and Prob(X) denotes the space of all probability measure
on X. Then by Riesz representation theorem M(X; Rm) = C0(X; Rm)′, cf. e.g. Am-
brosio et. al. [2, Theorem 1.54]. Given µ ∈ M(X; Rm) the total variation measure
is defined by

|µ|(A) = sup

{
∞∑

k=0

|µ(Ak)| : Ak ∈ B(X) pairwise disjoint, A =
∞⋃

k=0

Ak

}

for every A ∈ B(X), where B(X) denotes the σ-algebra of Borel sets of X. Then by
[2, Proposition 1.47]

|µ|(A) = sup

{∫

X

f(x) · dµ(x) : f ∈ C0(X; Rm), supp f ⊂ A, ‖f‖∞ ≤ 1

}
(2.2)
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for every open set A ⊆ X. The restriction of a measure µ to a µ-measurable set A is
denoted by (µ⌊A)(B) = µ(A ∩ B). Finally, the s-dimensional Hausdorff measure on
R

d, 0 ≤ s ≤ d, is denoted by Hs.

Now let U ⊂ R
N , V ⊂ R

M be open sets and let ν ∈ M(U × V ; Rm). Moreover,
we set µ(A) = |ν|(A × V ). Then by the disintegration theorem, cf. [2, Theorem
2.28], there is a µ-measurable mapping x 7→ νx such that |νx| ∈ Prob(V ) for µ-a.e.
x ∈ U and for any f ∈ L1(U × V, |ν|)

f(x, .) ∈ L1(V, |νx|) for µ− a.e. x ∈ U,

x 7→
∫

V

f(x, y) dνx(y) ∈ L1(U, µ),

∫

U×V

f(x, y) dν(x, y) =

∫

U

(∫

V

f(x, y) dνx(y)

)
dµ(x). (2.3)

Obviously, if ν ∈ M(U × V ) is a non-negative measure, then νx = |νx| ∈ Prob(V )
for µ-a.e. x ∈ U .

We need the following version of the fundamental theorem of Young measures:

THEOREM 2.1 Let Q ⊂ R
N be an open set and let zj ∈ Lp(Q; Rm), 1 < p < ∞,

be a bounded sequence. Then there is a subsequence still denoted by zj and a weak-∗
measurable function x 7→ νx ∈ Prob(Rm) such that for every continuous τ : R

m → R

satisfying the growth condition

|τ(ξ)| ≤ C(1 + |ξ|)p−1 for all ξ ∈ R
d

for some C > 0 we have

τ(zj) ⇀j→∞ τ̄ in Lp′(Q)

where τ̄ = 〈νx, τ〉 for almost all x ∈ Q.

Proof: The result immediately follows from Corollary 2.10 in Málek et. al. [12,
Section 4.2] by choosing q = p−1, r = p

q
= p′. Moreover, we note that the restriction

to a bounded set in the latter Corollary is only needed if 1 < r < p
q

as can be easily
seen in the proof.

Finally, recall the generalized Jensen inequality: Let g : R
N → R be a strictly

convex function and let µ be a probability measure on R
N such that Id and |g| are

µ-integrable. Then

g

(∫
x dµ(x)

)
≤
∫

RN

g(x)dµ(x) (2.4)

with equality if and only if µ is a Dirac measure, cf. e.g. [12, Lemma 2.27, Chapter
III] and its proof.
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2.4 BV-Functions and Varifolds

Let U ⊆ R
d be an open set. Recall that

BV (U) = {f ∈ L1(U) : ∇f ∈ M(U ; Rd)}
‖f‖BV (U) = ‖f‖L1(U) + ‖∇f‖M(U ;Rd),

where ∇f denotes the distributional derivative. Moreover, BV (U ; {0, 1}) denotes
the set of all χ ∈ BV (U) such that χ(x) ∈ {0, 1} for almost all x ∈ U .

Moreover, a set E ⊆ U is said to have finite perimeter in U if χE ∈ BV (U). Then
by the structure theorem of sets of finite perimeter |∇χE| = Hd−1⌊∂∗E, where ∂∗E
is the so-called reduced boundary of E and

−〈∇χE, ϕ〉 =

∫

E

divϕdx =

∫

∂∗E

ϕ · nE dHd−1,

where nE(x) = − ∇χE

|∇χE |
, cf. e.g. [2]. Note that, if E is a domain with C1-boundary,

then ∂∗E = ∂Ω and nE coincides with the exterior unit normal.
For a set E of finite perimeter in U we define the mean curvature functional

associated to ∂∗E as

〈H∂∗E, ϕ〉 ≡ 〈HχE
, ϕ〉 := −

∫

∂∗E

Tr(Pτ∇ϕ) dHd−1, ϕ ∈ C1
0(Ω)d, (2.5)

where Pτ = I − nE(x) ⊗ nE(x).

A general (d−1)-varifold Ṽ is simply a measure Ṽ ∈ M(U×Gd−1), where Gd−1 is
the space of all unoriented (d−1)-dimensional linear subspaces of R

d, cf. Simon [27].

The first variation δṼ of a general varifold Ṽ is defined as

〈δṼ , ψ〉 =

∫

U×Gd−1

PT : ∇ψ dṼ (x, T ) for ψ ∈ C1
0(U)d,

where PT denotes the orthogonal projection onto T ∈ Gd−1. Note that general
varifolds are unoriented and that Gd−1

∼= S
d−1/{x ≡ −x}. If E is a set of finite

perimeter in U , then its reduced boundary can be identified with the varifold defined
by

〈Ṽ∂∗E, ϕ〉 =

∫

∂∗E

ϕ(x, [nE(x)]) dHd−1 for all ϕ ∈ C0(U ×Gd−1),

where [nE(x)] denotes the subspace of R
d−1 with normal nE(x). Then

〈δṼ∂∗E, ψ〉 = −〈H∂∗E, ψ〉 for all ψ ∈ C1
0(U)d.

Hence the mean curvature functional associated to ∂∗E can be obtain back from the
general varifold associated to ∂∗E. But this is not the case for ∇χE = −nEHd−1⌊∂∗E
since general varifolds do not take orientation into account. – Therefore we define a
oriented general (d− 1)-varifold as non-negative measures V ∈ M(U × S

d−1) as was
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used for example by Soner [31, Section 2.3]. By disintegration V can be written in
the form

〈V, ϕ〉 =

∫

U

∫

Sd−1

ϕ(x, s) dVx(s) d|V |(x), ϕ ∈ C0(U × S
d−1). (2.6)

Obviously, every oriented general varifold V induces a (unoriented) general varifold

Ṽ by

〈Ṽ , ϕ〉 =

∫

U×Sd−1

ϕ(x, [s]) dV (x, s), ϕ ∈ C0(U ×Gd−1), (2.7)

where again [s] denotes the (d−1)-dimensional linear subspace of R
d with s as normal.

Now, if E has finite perimeter in U , then we associate the oriented general varifold
V∂∗E to ∂∗E defined by

〈V∂∗E, ϕ〉 =

∫

∂∗E

ϕ(x, nE(x)) dHd−1 for all ϕ ∈ C0(U × S
d−1).

Note that this corresponds to the choice |V | = Hd−1⌊∂∗E and Vx = δnE(x) in (2.6).
Now we obtain ∇χE back from V = V∂∗E by choosing ϕ(x, s) = s · ψ(x) with

ψ ∈ C0(U ; Rd):

〈V∂∗E, ϕ〉 =

∫

U×Sd−1

s · ψ(x) dV (x, s) =

∫

∂∗E

ψ · nE dHd−1 = −〈∇χE, ψ〉.

Finally, let Γ0 ⊆ R
d be the boundary of a bounded C1-domain Ω+

0 with exterior
normal vector field n and let Xt : R

d → R
d, t > 0, be a family of C1-diffeomorphisms

depending continuously differentiable on t > 0 such that d
dt
Xt(x) = v(Xt(x), t) for

a sufficiently smooth vector field v. Moreover, set Γt = Xt(Γ0) and Ωt = Xt(Ω
+
0 ),

t > 0. Then one calculates that

d

dt

∫

Γt

ϕ(x) dHd−1(x) = 〈δVΓt
, ϕv(t)〉 +

∫

Γt

n · ∇ϕ(x)n · v(x, t) dHd−1(x) (2.8)

for every ϕ ∈ C1
0(Rd), where VΓt

denotes the associated general varifold to Γt defined
as above and n is the exterior normal at Γt = ∂Ωt.

2.5 Transport Equation

We consider weak solutions of the transport equation

∂tχ+ v · ∇χ = 0 in QT , (2.9)

χ|t=0 = χ0 in Ω, (2.10)

where QT = Ω × (0, T ), 0 < T ≤ ∞, Ω = R
d or Ω is a bounded Lipschitz domain,

v ∈ L2
loc([0,∞);L2

σ(Ω)), and χ0 ∈ L∞(Ω). Here a weak solution is a function χ ∈
L∞(Q) satisfying

∫

Q

χ(∂tϕ+ v · ∇ϕ) d(x, t) +

∫

Ω

χ0ϕ(x, 0) dx = 0 (2.11)

for all ϕ ∈ C∞
(0)(Ω × [0, T )). Then we have
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Proposition 2.2 For every χ0 ∈ L∞(Ω) and v ∈ L2
loc([0,∞);L2

σ(Ω)) there is a
unique weak solution of (2.9)-(2.10) with T = ∞. Moreover, this solution is a
renormalized solution, i.e, β(χ) is a weak solution associated to the data β(χ0) for
any β ∈ C1(R). Furthermore, if χ0 ∈ M a.e. for some finite set M , then χ ∈ M
a.e.

The proposition follows from Nouri, Poupaud and Demay [18, Theorem 4.1]. It
essentially coincides with [17, Proposition 3.3]. These results are based on DiPerna
and Lions results on weak and renormalized solutions of the transport equation, cf.
[9]. In the latter work div v = 0 or div v ∈ L∞ is essentially used.

In order to construct approximative solutions of the two-phase flow with surface
tension we use:

Lemma 2.3 Let χ0 ∈ BV (Rd; {0, 1}) and let v ∈ C([0, T ];C2
b (Rd)d), div v = 0,

T > 0. Then there is a weak solution χ ∈ L∞(0, T ;BV (Rd; {0, 1})) of (2.9)-(2.10).
Moreover,

‖χ‖L∞(0,T ;BV (Rd)) ≤ M
(
‖v‖C([0,T ];C2

b
(Rd))

)
‖χ0‖BV (Rd), (2.12)

d

dt
|∇χ(t)|(Rd) = −〈Hχ(t), v(t)〉 for all t ∈ (0, T ) (2.13)

for some continuous function M .

