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ON THE METHOD OF STEEPEST DESCENT

Spyridon Kamvissis

ABSTRACT: We review the history of the nonlinear steepest descent method

for the asymptotic evaluation of the solutions of Riemann-Hilbert factorization

problems. We stress some recent results on the ”non-self-adjoint” extension of the

theory. In particular we consider the case of the semiclassical focusing NLS problem.

We explain how the nonlinear steepest descent method gives rise to a maximin

variational problem for Green potentials with external field in two dimensions and

we announce results on existence and regularity of solutions to this variational

problem.
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0. INTRODUCTION

We are interested here in the asymptotic theory of Riemann-Hilbert problem fac-

torizations associated to completeley integrable systems. This asymptotic method

has been made rigorous and systematic in [DZ] where in fact the term ”nonlinear

steepest descent method” was first employed to stress the relation with the clas-

sical ”steepest descent method” initiated by Riemann in the study of exponential

integrals with a large phase parameter. Such exponential integrals appear in the

solution of Cauchy problems for linear evolution equations, when one employs the

method of Fourier transforms. In the case of nonlinear integrable equations, on

the other hand, the nonlinear analog of the Fourier transform is the scattering

transform and the inverse problem is now a Riemann-Hilbert factorization problem

(as first noted in [S]). While in the ”linear steepest descent method” the contour

of integration has to be deformed to a union of contours of ”steepest descent”

which will make the explicit integration of the integral possible, in the case of

the ”nonlinear steepest descent method” one deforms the original Riemann-Hilbert

factorization contour to appropriate steepest descent contours where the resulting

Riemann-Hilbert problems are explicitly solvable.

In the linear case, if the phase and the critical points of the phase are real it

may not be necessary to deform the integration contour. One has rather a Laplace

integral problem on the contour given. When studying Riemann-Hilbert problems,

the situation is more complicated and the analog of a real phase is here the self-

adjointness of the underlying Lax operator. Then the spectrum is real and the

Riemann-Hilbert contour is real. The needed ”deformation contour” must stay

near the real line and in fact there is a great degree of freedom of choice for the

small pieces off the real line. On the other hand, things are different in the non-

self-adjoint case. One novelty of the semiclassical problem for

i�∂tψ +
�

2

2
∂2
xψ + |ψ|2ψ = 0,

under ψ(x, 0) = ψ0(x),

studied in [KMM] is that, due to the non-self-adjointness of the underlying Lax
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operator, the ”target contour” is very specific (if not unique) and by no means

obvious. It is best characterized via the solution of a maximin energy problem, in

fact it is an S-curve. The term ”nonlinear steepest descent method” thus acquires

full meaning.

1. LINEAR STATIONARY PHASE METHOD

Consider the Cauchy problem for the Airy quation

(1) ut + uxxx = 0, u(x, 0) = u0(x).

It can be solved via Fourier transforms. Let

û(ξ, t) =
∫
e−ixξu(x, t)dx.

Then

ût(ξ, t) = −iξ3û(ξ, t),

so

û(ξ, t) = û(ξ, 0)e−iξ
3t

and

(2) u(x, t) =
∫
û(ξ, 0)eixξ−iξ

3tdξ.

To understand the long time asymptotic behavior of the formula (2) one needs

to apply the stationary-phase/steepest-descent method. The principle is that the

dominating contribution comes from the vicinity of the two stationary phase points

ξ1, 2 = ±( x3t )
1/2. Through a local change of variables at each stationary phase point

τ(ξ) such that τ(ξj) = 0 we can calculate each contributing integral asymptotically

to all orders with exponential error.
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2. LINEAR STEEPEST DESCENT METHOD

We will consider a different example of an exponential integral; its domain must

be deformed to unions of arcs of steepest descent (taken from [E]).

(3) Ai(z) =
1
π

∫ ∞

0

cos(
s3

3
+ zs)ds,

as z → ∞. Set s = z1/2t and x = z3/2.

(4) Ai(x2/3) =
x1/3

2π

∫ ∞

−∞
exp(ix(

t3

3
+ t))dt.

The phase is h(t) = i( t
3

3 + t) and the zeros of h(t) = i(t2 + 1) are ±i. To ap-

ply the stationary-phase/steepest-descent method, we have to deform the integral

off the real line. The steepest descent paths are

(5) Imh(t) = constant.

Set τ = ξ + iη to obtain

ξ(ξ2 − 3η2 + 3) = 0.

The curves of steepest descent are the imaginary axis and the two branches of a

hyperbola. Let’s denote by: C1 the oriented branch from point i to exp(iπ/6) · ∞,

C2 the oriented branch from point i to exp(5iπ/6) · ∞,

C3 the oriented branch from point −i to exp(11iπ/6) · ∞,

C4 the oriented branch from point i to exp(7iπ/6) · ∞.

Clearly we can deform the integral in (4) to an integral supported in C1 − C2.

So,

(6) Ai(x2/3) =
x1/3

2π
(
∫
C1

−
∫
C2

)exp(ix(
t3

3
+ t))dt = I1 − I2.

