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ABSTRACT

We study the semiclassical behavior of the focusing nonlinear Schrödinger equa-

tion in 1+1 dimensions under discontinuous ”barrier” initial data and we describe

the violent oscillations arising in terms of theta functions. The construction of

proofs relies on the analysis of the associated Riemann-Hilbert factorization prob-

lem.
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0. INTRODUCTION

The semiclassical limit of the 1+1-dimensional, integrable nonlinear Schrödinger

equation with cubic focusing nonlinearity has been the subject of recent investiga-

tions. Several numerical studies have appeared since 1998 (see [MK], [BK], [CT],

[C]) and a rigorous analysis of the initial value problem under real analytic data has

just appeared [KMM]. The present paper makes use of the method and results in

[KMM] for the study of a very particular problem with discontinuous (barrier) data.

It has been shown by A.Cohen and T.Kappeler [CK] that weak solutions exist for

all time under barrier data and, even more, that the inverse scattering technique is

still applicable to the integration of the problem. Here, we use the inverse scatter-

ing method of [CK] to pose an associated Riemann-Hilbert factorization problem,

which we then asymptotically (as h→ 0) reduce to the Riemann-Hilbert factoriza-

tion problem that can be explicilty solved in terms of theta functions.

The real aim of this paper is to indicate that a discontinuity in the initial data

does not necessarily alter the behavior of the semiclassical focusing NLS problem.

Some changes of course have to happen. For example, if the Euler system that

appears as a formal limit of the focusing semiclassical NLS does not even admit

a solution for small times, it is obvious that the genus zero ansatz cannot hold

uniformly for small times.

A natural generalization of the barrier data problem is the problem of general

step data. For such data, the eigenvalue density ρ0 can no longer be analytically

extended from the ”spike” where the eigenvalues accumulate. So, the only way

the analysis of the present paper can be immediately extended is if the contour

of discontinuity of the g-function (see section 3) is forced to touch the spike at

the points of non-analyticity of ρ0. We conjecture that under this constraint, the

appropriate contour still exists and the finite (or perhaps infinite) genus ansatz still

applies. We plan to address the problem of general real step initial data in a future

publication.
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1. FOCUSING NLS WITH BARRIER DATA

We consider the nonlinear Schrödinger equation (1+1-dimensional, integrable,

focusing case), on the half-line

(1)
ihuh

t (x, t) +
h2

2
uh

xx(x, t) + |uh(x, t)|2uh(x, t) = 0,

uh(x, 0) = u0(x),

under barrier-like initial data:

(2)
u0(x) = A, −1/2 < x < 1/2,

= 0, otherwise.

Here A is a fixed positive constant and h is a small positive constant. Eventually

we will take h → 0. We will assume that h is staying away from the discrete set

{ 2A
(2k+1)π }, k = 0, 1, 2, .... For simplicity, we will actually require that

(2a) h takes values in the discrete set { A
kπ

}, k = 0, 1, 2, ...

Setting
ρh = |uh|2,

µh = −ih
2
(ūhuh

x − uhūh
x),

(1) is transformed to

∂tρ
h + ∂xµ

h = 0,

∂tµ
h + ∂x(

(µh)2

ρh
) − ∂x(ρh)2/2 =

h2

4
∂x(ρh∂2

xlogρ
h).

The formal limit as h→ 0 is the Euler system

(1a)
∂tρ+ ∂xµ = 0,

∂tµ+ ∂x(
µ2

ρ
) − ∂x(ρ)2/2 = 0.

The initial data become ρ = u2
0(x), µ = 0.

This initial value problem admits a weak solution for all time, as shown by

A.Cohen and T.Kappeler ([CK]). Furthermore, the inverse scattering theory is still

applicable.
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The associated linear system is

(3) hψx =
( −iλ u(x)

−u∗(x) iλ

)
ψ,

where * denotes complex conjugation. Jost functions φ, ψ are defined as column

vector solutions of (3) satisfying the asymptotic conditions

(4)
ψ ∼

(
0

eiλx/h

)
, as x→ +∞,

φ ∼
(

e−iλx/h

0

)
, as x→ −∞.

One can define the reflection and transmission coefficient as follows.

Let ψ0 be the transpose of (ψ∗
2 ,−ψ∗

1). Then, following [CK] define a+, b+ by

φ = a+ψ
0 + b+ψ.

The reflection and transmission coefficients are given by

r+ = b+/a+,

t+ = 1/a+.

Similarly, one can define coefficients r−, t− by normalizing the Jost functions at the

opposite infinities.

From [CK], we have

(5)

ψ(x, λ) =
(

0
eiλx/h

)
, x < −1/2,

=

⎛
⎝ Aeiλ/h((x − 1)/h) sin[(A2+λ2)1/2((x−1)/h)]

(A2+λ2)1/2((x−1)/h)

eiλ/hcos[(A2 + λ2)1/2((x − 1)/h)] + λeiλ/h sin[(A2+λ2)1/2((x−1)/h)]
(A2+λ2)1/2((x−1)/h)

⎞
⎠ , −1/2 < x < 1/2,

=
(

β(λ, h)eiλx/h

α(λ, h)eiλx/h

)
, x > 1/2,

where

(6)
α =eiλ/h ( cos[(A2 + λ2)1/2/h]− iλ

sin[(A2 + λ2)1/2(1/h)]
(A2 + λ2)1/2

),

β = −Aeiλ/h sin[(A2 + λ2)1/2(1/h)]
(A2 + λ2)1/2

.
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The coefficients a+, b+, r are given by

(7)

a+ =
α

|α|2 + |β|2 ,

b+ =
β

|α|2 + |β|2 ,

r(λ) =
β

α
= −A 1

cot[(A2 + λ2)1/2(1/h)](A2 + λ2)1/2 − iλ
.

The eigenvalues are the zeros of a+. They lie on the imaginary interval [−iA, iA]

and are given by

(8)

λ = iη,

tan[
(A2 − η2)1/2

h
] =

(A2 − η2)1/2

η
.

In other words,

(A2 − η2)1/2

h
= arctan[

(A2 − η2)1/2

η
] + kπ, k ∈ Z.

As h→ 0, we get an asymptotic expression for the eigenvalues λk = iηk.

(8’) (A2 − η2
k)1/2 ∼ hkπ, k ∈ Z.

The limiting density of eigenvalues is then given by

(9)
η

π(A2 − η2)1/2
.

or, in terms of λ = iη,

(9a) ρ0(λ) =
λ

π(A2 + λ2)1/2
.

Here the branch is chosen such that ρ0(λ) ∼ i
πA as λ→ i∞.

We note here that as a consequence of the simplifying condition (2a) we have∫ iA

0 ρ0(λ)dλ = −iA/π = ikh, for some integer k. Hence

(9b) exp[
π

h

∫ iA

0

ρ0(λ)dλ] = 1.

This will simplify the analysis of the ”local” Riemann-Hilbert problem on a cross

centered at the origin; see section 5, paragraph 6. Another consequence of (2a) is

that r(0) = 0.
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It is easily seen that the associated norming constants can only take the values

−1, 1 (by symmetry in x) and that in fact they have to oscillate between these two

values (by a Sturm-Liouville oscillation argument; see [KMM]).

We end this section by defining the three Pauli matrices; we will be using them

later.

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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2. THE RIEMANN-HILBERT PROBLEM

We can now state the following Riemann-Hilbert problem, following [KMM]. Let

C be a piecewise smooth loop encircling all eigenvalues in the upper half-plane

and lying entirely in the upper half-plane except for the point 0. Let C∗ be its

conjugate, encircling the eigenvalues in the lower half-plane. Also give the following

orientation:

(i) the real axis is oriented from left to right,

(ii) the loop C is oriented counterclockwise,

(iii) the loop C∗ is also oriented counterclockwise.

We use the following convention: the +-side of an oriented contour is always to

its left, according to the given orientation.

We also choose C so that it approaches 0 (from left and right) at a non-zero,

non-straight angle with the real axis.

THEOREM 1 (discrete version). Let dµ = Σkh(δλ∗
k
− δλk

) be a finite sum of

point measures supported at the eigenvalues of the system (3), as given by (8). Let

(10) X(λ) = −(A2 + λ2)1/2.