Proof: The solution χ is constructed by the usual method of characteristics. Since
v ∈ C([0, T ];C1

b (Rd)d) for every x0 ∈ R
d there is a unique solution x(t;x0) ∈

C1(0,∞; Rd) of

d

dt
x(t;x0) = v(x(t;x0), t), t > 0, (2.14)

x(0;x0) = x0, (2.15)

which are the trajectories along the vector field v. Note that, since v is globally
Lipschitz the solution x(t;x0) exists for all t ∈ (0, T ). Let X(x0, t) := x(t;x0) and
let Xt = X(., t) be the flow mapping. Then X ∈ C1([0, T ] × R

d) by the usual C1-
dependence on the initial values and Xt : R

d → R
d is a C1-diffeomorphism. Now

define χ(x, t) := χ0(X
−1
t x). Then ‖χ(., t)‖L1(Rd) = ‖χ0‖L1(Rd) since detDXt(y) =

detDX0(y) = 1 because of ∂t detDXt(y) = div v(Xt(y, t)) = 0. In order to estimate
χ ∈ L∞(0, T ;BV (Rd; {0, 1})), we use that

∫

Ω

χ(x, t) divψ(x) dx =

∫

Ω

χ0(y) Tr((∇ψ)(Xt(y))) dy

=

∫

Ω

χ0(y) Tr(∇ψ̃(y)) dy −
∫

Ω

χ0(y) Tr(∇DX−T
t )ψ(Xt(y)) dy,

where ψ̃(y) = DX−T
t ψ(Xt(y)), ψ ∈ C1

0(Rd)d. Hence

sup
t∈[0,T ]

∣∣∣∣
∫

Ω

χ(x, t) divψ(x)dx

∣∣∣∣ ≤ M
(
‖v‖C([0,T ];C2

b
(Rd))

)
‖χ0‖BV (Rd)‖ψ‖C0

b
(Rd)
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for all ψ ∈ C1
0(Rd)d and t > 0 and some continuous function M . Moreover, by

standard calculations:

(χ, ∂tϕ)Q =

∫ ∞

0

∫

Ω

χ0(y)∂tϕ(Xt(y), t) dy dt

= −(χ0, ϕ|t=0) −
∫ ∞

0

∫

Ω

χ0(y)∇ϕ(Xt(y), t) · v(Xt(y), t) dy dt

= −(χ0, ϕ|t=0) − (χ, v · ∇ϕ)Q

for all ϕ ∈ C∞
(0)([0,∞) × R

d). Hence χ is a weak solution of (2.9)-(2.10).

Finally, the last identity follows from (2.8).

For the following we note that C1(Rd) is equipped with the topology of locally
uniform convergence of the functions and their first order derivatives.

Lemma 2.4 Let χ0 = χΩ+
0
, where Ω+

0 is a bounded C1-domain. Moreover, let uk, u ∈
C([0, T ];C2

b (Rd)d) such that uk →k→∞ u in C([0, T ];C1(Rd)d). Then for any f ∈
C0

b (Rd × S
d−1)

lim
k→∞

∫

Γuk
(t)

f(x, nx) dHd−1(x) =

∫

Γu(t)

f(x, nx) dHd−1(x) (2.16)

uniformly in t ∈ (0, T ), where Γw(t) = Xw(t)(∂Ω+
0 ) and Xw(t) the flow map obtained

from (2.14)-(2.15) with v = w as above. Finally, {Γuk
(t),Γu(t) : k ∈ N, t ∈ [0, T ]} is

contained in a compact set.

Proof: First of all Xuk
∈ C1([0, T ] × R

d) and Xuk
→ Xu ∈ C1([0, T ] × BR(0)),

R > 0, by the usual C1-dependence of solutions of ordinary differential equations
on the data. Moreover, by construction Xuk

(t) : R
d → R

d are bijective for any t ∈
[0, T ]. Hence X−1

uk
(t) : R

d → R
d is continuously differentiable and X−1

uk
(t) → X−1

u (t)
in C1(Rd) for any t ∈ [0, T ], Using all this, the lemma can be proved by either
introducing a local parameterization of ∂Ω+

0 and using Xuk
(t) and Xu(t) to get a

suitable parameterizations of Γuk
(t) and Γu(t) or one uses the continuity theorem

by Reshetnjak: Since Xuk
(t) →k→∞ Xu(t) and X−1

uk
(t) →k→∞ X−1

u (t) in C1(Rd), it
is an easy exercise to show Hd−1(Γuk

(t)) →k→∞ Hd−1(Γu(t)). Moreover, if Ω+
k (t) =

Xuk
(t)(Ω+

0 ),Ω+(t) = Xu(t)(Ω
+
0 ), then

〈∇χΩ+
k

(t), ϕ〉 = −
∫

Ω+
0

divϕ(Xuk
(t)) dx→k→∞ −

∫

Ω+
0

divϕ(Xu(t)) dx = 〈∇χΩ+(t), ϕ〉

for all ϕ ∈ C1
0(Rd)d. This implies ∇χΩ+

k
(t) ⇀

∗
k→∞ ∇χΩ+(t) in M(Rd) since ‖∇χuk

‖M =

Hd−1(Γk(t)) are uniformly bounded and C1
0(Rd) is dense in C0(R

d). Therefore one
can apply [2, Theorem 2.39] to the vector measures ∇χΩ+

k
(t) and ∇χΩ+(t) to show

(2.16).
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Finally, the last statement is an easy consequence of the fact that Xuk
→ Xu in

C1([0, T ] × R
d) and the compactness of ∂Ω+

0 .

Lemma 2.5 Let uk, u ∈ L1(0, T ;L2
σ(Ω)), k ∈ N, for some T > 0 such that uk →k→∞

u in L1(0, T ;L2
loc(Ω)). Moreover, let χk, χ ∈ L∞(QT ) be the solutions of (2.9)-(2.10)

with v = uk, u, resp., and χ0 = χE for some fixed measurable set E. Then χk ⇀
∗
k→∞ χ

in L∞(QT ) and χk →k→∞ χ in Lp(QT ) for every p <∞.

Proof: First of all, since χk ∈ L∞(QT ) are uniformly bounded, χkj
⇀∗

j→∞ χ̃0 in
L∞(QT ) for some χ̃0 ∈ L∞(QT ) and some suitable subsequence. Since uk →k→∞ u in
L1(0, T ;L2

loc(Ω)), uk ·∇ϕ→k→∞ u·∇ϕ in L1(0, T ;L2(Ω)) for any ϕ ∈ C∞
(0)(Ω×[0,∞)).

Thus χ̃0 solves the transport equation with v = u. Hence

‖χkj
‖q

Lq(QT ) = T |E| = ‖χ̃0‖q
q

for every 1 ≤ q < ∞. Thus χkj
→j→∞ χ̃0 in Lq(QT ) strongly. In particular,

this implies χ̃0 ∈ {0, 1} almost everywhere. Therefore χ̃0 coincides with the unique
renormalized solution χ0. Since this argumentation holds for any subsequence, the
sequence (χk)k∈N converges itself.

2.6 A Convergence Result for Monotone Nonlinearities

In order to construct weak solutions in the case κ = 0, we will use the following
result:

THEOREM 2.6 (Swierczewska [32, Lemma A.1])
Let E ⊂ R

d be a measurable set of finite measure and let A : E ×R
m ×R

N → R
N be

a function such that

1. A(x, s, ξ) is a Carathéodory function w.r.t. x and (s, ξ), i.e., A is measurable
w.r.t x and continuous w.r.t. (s, ξ).

2. A(x, s, ξ) is strictly monotone w.r.t. ξ: For almost all x ∈ E and all s ∈ R
m

and ξ1, ξ2 ∈ R
N , ξ1 6= ξ2,

(A(x, s, ξ1) − A(x, s, ξ2)) · (ξ1 − ξ2) > 0.

3. There is some q > 1 and c1, c2 > 0 such that

A(x, s, ξ) · ξ ≥ c1|ξ|q, |A(x, s, ξ)| ≤ c2|ξ|q−1

for almost all x ∈ E and all (s, ξ) ∈ R
m × R

N .
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Moreover, let yn : E → R
m and zn : E → R

N be a sequence of measurable functions
such that yn → y a.e. in E, zn ⇀ z in Lq(E) and A(x, yn, zn) ⇀ Ā in Lq′(E) as
n→ ∞. Then

lim sup
n→∞

∫

E

A(x, yn, zn) · zn dx ≤
∫

E

Ā · z dx

implies zn → z in measure as n→ ∞.

In the following we will apply the theorem to the case x ∈ Ω, s ∈ R, ξ = λ ∈ R
d×d
sym,

and A(x, s, ξ) = S(s, λ). In this case Assumption 1.1 implies the assumptions of the
theorem.

3 Proof of Proposition 1.5

First of all, we note that by (1.12) λ 7→ S(l, λ) : λ, λ ∈ R
d×d
sym, is a strictly convex

function for every l ∈ [0, 1].
First assume that ‖V (t)‖ = ‖∇χ(t)‖ for almost all t ∈ (0, T ). We will prove that

Vx(t) = δn(x,t) for |V (t)|-almost every x ∈ R
d and for almost every t ∈ (0,∞), where

n(x, t) = − ∇χ(t)
|∇χ(t)|

(x). From (1.15) we know that

∫

Ω

∫

Sd−1

s · ψ(x) dVx(t) d|V (t)| =

∫

Ω

n(x, t) · ψ(x) d|∇χ(t)|

for all ψ ∈ C0(Ω)d. Hence by (2.2) |∇χ(t)|(A) ≤ |V (t)|(A) for every open A ⊂ Ω.
Thus |∇χ(t)| is absolutely continuous with respect to |V (t)| and

|∇χ(t)|(A) =

∫

A

θt(x) d|V (t)|(x)

with some |V (t)|-measurable function θt : R
d → [0,∞) and θt(x) ≤ 1 for |V (t)|-almost

all x ∈ R
d. But, since ‖∇χ(t)‖ = |∇χ(t)|(Rd) = |V (t)|(Rd) = ‖V (t)‖, we conclude

that θt(x) = 1 almost everywhere and |V (t)| = |∇χ(t)| as measures. Therefore (1.15)
yields ∫

Sd−1

s dVx(t)(s) = n(x, t) for |V (t)|-almost all x ∈ Ω.