On each of these two integrals the phase is real. We have now two Laplace type

integrals. Make the local change of variables

(7) u = h(i) − h(t) = (t− i)2 − 1
3
i(t− i)3,
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so that

u1/2 = (t− i)(1 − 1
3
i(t− i))1/2.

Invert

(8) t− i = Σ∞
1

in−1Γ(3n/2 − 1)
n!Γ(n/2 − 1)3n−1

un/2.

Now the integrals can be evaluated asymptotically to all orders:

Ij = exp(xh(i))
∫ ∞

0

exp(−xu) dt
du
du =

exp(2x/3)(−1)j
∫ ∞

0

exp(−xu)Σ∞
1

(−1)nin−1Γ(3n/2 − 1)
2(n− 1)!Γ(n/2 − 1)3n−1

un/2−1du =

Σ∞
1

(−1)nin−1Γ(3n/2 − 1)
2(n− 1)!Γ(n/2 − 1)3n−1xn/2

.

It follows from (6) that

(9) Ai(z) =
1

2πz1/4
exp(−2

3
z3/2)Σ∞

0

Γ(3m/2 + 1)
(2m)!

(−9z3/2)m.

These are uniform asymptotics as z → ∞, |argz| < π/3 − ε.

3. NONLINEAR STATIONARY PHASE METHOD [I,DZ]

Consider the nonlinear KdV equation

(10)
ut − uux + uxxx = 0,

u(x, 0) = u0(x).

The analog of the Fourier transform is the scattering transform. Assume that∫
(1 + x2)|u0(x)|dx < ∞. The scattering data for the function u0(x) are the

scattering coefficient r(ξ) and the eigenvalues of the linear operator L0 = −d2
dx2 +

u0(x). We think of ξ as a spectral variable. If u solves (10), then the eigenvalues

of the linear operator L = −d2
dx2 + u(x) are constant with time, while the evolution

of the scattering coefficient of u is given by

(11) ru(ξ, t) = r(ξ)exp(−iξ3t).

One recovers the solution of (10) by solving the inverse scattering problem for

ru(ξ, t) and the eigenvalues of L0.
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Let us for the moment concentrate on the analogous (but simpler in a sense)

defocusing nonlinear Schrödinger equation

(12)
i�∂tψ +

�2

2
∂2
xψ − |ψ|2ψ = 0,

under ψ(x, 0) = ψ0(x),

where the initial data function is, say, Schwartz. This is a simpler situation because

the corresponding linear operator has no eigenvalues. So let r(ξ) be the scattering

coefficient for the Dirac operator

L =
(

ih∂x iψ0(x)
−iψ∗

0(x) −ih∂x
)
.

It is a fact of direct scattering theory that r is also Schwartz, and that

|r(ξ)| < 1, for all ξ ∈ R. The evolution of the scattering coefficient is given by

ru(ξ, t) = r(ξ)exp(4iξ2t).

The inverse scattering problem can be posed in terms of a Riemann-Hilbert factor-

ization problem.

THEOREM. There exists a 2x2 matrix Q with analytic entries in the upper and

lower open half-planes, such that the normal limits Q+, Q−, as ξ approaches the

real line from above or below respectively, exist and satisfy

(13)
Q+(ξ) = Q−(ξ)

(
1 − |r(ξ)|2 −r∗(ξ)e−2iξx−4iξ2t

r(ξ)e2iξx+4iξ2t 1

)
, Imξ = 0,

and limξ→∞Q(ξ) = I.

Furthermore the solution ψ(x, t) of (12) is given by

(14) ψ(x, t) = −2limξ→∞ξQ12.

Thus, the initial value problem for (12) is reduced to a RH problem.

It was first realized by Its [I, IN], motivated by the study of the work of Jimbo,

Miwa, Ueno, that the long time asymptotics for the solution of (10) can be extracted

by reducing the problem (13) to a ”local” RH problem located in a small neighbor-

hood of the stationary phase point ξ0 such that Θ′(ξ0) = 0 where Θ = ξx + 2ξ2t.
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The deformation method has been made rigorous and systematic in [DZ]. Here are

the basic ideas.

Suppose ξ0 = − x
4t . Consider the region ξ0 < M , some positive constant. Note

the following factorizations.(
1 − |r(ξ)|2 −r∗(ξ)e−2iΘ

r(ξ)e2iΘ 1

)
=
(

1 −r∗e−2iΘ

0 1

)(
1 0

re2iΘ 1

)
for ξ > ξ0,

(
1 − |r(ξ)|2 −r∗(ξ)e−2iΘ

r(ξ)e2iΘ 1

)
=

(
d−1
− 0

rd−1
− e−2iΘ

1−|r|2 d−

)(
d+

−r∗d+e2iΘ

1−|r|2
0 d−1

+

)
for ξ < ξ0.

where d is a function analytic in C \ (−∞, ξ0] such that

(15)

d+(ξ) = d−(ξ)(1 − |r(ξ)|2) for −∞ < ξ ≤ ξ0,

d+(ξ) = d−(ξ) for ξ > ξ0

d→ 1 as ξ → ∞.

The above factorizations suggest the following transformation. Consider an infinite

cross centered at ξ0 (see Figure 1). The actual angles between the four half-lines

J1, J2, J3, J4 are not important, as long as they lie in the appropriate quadrants.