Letting M+ and M− denote the limits of M on Σ from left and right respectively,

we define the Riemann-Hilbert factorization problem

(11)

M+(λ) = M−(λ)J(λ),

where

J(λ) =

(
1 r(λ)e

−2iλx−2iλ2t
h

r∗(λ)e
2iλx+2iλ2x

h 1 + |r(λ)|2

)
, λ ∈ R,

= v(λ), λ ∈ C,

= σ2v(λ∗)∗σ2, λ ∈ C∗,

limλ→∞M(λ) = I,

where

(12)

v(λ) =
(

1 −i exp( 1
h

∫
log(λ− η)dµ(η))exp(− 1

h(2iλx+ 2iλ2t−X(λ)))
0 1

)
,
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and r is the reflection coefficient defined in (7):

(13) r(λ) = −A 1
cot[(A2 + λ2)1/2(1/h)](A2 + λ2)1/2 − iλ

.

Note that r(λ) can have a real singularity at λ = 0 if A/h is an odd multiple of

π/2. By assumption, we have excluded such values of h.

The above Riemann-Hilbert problem admits a solution and the solution of (1)

can be recovered from the solution of (11) as follows.

(14) u(x, t) = 2ih limλ→∞(λM12(λ)),

where the index 12 here denotes the (12)-entry of a matrix.

PROOF: Standard; see Chapter 2 of [KMM]. The quantity −i exp( 1
h (X(λk)))

oscillates between −1 and 1. The function −i exp( 1
h (X(λ))) is thus an extrapolation

of the norming constants.

REMARKS. 1. In [KMM] the Riemann-Hilbert problem jump involves some

parameters denote by K,σ, J . Here we are simply choosing K = −1, σ = 1, J = 1.

This is compatible with the discussion in [KMM] as long as we focus our attention

to the case x ≥ 0. By the obvious symmetry x→ −x this is acceptable.

2. Obviously, the contour C can be deformed anywhere in the upper half-plane,

as long as it passes through 0 (we only require it to be non-tangent to either the

real axis or the imaginary axis at 0) and does not touch the linear segment [0, iA].

It will be eventually fixed by the choice of the ”g-function” in the next section.

Similarly for its conjugate C∗.

We note the following factorization of the jump J(λ) on the real line.

(15+)

(
1 r(λ)e

−2iλx−2iλ2t
h

r∗(λ)e
2iλx+2iλ2t

h 1 + |r(λ)|2

)
= L(λ)U(λ),

where

L(λ) =
(

1 0
r∗(λ∗)e

2iλx+2iλ2t
h 1

)
, U(λ) =

(
1 r(λ)e

−2iλx−2iλ2t
h

0 1

)
.
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A different factorization is also possible.

(15-)

(
1 r(λ)e

−2iλx−2iλ2t
h

r∗(λ)e
2iλx+2iλ2t

h 1 + |r(λ)|2

)
= S(λ)D(λ)T (λ),

where

S(λ) =
(

1 r(λ)
1+|r(λ)|2 e

−2iλx−2iλ2t
h

0 1

)
.

D(λ) =
(

(1 + |r(λ)|2)−1 0
0 1 + |r(λ)|2

)
,

T (λ) =
(

1 0
r∗(λ∗)

1+|r(λ)|2 e
2iλx+2iλ2t

h 1

)
.

Both factorizations will be useful later.

REMARK: From now on we will substitute dµ = (ρ0(η) + (ρ0)∗(η∗))dη in (12),

where ρ0 is the asymptotic density of eigenvalues given by (9a), and supported on

the linear segment [0, iA]. In other words, we will approximate a discrete density of

eigenvalues by a continuous one. This is not a trivial assumption, but it is true. We

refer to Chapter 3 of [KMM] for a rigorous justification. We then restate Theorem

1 as follows.

THEOREM 1 (continuous version). Let dµ = (ρ0(η) + (ρ0)∗(η∗))dη, where ρ0

is the asymptotic density of eigenvalues given by (9a), and supported on the linear

segment [0, iA]. Set

(10) X(λ) = −(A2 + λ2)1/2.

Letting M+ and M− denote the limits of M on Σ from left and right respectively,

we define the Riemann-Hilbert factorization problem

(11)

M+(λ) = M−(λ)J(λ),

where

J(λ) =

(
1 r(λ)e

−2iλx−2iλ2t
h

r∗(λ)e
2iλx+2iλ2x

h 1 + |r(λ)|2

)
, λ ∈ R,

= v(λ), λ ∈ C,

= σ2v(λ∗)∗σ2, λ ∈ C∗,

limλ→∞M(λ) = I,
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where

(12)

v(λ) =
(

1 −i exp( 1
h

∫
log(λ− η)dµ(η))exp(− 1

h(2iλx+ 2iλ2t−X(λ)))
0 1

)
,

(13) r(λ) = −A 1
cot[(A2 + λ2)1/2(1/h)](A2 + λ2)1/2 − iλ

.

The above Riemann-Hilbert problem admits a solution and the solution of (1)

can be asymptotically recovered from the solution of (11) as follows. As h→ 0,

(14’) u(x, t) ∼ 2ih limλ→∞(λM12(λ)),

where the index 12 here denotes the (12)-entry of a matrix.

PROOF: See Chapter 3 of [KMM].

3. ASYMPTOTIC ANALYSIS OF THE RIEMANN-HILBERT PROBLEM.

We begin with the following observation. Consider the reflection coefficient given

by (13). For λ in the upper half-plane, at least away from the real line and the

eigenvalues given by (8), we have

(16) r(λ) ∼ −iA
(A2 + λ2)1/2 + λ

.

while for λ in the lower half-plane, at least away from the real line and the eigen-

values given by (8), we have

(16*) r(λ) ∼ iA

(A2 + λ2)1/2 − λ
.

This means that r(λ)e
−2iλx−2iλ2t

h is exponentially decaying (growing) in the upper

half-plane, at least away from the real and imaginary axes, as long asRe(λ) < −x/2t
(Re(λ) > −x/2t), while r∗(λ∗)e

2iλx+2iλ2t
h is exponentially decaying (growing) in

the lower half-plane, at least away from the real and imaginary axes, as long as

Re(λ) < −x/2t (Re(λ) > −x/2t).
The above suggests that using the factorizations of the Riemann-Hilbert problem

defined by (15-), (15+) and applying the obviously suggested deformations, the
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jump across the real line should be reduced to a diagonal matrix independent of

x, t.

To do this of course, we must ensure that the solution of the Riemann-Hilbert

problem is uniformly bounded (in x, t) as h → 0. This is actually not true as

will be seen later. What is true however, is that a judicious conjugation of the

jump matrix will ”deform” it to a new Riemann-Hilbert problem whose solution

is uniformly bounded (in x, t) as h → 0. At that point we can neglect all terms

involving r. Furthermore, the very same conjugation, will ensure that the new

Riemann-Hilbert is explicitly solvable (asymptotically).

More precisely, we introduce the change of variables

(17) Q(λ) = M(λ)e
gσ3

h ,

where σ3 = diag(1,−1) (a Pauli matrix) and the complex-valued function g is

constrained by the following conditions:

g(λ) is independent of h.

g(λ) is analytic forλ ∈ C \ (C ∪C∗).

g(λ) → 0 as λ→ ∞.

g(λ) assumes continuous boundary values from both sides of C ∪ C∗,

denoted by g+(g−) on the left (right) of C ∪ C∗.

g(λ∗) + g(λ)∗ = 0 for all λ ∈ C \ (C ∪C∗).

These conditions of course do not define g uniquely. They will be augmented by

two conditons below, that will also implicitly define an admissible contour C.

The assumptions above permit us to write g in terms of a measure ρ defined on

the contour C. Indeed

(18) g(λ) =
1
2

∫
C∪C∗

log(λ− η)ρ(η)dη,

for an appropriate definiton of the logarithm branch (and for x > 0; if x < 0 there

is a sign change in [KMM] but of course we can restrict ourselves to the case x > 0

here because of the symmetry of NLS).
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For λ ∈ C, define the functions

(18a)

θ(λ) := i(g+(λ) − g−(λ)),

φ(λ) :=
∫ iA

0

log(λ− η)ρ0(η) dη +
∫ 0

−iA

log(λ− η)ρ0(η∗)∗ dη

+2iλx+ 2iλ2t+ iπ

∫ iA

λ

ρ0(η) dη − g+(λ) − g−(λ).