Thus
1

2

∫
|s− n(x, t)|2 dVx(t)(s) = 1 − n(x, t) ·

∫

Sd−1

s dVx(t)(s) = 0

for |V (t)|-almost all x ∈ Ω, which implies that Vx(t) = δn(x,t) for |V (t)|-almost every
x ∈ R

d.
If (v, χ) satisfies (1.20), then necessarily ‖∇χ(t)‖M = ‖V (t)‖M for almost all

t > 0 because of (1.17) and (1.18). Hence the first part implies that Vx(t) = δn(x,t)

which yields δV (t) = −Hχ(t). Moreover, by (2.4) and (1.16)

S(χ(x, t), Dv(x, t)) : Dv(x, t) ≤
∫
S(χ(x, t), λ) : λ dµx,t(λ)
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with equality if and only if µx,t is a Dirac measure. – Note that
∫
S(χ(x, t), λ) :

λ dµx,t(λ) < ∞ for almost all (x, t) ∈ Q by (1.17). – On the other hand by (1.17)-
(1.20),

∫

Qt

S(χ(x, t), Dv(x, t)) : Dv(x, t) d(x, t) =

∫

Qt

S(χ, λ) : λ dµx,t(λ) d(x, t)

for almost all t > 0. Hence µx,t is a Dirac measure for almost all (x, t) ∈ Q, which
implies that µx,t = δDv(x,t) because of (1.16). – Altogether, we have proved that (v, χ)
is a weak solution. The same argumentation also shows that (v, χ, V ) is a varifold
solution if (1.20) holds with ‖∇χ(t)‖ replaced by ‖V (t)‖.

Finally, if q > d, then (2.11) and the fact that χ ∈ L∞(0,∞;BV (Rd)) yield

−(χ, divx,t ψ) =

∫ ∞

0

∫
ψ′(x, t) d∇χ(t) dt+

∫

Q

χ div(vψd+1) d(x, t)

=

∫ ∞

0

∫
ψ′(x, t) d∇χ(t) dt−

∫ ∞

0

∫
vψd+1 d∇χ(t) dt

for all ψ = (ψ′, ψd+1) ∈ C1
0(Q; Rd+1) where ψd+1(x, t) ∈ R. Moreover, since q > d,

Lq(0, T ;Vq(R
d)) ∩ L∞(0, T ;L2

σ(Rd)) →֒ Lq(0, T ;C0(R
d)) for each T > 0 and

∣∣∣∣
∫ ∞

0

∫
ψ′(x, t) d∇χ(t) dt

∣∣∣∣ ≤ C(E0, T )‖ψ‖C0(QT ),

∣∣∣∣
∫ ∞

0

∫
vψd+1 d∇χ(t) dt

∣∣∣∣ ≤ C(E0, T )‖v‖Lq(0,T ;C0(Rd))‖ψ‖C0(QT )

≤ C(E0, T )‖ψ‖C0(QT )

if suppψ ⊆ QT for T > 0, where E0 = 1
2
‖v0‖2

2 + κ‖∇χ0‖M. This shows that
χ ∈ BV (QT ) for every 0 < T <∞.

4 Approximative Two-Phase Flow

In the following we denote Xκ = BV if κ > 0 and Xκ = L∞ if κ = 0.
In order to formulate the approximation equations, let ψ ∈ C∞

0 (Rd) with suppψ ⊆
B1(0),

∫
ψdx = 1 and ψ ≥ 0. Moreover, let Ψεf = ψε ∗ f if Ω = R

d and Ψε =
Pσ(ψε ∗ f), where ψε(x) := ε−dψ(ε−1x), ε > 0, f is extended by 0 to R

d, and Pσ

denotes the Helmholtz projection, cf. [25]. Then we consider the approximative
two-phase flow on (0, T ), T > 0, which is vε ∈ L∞(0, T ;L2

σ(Ω)) ∩ Lq(0, T ;Vq(Ω))
solves

− (vε, ∂tϕ)QT
− (v0, ϕ(0))Ω − (Ψεvε ⊗ ψε ∗ vε,∇ψε ∗ ϕ)QT

+ (S(χε, Dvε), Dϕ)QT
= κ

∫ T

0

〈Hχε(t),Ψεϕ(t)〉 dt (4.1)
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for all ϕ ∈ C∞
(0)(Ω × [0, T ))d with divϕ = 0, and χε ∈ L∞(0, T ;Xκ(Ω; {0, 1})) is the

unique renormalized solution of the transport equation

∂tχε + (Ψεvε) · ∇χε = 0 in QT , (4.2)

χε|t=0 = χ0 in Ω. (4.3)

Throughout this section we will frequently use that

(Ψεv ⊗ ψε ∗ w,∇ψε ∗ w)Ω = −(Ψεv ⊗ ψε ∗ w,∇ψε ∗ w)Ω = 0 (4.4)

for all v, w ∈ L2(Ω)d. This fact follows from integration by parts and from div Ψεv =
0, n · Ψε|∂Ω = 0.

First of all, we need

Lemma 4.1 Let Assumption 1.1 hold and let T, ε > 0. Then for every v0 ∈
L2

σ(Ω), f ∈ Lq′(0, T ;Vq(Ω)′), and χ ∈ L∞(QT ; [0, 1]), there is a unique solution
v ∈ L∞(0, T ;L2

σ(Ω)) ∩ Lq(0, T ;Vq(Ω)) with ∂tv ∈ Lq′(0, T ;Vq(Ω)′) solving

−(v, ∂tϕ)Q− (v0, ϕ(0))Ω− (Ψεv⊗ψε ∗v,∇ψε ∗v)Q +(S(χ,Dv), Dϕ)Q = 〈f, ϕ〉 (4.5)

for all ϕ ∈ C∞
(0)(Ω × [0, T ))d with divϕ = 0. Moreover,

sup
0≤t≤T

‖v(t)‖2
2 + ‖v‖q

Lq(0,T ;Vq) ≤ C
(
‖f‖q′

Lq′ (0,T ;V ′
q )

+ ‖v0‖2
2

)
(4.6)

‖∂tv‖Lq′ (0,T ;V ′
q ) ≤M

(
‖f‖Lq′ (0,T ;V ′

q ), ‖v0‖2
2

)
(4.7)

for some continuous function M . Finally, if fk, f ∈ L1(0, T ;L2
σ(Ω))∩Lq′(0, T ;Vq(Ω)′)

and χk, χ ∈ L∞(QT ; [0, 1]), k ∈ N, are bounded sequences such that fk →k→∞ f in
L1(0, T ;L2(Ω)) and χk →k→∞ χ in Lp(QT ) for some 1 ≤ p ≤ ∞, then vk →k→∞ v ∈
C([0, T ];L2(Ω)) where vk is the solution of (4.5) with (f, χ) replaced by (fk, χk).

Proof: The proof of existence of solutions can be done by a standard Galerkin
approximation using the fact that

〈A(u), v〉 :=

∫

Ω

ν(χ, |Du|)Du : Dv dx, u, v ∈ V := Vq(Ω)

is a strictly monotone, coercive, hemicontinuous bounded operator A : V → V ′. More
precisely:

First assume that the convective term is not present, i.e., Ψε ≡ 0. If Ω is a
bounded domain, then the lemma is a consequence of Zeidler [36, Theorem 30.A]
with V as above and H = L2(Ω). The conditions (H1)-(H6) are easily verified. If
Ω = R

d, then V = Vq(R
d), H = L2(Rd), V ′ = Vq(R

d)′ is no longer an evolution triple.
But V,H, V ′ still have a common dense basis and the fundamental relation

(u(t), v(t))L2(Ω) − (u(0), v(0))L2(Ω) =

∫ t

0

〈u′(s), v(s)〉 + 〈v′(s), u(s)〉 ds (4.8)
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for all 0 ≤ t ≤ T and u, v ∈ Lq(0, T ;V ) with u′, v′ ∈ Lq′(0, T ;V ′) still holds. Then
the proof given for [36, Theorem 30.A] easily carries over.

If the convective term is present, the proof can be easily modified using the fact
that

(Ψεv ⊗ ψε ∗ v,∇ψε ∗ v)Q = 0

due to (4.4). Therefore the energy estimate for the case with convective term is the
same as without. Moreover, in order to pass to the limit in the convective term
during the Galerkin approximation, one simply uses that

X :=
{
u ∈ Lq(0, T ;Vq(Ω) : ∂tu ∈ Lq′(0, T ;Vq(Ω)′)

}
→֒→֒ L1(0, T ;L2

loc(Ω))

because of (2.1) applied to X0 = W 1
q (ΩR), X1 = L2(ΩR), and X2 = W−1

q′ (ΩR), where
ΩR = Ω ∩BR(0) and R > 0 is arbitrary. This is sufficient to show that

lim
n→∞

(Ψεvn ⊗ ψε ∗ vn,∇ψε ∗ ϕ)QT
= (Ψεv ⊗ ψε ∗ v,∇ψε ∗ ϕ)QT

for all ϕ ∈ C∞
(0)(Ω × [0, T ))d, divϕ = 0, if vn ⇀n→∞ v in X.

Furthermore, we note that the estimate (4.6) follows from the usual energy esti-
mate. In order to estimate ∂tv, we observe that

‖S(χ,Dv)‖q′

Lq′ (QT )
=

∫

QT

|S(χ,Dv)|
q

q−1 d(x, t) ≤ C

∫

QT

|Dv|q d(x, t).

Moreover, since Ψεu = Pσ(ψε ∗ u) and since Pσ is continuous on Ls(Ω)d for all
1 < s <∞, we conclude that

‖Ψεv‖s ≤ Cs‖ψεv‖s ≤ Cε,s‖v‖2, ‖∇ψε ∗ ϕ‖q ≤ Cε,q‖ϕ‖Vq(Ω)

for all 2 ≤ s <∞. Therefore
∣∣∣∣
∫

QT

Ψεv ⊗ ψε ∗ v : ∇ψε ∗ ϕd(x, t)
∣∣∣∣

≤ CsT
1
q′

(
sup

t∈[0,T ]

‖ψε ∗ v(t)‖2
s

)
‖∇ψε ∗ ϕ‖Lq(QT )

≤ Cε,s,T‖v‖2
L∞(0,T ;L2

σ(Ω))‖ϕ‖Lq(0,T ;Vq(Ω)),

where 1
s

= 1
2
− 1

2q
. Using these estimates and the equation (4.5), one easily derives

(4.7).
In order to prove uniqueness and the last statement, let v, w be two solutions of

(4.5). Then

−(v − w, ∂tϕ)QT
+ (S(χ,Dv) − S(χ,Dw), Dϕ)QT

= (Ψε(v − w) ⊗ ψε ∗ v,∇ψε ∗ ϕ)QT
+ (Ψεw ⊗ ψε ∗ (v − w),∇ψε ∗ ϕ)QT
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for all ϕ ∈ C∞
(0)(Ω × [0, T ))d with divϕ = 0. Choosing ϕ = (w − v)χ[0,t], t ∈ [0, T ],

via a standard approximation, and using (4.8) we conclude

‖v(t) − w(t)‖2
2 ≤ (S(χ,Dv) − S(χ,Dw), Dv −Dw)Qt

≤ Cε

(
sup

0≤t≤T
(‖v(t)‖2 + ‖w(t)‖2)

)∫ t

0

‖v(s) − w(s)‖2
2 ds

since Dv 7→ S(χ,Dv) is monotone. Hence Gronwall’s inequality implies v ≡ w.
Finally, let fk, f, χk, χ, vk, v be as in the last statement. Then

−(vk − v, ∂tϕ)Q + (S(χk, Dvk) − S(χk, Dv), Dϕ)Q

= (S(χ,Dv) − S(χk, Dv), Dϕ)Q + 〈fk − f, ϕ〉
+(Ψε(vk − v) ⊗ ψε ∗ vk,∇ψε ∗ ϕ)QT

+ (Ψεv ⊗ ψε ∗ (vk − v),∇ψε ∗ ϕ)QT

for all ϕ ∈ C∞
(0)(Ω × [0, T ))d with divϕ = 0. Choosing ϕ = (vk − v)χ[0,t], t ∈ [0, T ],

we conclude, using the boundedness of vk, v, that

‖vk(t) − v(t)‖2
2 + (S(χk, Dvk) − S(χk, Dv), Dvk −Dv)Qt

≤ Cε

(
‖fk − f‖L1(0,T ;L2) + ‖S(χ,Dv) − S(χk, Dv)‖Lq′ (QT ) +

∫ t

0

‖vk(s) − v(s)‖2
2 ds

)
.