+ −

− −    +
+

−

+

Figure 1. A cross centered at a stationary phase point.

D
1

D2

D
3

D
4
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Define a new matrix M by

(16)

M = Q, ξ ∈ D2 ∪D4,

M =
(

d−1 r∗de2iΘ

1−|r|2
0 d

)
Q, ξ ∈ D1 ∩ {Imξ > 0},

M = Q

(
d−1 0

rd−1e−2iΘ

1−|r|2 d

)
, ξ ∈ D1 ∩ {Imξ < 0},

M = Q

(
1 −r∗e−2iΘ

0 1

)
, ξ ∈ D3 ∩ {Imξ < 0},(

1 0
−re2iΘ 1

)
Q, ξ ∈ D3 ∩ {Imξ > 0}.

It is immediate seen that there is no jump for M across the real axis. The jumps

across the four halflines of the cross are

(17)

J4 =
(

d−1 0
rd−1e−2iΘ

1−|r|2 d

)
,

J1 =
(

d −r∗de2iΘ

1−|r|2
0 d−1

)
,

J2 =
(

1 −r∗e−2iΘ

0 1

)
,

J3 =
(

1 0
re2iΘ 1

)
.

Check Figure 1 for the orientation of the cross. The direction of contours is always

compatible with Reξ increasing. ”+” is to the left, ”-” is to the right.

It is easy to see that the off-diagonal terms are exponentially small away from

the center of the cross. So, they can be neglected asymptotically. One ends up

with a Rieman-Hilbert problem on a cross centered at ξ0. Apart from a small cross

centered at ξ0 the jumps are diagonal everywhere. In this sense, the dominating

contribution to the solution of the Rieman-Hilbert problem comes from a small

neighborhood of the stationary phase point. The Rieman-Hilbert problem can be

solved explicitly via parabolic cylinder functions (following [I]) and the asymptotics

for RH problem (13) and hence (11) are recovered.

The next step is a rescaling ξ → −ξ0 + ξ(−tξ0)−1/2. The Riemann-Hilbert

problem is then deformed to a new problem on an infinite cross, which can be

explictly solved. In fact, after deforming the components of the cross back to the

real line, it is equivalent to the following problem on the real line.
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(18)
H+(ξ) = H−(ξ)exp(−iξ2σ3)

(
1 − |r(ξ0)|2 −r∗(ξ0)

r(ξ0) 1

)
exp(iξ2σ3),

H(ξ) ∼ ξiνσ3 ,

where ν is a constant depending only on ξ0 and σ3 =
(

1 0
0 −1

)
is a Pauli matrix.

Problem (18) can be solved explicitly, since (after conjugating) the jump is con-

stant ([I]).

Even though [DZ] introduces the term ”nonlinear steepest descent method” it is

more accurate to say we have a nonlinear stationary phase method.

4. THE g-FUNCTION [DVZ94]

Back to the KdV equation:

(10)
ut − 6uux + uxxx = 0,

u(x, 0) = u0(x).

Apart from the contributions of the (two) stationary phase points there is a new

phenomenon here. A ”collisionless shock” appears in the asymptotic region x < 0

and for c−1
1 < −x/(3t)1/3(log t)2/3 < c1, c1 > 1. The long time asymptotics are

given by

u(x, t) ∼ (−2x/3t)(A(α) +B(α)cn2(2K(α)θ + θ0;α)),

where cn(., α) is the Jacobi cnoidal function of modulus α, and α in its turn is a

function of some ”slow” variable Z, θ ∼ log t is a ”fast” variable, K(α) is the stan-

dard complete elliptic integral of the first kind, θ0 depends on Z, and A(α), B(α)

are some explicit functions of α.

THEOREM [S]. There exists a row vector S with analytic entries in the upper

and lower open half-planes, such that the normal limits S+, S−, as z approaches

the real line from above or below respectively, exist and satisfy

(19)
S+(z) = S−(z)

(
1 − |r(z)|2 −r∗(z)e−izx−4iz3t

r(ξ)eizx+4iz3t 1

)
, Imz = 0,

and limz→∞S(z) = (1, 1).
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Furthermore the solution u(x, t) of (10) is given by

(20) u(x, t) = −2i
∂

∂x
S1

1 ,

where S1
1 is the first entry of the residue of S at infinity. The stationary phase

points are ±(−x/12t)1/2.

In [DVZ94] the following transformation is introduced

Ŝ(z) = S((−x/12t)1/2z)exp(−iτ [4(z3 − 3z) − g(z)]σ3),

where g is a judicially chosen function that is analytic off a union of two intervals

[−b,−a], [a, b] such that b > a > 0 are functions of the slow variable Z and such

that

g(z) = 4z3 − 12z +O(1/z)

at infinity, so that Ŝ is still the identity there. In fact,

g(z) = 12
∫ z

b

[(p2 − a2)(p2 − b2)]1/2dp+ 12
∫ a

0

[(p2 − a2)(p2 − b2)]1/2dp.