Now we spell out the two important conditions which determine the contour C

(not uniquely) and the function g.

(18b)
ρ(η)dη is a real measure,

�(φ(λ)) ≤ 0,

i.e. a ”measure reality” condition and what can be interpreted (see Chapter 8 of

[KMM]) as a ”variational inequality” condition. In fact, one can eventually show

that the measure ρ(η)dη has to be nonpositive: strictly zero in the ”gaps” and

strictly negative in the ”bands”; see section 4 later.

REMARK: The function g and the contour C are determined only by the density

of the eigenvalues, ρ0. They are independent of the reflection coefficient r.

By (17) the Riemann-Hilbert problem for Q is Q+(λ) = Q−(λ)vQ(λ), where

vQ(λ) =

(
1 r(λ)e

2g−2iλx−2iλ2t
h

r∗(λ∗)e
−2g+2iλx+2iλ2t

h 1 + |r(λ)|2

)
, λ ∈ R,

vQ(λ) =

(
e

g+−g−
h −i exp( 1

h

∫
log(λ− η)dµ(η))exp(− 1

h (−g+ − g− + 2iλx+ 2iλ2t−X(λ)))

0 e
g−−g+

h

)
,

for λ ∈ C,

vQ(λ) =
(

e
g+−g−

h 0
i exp(−1

h

∫
log(λ− η)dµ(η))exp( 1

h (−g+ − g− + 2iλx+ 2iλ2t+X∗(λ∗))) e
g−−g+

h

)
,

for λ ∈ C∗.

Also limλ→∞Q(λ) = I.

Now, we will be able to treat the terms involving the reflection coefficient r

by arguing as follows. First we note that g is purely imaginary for real λ; this

follows from (18)-(18b). So, write g = iψ, so that ψ(λ) ∈ R for λ ∈ R. Let

ζ(x, t, λ) = ψ − λx− λ2t. Clearly, ζ(λ) ∈ R for λ ∈ R.
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Next, divide the real line into a union of (finitely many) intervals, say Jk, such

that for λ ∈ interior(Jk), either dζ
dλ > 0 or dζ

dλ < 0. Denote by J+
l the intervals in

which dζ
dλ > 0 and by J−

l the intervals in which dζ
dλ < 0. Naturally, the (nonzero)

endpoints of the intervals Jk are given by the condition dζ
dλ = 0. Note that ζ is

real analytic in R \ 0, and ζ ∼ −λ2t, as λ → ±∞. The finiteness of the number of

intervals follows from the analyticity of ζ, at least away from 0. But also near 0,

we will show that dζ
dλ < 0.

We first show that when λ = 0, then dζ
dλ = −∞. Recall that

g(λ) =
1
2

∫
C∪C∗

log(λ− η)ρ(η)dη,

where C ∪C∗ is oriented counterclockwise and ρ(η)dη is a non-positive measure on

C which is strictly negative in a non-trivial subset of C and is extended to C∗ by

the condition

ρ(η∗) = (ρ(η))∗.

Differentiating, one gets

dg(λ)
dλ

=
1
2

∫
C∪C∗

(λ− η)−1ρ(η)dη,

and at λ = 0,
dg(λ)
dλ

=
−1
2

∫
C∪C∗

ρ(η)
η
dη.

Making use of the symmetry with respect to complex reflection and remembering

that the orientation is counterclockwise for both C and C∗ one gets

[
dg(λ)
dλ

](λ = 0) = i

∫
C

ρ(η)Im(η)
|η|2 dη.

The integrand is strictly negative and the integral diverges because ρ is nonzero at

zero. It follows that at λ = 0, dg
dλ = −i∞, so dζ

dλ = −∞.

Now, if λ is real and close but not equal to 0,

[
dg(λ)
dλ

] ∼ i

∫
C

ρ(η)Im(η)
|λ− η|2 dη,

so dζ
dλ < 0. Hence the point λ = 0 belongs to the interior of some interval J−

l .
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Consider first the intervals J+
l . By the Cauchy-Riemann relations we have

d(Imζ)/d(Imλ) > 0, for λ ∈ J+
l , in the positive direction perpendicular to the

real line. This means that in an area of the upper half-plane, close to J+
l , the real

part of iζ is negative, so exp(iζ/h) is exponentially decaying. Similarly, in an area

of the upper half-plane, close to J−
l , the real part of iζ is positive, so exp(−iζ/h)

is exponentially decaying. In the particular case of λ = 0 it is also easy to check

that exp(−iζ/h) is exponentially decaying as λ moves upwards along the positive

imaginary axis.

Let us now introduce the following lens-like contours. For each interval J+
l con-

sider small piecewise linear deformations upwards, say J+,up
l , keeping the end points

fixed, but otherwise lying entirely in the upper half-plane. Similarly, consider small

piecewise linear deformations downwards, say J+,dn
l , keeping the end points fixed,

but otherwise lying entirely in the lower half-plane. For each interval J−
l consider

small piecewise linear deformations upwards, say J−,up
l , keeping the end points

fixed, but otherwise lying entirely in the upper half-plane. Similarly, consider small

piecewise linear deformations downwards, say J−,dn
l , keeping the end points fixed,

but otherwise lying entirely in the lower half-plane. All orientations are compatible

with Re(λ) increasing. We also make sure that J+,up
l , J+,dn

l , J−,up
l , J−,dn

l cut the

real line at angles 	= 0, π/2. See Figure 1.

J
l

J− D
−,up

D
−,dn

l

l

D

D
+
−

+

−
+ −

+
−

+  −

+
−

+ +
−  −

 +     −

J
l

Jl
−,up

−,dn

J

J
al

b
l

a
l+1

+

+,up

+,dn +,dn
l l

l

+,up
ll

|R

Fig.1. Part of the extended contour, with lenses
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Let us now introduce the following lens-like contours. For each interval J+
l con-

sider small piecewise linear deformations upwards, say J+,up
l , keeping the end points

fixed, but otherwise lying entirely in the upper half-plane. Similarly, consider small

piecewise linear deformations downwards, say J+,dn
l , keeping the end points fixed,

but otherwise lying entirely in the lower half-plane. For each interval J−
l consider

small piecewise linear deformations upwards, say J−,up
l , keeping the end points

fixed, but otherwise lying entirely in the upper half-plane. Similarly, consider small

piecewise linear deformations downwards, say J−,dn
l , keeping the end points fixed,

but otherwise lying entirely in the lower half-plane. All orientations are compatible

with Re(λ) increasing. We also make sure that J+,up
l , J+,dn

l , J−,up
l , J−,dn

l cut the

real line at angles 	= 0, π/2. See Figure 1.

Note here that one of the lens-like contours J−,up
l will cut the contour C while

one of the lens-like contours J−,dn
l will cut the contour C∗.

Let the open regions bounded by J+
l and J+,up

l be denoted by D+,up
l and the

open regions bounded by J+
l and J+,dn

l be denoted by D+,dn
l . Similarly, let the

open regions bounded by J−
l and J−,up

l be denoted by D−,up
l and the open regions

bounded by J−
l and J−,dn

l be denoted by D−,dn
l . We make sure that Re(iζ) < 0,

in D+,up
l ∪ J+,up

l ∪ D−,dn
l ∪ J−,dn

l . Similarly, we make sure that Re(iζ) > 0, in

D−,up
l ∪ J−,up

l ∪D+,dn
l ∪ J+,dn

l .