Thus

sup
0≤t≤T

‖vk(t) − v(t)‖2
2 ≤ Cε,T

(
‖fk − f‖L1(0,T ;L2) + ‖S(χ,Dv) − S(χk, Dv)‖Lq′ (QT )

)

by Gronwall’s inequality. The second term can be estimated as

‖S(χ,Dv) − S(χk, Dv)‖q′

Lq′ (QT )
≤ C0

∫

QT

|χ− χk||Dv|q d(x, t)

≤ C1

∫

QT

|χ− χk||Dϕ|q d(x, t) + C2

∫

QT

|Dv −Dϕ|q d(x, t)

for all ϕ ∈ C∞
(0)(QT ). Now we observe that the first term on the right-hand side

converges to zero as k → ∞ since χk →k→∞ χ in Lp(QT ) and the second term is ar-
bitrarily small since C∞

(0)(QT ) is dense in Lq(0, T ; Ẇ 1
q (Ω)). Hence limk→∞ ‖S(χ,Dv)−

S(χk, Dv)‖Lq′ (QT ) = 0. Altogether this implies limk→∞ sup0≤t≤T ‖vk(t)−v(t)‖2
2 = 0.

THEOREM 4.2 Let Assumption 1.1 hold. Then for every ε, T > 0, v0 ∈ L2
σ(Ω),

χ0 ∈ L∞(Ω; {0, 1}) if κ = 0 and χ0 = χΩ+
0

if κ > 0 , where Ω+
0 ⋐ Ω is a bounded

domain with C1-boundary, there is a solution vε ∈ L∞(0, T ;L2
σ(Ω))∩Lq(0, T ;Vq(Ω)),

χε ∈ L∞(0, T ;Xκ(Ω; {0, 1})) of (4.1)-(4.3). Moreover, every solution satisfies the
energy equality

1

2
‖vε(t)‖2

2 + κ‖∇χε(t)‖M

+

∫ t

s

∫

Ω

S(χε, Dvε) : Dvε dx dτ =
1

2
‖vε(s)‖2

2 + κ‖∇χε(s)‖M (4.9)
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for all s, t ∈ (0, T ), s ≤ t, where t 7→ 1
2
‖vε(t)‖2

2 and t 7→ ‖∇χε(t)‖M are absolutely
continuous functions satisfying

d

dt

1

2
‖vε(t)‖2

2 = 〈∂tvε(t), vε(t)〉Ω,
d

dt
‖∇χε(t)‖M = −〈Hχε(t),Ψε ∗ vε(t)〉 if κ > 0

for almost all t ∈ (0, T ) and ∂tvε, κ〈Hχε(t), ψε ∗ .〉 ∈ Lq′(0, T ;Vq(Ω)′).

Proof: Let

X1 :=
{
u ∈ Lq(0, T ;Vq(Ω)) : ∂tu ∈ Lq′(0, T ;Vq(Ω)′)

}

normed in a suitable way. Moreover, let X0 := C([0, T ];L2
σ(Ω)) and let Xα =

(X0, X1)α, where (., .)α is an exact interpolation functor of type α ∈ (0, 1) – f.e. the
real interpolation functor, cf. Bergh and Löfström [5]. – Note that by (4.8)X1 →֒ X0.
Furthermore, we note that the inclusion of X1 into L1(0, T ;L2

loc(Ω)) is compact be-
cause of (2.1) applied to W 1

q (ΩR), L2(ΩR), and W−1
q′ (ΩR), where ΩR = Ω ∩ BR(0)

and R > 0 is arbitrary. By [5, Theorem 3.8.1] the same holds for Xα, α ∈ (0, 1],
instead of X1.

We define a mapping F : X0 → X1 as follows: For given u ∈ X0 let χu ∈
L∞(0,∞;Xκ(Ω; {0, 1})) be the solution of the transport equation (2.9)-(2.10) with v
in (2.9) replaced by Ψεu. Then

X0 ∋ u 7→ χu ∈ Lp(QT ), 1 < p <∞, (4.10)

is strongly continuous by Lemma 2.5. Moreover, the mapping Xα ∋ u 7→ χu ∈
Lp(QT ), α ∈ (0, 1], is even compact by the following argument: If uk ∈ Xα, k ∈ N0,
is a bounded sequence, then after passing to a suitable subsequence uk →k→∞ u
in L1(0, T ;L2

loc(Ω)) by the observations above. This implies the same statement for
Ψεuk,Ψεu. Hence χuk

→ χu again by Lemma 2.5.
Now let v = F (u) be the solution of (4.5) with χ = χu and

〈fu, ϕ〉 := κ

∫ T

0

〈Hχu(t),Ψεϕ(t)〉 dt.

Claim: F : X0 → X0 is continuous, F : Xα → X0, α ∈ (0, 1] is compact, and
F : X0 → X1 is bounded.

Proof of Claim: First let κ = 0. Then F : X0 → X0 is continuous because of
Lemma 4.1 and (4.10). Moreover, F : X0 → X1 is bounded by (4.6) and (4.7).
Finally, F : X1 → X0 is compact since X1 ∋ u 7→ χ0 ∈ Lp(QT ) is compact and the
mapping of χu to the solution v = F (u) ∈ X0 of (4.5) with χ = χu and f = 0 is
continuous.

In the case κ > 0 it remains to prove that X0 ∋ u 7→ fu ∈ Lq′(0, T ;Vq(R
d)′) is

bounded, that X0 ∋ u 7→ fu ∈ L1(0, T ;L2
σ(Rd)) is continuous, and that Xα ∋ u 7→

fu ∈ L1(0, T ;L2
σ(Rd)), α ∈ (0, 1], is compact. Then the claim follows in the same

way.
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Firstly, we estimate fu: Since Ω = R
d if κ > 0, Ψεϕ = ψε ∗ ϕ and

∣∣〈Hχu(t),Ψεϕ(t)〉
∣∣ ≤ Cκ‖∇χu(t)‖M‖∇ψε ∗ ϕ‖C0

b
(Rd) ≤ Cεκ‖∇χu(t)‖M‖ϕ‖Y ,

where Y = L2
σ(Rd) or Y = Vq(R

d) and

‖∇χu‖L∞(0,T ;M(Rd)) ≤ M
(
‖Ψεu‖C([0,T ];C2

b
(Rd))

)
‖χ0‖BV (Rd)

≤ M ′
(
ε, ‖u‖C([0,T ];L2

σ(Rd))

)
‖χ0‖BV (Rd)

by (2.12). Hence

‖fu‖Lq′ (0,T ;V ′
q ) + ‖fu‖L1(0,T ;L2

σ) ≤M
(
ε, T, ‖u‖C([0,T ];L2

σ(Rd))

)
κ‖χ0‖BV (Rd).

In particular this implies

‖F (u)‖X1 ≤M
(
ε, T, ‖v0‖2, ‖u‖L∞(0,T ;L2(Ω)), κ‖∇χu‖L∞(0,T ;M(Ω))

)
(4.11)

for some other continuous function M and κ ≥ 0 by (4.6) and (4.7).
Now let uk ∈ Xα, k ∈ N, be a bounded sequence and let α ∈ (0, 1]. If α = 1,

then Ψεuk ∈ C([0, T ];C1(BR(0))), k ∈ N, is precompact for any R > 0 since Ψεuk ∈
C([0, T ];C2

b (Rd)) and ∂tΨεuk = Ψε∂tuk ∈ Lq′(0, T ;C2
b (Rd)) are uniformly bounded.

Now using again [5, Theorem 3.8.1] we conclude that Ψεuk ∈ C([0, T ];C1(BR(0))),
k ∈ N, is precompact if α ∈ (0, 1). Therefore for a suitable subsequence Ψεuk →k→∞

Ψεu in C([0, T ];C1(BR(0))) for any R > 0. Hence (2.16) implies that

lim
k→∞

〈Hχuk
(t), ϕ〉 = 〈Hχu(t), ϕ〉 for all ϕ ∈ C1

0(Rd)d

uniformly in t ∈ [0, T ]. Moreover, since suppχuk
, k ∈ N, is contained in a compact

set K by Lemma 2.4 and C2(K) →֒→֒ C1(K),

lim
k→∞

sup
t∈[0,T ]

sup
‖ϕ‖

C2
b
(Rd)

≤1

∣∣〈Hχuk
(t), ϕ〉 − 〈Hχu(t), ϕ〉

∣∣ = 0

Therefore fuk
→k→∞ fu ∈ L1(0, T ;L2

σ(Rd)) since ΨεL
2(Rd) → C2

b (Rd). By the same
arguments it follows that fu ∈ L1(0, T ;L2

σ(Rd)) depends continuously on u ∈ X0. –
This finishes the proof of the claim.

Now, since F : Xα → X1 is bounded and F : Xα → X0 is continuous for all
α ∈ [0, 1], the interpolation inequality ‖u‖Xα

≤ ‖u‖1−α
X0

‖u‖α
X1

implies that F : Xα →
Xα is continuous for all α ∈ [0, 1). Similarly, the boundedness of F : Xα → X1,
α ∈ [0, 1], and the compactness of F : Xα → X0, α ∈ (0, 1], yields the compactness
of F : Xα → Xα, α ∈ (0, 1], Altogether F : Xα → Xα is a completely continuous
mapping for all α ∈ (0, 1).