The resulting Riemann-Hilbert problem has jump

v(z) = I, |z| > b,(
0 e−24iτ

R a
0 [(p2−a2)(p2−b2)]1/2dp

−e24iτ
R

a
0 [(p2−a2)(p2−b2)]1/2dp 0

)
, a < z < b,

diag(const · z2, (const · z2)−1), −a < z < a,(
0 e−24iτ

R −a
0 [(p2−a2)(p2−b2)]1/2dp

−e24iτ
R −a
0 [(p2−a2)(p2−b2)]1/2dp 0

)
, −b < z < −a.

The jump along (−a, a) can be ”conjugated away”. One ends up with a RH problem

on two slits. (See Figure 2.) This can be solved in terms of genus 1 theta functions.

−b −a 0 a b

Figure 2. Two slits for the collisionless shock RH problem.

As is remarked in [DVZ94] the fact that the new RH problem is on two slits ”is

a new and essentially noninear feature of our nonlinear stationary phase method”.
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5. THE g-FUNCTION FOR THE ZERO DISPERSION KdV [DVZ97]

Consider now the KdV equation

(21)
ut − 6uux + ε2uxxx = 0,

u(x, 0) = u0(x),

in the limit as ε→ 0. Assume for simplicity, that the initial data are real analytic,

positive and consist of a ”hump” of unit height.

The associated RH problem is

(22)
S+(z) = S−(z)

(
1 − |r(z)|2 −r∗(z)e−izx−4iz3t

ε

r(ξ)e
izx+4iz3t

ε 1

)
, Imz = 0,

and limz→∞S(z) = (1, 1).

The solution of (21) is recovered via

(23) u(x, t; ε) = −2iε
∂

∂x
S1

1x, t; ε).

The reflection coefficient r also depends on ε. In fact, the WKB approximation is

r(z) ∼ −ie−2iρ(z)
ε χ[0, 1](z)

1 − |r(z)|2 ∼ e
−2τ(z)

ε ,

where
ρ(z) = x+z +

∫ ∞

x+

[z − (z2 − u0(x))1/2]dx,

τ(z) = Re

∫
(u0(x) − z2)1/2dx

and x+(z) is the largest solution of u0(x+) = z2.

0 a
1 b

1
a2 b2 a

3

........       .

1

Figure 3. The support of the equilibrium meausure for zero dispersion self−adjoint KdV: finitely many bands

[DKZ97] introduce a scalar g-function defined implicitly by the following condi-

tions.

(i) g is analytic off the interval [0, 1] and vanishes at infinity.
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(ii) ”Finite gap ansatz” (see Figure 3). There exists a finite set of disjoint open

real intervals Ij ∈ [0, 1] such that the normal limits g+, g− of g exist along these

intervals and, defining h(z) = g+(z) + g−(z) − 2ρ+ 4tz3 + xz,

(iia) For z ∈ ∪jIj , we have −tau < (g+ − g−)/2i < 0 and h′ = 0.

(iib) For z ∈ [0, 1] \ ∪jIj , we have 2iτ = g+ − g− and h′ < 0.

Unlike [DVZ94] where the g-function is defined explicilty, here it is only defined

implicitly. In general (for any data u0) it is not true that the above conditions can be

satisfied. It is conjectured however [DKM] that under the condition of analyticity

a g-function satisfying the ”finite gap ansatz” exists. (But see also [K00] for a

proof of the ”finite gap ansatz” in the analogous problem of the continuum Toda

equations.)

Assuming the ”finite gap ansatz” one can show that the RH problem reduces to

one supported on the bands Ij with jumps of the form

(24)
(

0 −ie−ih(z)/ε

−ieih(z)/ε 0

)
,

and in fact, because of (iib), h(z) is a real constant on each band Ij . This RH

problem can be solved explicitly via theta functions.

The g-function satisfying conditions (i), (ii), (iia), (iib) can be written as

(25) g(z) =
∫
log(z − η)dµ(η)

where µ is a continuous measure supported in ∪jIj (see Figure 3). In a sense,

the reduction of the given RH problem to an explicilty solvable one depends on

the existence of a particular measure. Conditions (i), (ii), (iia), (iib) turn out

to be equivalent to a maximization problem for logarithmic potentials under a

particular external field depending on x, t, u0(x) over positive measures with an

upper constraint.

We end this section by noting that the methods of [DVZ97] have been used

in the problem of asymptotics of orthogonal polynomials and the related problem

of universality in the distribution of the eigenvalues of large hermitian random

matrices [DKMVZ].
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6. NONLINEAR STEEPEST DESCENT METHOD: SEMICLASSICAL FO-

CUSING NLS [KMM]

Consider now the focusing NLS equation.

(26)
i�∂tψ +

�2

2
∂2
xψ + |ψ|2ψ = 0,

under ψ(x, 0) = ψ0(x)

and consider the limit � → 0. The associated linear operator is the Dirac operator

(27) L =
(

ih∂x −iψ0(x)
−iψ∗

0(x) −ih∂x
)
,

which is non-self-adjoint. This is a major difference from the problem (12). We

shall see that the deformation of the semiclassical RH problem cannot be confined

to a small neighborhood of the real axis but is instead fully two-dimensional.