Next, we can make use of the factorizations given in (15+), (15-). Set

(19)

Z(λ) = Q(λ), for λ ∈ C \ ∪l[D̄
+,up
l ∪ D̄+,dn

l ∪ D̄−,up
l ∪ D̄−,dn

l ],

Z(λ) = Q(λ)U−1(λ), for λ ∈ ∪lD
+,up
l ,

Z(λ) = Q(λ)L(λ), for λ ∈ ∪lD
+,dn
l ,

Z(λ) = Q(λ)T−1(λ), for λ ∈ ∪lD
−,up
l ,

Z(λ) = Q(λ)S(λ), for λ ∈ ∪lD
−,dn
l .
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The Riemann-Hilbert problem for Z is described by

(20)
Z+(λ) = Z−(λ)vZ(λ),

vZ(λ) =
(

1 −r(λ)e
2g−2iλx−2iλ2t

h

0 1

)
, for λ ∈ ∪lJ

+,up
l ,

vZ(λ) =
(

1 0
r∗(λ∗)e

−2g+2iλx+2iλ2t
h 1

)
, for λ ∈ ∪lJ

+,dn
l ,

vZ(λ) =
(

1 0
r∗(λ∗)

1+|r(λ)|2 e
−2g+2iλx+2iλ2t

h 1

)
, for λ ∈ ∪lJ

−,up
l ,

vZ(λ) =
(

1 r(λ)
1+|r(λ)|2 e

2g−2iλx−2iλ2t
h

0 1

)
, for λ ∈ ∪lJ

−,dn
l ,

vZ(λ) =

(
e

g+−g−
h −i exp( 1

h

∫
log(λ− η)dµ(η))exp(− 1

h (−g+ − g− + 2iλx+ 2iλ2t−X(λ)))

0 e
g−−g+

h

)
,

for λ ∈ C,

vZ(λ) =
(

e
g+−g−

h 0
i exp(−1

h

∫
log(λ− η)dµ(η))exp( 1

h (−g+ − g− + 2iλx+ 2iλ2t+X∗(λ∗))) e
g−−g+

h

)
,

for λ ∈ C∗,

vZ(λ) =
(

(1 + |r(λ)|2)−1 0
0 1 + |r(λ)|2

)
, for λ ∈ ∪lJ

−
l ,

with the normalization limλ→∞Z(λ) = I. For a part of the extended contour, away

from 0, and between the points al and al+1, including the small lenses, see Figure

1.

The idea for the next transformation is to get rid of the jump across the real

line.

We define d̃ as follows. Let d̃ be analytic in C\∪J−
l , such that the normal limits

from above and below the real line d± exist (apart from the endpoints) and such

that
d̃+(λ) = d̃−(λ)(1 + |r(λ)|2), λ ∈ ∪linterior(J−

l ),

limλ→∞d(λ) = 1.

One can even give an explicit formula for d̃. Denote J−
l = [al, bl]. Then

(21) d̃(λ) = exp [Σl

∫ bl

al

log(1 + |r(ζ)|2) dζ

2πi(ζ − λ)
], λ ∈ C \ ∪J−

l

where the principal branch of the logarithm is chosen. Here νl = 1
2π (1+ log|r(al)|2)

and µl = 1
2π (1 + log|r(bl)|2).
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It is clear that the definitions above are not singular and indeed d̃, d̃−1 are

bounded in the complex Riemann sphere. In fact, it is easy to check that both

d̃(λ) and [d̃(λ∗)∗]−1 satisfy the conditions of the scalar Riemann-Hilbert problem.

Hence they must be equal, from which it easily follows that

(21a)

|d̃−|2(1 + |r(λ)|2) = 1, for λ ∈ ∪lJ
−
l ,

so |d̃−| ≤ 1, for λ ∈ ∪lJ
−
l ,

|d̃+| ≤ 1 + supR|r(λ)|2 <∞, for λ ∈ ∪lJ
−
l ,

and hence, by the maximum principle, |d̃(λ)| ≤ 1 + supR|r(λ)|2 < ∞. So |d̃(λ)| is

bounded uniformly in the complex plane. Similarly, |d̃−1(λ)| is uniformly bounded

in the complex plane.

Near the points al the local behavior of d̃ off the jump contour is

(21b) d̃ ∼ dl(λ− al)iνl ,

and near bl,

(21c) d̃ ∼ fl(λ− bl)iµl ,

and dl, fl are independent of λ. In fact

(21d)

dj = exp [
∫ aj

−∞
log(z − aj)

dlog(1 + |r(z)|2)
2πi

+ Σl �=j

∫ bl

al

log(1 + |r(ζ)|2) dζ

2πi(ζ − al)
],

fj = exp [−
∫ bj

−∞
log(z − bj)

dlog(1 + |r(z)|2)
2πi

+ Σl �=j

∫ bl

al

log(1 + |r(ζ)|2) dζ

2πi(ζ − bl)
],

as can be shown by integration by parts. The next transformation is then

(22)

Y (λ) = Z(λ)∆(λ),

where

∆(λ) =
(

d̃(λ) 0
0 d̃−1(λ)

)
.
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Then Y+ = Y−vY , where

(23)

vY (λ) =

(
e

g+−g−
h −i d̃−2 exp[ 1

h(
∫
log(λ− η)dµ(η) + g− + g− − 2iλx− 2iλ2t+X(λ))]

0 e
g−−g+

h

)
,

for λ ∈ C,

vY (λ) =
(

e
g+−g−

h 0
i d̃2 exp[ 1

h(− ∫ log(λ− η)dµ(η) − g+ − g− + 2iλx+ 2iλ2t+X∗(λ∗))] e
g−−g+

h

)
,

for λ ∈ C∗,

vY (λ) =
(

1 −r(λ)d̃2e
2g−2iλx−2iλ2t

h

0 1

)
, for λ ∈ ∪lJ

+,up
l ,

vY (λ) =
(

1 0
r∗(λ∗)d̃−2e

−2g+2iλx+2iλ2t
h 1

)
, for λ ∈ ∪lJ

+,dn
l ,

vY (λ) =
(

1 0
d̃−2 r∗(λ∗)

1+|r(λ)|2 e
−2g+2iλx+2iλ2t

h 1

)
, for λ ∈ ∪lJ

−,up
l ,

vY (λ) =
(

1 d̃2 r(λ)
1+|r(λ)|2 e

2g−2iλx−2iλ2t
h

0 1

)
, for λ ∈ ∪lJ

−,dn
l .

Also limλ→∞Y (λ) = I.

At this point, we still have a Riemann-Hilbert that is equivalent to the original

one (11)-(12), at least accepting the discrete-to-continuous passage in Theorem 1.

Now, we can finally start considering the limit h → 0. Indeed, all terms involving

r(λ) and not supported on the real line can be neglected, not because r itself is

small (it is not, see (16)-(16*)) but it always appears multiplied by something

exponentially small.

In general jump matrices of the form I + exponentially small can be neglected

asymptotically as long as it is proved that the solution is uniformly (in x, t) bounded

as h→ 0. We shall see that this is eventually the case.

Assuming for the moment that this is true, we can simply delete the non-real

part of the contour, at least away from the endpoints of the intervals Jk. Eventually

(see section 5 later) we can also delete the remaining small crosses centered at such

points. We end up with a matrix valued function W , such that W ∼ Y near infinity,

and

(24) W+(λ) = W−(λ)vW (λ),
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where

(25)

vW (λ) =

(
e

g+−g−
h −i d̃−2 exp( 1

h

∫
log(λ− η)dµ(η))exp(− 1

h (−g+ − g− + 2iλx+ 2iλ2t−X(λ)))

0 e
g−−g+

h

)
,

for λ ∈ C,

vW (λ) =
(

e
g+−g−

h 0
i d̃2 exp(−1

h

∫
log(λ− η)dµ(η))exp( 1

h (−g+ − g− + 2iλx+ 2iλ2t+X∗(λ∗))) e
g−−g+

h

)
,

for λ ∈ C∗.

Also limλ→∞W (λ) = I.

We will eventually see that the solution of the Riemann-Hilbert problem for W

exists and is uniformly (in x, t) bounded as h → 0. This will justify neglecting the

exponentially small terms in (23) according to a basic principle for deformations

of Riemann-Hilbert problems (see e.g. [DZ]). The passage from (23) to (25) will

then be a posteriori justified, again at least except for the remaining small crosses

centered at a finite number of real points. Concerning the crosses see section 5

(Remark 5) and Appendix A.1.

After applying the above transformation Y → W , we must use another lens

transformation to simplify the jump across the conotur C∪C∗. We will not describe

this new lens transformation, since the discussion is exactly as in Chapter 4 of

[KMM]. We will simply state the end result of these lens transformations and the

transformation Y → W . The result is the so-called outer problem. We shall show

in the next section how it can be treated along the lines of Chapter 4 of [KMM].

THE OUTER PROBLEM.