In order to prove the existence of a fixed point vε = F (vε) ∈ Xα, α ∈ (0, 1), we
will use the Leray-Schauder principle, cf. e.g. Sohr [28, Lemma 3.1.1, Chapter II],
for which it only remains to verify the following condition for a suitable R > 0:

If v = λF (v) for some v ∈ Xα, λ ∈ [0, 1], then ‖v‖Xα
≤ R. (4.12)
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Therefore we assume that v = λF (v) for some v ∈ Xα, λ ∈ [0, 1], α ∈ (0, 1). If λ = 0,
then obviously, ‖v‖Xα

= 0 ≤ R for any R > 0. Thus it remains to consider the case
λ > 0. Set α = λ−1 ≥ 1. Then u = αv = F (v) solves

− (u, ∂tϕ)QT
− (v0, ϕ(0))Ω − (Ψεu⊗ ψε ∗ u,∇ψε ∗ ϕ)QT

+ (S(χv, Du), Dϕ)QT

= κ

∫ T

0

〈Hχv(t),Ψεϕ(t)〉 dt

for all ϕ ∈ C∞
(0)(Ω × [0, T ))d with divϕ = 0. Hence choosing ϕ = uχ[0,t] (after a

standard approximation) we conclude

1

2
‖u(t)‖2

2 +

∫ t

0

∫

Ω

S(χv, Du) : Dudx dτ =
1

2
‖v0‖2

2 + κ

∫ t

0

〈Hχv(τ),Ψεu(τ)〉 dτ.

where we have used (4.4).
Now, since Ψεu(τ) = αΨεv(τ), Lemma 2.3 implies that

∫ t

0

〈Hχv(τ),Ψεu(τ)〉 dτ = α (|∇χ0|(Ω) − |∇χv(t)|(Ω)) if κ > 0.

Hence

α

2
‖v(t)‖2

2 + κ|∇χv(t)|(Ω) + αq−1c0

∫ t

0

∫

Ω

|Dv|q dx dτ ≤ 1

2
‖v0‖2

2 + κ|∇χ0|(Ω) =: E0

for all 0 ≤ t ≤ T , where c0 is the same as in (1.12). Hence using (4.11) and the latter
estimate, we conclude

‖v‖Xα
≤ Cλ‖F (v)‖X1

≤ M ′
(
ε, T, ‖v‖L∞(0,T ;L2(Ω)), κ‖∇χv‖L∞(0,T ;M(Ω))

)
≤M ′′(ε, T, E0)

for some continuous functions M ′,M ′′. Hence for R := M ′′(ε, E0) the condition
(4.12) is valid. This implies that there is fixed point vε = F (vε) ∈ Xα, which is a
solution of (4.1)-(4.3) by definition of F .

The remaining statements easily follow from (4.8) and (2.13).

5 Proofs of the Main Theorems

5.1 Approximation Sequence

Throughout this section we assume that the assumptions of Theorem 1.6 if κ > 0
and Theorem 1.9 if κ = 0 hold. Moreover, we denote by E0 = 1

2
‖v0‖2

2 + κ|∇χ0|(Ω)
the initial energy of the flow.
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For every ε > 0 let (vε, χε) be an approximative solutions due to Theorem 4.2 for
T = 1

ε
. Because of the uniform bounds of (vε, χε) given by the energy equality (4.9)

and

‖S(χk, Dvk)‖q′

Lq′ (QT )
=

∫

QT

|S(χk, Dvk)|
q

q−1 d(x, t) ≤ C

∫

QT

|Dvk|q d(x, t)

due to (1.12) there is a subsequence (vεk
, χεk

) ≡ (vk, χk), k ∈ N, such that

vk ⇀k→∞ v in Lq(0,∞;Vq(Ω)) (5.1)

vk ⇀
∗
k→∞ v in L∞(0,∞;L2

σ(Ω)) (5.2)

S(χk, Dvk) ⇀k→∞ S̃ in Lq′(Q) (5.3)

χk ⇀
∗
k→∞ χ in L∞(Q) (5.4)

∇χk ⇀
∗
k→∞ ∇χ in L∞(0,∞;H−s(Ω)), s >

d

2
, if κ > 0 (5.5)

for some v ∈ L∞(0,∞;L2
σ(Ω)) ∩ Lq(0,∞;Vq(Ω)), χ ∈ L∞(0,∞;Xκ(Ω)) with Xκ =

BV if κ > 0 and Xκ = L∞ if κ = 0, and S̃ ∈ Lq′(Q). Here the functions vε, χε are
extended by 0 for t > 1

ε
.

5.2 Passing to the Limit in the Transport Equation and the
Convective Term

We pass to the limit in the transport equation using the following lemma, which is a
variant of [18, Lemma 5.1]:

Lemma 5.1 Let (vk, χk)k∈N be bounded in Lq
loc([0,∞);W 1

q (Ω; Rd))×L∞(Q), 1 < q <
∞, such that

vk ⇀k→∞ v in Lq(0, T ;W 1
q (Ω)d) for all T > 0, (5.6)

χk ⇀
∗
k→∞ χ in L∞(Q). (5.7)

If (∂tχk)k∈N is bounded in Lq′(0, T ;W−1
q′,loc(Ω)) for any T > 0, then χkvk →k→∞ χv

in D′(Q).

Proof: First of all, since the statement is local, it is sufficient to consider the case
that Ω is a bounded domain and the case that (0,∞) is replaced by (0, T ), T > 0
arbitrary. Because of Lq′(Ω) →֒→֒ W−1

q′ (Ω) (2.1) yields

χkj
→j→∞ χ∗ in Lq′(0, T ;W−1

q′ (Ω))

for some subsequence. Since χk ⇀
∗
k→∞ χ in L∞(QT ), χ∗ = χ and the full sequence

χk converges strongly in Lq′(0, T ;W−1
q′ (Ω)). This implies that χkvk → χv in D′(QT ).
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Corollary 5.2 Let (v, χ) be as in (5.1)-(5.5). Then (v, χ) solves the transport equa-
tion (1.10)-(1.11).

Proof: It only remains to observe that ∂tχk is bounded in Lq′(0, T ;W−1
q′,loc(Ω)) for

any T > 0: Because of

(χk, ∂tϕ)QT
+ (χk, vk · ∇ϕ)QT

= 0 for all ϕ ∈ C∞
0 (QT )

we estimate

|(χk, ∂tϕ)QT
| ≤ ‖vk‖Lq([0,T ]×ΩR)‖∇ϕ‖Lq′ (QT )

≤ C
(
‖vk‖Lq(0,T ;Vq(Ω)) + T

1
q ‖vk‖L∞(0,T ;L2(Ω))

)
‖∇ϕ‖Lq′ (QT )

for all ϕ ∈ Lq′(0, T ;W 1
q′(Ω)) with suppϕ ⊆ ΩR, ΩR = Ω ∩ BR, R > 0. – Note that

Vq(R
d) ∩ L2

σ(Rd) →֒ Lq(BR(0)) if Ω = R
d and Vq(Ω) →֒ Lq(Ω) if Ω is bounded.

The latter corollary and (2.11) yield

‖χ‖p
Lp(QT ) = ‖χ‖L1(QT ) = T‖χ0‖L1(Ω) = ‖χk‖p

Lp(QT )

for all 1 ≤ p <∞ since
∫
χ(t) dx =

∫
χ0 dx for almost all t > 0. Hence

χk →k→∞ χ in Lp(QT ) for all 1 ≤ p <∞, T > 0.

In particular this implies that χ(x, t) ∈ {0, 1} almost everywhere.
In order to pass to the limit in the convective term, we use the following lemma.

Lemma 5.3 Let vk, v be as above and let q > 2d
d+2

. Then

vk →k→∞ v in Lq′(0, T ;L2
loc(Ω)) (5.8)

for all T > 0. In particular,

lim
k→∞

(Ψkvk ⊗ ψk ∗ vk,∇ψk ∗ ϕ)Q = (v ⊗ v,∇ϕ)Q

for all ϕ ∈ C∞
(0)(Q)d.

Proof: First let |Ω| < ∞. Since S(χk, Dvk) and Ψkvk ⊗ ψk ∗ vk are uniformly
bounded in Lq′(QT ), L∞(0, T ;L1(Ω)), resp., and

∣∣∣∣
∫ ∞

0

〈Hχk(t), ϕ(t)〉dt
∣∣∣∣ ≤ sup

0≤t<∞
‖∇χk(t)‖M(Rd)

∫ ∞

0

‖ϕ(t)‖C1
b
(Rd) dt if κ > 0,

∂tvk is uniformly bounded in Lq′(0, T ;H−m(Ω)) for some suitable m ∈ N. Using (2.1)
with Vq(Ω) ∩ L2(Ω) →֒→֒ L2(Ω) →֒ H−m(Ω) when q > 2d

d+2
, proves (5.8) in the case

|Ω| <∞. The case Ω = R
d follows from the first part applied to Ω′

⋐ R
d.

Finally, (5.8) implies that ψk ∗ vk · ∇ψk ∗ ϕ → v · ∇ϕ in Lq′(0, T ;L2(Ω)) for all
ϕ ∈ C∞

(0)(Q)d and T > 0 since ψk converges strongly to the identity as k → ∞.

Together with (5.2) this implies the last statement.
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5.3 Case without Surface Tension

Obviously, in the case of two Newtonian fluids, i.e., q = 2 and ν(j, s) = νj are
constant, the strong convergence of χk and the weak convergence of Dvk yield S̃ =
S(χ,Dv). For the case q 6= 2 and κ = 0, we use the following lemma:

Lemma 5.4 Let κ = 0 and let q ≥ 2d
d+2

+ 1. Then

S(χ(x, t), Dv(x, t)) = S̃(x, t) for almost all (x, t) ∈ Q. (5.9)

Proof: By the results so far we obtain

−(v, ∂tϕ)Q − (v0, ϕ(0))Ω − (v ⊗ v,∇ϕ)Q + (S̃, Dϕ)Q = 0 (5.10)

for all ϕ ∈ C∞
(0)([0,∞)×Ω)d, divϕ = 0. Furthermore, q ≥ 2d

d+2
+1 implies that for all

T > 0
|(v ⊗ v,∇ϕ)QT

| ≤ C‖∇ϕ‖Lq(QT ) (5.11)

for all ϕ ∈ C∞
(0)([0, T ) × Ω)d, divϕ = 0, because of [12, Lemma 2.44, Chapter 5].

Moreover, since S̃ ∈ Lq′(Q), equation (5.10) implies that ∂tv ∈ Lq′(0, T ;Vq(Ω)′) for
all T > 0. Therefore we can choose ϕ = v|QT

in (5.10) and obtain

1

2
‖v(T )‖2

2 + (S̃, Dv)QT
=

1

2
‖v0‖2

2,

where we have used (4.8) and (v ⊗ v,∇v)QT
= 0, cf. [12, Lemma 4.45, Chapter 5].

Moreover,
1

2
‖vk(T )‖2

2 + (S(χk, Dvk), Dvk)QT
=

1

2
‖v0‖2

2

and therefore

lim sup
k→∞

(S(χk, Dvk), Dvk)QT
=

1

2
‖v0‖2

2 − lim inf
k→∞

1

2
‖vk(T )‖2

2

≤ 1

2
‖v0‖2

2 −
1

2
‖v(T )‖2

2 = (S̃, Dv)QT
.

Thus we are in the position to apply Theorem 2.6 with A(x, s, ξ) = S(s, ξ), zk = Dvk,
yk = χk to conclude that for a suitable subsequence limk→∞ S(χk, Dvk) = S̃ in mea-
sure. Since T > 0 is arbitrary, this implies (5.9).