We note in passing that when seeking long time asymptotics for (26) with � = 1

a collisionless shock phenomenon is also present; for x, t in the shock region the

deformed RH problem is supported on a vertical imaginary slit. (See [K96].)

We rather focus on the semiclassical problem � → 0 which is more complicated.

For simplicity consider the very specific data ψ0(x) = Asechx where A > 0.

Let x−(η) < x+(η) be the two solutions of sech2(x) + η2 = 0. Also assume that

� = A/N and consider the limit N → ∞.

It is known that the reflection coefficient is identically zero and that the eigen-

values of L lie uniformly placed on the imaginary segment [−iA, iA]. In fact the

eigenvalues are the points λj = i�(j + 1/2), j = 0, ..., N − 1 and their conjugates.

The associated RH problem is a meromorphic problem: to find a rational function

with prescribed residues at the poles λj and their conjugates. It can be turned into

a holomorphic problem by constructing two loops, one encircling the λj and one

encircling their conjugates. We redefine the unknown 2x2 matrix inside the loops

so that the poles vanish and thus arrive at a nontrivial jump across the two loops.

(See [KMM] for details).
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0

iA

 

is an S−curve. The support of its equilibrium measure consists of finitely many analytic arcs, and C satisfies the .

Figure 4. A loop C can be originally deformed anywhere as long as it stays away from the spike [0,iA]. The target contour however

S−property.

The loops can be deformed anywhere away from the poles (see Figure 4). How-

ever, to be able to simplify the RH problem they have to be eventually located at a

very specific position. The definition of a g-function will depend on the division of

each loop into arcs, called ”bands” and ”gaps”. There is also an associated measure

supported on bands as in the KdV case. The analogous variational problem is not

a maximization problem but rather a maximin problem. Here’s the setting.

Let H = {z : Imz > 0}, be the complex upper-half plane and H̄ = {z : Imz ≥
0} ∪ {∞} be the closure of H. Let also K = {z : Imz > 0} \ {z : Rez = 0, 0 <

Imz ≤ A}, where A is a positive constant. In the closure of this space, K̄, we

consider the points ix+ and ix−, where 0 ≤ x < A as distinct. In other words, we

cut a slit in the upper half-plane along the segment (0, iA) and distinguish between

the two sides of the slit. The point infinity belongs to K̄, but not K. Define G(z; η)

to be the Green’s function for the upper half-plane

G(z; η) = log
|z − η∗|
|z − η|
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and let dµ0(η) be the nonnegative measure −idη on the segment [0, iA] oriented

from 0 to iA. The star denotes complex conjugation. Let the ”external field” φ be

defined by

(28) φ(z) = −
∫
G(z; η)dµ0(η) −Re(π(iA− z) + 2i(zx+ z2t)),

where, without loss of generality x > 0.

Let M be the set of all positive Borel measures on K̄, such that both the free

energy

E(µ) =
∫ ∫

G(x, y)dµ(x)dµ(y), µ ∈ M

and
∫
φdµ are finite. Also, let

V µ(z) =
∫
G(z, x)dµ(x), µ ∈ M.

be the Green’s potential of the measure µ.

The weighted energy of the field φ is

Eφ(µ) = E(µ) + 2
∫
φdµ,

for any µ ∈ M.

Now, given any curve F in K̄, the equilibrium measure λF supported in F is

defined by

Eφ(λF ) = minµ∈M(F )Eφ(µ),

where M(F ) is the set of measures in M which are supported in F , provided such

a measure exists.

The finite gap ansatz is equivalent to the existence of a so-called S-curve joining

the points 0+ and 0− and lying entirely in K̄. (See Figure 4.) By S-curve we

mean an oriented curve F such that the equilibrium measure λF exists, its support

consists of a finite union of analytic arcs and at any interior point of suppµ the so

called S-property is satisfied

(29)
d

dn+
(φ+ V λ

F

) =
d

dn−
(φ+ V λ

F

),
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In the next section we will see that there is a C such that

(30) Eφ(λC) = maxcontoursFEφ(λF ) = maxcontoursFminµ∈M(F )Eφ(µ),

and that the existence of an S-curve follows from the existence of a contour C

maximizing the equilibrium measure.

7. JUSTIFICATION OF THE NONLINEAR STEEPEST DESCENT METHOD

[KR]

EXISTENCE THEOREM [KR]. For the external field given by (27), there exists

a continuum F ∈ F such that the equilibrium measure λF exists and

(31) Eφ[F ](= Eφ(λF )) = maxF∈Fminµ∈M(F )Eφ(µ).

Assuming that the continuum F does not touch the linear segment [0, iA] at

more than a finite number of points, we have

REGULARITY THEOREM [KR]. The continuum F is in fact an S-curve.

REMARK. If the above assumption is dropped then a finite gap ansatz can

still be proved, but one has to consider an infinite sheeted Riemann surface as the

setting for the variational problem.

To prove the above theorems, we first introduce an appropriate topology on

F. We think of the closed upper half-plane H̄ as a compact space in the Riemann

sphere. We thus choose to equip H̄ with the ”chordal” distance, denoted by ρ0, that

is the distance between the images of z and ζ under the stereographic projection.