We first define the analytic arcs Ij , I∗j , j = 1, ..., G/2 as follows (they come in

conjugate pairs). Let the points λj , j = 0, ..., G, in the open uper half-plane be

the branch points of the function g. (The fact that there are G + 1 of them is

a consequence of the definition of g, according to the ”finite genus ansatz”; see

below.) All such points lie on the contour C and we order them as λ0, λ1, ..., λG,

according to the direction given to C. The points λ∗0, λ
∗
1, ..., λ

∗
G are their complex

conjugates. Then let I0 = [0, λ0] be the subarc of C joining points 0 and λ0.
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Similarly, Ij = [λ2j−1, λ2j ], j = 1, ..., G/2. The points λj , j = 0, ..., G lie in the

open uper half-plane and they are determined by a set of transcendental equations

that follow directly from the definitons of g and C (cf. Remark after Lemma 5.1.5

of [KMM]). The connected components of the set C \ ∪j(Ij ∪ I∗j ) are the so-called

”gaps”, for example the gap Γ1 joins λ0 to λ1, etc. The subarcs Ij are the ”bands”.

The finite genus ansatz implies that for each x, t there is a finite positive integer

G such that the contour C can be divided into bands and gaps as above. In

fact, it follows from the conditions defining ρ, C that the measure reality condition

(ρ(η)dη real; see (18b)) splits into a measure strict negativity condition in the

bands and a measure zero condition in the gaps. Furthermore, the function θ(λ) of

(18a) defined on C is constant on each of the gaps Γj , taking a value which we will

denote by θj , while the function φ of (18a) is constant on each of the bands, taking

the value denoted by αj on the band Ij . For the justification of the finite ansatz

under the barrier data see Appendix 2.

We are seeking a matrix O, which is analytic everywhere except across the con-

tour C \ΓG/2+1 and its conjugate, with limits that are L2(C \ΓG/2+1), converging

to the identity at infinity and such that

(26)

O+(λ) = O−(λ)
(

0 id̃−2exp(−iαk/h)
id̃2exp(iαk/h) 0

)
, λ ∈ Ik ∪ I∗k ,

k = 0, 1, ..., g/2,

O+(λ) = O−(λ)
(

exp(iθk/h) 0
0 exp(−iθk/h)

)
, λ ∈ Γk ∪ Γ∗

k,

k = 1, ..., G/2.

We here recapitulate the sequence of matrix deformations inroduced so far:

M(discrete) →M(continuous) → Q→ Z → Y →W → O.

The first problem in the sequence, for M (in its discrete version), is equivalent to

the inverse scattering problem for NLS. The last Riemann-Hilbert problem, for O,

(26), will be solved explicitly via theta functions (see (33) of section 5).
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4. THE RESULT

As explained in Appendix A.2, the finite genus ansatz holds for the semiclassi-

cal asymptotics under barrier initial data. This means that the x, t-plane can be

divided into (possibly empty) open regions RG, G = 0, 2, 4, ..... together with their

boundaries, such that within each region the asymptotics of the solution of (1) with

barrier data as in (2) can be given as follows.

THEOREM 2. Let x0, t0 lie in region RG. The solution uh(x, t) is asymptotically

described (locally) as a slowly modulated G+1 phase wavetrain. Setting x = x0+hx̂

and t = t0 + ht̂, so that x0, t0 are ”slow” variables while x̂, t̂ are ”fast” variables,

there exist parameters

a, U = (U0, U1, ...., UG)T , k = (k0, k1, ......, kG)T , w = (w0, w1, ....., wG)T , Y =

(Y0, Y1, ........., YG)T , Z = (Z0, Z1, ......, ZG)T depending on the slow variables x0

and t0 and possibly h (but not x̂, t̂) such that

(27)
uh(x, t) = uh(x0 + hx̂, t0 + ht̂) ∼ a(x0, t0)eiU0(x0,t0)/hei(k0(x0,t0)x̂−w0(x0,t0)t̂)

·d̃2(λ0)
Θ(Y (x0, t0) + iU(x0, t0)/h+ i(k(x0, t0)x̂− w(x0, t0)t̂))
Θ(Z(x0, t0) + iU(x0, t0)/h+ i(k(x0, t0)x̂− w(x0, t0)t̂))

.

Unlike the analogous formula in [KMM], we allow here a dependence of the param-

eters on h. But of course, we can always rearrange terms to arrive at a formula like

(27) where the parameters are independent of h.

All parameters can be defined in terms of an underlying Riemann surface X .

The moduli of X are given by λj , j = 0, ...., G and their complex conjugates

λ∗j , j = 0, ...., G. The genus of X is G. The moduli of X vary slowly with x, t, i.e.

they depend on x0, t0 but not x̂, t̂. For the exact formulae for the parameters as

well as the definition of the theta functions we present the following construction.

The Riemann surface X is constructed by cutting two copies of the complex

sphere along the slits I0 ∪ I∗0 , Ij , I∗j , j = 1...., G, and pasting the ”top” copy to the

”bottom” copy along these very slits.

We define the homology cycles aj , bj , j = 1, ..., G as follows. Cycle a1 goes

around the slit I0 ∪ I∗0 joining λ0 to λ∗0, remaining on the top sheet, oriented coun-
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terclockwise, a2 goes through the slits I−1 and I1 starting from the top sheet, also

oriented counterclockwise, a3 goes around the slits I−1, I0 ∪ I∗0 , I1 remaining on the

top sheet, oriented counterclockwise, etc. Cycle b1 goes through I0 and I1 oriented

counterclockwise, cycle b2 goes through I−1 and I1, also oriented counterclockwise,

cycle b3 goes through I−1 and I2, and around the slits I−1, I0 ∪ I∗0 , I1, oriented

counterclockwise, etc.

Let

R(λ)2 =
G∏

k=0

(λ− λk)(λ − λ∗k),

choosing the particular branch that is cut along the bands Ik and I∗k and such that

lim
λ→∞

R(λ)
λG+1

= −1.

On X there is a complex G-dimensional linear space of holomorphic differentials,

with basis elements νk(P ) for k = 1, . . . , G that can be written in the form

νk(P ) =

G−1∑
j=0

ckjλ(P )j

RX(P )
dλ(P ) ,

where RX(P ) is a “lifting” of the function R(λ) from the cut plane to X : if P is

on the first sheet of X then RX(P ) = R(λ(P )) and if P is on the second sheet of

X then RX(P ) = −R(λ(P )). The coefficients ckj are uniquely determined by the

constraint that the differentials satisfy the normalization conditions:∮
aj

νk(P ) = 2πiδjk.

From the normalized differentials, one defines a G×G matrix H (the period matrix)

by the formula:

Hjk =
∮

bj

νk(P ).

It is a consequence of the standard theory of Riemann surfaces that H is a sym-

metric matrix whose real part is negative definite.

In particular, we can define the theta function

Θ(w) :=
∑

n∈ZG

exp(
1
2
nTHn+ nTw),
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where H is the period matrix associated to X . Since the real part of H is negative

definite, the series converges.

We arbitrarily fix a base point P0 on X . The Abel map A : X → Jac(X) is then

defined componentwise as follows:

Ak(P ;P0) :=
∫ P

P0

νk(P ′), k = 1, . . . , G,

where P ′ is an integration variable.

REMARK. In [KMM] the Abel map is thought of as a map from X → Jac(X).

In [KR] (Appendix A.3) it is noted that the map may be most appropriately thought

as a map from an infinite sheeted Riemann surface X∞ with extra branch points

at ±iA. The bands Ij and the path of integration for the Abel actually lie in X∞.

For small t this distinction is not necessary.

A particularly important element of the Jacobian is the Riemann constant vector

K which is defined, modulo the lattice Λ, componentwise by

Kk := πi+
Hkk

2
− 1

2πi

G∑
j=1
j �=k

∮
aj

(
νj(P )

∫ P

P0

νk(P ′)

)
,

where the index k varies between 1 and G.

Next, we will need to define a certain meromorphic differential on X . Let Ω(P )

be holomorphic away from the points ∞1 and ∞2, where it has the behavior

Ω(P ) = dp(λ(P )) +
(
dλ(P )
λ(P )2

)
, P → ∞1,

Ω(P ) = −dp(λ(P )) +O

(
dλ(P )
λ(P )2

)
, P → ∞2,

and made unique by the normalization conditions

∮
aj

Ω(P ) = 0, j = 1, . . . , G.

Here p is some polynomial. In the present context see section 5, equation (31) for

its definition.
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Let the vector U ∈ CG be defined componentwise by

Uj :=
∮

bj

Ω(P ).

Note that Ω(P ) has no residues.