Proof of Theorem 1.9: For the case κ = 0 the results obtained so far show that
(v, χ) is a weak solution of (1.21) for f = 0 together with (1.10)-(1.11). The general
case f ∈ Lq′(0,∞;Vq(Ω)′) can be proved in the same way with minor modifications.

Remark 5.5 The condition q ≥ 2d
d+2

+ 1 is only needed to estimate the convective

term as in (5.11). For all other parts of the proof only q > 2d
d+2

is needed. Hence in
the case of the Stokes equations, where the convective term v · ∇v is neglected, cf.
Remark 1.10, the condition q > 2d

d+2
is sufficient to prove existence of weak solutions.
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5.4 Case with Surface Tension: Properties of the Interface

It remains to consider the case with surface tension κ > 0. For this let Ω+
k (t) =

Xk,t(Ω
+
0 ), where Xk,t = XΨkvk

(t) is the flow map associated to (2.14)-(2.15) with
v = Ψkvk as described above. Moreover, let Γk(t) = ∂Ω+

k (t) = Xk,t(∂Ω+
0 ) and let

Γk =
⋃

0≤t<∞ Γk(t) × {t}.
First we will show that in the case q > d or d = 2 Γk ∩ QT is contained in the

compact set BR(0) × [0, T ] for R = R(T ) and arbitrary T > 0. Then a suitable
subsequence will converge in the Hausdorff distance.

Lemma 5.6 Let d = 2, κ > 0. Then Γk(t) ⊆ BR(0) for all t ∈ (0, T ) and some
R = R(T,E0,Ω

+
0 ).

Proof: Since Hd−1(Γk(t)) ≤ κ−1E0, obviously diam(Ω+
k (t)) ≤ E0

2κ
. Moreover, by the

transport equation

∫

Ω+
k

(t)

x dx =

∫

Ω+
0

x dx+

∫ t

0

∫

Ω+
k

(τ)

vk · 1 dx dτ,

where 1 = (1, . . . , 1)T , which implies
∣∣∣∣∣

∫

Ω+
k

(t)

x dx

∣∣∣∣∣ ≤ C(Ω+
0 ) + t|Ω+

0 |
1
2 sup

0≤τ≤t
‖v(τ)‖2 ≤ C(T,E0,Ω

+
0 )

for all 0 ≤ t ≤ T since |Ω+
k (τ)| = |Ω+

0 | for all τ > 0. Therefore Ω+
k (t) ⊆ BR(0) for

0 ≤ t ≤ T with R = C(T,E0,Ω
+
0 ) + E0

2κ
.

In the case q > d, v ∈ Lq(0, T ;C0(R
d)) since Vq(R

d) ∩ L2
σ(Rd) →֒ C0(R

d) and we
can prove that Γk(t) are equi-Hölder continuous in the following sense:

Lemma 5.7 Let q > d. Then

dH(Γk(t1),Γk(t2)) ≤ C|t1 − t2|
1
q′

for all 0 ≤ t1, t2 ≤ T , T > 0, where C depends only on E0, q, T . In particular,
Γk(t) ⊆ BR(0) for all 0 ≤ t ≤ T for some R = R(T,E0,Ω

+
0 ).

Proof: By symmetry it suffices to show that Γk(t1) ⊆ (Γk(t2))ε for ε = C|t1 − t2|
1
q′ .

Let x1 ∈ Γk(t1). Then by definition of Γk(t) there is a curve x(t) such that x(t1) = x1

and x′(t) = vk(x(t), t) for t > 0. Moreover, x2 = x(t2) ∈ Γk(t2) and

|x1 − x2| ≤
∫ t2

t1

|vk(x(t), t)| dt ≤ C(E0, T, q)|t1 − t2|
1
q′ , 0 ≤ t1 ≤ t2 ≤ T.

This proves the statement.
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Corollary 5.8 Let κ > 0 and let q > d or let d = 2. Then there is a subsequence of
Γk, k ∈ N, (again denoted by Γk, k ∈ N) and a closed set Γ∗ ⊂ Q such that for every
rational T > 0

Γ∗
k ∩QT →k→∞ Γ∗

T w.r.t. dH

for some compact set Γ∗
T ⊆ QT with Γ∗

T ∩QT = Γ∗ ∩QT .

Proof: By the previous two lemmas, Γk ∩ QT is contained in a compact set AT .
Hence using the compactness of the metric space (K(A), dH) for compact A ⊂ R

N

one easily gets a subsequence of Γk, k ∈ N, that converges in (K(AT ), dH) for every
rational T > 0 to some compact set Γ∗

T . By the definition of dH one easily verifies
that Γ∗

T1
∩ QT1 = Γ∗

T2
∩ QT1 if 0 < T1 ≤ T2. Using this the existence of Γ∗ ⊆ Q is

immediate.

In the case q > d, we even obtain:

Corollary 5.9 Let q > d. Then Γk(t) →k→∞ Γ∗
t for all t > 0 in Hausdorff distance,

where Γ∗
t = {x ∈ R

d : (x, t) ∈ Γ∗}.
Proof: First of all, for a fixed t > 0 and a suitable subsequence Γkj

(t) →j→∞ Γ∗∗
t

in the Hausdorff distance. We claim that Γ∗∗
t = Γ∗

t . The inclusion Γ∗∗
t ⊆ Γ∗

t is
obvious. Conversely, let (x, t) ∈ Γ∗

t . Then there is a sequence (xkj
, tkj

) ∈ Γkj
such

that limj→∞(xkj
, tkj

) = (x, t). But by Lemma 5.7 there are yj ∈ Γkj
(t) such that

|yj − xkj
| ≤ C(E0, T )|t− tkj

|
1
q′ . Hence

|x− yj| ≤ |x− xkj
| + |xkj

− yj| ≤ |x− xkj
| + C(E0)|t− tkj

|
1
q′ ,

which shows that Γkj
(t) ∋ yj → x ∈ Γ∗

t . Thus Γ∗
t ⊆ Γ∗∗

t . Therefore Γ∗
t = Γ∗∗

t

for any accumulation point Γ∗∗
t of Γk(t) in the Hausdorff distance, which implies

Γk(t) →k→∞ Γ∗
t for all t > 0.

The latter corollary gives some compactness in time for the sequence of interfaces
Γk(t) if q > d for d = 2, 3. But now there is a crucial difference between the case d = 2
and d = 3. If d = 3 and t > 0 is fixed, then the boundedness of Hd−1(Γk(t)) does
not imply that a limit of Γk(t) in the Hausdorff distance has finite Hd−1-measure. –
It is easy to construct sequences of surfaces of fixed area with many “small fingers”
that will converge to a set of positive Lebesgue measure. – This cannot happen in
two dimension as the following lemma shows:

Lemma 5.10 Let Γk ⊂ R
2, k ∈ N, be a sequence of compact Lipschitz curves and

Γk → Γ∗ in Hausdorff distance for some compact set Γ∗ ⊂ R
2. Then H1(Γ∗) ≤

lim infk→∞H1(Γk).

Proof: Let δ > 0, q > 1 be fixed. Then there is aN = N(δ, q) such that dH(Γk,Γ
∗) ≤

(1 − 1
q
) δ

2
for all k ≥ N . Moreover, for any ε > 0 there is some kε ≥ N such that
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L := H1(Γkε
) ≤ lim infk→∞H1(Γk) + ε. Then there is a covering Γkε

⊆ ⋃M
j=1B δ

2q
(xj)

such that M ≤ q
δ
H1(Γkε

) + 1. (Let γk : [0, L] → R
d be a parameterization by arc-

length and tk = k · δ
q
, k = 0, . . . ,M − 1, where M = [ q

δ
L] + 1, and tM = L; then

choose xj = 1
2
(γk(tj−1) + γk(tj)).) Therefore Γ∗ ⊆ ⋃M

j=1Bδ/2(xj) and

H1
δ(Γ

∗) ≤ δM ≤ qH1(Γkε
) + δ ≤ q

(
lim inf

k→∞
H1(Γk) + ε

)
+ δ,

where

H1
δ(A) = inf

{
∞∑

j=1

2rj : A ⊆
∞⋃

j=1

Brj
(xj), 0 < rj ≤ δ

}
.

Since q > 1, ε > 0 are arbitrary H1
δ(Γ

∗) ≤ lim infk→∞H1(Γk) + δ for every δ > 0,
which proves the lemma.

Corollary 5.11 Let q > d = 2, κ > 0. Then H1+q′(Γ∗ ∩ [0, T ]) <∞ for all T > 0.

Proof: By Corollary 5.9 Γk(t) →k→∞ Γ∗
t in Hausdorff distance. Moreover, by

Lemma 5.10 H1(Γ∗
t ) ≤ lim infk→∞H1(Γk(t)) ≤ κ−1E0 for all t ≥ 0. Now choose

0 = t0 < t1 < . . . < tN = T , T > 0, with |tj − tj+1| ≤ δ =
(

r
3C

)q′
for r > 0

and N ≤ 2Tδ−1, where C is the same constant as in Lemma 5.7. Since the length of
Γk(tj) is bounded by κ−1E0, there are balls B r

3
(xj,l), l = 1, . . . ,Mj, j = 1, . . . , N , with

Mj ≤ C(E0)r
−1 covering Γk(tj). Now choose k ∈ N so large that dH(Γk(tj),Γ

∗
tj
) ≤ r

3

for j = 1, . . . , N . Using Lemma 5.7 and Γk(t) →k→∞ Γ∗
t , we conclude

dH(Γ∗
t1
,Γ∗

t2
) ≤ C|t1 − t2|

1
q‘ .

Then for |t− tj| ≤ δ

Γ∗
t ⊆

(
Γ∗

tj

)
r/3

⊆ (Γk(tj))2r/3 ⊆
Mj⋃

l=1

Br(xj,l).

Thus

Γ∗ ∩QT ⊆
N⋃

j=1

Mj⋃

l=1

Br(xj,l)

where the number of balls on the right-hand side is bounded by Cr−1−q′ . Since r > 0
was arbitrary, this implies that H1+q′(Γ∗) ≤ C(E0, q).