This induces naturally a distance in K̄ (for example, ρ0(0+, 0−) = 2A). We also

denote by ρ0 the induced distance between compact sets E,F in K̄: ρ0(E,F ) =

maxz∈Eminζ∈Fρ0(z, ζ). Then, we define the so-called Hausdorff metric on the set

I(K̄) of closed non-empty subsets of K̄ as follows.

ρK(A,B) = sup(ρ0(A,B), ρ0(B,A)).

LEMMA [KR]. The Hausdorff metric is indeed a metric. The set I(K̄) is compact

and complete. Since F is a closed subset of I(K̄), F is also compact and complete.
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Compactness of F is a necessary first ingredient to prove existence of a maximiz-

ing contour. The second ingredient is semicontinuity of energy.

We consider the functional that takes a given continuum F to the equilibrium

energy on this continuum:

(32) E : F → Eψ[F ] = Eψ(λF ) = inf
µ∈M(F )

(E(µ) + 2
∫
ψdµ).

In [KR] we show that for the external field given by (28), the energy functional

defined in (32) is upper semicontinuous. Existence then follows easily.

To prove regularity the main ingredient is the following identity.

THEOREM [KR]. Let F be the maximizing continuum of and λF be the equi-

librium measure. Let µ be the extension of λF to the lower complex plane via

µ(z∗) = −µ(z). Then

(33)
Re(

∫
dµ(u)
u− z

+ V ′(z))2 = Re(V ′(z))2 − 2Re
∫
V ′(z) − V ′(u)

z − u
dµ(u)

+Re[
1
z2

∫
2(u+ z)V ′(u) dµ(u)].

Here V is the logarithmic potential of µ.

PROOF: By taking variations with respect to the equilibrium measure [KR].

From (33) it is easy to see that the support of the equilibrium measure of the

maximizing continuum is characterized by

(34) Re

∫ z

(Rµ)1/2dz = 0,

where

Rµ(z) = (V ′(z))2 − 2
∫
suppµ

V ′(z) − V ′(u)
z − u

dµ(u)

+
1
z2

(
∫
suppµ

2(u+ z)V ′(u) dµ(u)).

Since Rµ(z) is a function analytic in K, the locus defined by (34) is a union of arcs

with endpoints at zeros of Rµ. Further analysis actually shows that Rµ has finitely

many zeros.

The S-property follows easily from (33); see [KR]. This proves the Regularity

Theorem.
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8. CONCLUSION

Given the importance and the recent popularity of the ”nonlinear steepest de-

scent method” and the various different applications to such topics as soliton theory,

orthogonal polynomials, solvable models in statistical mechanics, random matrices,

combinatorics and representation theory, we believe that the present work offers an

important contribution. In particular we expect that the results of this paper may

be useful in the treatment of Riemann-Hilbert problems arising in the analysis of

general complex or normal random matrices [WZ].

Although some cases of non-self-adjoint problems where the target contour can

be explictly computed without any recourse to a variational problem (which of

course is always there; see e.g. [KSVW]), we believe that global results (as in

section 7) can only be justified by proving existence and regularity for a solution of

a maximin variational problem in two dimensions.

APPENDIX. THE DESCRIPTION OF THE SEMICLASSICAL LIMIT OF

THE FOCUSING NLS EQUATION UNDER THE FINITE GENUS ANSATZ

We present one of the main results of [KMM] on the semiclassical asymptotics

for problem (26), under the assumption that the finite genus ansatz holds. In

particular, we fix x, t and assume that the support of the maximizing measure of

section 7 consists of a finite union of analytic arcs.

First, we define the so-called g-function. Let C be the maximizing contour. A

priori we seek a function satisfying

g(λ) is independent of �.

g(λ) is analytic forλ ∈ C \ (C ∪C∗).

g(λ) → 0 as λ→ ∞.

g(λ) assumes continuous boundary values from both sides of C ∪ C∗,

denoted by g+(g−) on the left (right) of C ∪ C∗.

g(λ∗) + g(λ)∗ = 0 for all λ ∈ C \ (C ∪C∗).
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The assumptions above permit us to write g in terms of a measure ρ defined on

the contour C. Indeed

g(λ) =
∫
C∪C∗

log(λ− η)ρ(η)dη,

for an appropriate definition of the logarithm branch. The measure ρ(η)dη is not

uniquely defined by the conditions above; we actually choose ρ(η)dη to be a maxi-

mizing measure as in section 7, doubled up according to

ρ(η∗) = (ρ(η))∗.

For λ ∈ C, define the functions

(A.1)

θ(λ) := i(g+(λ) − g−(λ)),

Φ(λ) :=
∫ iA

0

log(λ− η)ρ0(η) dη +
∫ 0

−iA
log(λ− η)ρ0(η∗)∗ dη

+2iλx+ 2iλ2t+ iπ

∫ iA

λ

ρ0(η) dη − g+(λ) − g−(λ),

where ρ0(η) = i, the WKB density of eigenvalues introduced in section 6.

The finite genus ansatz implies that for each x, t there is a finite positive integer

G such that the contour C can be divided into ”bands” (the support of ρ(η)dη)

and ”gaps” (where ρ = 0). We denote these bands by Ij . More precisely, we define

the analytic arcs Ij , I∗j , j = 1, ..., G/2 as follows (they come in conjugate pairs).