Let the vectors V1, V2 be defined componentwise by

V1,k = (Ak(λ∗1+) +Ak(λ2+) +Ak(λ∗3+) + · · · +Ak(λG+)) +Ak(∞) + πi+
Hkk

2
,

V2,k = (Ak(λ∗1+) +Ak(λ2+) +Ak(λ∗3+) + · · · +Ak(λG+)) −Ak(∞) + πi+
Hkk

2
,

where k = 1, ..., G, and the + index means that the integral for A is to be taken on

the first sheet of X , with base point λ0.

Finally, let

a =
Θ(Z)
Θ(Y )

G∑
k=0

(−1)k
(λk),

kn = ∂xUn, wn = −∂tUn, n = 0, . . . , G,

where

Y = −A(∞) − V1, Z = A(∞) − V1,

and U0 = −(θ1 + α0) where θ1 is the (constant in λ) value of the function θ in the

gap Γ1 and α0 is the (constant) value of the function φ in the band I0. The fact

that these values are actually constants in λ follows from the conditions defining g

and C.

Now, the parameters appearing in formula (27) are completely described.

We simply note here that the Ui and hence the ki and wi are real modulo O(h).

We also note that the denominator in (24) never vanishes (for any x0, t0, x̂, t̂).

REMARK: Because C depends only on the eigenvalue density ρ0 and not on

the reflection coefficient r, the constructions of C, the Riemann surface X , the

holomorphic differential νk(P ), the Abel map A and the theta functions are all

independent of r. The only contribution of r comes from the factors d̃2, d̃−2 in (26)

and the factor d̃2(λ0) in (27). This is why our discussion in section 4 is virtually

repeating verbatim the analogous discussion of section 4 in [KMM].
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5. REMARKS AND PROOF OF THEOREM 2.

1. Formula (27) is locally a so-called finite gap expression. It describes violent

oscillations of bounded amplitude but high frequency O(1/h).

2. As in [KMM] weak limits of densities exist: ρ = limh→0|uh|2 and µ =

limh→0
−ih
2 (ūhuh

x−uhūh
x). These limits are actually strong in the genus zero region.

3. Naturally, since the initial data is discontinuous and the limiting Euler system

(1a) is elliptic (see [KMM]) one expects the break-time of the limiting system to be

zero. This is indeed the case, as numerical experiments by H.Ceniceros and F.Tian

have shown [T], or as can be shown analytically by considering the limiting Euler

system directly: from the second equation of (1a) it is obvious that µt is infinite

at x = ± 1
2 , t = 0. Of course a genus zero region still exists but the first caustic

(the boundary between the genus zero region and higher genus regions) touches the

t = 0 axis of the x, t-plane at x = ±1/2.

4. The proof of the results in [KMM] makes use of the assumption that the

eigenvalue density can be analytically extended in the upper half-plane with the

spike where eigenvalues accumulate deleted. This is the case here, see formula (9a).

The branch root singularity at iA does not play any role, because it is integrable.

Integrals like
∫
ρ0dη or

∫
log(λ − η)ρ0(η)dη can still be deformed and the Cauchy

theorem holds.

5. A priori, neglecting the exponentially terms in (23) only allows us to ”delete”

arcs J+,up
l , J+,dn

l , J−,up
l , J−,dn

l only away from the real endpoints of J+
l , J

−
l . For en-

tirely rigorous justifications of the deletion of the small crosses centered at each such

point remaining after the deletion of the bulk of the arcs J+,up
l , J+,dn

l , J−,up
l , J−,dn

l ,

one must construct local parametrices of the Riemann-Hilbert problem and make

sure they match with the solution of (25) away from the endpoints. This is a

procedure that is by now standard in the literature; more details are given in the

Appendix. In fact, essentially the same situation has appeared in [DZ]. The ”local”

Riemann-Hilbert problem can be solved via parabolic cylinder functions. (In [DZ],

of course, the contribution was not negligible, since one was trying to evaluate the
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term of order O(t−1/2) of the asymptotics. Also in [DZ] the reflection coefficient

is independent of the parameter 1/t going to zero, but this is irrelevant since the

local Riemann-Hilbert problem is solved exactly via parabolic cylinder functions.)

6. As in [KMM], one needs to provide a local parametrix near the origin and then

match it with the solution of the ”outer problem”. This can still be done, using

the Fredholm theory described in [KMM]. The ”cyclic” relation, that the product

of limits of jumps at 0 is the identity, still holds. In view of (9b) the cyclic relation

follows easily from the analogous relation in the reflectionless case. The discussion

in sections (4.4.3), (4.5.1) and (4.5.2) of [KMM] can be then followed verbatim.

7. The Bohr-Sommerfeld condition (8) is not quite the same as the condition

postulated in [KMM] defining the so-called soliton ensemble, which translates as

(A2 + λ2
k)1/2 = hkπ

for our present problem (1)-(2). Now, one can notice that the difference between the

two conditions gives rise to a uniform error of higher order O(h2). The analysis in

[KMM] (Chapter 3) of estimates needed for the passage from a ”discrete” Riemann-

Hilbert problem to a ”continuum” Riemann-Hilbert problem is not altered by this

innocent modification.

8. From formulae (6)-(7) it is obvious that α(0) = 0 if Ah is an odd multiple of

π/2. So, for a particular sequence of h going to zero we have a spectral singularity

at the real point 0. The Riemann-Hilbert problem jump becomes singular at 0. By

assumption we have excluded such values of h. We plan to study the effect of a

real spectral singularity on the semiclassical behavior of the focusing NLS in a later

publication.

9. The proof of Theorem 2 now follows the discussion of Chapter 4 of [KMM].

One minor change is the extra factor d̃±2 appearing in the off-diagonal terms of (26).

This factor can be taken care of by the auxiliary scalar Riemann-Hilbert problem

(4.38) in section 4.3.1 of [KMM]. The proof goes through with only a minor change:

αk has to be substituted by αk + 2ih logd̃. Of course d̃ has to appear in the final

formula (27). Granted that the term hd̃ is no more constant on bands, but then
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the auxiliary scalar Riemann-Hilbert problem is still explicitly solvable.

More precisely, we introduce the scalar problem:

(28)
H+(λ) −H−(λ) = −θk, λ ∈ Γk ∪ Γ∗

k, k = 1, . . . , G/2 ,

H+(λ) +H−(λ) = −(αk + 2ihlogd̃), λ ∈ Ik ∪ I∗k , k = 0, . . . , G/2 ,

not specifying any condition at infinity yet. Consider the matrix defined by

P (λ) = O(λ) exp(iH(λ)σ3/h),

where O is the solution of the outer Riemann-Hilbert problem (26). It is straight-

forward to verify that the matrix P (λ) has the identity matrix as the jump matrix

in all gaps Γk and Γ∗
k. Since the boundary values of O(λ) and H(λ) are continuous,

it follows that P (λ) is in fact analytic in the gaps. In the bands, the jump relation

becomes simply

P+(λ) = iP−(λ)σ1,

so the jump relation is the same in all bands. Next, suppose that β(λ) is a scalar

function analytic in the λ-plane except at the bands, where it satisfies β+(λ) =

−iβ−(λ). Suppose further for the sake of concreteness that β(λ) → 1 as λ → ∞.

Then, setting

(29) V (λ) = β(λ)P (λ),

we see that the jump relations for V (λ) take on the elementary form:

(30) V+(λ) = V−(λ)σ1, λ ∈ ∪k(Ik ∪ I∗k ).

Our purpose in reducing the jump relations to this universal constant form is that

it can be explicitly solved in terms of theta functions.

But let us describe the scalar functions H(λ) and β(λ). We get

β(λ)4 =
λ− λ∗0
λ− λ0

G/2∏
k=1

λ− λ2k−1

λ− λ∗2k−1

· λ− λ∗2k

λ− λ2k
,

and for β(λ) we select the branch that tends to unity for large λ and that is cut

along the bands Ik and I∗k . It is easily checked that β(λ) as defined here is the only
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function satisfying the required jump condition and normalization at infinity that

has continuous boundary values (except at half of the endpoints). To find H(λ),

we introduce the function R(λ) defined by

R(λ)2 =
G∏

k=0

(λ− λk)(λ − λ∗k),

choosing the particular branch that is cut along the bands Ik and I∗k and satisfies

lim
λ→∞

R(λ)
λG+1

= −1,

This defines a real function, i.e. one that satisfies R(λ∗) = R(λ)∗. At the bands,

we have R+(λ) = −R−(λ), while R(λ) is analytic in the gaps. Set

H(λ) = k(λ)R(λ),

where

k(λ) =
1

2πi

G/2∑
n=1

θn

∫
Γn∪Γ∗

n

dη

(λ− η)R(η)
+

1
2πi

G/2∑
n=0

∫
In∪I∗

n

(αn + 2ihlogd̃(η)) dη
(λ− η)R+(η)

.