5.5 Case with Surface Tension: Finish of the Proof

Using Corollary 5.11 we obtain:
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Lemma 5.12 Let κ > 0 and let q > d = 2. Then

S(χ(x, t), Dv(x, t)) = S̃(x, t) for almost all (x, t) ∈ Q. (5.12)

Proof: Because of Corollary 5.11, H3(Γ∗ ∩ [0, T ]) = 0 for all T > 0. Hence BR(0)×
[0, T ] =

⋃∞
j=1Qj∪M withM = Γ∗∩QT and H3(M) = 0, whereQj = (aj, bj)×Brj

(xj)

and Qj ∩ M = ∅. Now it is sufficient to prove that (5.12) holds for all ϕ with
suppϕ ⊂ Qj, which shall be arbitrary but fixed in the following. Then we choose
η ∈ C∞

0 (Qj) with η ≡ 1 on suppϕ. Because of the convergence of Γk in Hausdorff
distance, for every fixed j ∈ N we have (Γk)εk

∩ Qj = ∅ for sufficiently large k ∈ N.
Hence χεk

= l ∈ {0, 1} is constant on Qj for suitably large k and wk := PL2
σ(R2)(ηvk) ∈

L∞(0,∞;L2
σ(R2)) ∩ Lq(0,∞;Vq(R

2)) solves

−(wk, ∂tu)Q + (wk|t=0, u(0))R2 − (Ψkwk ⊗ wk,∇u)Q + (S(l, Dwk), Du)Q = 〈fk, u〉
for all u ∈ C∞

(0)([0,∞) × R
2)2, div u = 0, with a right-hand side fk satisfying

fk → f ∈ Lq′(0,∞;Vq(R
2)′) as k → ∞.

Moreover, wk ⇀k→∞ w in Lq(0,∞, Vq(R
2)) and weak-∗ in L∞(0,∞;L2

σ(R2)) and it
can be shown by the same argument as in the case κ = 0, cf. Lemma 5.4, that
Dwk → Dw in measure. In particular this implies S̃ = S(l, Dv) = S(χ,Dv) almost
everywhere on suppϕ. Since ϕ ∈ C∞

0 (Q) with suppϕ ⊂ Qj and Qj have been arbi-
trary, (5.12) follows.

Finally, we consider the sequence of oriented general varifolds Vk(t), t ∈ [0,∞)
associated to Γk(t), i.e.,

〈Vk(t), ϕ〉 :=

∫

Rd

ϕ(x, nk(x)) d|∇χk(t)|, ϕ ∈ C0(R
d × S

d−1),

where nk(x) = − ∇χk

|∇χk|
and we set

〈Vk, ϕ〉 =

∫ ∞

0

〈Vk(t), ϕ(t)〉 dt for all ϕ ∈ L1(0,∞;C0(R
d × S

d−1)).

Hence for a suitable subsequence

Vk ⇀
∗
k→∞ V in L∞(0,∞;H−s(Rd × S

d−1)), s >
2d− 1

2
(5.13)

for some V ∈ L∞
ω (0,∞;M(Rd × S

d−1)) since Vk ∈ L∞
ω (0,∞;M(Rd × S

d−1)) is uni-
formly bounded and M(Rd × S

d−1) →֒ H−s(Rd × S
d−1). Then by choosing the test

function in the form ϕ(x, s, t) = s · ψ(x, t), ψ ∈ C∞
(0)([0,∞) × R

d)d, this implies

−
∫ ∞

0

〈∇χk(t), ψ(t)〉 dt =

∫ ∞

0

∫

Rd

∫

Sd−1

s · ψ(x, t) dδnk(x,t) d|∇χk(t)| dt

→k→∞ −
∫ ∞

0

〈∇χ(t), ψ(t)〉 dt =

∫

Ω

∫

Sd−1

s · ψ(x, t) dVx(t) d|V (t)| dt,
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which shows (1.15). Similarly, choosing ϕ(x, s, t) = (I−s⊗s) : ∇ψ(x, t) we conclude

−
∫ ∞

0

〈Hχk(t), ψ(t)〉 dt =

∫ ∞

0

〈δVk(t), ψ(t)〉 dt→k→∞

∫ ∞

0

〈δV (t), ψ(t)〉 dt

for all ψ ∈ C∞
(0)([0,∞) × R

d)d.

Moreover, by Theorem 2.1 there is some µ ∈ L∞
ω (Q;Prob(Rd×d

sym)) such that (1.16)
holds and

S(l, Dvk) ⇀k→∞

∫
S(l, λ) dµx,t(λ) in Lq′(Q)

for every l ∈ [0, 1]. But this implies

S(χ(x, t), Dvk) ⇀k→∞

∫
S(χ(x, t), λ) dµx,t(λ) in Lq′(Q).

Moreover, χk →k→∞ χ in measure (for a suitable subsequence) and S(χk, Dvk) is
uniformly bounded in Lq′(Q). Therefore

lim
k→∞

(S(χk, Dvk), Dϕ)Q = lim
k→∞

(S(χ,Dvk), Dϕ)Q =

(∫
S(χ, λ) dµx,t(λ), Dϕ

)

Q

for each ϕ ∈ C∞
0 (Q)d, which proves (1.14). Hence the existence of measure-valued

varifold solutions is proved.
It remains to prove the remaining properties stated in Theorem 1.6. The first

statement follows from Lemma 5.6 and Lemma 5.7. The second statement is proved
by first proving that for a suitable subsequence |Vk(t)|⇀ |V (t)| in M(R2) for almost
all t > 0 and then using an argument due to Plotnikov [20]:

Lemma 5.13 Let q > d and let κ > 0. Then there is a subsequence (again denoted
by |Vk(t)|) such that

|Vk(t)|⇀∗
k→∞ |V (t)| in M(Rd)

for almost all t > 0.

Proof: First, we define a measure Ek(t) by

〈Ek(t), ϕ〉 := κ〈|Vk(t)|, ϕ〉 +
1

2

∫

Rd

|vk(x, t)|2ϕ(x) dx, ϕ ∈ C0(R
d).

Note that Ek(t) measures approximately the kinetic energy and “surface energy” of
the approximately at given time t > 0. We now show that Ek(t) converges weak-∗
in measure almost everywhere (for a suitable subsequence).

By (2.8) we have that

d

dt
〈|Vk(t)|, ϕ〉 =

d

dt

∫

Γk(t)

ϕ(x, t) dH1(x)

= 〈δVk(t), ϕΨkvk(t)〉 +

∫

Rd×Sd−1

s · ∇ϕ(x)s · Ψkvk(x, t) dVk(t)(x, s).
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Since vk ∈ Lq(0, T ;C0(R
d)), T > 0, is uniformly bounded, the last term in the

equation above is uniformly bounded in Lq′(0, T ;C1(Rd)′). Moreover,

〈δVk(t), ϕΨkvk〉 = 〈δVk(t), Pσ(ϕΨkvk)〉 + 〈δVk(t), (I − Pσ)(ϕΨkvk)〉,

where (I−Pσ)(ϕΨkvk) ∈ Lq(0, T ;C1
0(Rd)), T > 0 and 〈δVk(τ), .〉 ∈ L∞(0,∞;C1

0(Rd)′)
are uniformly bounded for every ϕ ∈ C1

0(Rd). (Note that in the case Ω = R
d the

Helmholtz projection Pσ can be represented using classical singular integral opera-
tors.) Therefore the second term in the equation above is also uniformly bounded in
Lq′(0, T ;C1(Rd)′). Furthermore,

〈δVk(t), Pq(ϕ(Ψkvk))〉 = 〈δVk(t),ΨkPq(ϕvk))〉 − 〈δVk(t), Pq[Ψk, ϕ]vk〉

where [A,B] denotes the commutator of two operators. Note that Pσ and Ψk com-
mute and that Pσ is a bounded operator on Cα(Rd), α ∈ (0, 1). Moreover,

‖[Ψk, ϕ]w‖C1,α(Rd) ≤ C‖w‖Cα(Rd) w ∈ Cα(Rd), 0 < α < 1,

uniformly in k ∈ N. This implies that the second term in the equation above is
uniformly bounded in Lq′(0, T ;C1(Rd)′). On the other hand by (4.1)

−κ〈δVk(t),ΨkPσ(ϕvk)〉 = −κ〈HΓk(t),ΨkPσ(ϕvk)〉

=
d

dt

1

2

∫

Rd

|vk(x, t)|2ϕ(x) dx+ 〈(1 − Pσ)(ϕvk(t)), ∂tvk(t)〉

+(Ψkvk ⊗ ψk ∗ vk,∇ψk ∗ Pσ(ϕvk))Rd + (S(χk, Dvk), DPσ(ϕvk))Rd ,

where the second term vanishes and the last two terms are again uniformly bounded
in L1(0, T ;C1

0(Rd)′). – Note that vk ⊗ vk ∈ L∞(0, T ;L1(Rd)) ∩ L1(0, T ;L∞(Rd)) →֒
L1(QT ) ∩ L2(QT ) and ∇vk ∈ Lq(QT ) are uniformly bounded. – Summing up, we
have that

d

dt
〈Ek(t), .〉 ∈ L1(0, T ;C1

0(Rd)′)

is uniformly bounded. Hence

Ek →k→∞ Ẽ in Lp(0, T ;H−s
loc(R

d)) if s > 1

for every 1 ≤ p < ∞ by (2.1) and therefore Ek(t) → Ẽ(t) in H−s
loc(R

d) for almost
all t ∈ (0, T ). On the other hand vk →k→∞ v in Lq′(0, T ;L2

loc(R
d)) by Lemma 5.3

and therefore vk(t) → v(t) in L2
loc(R

d) for almost all t ∈ (0, T ) and for a suitable
subsequence. Hence

|Vk(t)| →k→∞ µ(t) in H−s
loc(R

d)

for almost all t ∈ (0, T ). But, since C∞
0 (Rd) is dense in C0(R

d) and |Vk(t)| is uniformly
bounded in M(Rd), we conclude

|Vk(t)|⇀∗
k→∞ µ(t) in M(Rd)
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for almost all t ∈ (0, T ). Finally, by (5.13)

|Vk|⇀∗
k→∞ |V | in L∞(0,∞;H−s(Rd)) for s >

2d− 1

2

and therefore µ = |V |.

Lemma 5.14 Let q > d = 2. Then |V (t)| is supported on Γ∗
t and |V (t)| ≥ H1⌊Γ∗

t

for almost all t > 0.

Proof: First assume that Ω+
0 is simply connected. Let t > 0 be such that |Vk(t)|⇀∗

k→∞

|V (t)| in M(R2). Moreover, let xk : [0, 1] → R
2 be a parameterization of Γk,t with

respect to arclength times the total length H1(Γk,t). Then xk ∈ C0,1([0, 1]; R2) is uni-

formly bounded since Γk,t ⊆ BR(0) for some R > 0 and the Lipschitz constants of xk

are H1(Γk,t) ≤ C(E0). Hence for a suitable subsequence xkj
→j→∞ x ∈ C0([0, 1]; R2)

for some x ∈ C0,1([0, 1]; R2) and H1(Γkj ,t) →j→∞ l∗. – Note that H1(Γkj ,t) are
bounded below since they enclose Ω+

k (t) and |Ω+
k (t)| = |Ω+

0 |. – Then

〈|V (t)|, ϕ〉 = lim
j→∞

H1(Γkj ,t)

∫ 1

0

ϕ(xk(s))ds = l∗
∫ 1

0

ϕ(x(s))ds.

for all ϕ ∈ C0(R
2). Hence supp |V (t)| = x([0, 1]).