Let the points λj , j = 0, ..., G, in the open uper half-plane be the branch points

of the function g. All such points lie on the contour C and we order them as

λ0, λ1, ..., λG, according to the direction given to C. The points λ∗0, λ∗1, ..., λ∗G are

their complex conjugates. Then let I0 = [0, λ0] be the subarc of C joining points 0

and λ0. Similarly, Ij = [λ2j−1, λ2j ], j = 1, ..., G/2. The connected components of

the set C \ ∪j(Ij ∪ I∗j ) are the so-called ”gaps”, for example the gap Γ1 joins λ0 to

λ1, etc.

It actually follows from the properties of ρ that the function θ(λ) defined on C

is constant on each of the gaps Γj , taking a value which we will denote by θj , while

the function Φ is constant on each of the bands, taking the value denoted by αj on

the band Ij .
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The finite genus ansatz for the given fixed x, t implies that the asymptotics of

the solution of (26) as � → 0 can be given by the next Theorem.

THEOREM A.1. Let x0, t0 be given. The solution ψ(x, t) of (26) is asymptot-

ically described (locally) as a slowly modulated G + 1 phase wavetrain. Setting

x = x0 + �x̂ and t = t0 + �t̂, so that x0, t0 are ”slow” variables while x̂, t̂ are ”fast”

variables, there exist parameters

a, U = (U0, U1, ...., UG)T , k = (k0, k1, ......, kG)T , w = (w0, w1, ....., wG)T , Y =

(Y0, Y1, ........., YG)T , Z = (Z0, Z1, ......, ZG)T depending on the slow variables x0

and t0 (but not x̂, t̂) such that

(A.2)
ψ(x, t) = ψ(x0 + �x̂, t0 + �t̂) ∼ a(x0, t0)eiU0(x0,t0)/�ei(k0(x0,t0)x̂−w0(x0,t0)t̂)

·Θ(Y (x0, t0) + iU(x0, t0)/� + i(k(x0, t0)x̂− w(x0, t0)t̂))
Θ(Z(x0, t0) + iU(x0, t0)/� + i(k(x0, t0)x̂− w(x0, t0)t̂))

.

All parameters can be defined in terms of an underlying Riemann surface X .

The moduli of X are given by λj , j = 0, ...., G and their complex conjugates

λ∗j , j = 0, ...., G. The genus of X is G. The moduli of X vary slowly with x, t, i.e.

they depend on x0, t0 but not x̂, t̂. For the exact formulae for the parameters as

well as the definition of the theta functions we present the following construction.

The Riemann surface X is constructed by cutting two copies of the complex

sphere along the slits I0 ∪ I∗0 , Ij , I∗j , j = 1...., G, and pasting the ”top” copy to the

”bottom” copy along these very slits.

We define the homology cycles aj , bj , j = 1, ..., G as follows. Cycle a1 goes

around the slit I0 ∪ I∗0 joining λ0 to λ∗0, remaining on the top sheet, oriented coun-

terclockwise, a2 goes through the slits I−1 and I1 starting from the top sheet, also

oriented counterclockwise, a3 goes around the slits I−1, I0 ∪ I∗0 , I1 remaining on the

top sheet, oriented counterclockwise, etc. Cycle b1 goes through I0 and I1 oriented

counterclockwise, cycle b2 goes through I−1 and I1, also oriented counterclockwise,

cycle b3 goes through I−1 and I2, and around the slits I−1, I0 ∪ I∗0 , I1, oriented

counterclockwise, etc.

On X there is a complex G-dimensional linear space of holomorphic differentials,



ON THE METHOD OF STEEPEST DESCENT 21

with basis elements νk(P ) for k = 1, . . . , G that can be written in the form

νk(P ) =

G−1∑
j=0

ckjλ(P )j

RX(P )
dλ(P ) ,

where RX(P ) is a “lifting” of the function R(λ) from the cut plane to X : if P is

on the first sheet of X then RX(P ) = R(λ(P )) and if P is on the second sheet of

X then RX(P ) = −R(λ(P )). The coefficients ckj are uniquely determined by the

constraint that the differentials satisfy the normalization conditions:

∮
aj

νk(P ) = 2πiδjk.

From the normalized differentials, one defines a G×G matrix H (the period matrix)

by the formula:

Hjk =
∮
bj

νk(P ).

It is a consequence of the standard theory of Riemann surfaces that H is a sym-

metric matrix whose real part is negative definite.

In particular, we can define the theta function

Θ(w) :=
∑
n∈ZG

exp(
1
2
nTHn+ nTw),

where H is the period matrix associated to X . Since the real part of H is negative

definite, the series converges.

We arbitrarily fix a base point P0 on X . The Abel map A : X → Jac(X) is then

defined componentwise as follows:

Ak(P ;P0) :=
∫ P

P0

νk(P ′), k = 1, . . . , G,

where P ′ is an integration variable.