We see that k(λ) satisfies the jump relations:

k+(λ) − k−(λ) = − θn

R(λ)
, λ ∈ Γn ∪ Γ∗

n

k+(λ) − k−(λ) = −αn + 2ihlogd̃(λ)
R+(λ)

, λ ∈ In ∪ I∗n,

and is otherwise analytic. So H satisfies (28).

The function k blows up like (λ − λn)−1/2 near each endpoint, has continuous

boundary values in between the endpoints, and vanishes like 1/λ for large λ. It is

the only such solution of the jump relations. The factor of R(λ) renormalizes the

singularities at the endpoints, so that, as desired, the boundary values of H(λ) are

bounded continuous functions. Near infinity, there is the asymptotic expansion:

(31)
H(λ) = HGλ

G +HG−1λ
G−1 + · · · +H1λ+H0 +O(λ−1)

= p(λ) +O(λ−1),

where all coefficientsHj of the polynomial p(λ) can be found explicitly by expanding

R(λ) and the Cauchy integral k(λ) for large λ. It is easy to see from the reality of

θj and αj that p(λ) is a polynomial with coefficients which are real modulo O(h).
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So the matrix function V defined in (29) has the following asymptotics at infinity:

(32) V (λ)exp[−ip(λ)σ3/h] = I +O(λ−1).

This together with the jump relations (30) defines a Riemann-Hilbert problem for

V that can be explicitly solved via theta functions. Equivalently P and O can be

explicitly expressed in terms of theta functions. For example, it is now elementary

to check that the solution of the outer Riemann-Hilbert problem (26) for O is given

by the formulae:

(33)

O11(λ) =
b−(λ)
β(λ)

Θ(A(∞) − V1)
Θ(A(λ) − V1)

Θ(A(λ) − V1 + iU/�)
Θ(A(∞) − V1 + iU/�)

,

O12(λ) =
b+(λ)
β(λ)

e2iR(λ)k+(λ0)/�
Θ(A(∞) − V1)
Θ(−A(λ) − V1)

Θ(−A(λ) − V1 + iU/�)
Θ(A(∞) − V1 + iU/�)

,

O21(λ) =
b+(λ)
β(λ)

e−2iR(λ)k+(λ0)/�
Θ(−A(∞) − V2)
Θ(A(λ) − V2)

Θ(fA(λ) − V2 + iU/�)
Θ(−A(∞) − V2 + iU/�)

,

O22(λ) =
b−(λ)
β(λ)

Θ(−A(∞) − V2)
Θ(−A(λ) − V2)

Θ(−A(λ) − V2 + iU/�)
Θ(−A(∞) − V2 + iU/�)

,

where

(34) b±(λ) =
R(λ) ± (λ− λ∗0)(λ − λ1) . . . (λ− λ∗G)

2R(λ)
.

From the explicit solution, using formula (14) with the obvious substitution of O

for M one derives formula (27). This completes the proof of Theorem 2.

We end this section by once more recapitulating the sequence of matrix defor-

mations used:

(35) M(discrete) →M(continuous) → Q→ Z → Y →W → O.

The first problem in the sequence, for M (in its discrete version), is equivalent to

the inverse scattering problem for NLS. The last Riemann-Hilbert problem, for O,

(26), was solved explicitly via theta functions. Since, as is seen, the solution O of

the outer problem is uniformly bounded in x, t, with L2 limits O+, O−, as h → 0,

so are W and Y and the (asymptotically valid) transformations from Y to O and

back are a posteriori justified.
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APPENDIX 1. THE CROSS PROBLEM.

The transformation from the Riemann-Hilbert problem (23) to the problem (24)-

(25) requires two steps. First, the deletion of the lens contours away from the points

al, bl. This is immediate because the jump matrices are uniformly exponentially

small perturbations of the identity.

Second, one needs to consider the small remaining crosses centered at the points

al, bl (see the remark of section 5). Since the jump matrices are not uniformly small

there, one needs to find ”local” parametrices. In other words, one needs to solve

the local Riemann-Hilbert problems.

For example, after translation all problems centered at al look as follows: to find

a matrix L which is analytic in C \ Γ where Γ is the cross shown in Figure A.1,

centered at 0. The actual angles between the four half-lines emanating from 0 are

not important as long as every half-line is in a different quadrant.

+ −

+ −

0

J
1

J
2

J
3

J
4

−       +

−    +

Fig.A.1.  The Riemann−Hilbert problem on a cross centered at zero.
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The jumps for L are

(A.1)

L+ = L−vL(λ), where

vL(λ) =

(
1 d2

l
rl

1+|rl|2λ
2νlie

2gl−2iλx−2iλ2t

h

0 1

)
, for λ ∈ J1,

vL(λ) =
(

1 0
d−2

l
r∗

l

1+|rl|2λ
−2νlie

−2gl+2iλx+2iλ2t

h 1

)
, for λ ∈ J2,

vL(λ) =
(

1 −d2
l rlλ

2νlie
2gl−2iλx−2iλ2t

h

0 1

)
, for λ ∈ J3,

vL(λ) =
(

1 0
d−2

l r∗l λ
−2νlie

−2gl+2iλx+2iλ2t

h 1

)
, for λ ∈ J4.

Also limλ→∞L(λ) = I.

Here

νl =
1
2π
log(1 + |r(al)|2),

gl = g(λ = al), rl = r(al)

and dl is defined by the local behavior of d̃ near al (see (21b)).

After a conjugation of the jump matrix by diag(dle
gl+i x2

4t
h , d−1

l e
−gl−i x2

4t
h ), a fur-

ther translation λ→ λ−x/2 (to complete the square) and a rescaling λ→ λ( t
h )1/2,

we end up with a problem with jumps on a rescaled cross which is no more small.

Extending the cross to infinity (by setting the jump equal to the identity on the

extension) we have a new Riemann-Hilbert problem which can be approximated by

the following:

(A.2)

Ψ+ = Ψ−vΨ, where vΨ(λ) =(
1 rl

1+|rl|2λ
2νlie−2iλ2

0 1

)
, for λ ∈ J̃1,(

1 0
r∗

l

1+|rl|2λ
−2νlie2iλ2

1

)
, for λ ∈ J̃2,(

1 −rlλ2νlie−2iλ2

0 1

)
, for λ ∈ J̃3,(

1 0
r∗l λ

−2νlie2iλ2
1

)
, for λ ∈ J̃4,

limλ→∞S(λ) = I,

where J̃i is the extension of Ji, i = 1, 2, 3, 4.
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The last Riemann-Hilbert problem can be explicilty solved via parabolic cylinder

functions (see e.g. [DZ]). Indeed, let Da(λ) denote the standard parabolic cylinder

function. Then Da(e−3iπ/4λ) and Da(−e−3iπ/4λ) solve the ODE

d2D

dλ2
+ (

1
2
− λ2

4
+ a)D = 0,

where a = iνl. Let

(A.3) S =
(

S11 S12

S21 S22

)
,

where

(A.4)

S11 = e−3πνl/4Da(e−3iπ/4λ),

S12 =
r∗l Γ(a)

(2π)1/2e−iπ/4
e3πνl/4[

d

dλ
D−a(e−iπ/4λ) − iλ

2
D−a(e−iπ/4λ)],

S21 =
rlΓ(−a)

(2π)1/2eiπ/4
e−πνl/4[

d

dλ
Da(e−3iπ/4λ) +

iλ

2
Da(e−3iπ/4λ)],

S22 = eπνl/4Da(e−iπ/4λ),

for Imλ > 0,

and

(A.5)

S11 = eπνl/4Da(eiπ/4λ),

S12 =
r∗l Γ(a)

(2π)1/2e−iπ/4
e−πνl/4[

d

dλ
D−a(e3iπ/4λ) − iλ

2
D−a(e3iπ/4λ)],

S21 =
rlΓ(−a)

(2π)1/2eiπ/4
e3πνl/2[

d

dλ
Da(eiπ/4λ) +

iλ

2
Da(eiπ/4λ)],

S22 = e−3πνl/4Da(e3iπ/4λ),

for Imλ < 0.