Now we prove that Γ∗
t = x([0, 1]). Obviously, x([0, 1]) ⊆ Γ∗

t . Conversely, if
x0 ∈ Γ∗

t , then x0 = limj→∞ xkj
(sj) for some sj ∈ [0, 1]. But then sj →j→∞ s0 ∈ [0, 1]

for a suitable subsequence again denoted by sj. Hence x0 = limj→∞ xkj
(sj) = x(s0) ∈

x([0, 1]). This proves the first part of the lemma.
In order to prove |V (t)| ≥ H1⌊Γ∗ we use that

〈|V (t)|, ϕ〉 = l∗
∫ 1

0

ϕ(x(s))ds ≥
∫ 1

0

ϕ(x(s))|x′(s)| ds

since |x′(s)| ≤ l∗ almost everywhere. Hence by the area formula

|V (t)|(A) ≥
∫ 1

0

χA(x(s))|x′(s)| ds ≥ H1⌊Γ∗
t (A)

for every open A ⊆ R
2, cf. e.g. [27].

Finally, if Ω+
0 is not simply connected, we apply the argument above to N -curves

instead of one curve, where N is the number of connected components of ∂Ω+
0 .

A Appendix: Rectifiability of the Varifold

One of the most challenging questions concerning measure-valued varifold solutions
of the two-phase flow with surface tension is whether there are solutions such that the
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unorientated general varifold Ṽ (t) associated to V (t) via (2.7) is a (d− 1)-rectifiable

varifold for almost all t > 0, i.e., Ṽx(t) = δP (x,t) and

〈Ṽx(t), ϕ〉 =

∫
ϕ(x, P (x, t))θt(x) dHd−1⌊Mt(x), ϕ ∈ C0(Ω ×Gd−1),

for some countably (d − 1)-rectifiable set Mt and a Hd−1⌊Mt-measurable positive
function θt, cf. [27]. In particular, the case that θt(x) is a positive integer for almost
all (x, t) would give a more satisfactory answer to the existence of measure-valued
solutions.

As noted by Plotnikov [19], the major problem is that (1.14) gives only informa-
tion of 〈δV, ψ〉 for ψ ∈ C∞

0 (Q; Rd) with divψ = 0. But in order to apply techniques
from geometric measure theory it is necessary to have a good estimate of 〈δV (t), ψ〉
for ψ ∈ C∞

0 (Q; Rd) with divψ 6= 0 or at least for suitable gradients. The following
result on regularity of measure-valued varifold solutions shows that, once a 〈δV, ψ〉
can be estimated for all ψ ∈ C∞

0 (Q; Rd+1) in suitable norms and the (d− 1)-density

of |V (t)| is bounded below, then Ṽ (t) is a (d − 1)-rectifiable varifold. The result is
based on a new rectifiability result for general varifolds due to Luckhaus [15].

THEOREM A.1 (Rectifiability) Let (v, χ, V, µ) be a measure-valued solution due
to Definition 1.2 and let T > 0, q > 2d

d+2
. Assume that

lim sup
ρ→0

ρ−d+1|V (t)|(Bρ(x)) ≥ Θt > 0

for |V (t)|-almost all x ∈ R
d and almost all t ∈ (0, T ). If for some s > 1

〈δV, ·〉 ∈ L1(0, T ;W−1
s,loc(R

d))

or if there is some p ∈ L1(0, T ;Ls
loc(R

d)) for some s > 1 such that

(v, ∂tϕ)QT
+ (v0, ϕ(0))Rd − (v ⊗ v,∇ϕ)QT

+

(∫
S(χ, λ) dµx,t(λ), Dϕ

)

QT

− (p, divϕ)QT
= −κ

∫ T

0

〈δV (t), ϕ(t)〉 dt(A.1)

for all ϕ ∈ C∞
(0)([0, T ) × R

d; Rd), then Ṽ (t) is a (d− 1)-rectifiable varifold for almost

all t ∈ (0, T ).

We note that, if q > d = 2, then the measure-valued varifold solution due to
Theorem 1.6 satisfies

lim sup
ρ→0

ρ−1|V (t)|(Bρ(x)) ≥ 1

for |V (t)|-almost all x and almost all t > 0. Hence the lower bound of the (d − 1)-
density above is satisfied in this case.

The proof of Theorem A.1 is based on the following rectifiability theorem:
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THEOREM A.2 (Luckhaus [15])
Let V be a (general) (d − 1)-dimensional varifold on a domain Ω ⊆ R

d whose first
variation can be represented as

〈δV, ψ〉 =

∫
(vψ + A : ∇ψ) dµ1, ψ ∈ C1

0(Ω; Rd), (A.2)

satisfying the estimate

ρ−d

∫

Bρ(x)

|A(y)| dµ1(y) + ρ−(d−1)

∫

Bρ(x)

|v(y)| dµ1(y)

≤ ∂ρF

(
ρ, sup

ρ<R<dist(x,∂Ω)

R−(d−1)

∫

BR(x)

dµ2

)

for all Bρ(x) ⊆ Ω where µ1, µ2 are non-negative Radon measures on Ω and F : R+ ×
R+ → [0,∞) satisfies

1. F (0, L) = 0, ∂ρF (ρ, L) ≥ 0, ∂2
ρF (ρ, L) ≤ 0 for ρ, L ≥ 0,

2. limL→∞ L−1g(L) = 0 where g(L) = inf
{
R−d+1 + F (R,L) : R > 0

}
.

Moreover, assume that lim supρ→0 ρ
−d+1

∫
Bρ(x)

d|V | ≥ θ > 0 for |V |-almost all x ∈ Ω.

Then V is a (d− 1)-rectifiable varifold.

Remark A.3 We note that in the proof of Theorem A.2 the identity (A.2) is only
needed if ψ = ∇ϕ is a gradient. For the convenience of the reader we repeat the first
part of the proof of Theorem A.2: The monotonicity formula for

u(ρ, x) := ρ−d+1

∫
φ

( |x− y|
ρ

)
d|V (t)|(y),

is considered, where φ ∈ C∞([0,∞)) with φ′(s) ≤ 0, φ(s) = 1 for s ≤ 1
2
, and φ(s) = 0

for s ≥ 1. Then

∂ρu(ρ, x) = −(d− 1)ρ−d

∫
φ

( |x− y|
ρ

)
d|V (t)|(y)

−ρ−d

∫
φ′

( |x− y|
ρ

) |x− y|
ρ

d|V (t)|(y)

=

∫
Tr

(
P∇y

[
x− y

ρd
φ

( |x− y|
ρ

)])
d|V (t)|(y)

+ρ−d

∫ [∣∣∣∣P
x− y

|x− y|

∣∣∣∣
2

− 1

]
φ′

( |x− y|
ρ

) |x− y|
ρ

d|V (t)|(y)

=

〈
δV (t),

x− y

ρd
φ

( |x− y|
ρ

)〉

+ρ−d

∫ ∣∣∣∣(I − P )
x− y

|x− y|

∣∣∣∣
2

|φ′|
( |x− y|

ρ

) |x− y|
ρ

d|V (t)|(y)
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where x−y
ρd φ

(
|x−y|

ρ

)
= −ρ−d+2∇yΦ

(
|x−y|

ρ

)
for Φ′(s) = s−1φ(s) is a gradient field.

Then the assumptions of the theorem are used to estimate
〈
δV (t), x−y

ρd φ
(

|x−y|
ρ

)〉
. In

the rest of the proof (A.2) is not used.

Proof of Theorem A.1: First of all, since rectifiability is a local property, we
replace R

d by Ω = BR(0) with R > 0 arbitrary. Moreover, we can assume that
2s ≤ q∗, where 1

q∗
= 1

q
− 1

n
< 1

2
.

First we consider the case 〈δV, ·〉 ∈ L1(0, T ;W−1
s (Ω)). Then there is some A ∈

L1(0, T ;Ls(Ω)) such that

〈δV, ψ〉 =

∫

QT

A(x, t) : ∇ψ(x, t) d(x, t) for all ψ ∈ L∞(0, T ;W 1
s′,0(Ω)),

which easily follows from Hahn-Banach’s theorem when identifying W 1
s′,0(Ω) with the

closed subspace {∇ψ : ψ ∈ W 1
s′,0(Ω)} ⊂ Ls′(Ω; Rd). In order to apply Theorem A.2

we choose µ1 as the d-dimensional Lebesgue measure and estimate

ρ−d

∫

Bρ(x)

|A(y)| dy ≤
(
ρ−d

∫

Bρ(x)

dy

) 1
s′
(
ρ−d

∫

Bρ(x)

|A(y)|s dy
) 1

s

= Cρ−
1
s

(
ρ−d+1

∫

Bρ(x)

|A(y)|s dy
) 1

s

.

Hence we can choose F (ρ, L) = Cρ
1
s′L

1
s for some suitable constant C since s > 1

and µ2(M) =
∫

M
|A(y)|s dy. It is easy to check that F (ρ, L) satisfies the condition 1

of the theorem. Moreover, choosing α = 1
ds−1

g(L) ≤ C
(
Lα(d−1) + F (L−α, L)

)
≤ C ′

(
Lα(d−1) + L− α

s′
+ 1

s

)
= C ′L

d−1
ds−1 ,

where d−1
ds−1

< 1 since s > 1. Hence limL→∞ L−1g(L) = 0.
In the second case we first use (A.1) for gradients ϕ(x, t) = φ(t)∇ψ(x) for ψ ∈

C∞
0 (Ω), φ ∈ C∞

0 (0, T ), which yields

∣∣∣∣κ
∫ T

0

〈δV (t),∇ψ〉φ(t) dt

∣∣∣∣ ≤ C
(
‖v‖2

L1(0,T ;L2s(Ω))‖φ‖L∞(0,T )‖∇2ψ‖Ls′ (Ω)

+

∥∥∥∥
∫
S(χ, λ) dµx,t

∥∥∥∥
Lq′ (QT )

‖φ‖L∞(0,T )‖∇2ψ‖Lq(Ω)

+ ‖p‖L1(0,T ;Ls(Ω))‖φ‖L∞(0,T )‖∇2ψ‖Ls′ (Ω)

)

≤ C(T )(E0 + ‖p‖L1(0,T ;Ls(Ω)))‖φ‖L∞(0,T )‖∇2ψ‖Ls′ (Ω)

Hence
〈δV, ·〉 ∈ L1(0, T ; (G1

s′(Ω))′)
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where G1
s′(Ω) = {∇ϕ ∈ W 1

s′(Ω) : ϕ ∈ Ls′(Ω)} ⊂ W 1
s′(Ω). In particular, 〈δV (t), ·〉 ∈

(G1
s′(Ω))′ for almost all t ∈ (0, T ) with s > 1. Now we can apply the arguments of

the first part since by Remark A.3 the identity (A.2) is only needed for gradients.
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