A particularly important element of the Jacobian is the Riemann constant vector

K which is defined, modulo the lattice Λ, componentwise by

Kk := πi+
Hkk

2
− 1

2πi

G∑
j=1
j �=k

∮
aj

(
νj(P )

∫ P

P0

νk(P ′)

)
,
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where the index k varies between 1 and G.

Next, we will need to define a certain meromorphic differential on X . Let Ω(P )

be holomorphic away from the points ∞1 and ∞2, where it has the behavior

Ω(P ) = dp(λ(P )) +
(
dλ(P )
λ(P )2

)
, P → ∞1,

Ω(P ) = −dp(λ(P )) +O

(
dλ(P )
λ(P )2

)
, P → ∞2,

and made unique by the normalization conditions
∮
aj

Ω(P ) = 0, j = 1, . . . , G.

Here p is a polynomial, defined as follows.

First, let us introduce the function R(λ) defined by

R(λ)2 =
G∏
k=0

(λ− λk)(λ − λ∗k),

choosing the particular branch that is cut along the bands I+
k and I−k and satisfies

lim
λ→∞

R(λ)
λG+1

= −1,

This defines a real function, i.e. one that satisfies R(λ∗) = R(λ)∗. At the bands,

we have R+(λ) = −R−(λ), while R(λ) is analytic in the gaps. Next, let’s introduce

the function k(λ) defined by

k(λ) =
1

2πi

G/2∑
n=1

θn

∫
Γ+

n∪Γ−
n

dη

(λ− η)R(η)
+

1
2πi

G/2∑
n=0

∫
I+n ∪I−n

αn dη

(λ− η)R+(η)
.

Next let

H(λ) = k(λ)R(λ).

The function k satisfies the jump relations

k+(λ) − k−(λ) = − θn
R(λ)

, λ ∈ Γ+
n ∪ Γ−

n

k+(λ) − k−(λ) = − αn
R+(λ)

, λ ∈ I+
n ∪ I−n ,

and is otherwise analytic. It blows up like (λ−λn)−1/2 near each endpoint, has con-

tinuous boundary values in between the endpoints, and vanishes like 1/λ for large
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λ. It is the only such solution of the jump relations. The factor of R(λ) renor-

malizes the singularities at the endpoints, so that, as desired, the boundary values

of H(λ) are bounded continuous functions. Near infinity, there is the asymptotic

expansion:

(A.3)
H(λ) = HGλ

G +HG−1λ
G−1 + · · · +H1λ+H0 +O(λ−1)

= p(λ) +O(λ−1),

where all coefficientsHj of the polynomial p(λ) can be found explicitly by expanding

R(λ) and the Cauchy integral k(λ) for large λ. It is easy to see from the reality of

θj and αj that p(λ) is a polynomial with real coefficients.

Thus the polynomial p(λ) is defined and hence the meromorphic differential Ω(P )

is defined.

Let the vector U ∈ CG be defined componentwise by

Uj :=
∮
bj

Ω(P ).

Note that Ω(P ) has no residues.

Let the vectors V1, V2 be defined componentwise by

V1,k = (Ak(λ∗1+) +Ak(λ2+) +Ak(λ∗3+) + · · · +Ak(λG+)) +Ak(∞) + πi+
Hkk

2
,

V2,k = (Ak(λ∗1+) +Ak(λ2+) +Ak(λ∗3+) + · · · +Ak(λG+)) −Ak(∞) + πi+
Hkk

2
,

where k = 1, ..., G, and the + index means that the integral for A is to be taken on

the first sheet of X , with base point λ0
+.

Finally, let

a =
Θ(Z)
Θ(Y )

G∑
k=0

(−1)k	(λk),

kn = ∂xUn, wn = −∂tUn, n = 0, . . . , G,

where

Y = −A(∞) − V1, Z = A(∞) − V1,

and U0 = −(θ1 + α0) where θ1 is the (constant in λ) value of the function θ in the

gap Γ1 and α0 is the (constant) value of the function φ in the band I0.
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Now, the parameters appearing in formula (A.2) are completely described.

We simply note here that the Ui and hence the ki and wi are real. We also note

that the denominator in (A.2) never vanishes (for any x0, t0, x̂, t̂).

REMARK. Theorem A.1 presents pointwise asymptotics in x, t. In [KMM], these

are extended to uniform asymptotics in certain compact sets covering the x, t-plane.

Error estimates are also given in [KMM].

REMARK. As mentioned above, we do not know if the support of the equilibrium

measure of the maximizing continuum is unique. But the asymptotic formula (A.2)

depends only on the endpoints λj of the analytic subarcs of the support. Since the

asymptotic expression (A.2) has to be unique, it is easy to see that the endpoints

also have to be unique. Different Riemann surfaces give different formulae (except

of course in degenerate cases: a degenerate genus 2 surface can be a pinched genus

0 surface and so on).
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[E] A.Erdélyi, Asymptotic Expansions, Dover 1956.

[I] A.R.Its, Asymptotics of Solutions of the Nonlinear Schrödinger equation, and

Isomonodromic Deformations of Systems of Linear Differential Equations, Sov.Math.Dokl.,

v.24, n.3, 1982, pp.14–18.

[IN] A.R.Its, V.Novokshenov, The Isomonodromic Deformation Method in the
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