Then it is possible to check that

(A.6)

S+ = S−vS , where S(λ) =(
1 rl

1+|rl|2
0 1

)
, for λ ∈ J̃1,(

1 0
r∗

l

1+|rl|2 1

)
, for λ ∈ J̃2,(

1 −rl
0 1

)
, for λ ∈ J̃3,(

1 0
r∗l 1

)
, for λ ∈ J̃4,

limλ→∞S(λ) = I.
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Now, setting

(A.7) S = Ψλiνlσ3e−iλ2/4 σ3 .

and using the well known asymptotics for the parabolic cylinder function at infinity

(A.8)

Da(λ) = λae−λ2/4(1 +O(λ−2)), |argλ| < 3π
4
,

Da(λ) = λae−λ2/4(1 +O(λ−2)) − (2π)1/2

Γ(−a) e
iπaλ−a−1eλ2/4(1 +O(λ−2)),

π

4
< argλ <

5π
4
,

Da(λ) = λae−λ2/4(1 +O(λ−2)) − (2π)1/2

Γ(−a) e
−iπaλ−a−1eλ2/4(1 +O(λ−2)),

−5π
4

< argλ <
−π
4
,

it is immediate to check that Ψ solves (A.2).

It can be easily verified that the back-rescaled local version near al, bl matches

with the solution of the outer problem (as h → 0). Thus the issue of the small

crosses is settled.

APPENDIX 2. THE VARIATIONAL PROBLEM AND THE FINITE GENUS

ANSATZ.

The function g defined by (18) and the conditions stated before (18) is crucial for

the asymptotic analysis of the Riemann-Hilbert problem (11). As stated in [KMM]

and [KR] the existence of such a function follows from the existence and regularity of

a solution to a variational problem. In this section we pose the variational problem

and we state the results of [KR] on existence. We also show that a variation of the

proofs of [KR] guarantees the validity of the finite genus ansatz for the barrier data

problem.

Let H = {z : Imz > 0}, be the complex upper-half plane and H̄ = {z : Imz ≥
0} ∪ {∞} be the closure of H. Let also K = {z : Imz > 0} \ {z : Rez = 0, 0 <

Imz ≤ A}, where A is a positive constant. In the closure of this space, K̄, we

consider the points ix+ and ix−, where 0 ≤ x < A as distinct. In other words, we

cut a slit in the upper half-plane along the segment (0, iA) and distinguish between

the two sides of the slit. The point infinity belongs to K̄, but not K. Define G(z; η)
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to be the Green’s function for the upper half-plane

G(z; η) = log
|z − η∗|
|z − η|

and let dµ0(η) be the nonnegative measure −ρ0dη on the segment [0, iA] oriented

from 0 to iA. Recall that ρ0 is the denisty of eigenvalues given by (9a). The star

denotes complex conjugation. Let the ”external field” φ be defined by

(A.9) φ(z) = −
∫
G(z; η)dµ0(η) −Re(iπ

∫ iA

z

ρ0dη + 2i(zx+ z2t)),

where, without loss of generality x > 0.

Let M be the set of all positive Borel measures on K̄, such that both the free

energy

E(µ) =
∫ ∫

G(x, y)dµ(x)dµ(y), µ ∈ M

and
∫
φdµ are finite. Also, let

V µ(z) =
∫
G(z, x)dµ(x), µ ∈ M.

be the Green’s potential of the measure µ.

The weighted energy of the field φ is

Eφ(µ) = E(µ) + 2
∫
φdµ,

for any µ ∈ M.

Now, given any curve F in K̄, the equilibrium measure λF supported in F is

defined by

Eφ(λF ) = minµ∈M(F )Eφ(µ),

where M(F ) is the set of measures in M which are supported in F , provided such

a measure exists.

The finite gap ansatz is equivalent to the existence of a so-called S-curve joining

the points 0+ and 0− and lying entirely in K̄. By S-curve we mean an oriented

curve F such that the equilibrium measure λF exists, its support consists of a finite
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union of analytic arcs and at any interior point of suppµ the so called S-property

is satisfied

(A.10)
d

dn+
(φ+ V λF

) =
d

dn−
(φ+ V λF

),

In the next section we will see that there is a C such that

(A.11) Eφ(λC) = maxcontoursFEφ(λF ) = maxcontoursFminµ∈M(F )Eφ(µ),

and that the existence of an S-curve follows from the existence of a contour C

maximizing the equilibrium measure.

EXISTENCE THEOREM [KR]. For the external field given by (A.9), there

exists a continuum F ∈ F such that the equilibrium measure λF exists and

(A.12) Eφ[F ](= Eφ(λF )) = maxF∈Fminµ∈M(F )Eφ(µ).

PROOF: See Theorem 4 in [KR].

For our particular problem we also have

REGULARITY THEOREM [KR]. The continuum F is in fact an S-curve.

PROOF: The proof follows as in [KR]. But there are some changes here. The

density of eigenvalues given by (9a) does not satsify all conditions (1) set in [KR].

In particular it is not true that Im[ρ0(z)] > 0, for z ∈ (0, iA] ∪ R+. Rather

Im[ρ0(z)] = 0 on the real line. So a small amendment of the regularity proof is

needed.

The point of the assumption that Im[ρ0(z)] > 0, for z ∈ (0, iA] ∪ R
+ is to

ensure that the continuum F does not touch the negative real line, except of course

at 0− and possibly infinity. In our case, we can argue as follows.

Note that the field φ is exactly zero on the real line. So any connected subset of

the continuum F that belongs in the real line is automatically and trivially an S-

curve. Because of the analyticity properties of the field, the real line can be divided

into a finite number of intervals Jk such that in the interior of each Jk either

dφ

dImz
> 0,
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or

dφ

dImz
≤ 0.

In the first case, one can see that the continuum F cannot touch the real line except

of course at the endpoints of Jk. This is because for any configuration that involves

a continuum including other points on the real line, we can find a configuration

with no other points on the real line, by pushing measures up away from the real

axis, which has greater (unweighted and weighted) energy. It is crucial here that if

u ∈ R then G(u, v) = 0, while if both u, v are off the real line G(u, v) > 0.

In the second case, Jk is trivially an S-curve.

So F consists of a finite union of arcs: some of them are trivially S-curves and

some of them do not touch the real line except at their endpoints, so small variations

staying in the upper half-plane and keeping the endpoints fixed can be taken.

To pursue the proof of regularity one neeeds the following identity.

THEOREM [KR]. Let F be the maximizing continuum of and λF be the equi-

librium measure. Let µ be the extension of λF to the lower complex plane via

µ(z∗) = −µ(z). Then

(A.13)
Re(

∫
dµ(u)
u− z

+ V ′(z))2 = Re(V ′(z))2 − 2Re
∫
V ′(z) − V ′(u)

z − u
dµ(u)

+Re[
1
z2

∫
2(u+ z)V ′(u) dµ(u)].

Here V is the logarithmic potential of µ.

PROOF: By taking variations with respect to the equilibrium measure [KR].

From (A.13) it is easy to see that the support of the equilibrium measure of the

maximizing continuum is characterized by

(A.14) Re

∫ z

(Rµ)1/2dz = 0,

where

Rµ(z) = (V ′(z))2 − 2
∫

suppµ

V ′(z) − V ′(u)
z − u

dµ(u)

+
1
z2

(
∫

suppµ

2(u+ z)V ′(u) dµ(u)).
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Since Rµ(z) is a function analytic in K, the locus defined by (A.14) is a union of

arcs with endpoints at zeros of Rµ. Further analysis actually shows that Rµ has

finitely many zeros.

(A.10) also follows easily from (A.13); see [KR]. Alternatively, see Chapter 8 of

[KMM].

REMARK. As noted in Appendix A.3 of [KR], the finite gap ansatz must be

interpreted in a way not made explicit in [KMM]. In Theorem 2, the contour of

the Abel map should more appropriately be allowed to lie in the infinite-sheeted

Riemann surface with branch points ±iA, still joining points 0+ and 0−. For small

t this extension is not necessary.
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