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Abstract

In this paper, we will present composite boundary elements (CBE) for classical Fredholm boundary
integral equations. These new boundary elements allow the low-dimensional discretisation of boundary
integral equation where the minimal number of degrees of freedom is independent of the, possibly, huge
number of charts which are necessary to describe a complicated surface.

The applications are three-fold: (a) The coarse grid discretisation by composite boundary elements
allow the use of multi-grid algorithms for solving the fine grid discretisation independently of the number
of patches which are necessary to describe the surface. (b) If the accuracy requirements are moder-
ate the composite boundary elements allow the low-dimensional discretisation of the integral equation.
(c) A posteriori error indicators can be applied already to a low dimensional discretisation, which do not
resolve the domain, to obtain a problem-adapted discretisation.

1 Introduction

In this paper, we will introduce composite boundary elements (CBE) for solving classical boundary integral
equations in R

3. To be specific, let Ω ⊂ R
3 be a bounded Lipschitz domain with boundary Γ := ∂Ω. The

Sobolev spaces on Γ are denoted by Hµ (Γ), where the range of µ ∈ [−κ, κ] ⊂ R may be restricted due to the
smoothness of the surface. Our goal is to solve boundary integral equations which are given in a variational
formulation: Find u ∈ Hµ (Γ) such that

(v, λu)0 + (v, Ku)0 = (f, v)0 ,

where (·, ·)0 denotes the continuous extension of the L2 (Γ) scalar product to the dual pairing Hµ (Γ)×H−µ (Γ).
The data are the right-hand side f ∈ H−µ (Γ), the piecewise constant function λ : Γ → R, and the boundary
integral operator

Ku :=
∫

Γ

k (x, y)u (y) dsy,

where k : Γ × Γ → C is the kernel function. We assume that λI + K : Hµ (Γ) → H−µ (Γ) is an isomorphism.

Remark 1.1 In some cases as, e.g., for the hypersingular integral equation of the Laplace equation, the null-
space ker (λI + K) is non-trivial. This problem can be cured easily, by restricting Hµ (Γ) to an appropriate
quotient space or by extending the system using Lagrange multipliers. Here, we do not discuss these technical
details.

Example 1.2 The classical single layer operator for the Laplace equation is characterised by k (x, y) :=
(4π ‖x − y‖)−1 and λ = 0. For given f ∈ H1/2 (Γ), we are seeking u ∈ H−1/2 (Γ) such that

∫
Γ

∫
Γ

v (x)u (y)
4π ‖x − y‖dsydsx = f (v) ∀v ∈ H−1/2 (Γ) .

In this paper, we will consider such types of boundary integral equations and focus to the case that the
surface Γ is very complicated, i.e., the parametric description of Γ requires a very large number of surface
patches along corresponding charts to local parameter domains.
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We consider two applications for this class of problems.

1. The number of patches is so large that the resolution by standard boundary elements exceeds the com-
puting and memory capacities of the computers at hand. On the other hand, the accuracy requirements
are only moderate that, from the viewpoint of the approximation property, a low dimensional boundary
element space would be appropriate. Only the geometric details enforce a very fine boundary element
mesh which results in a finite element space of very large dimension.

2. The number of patches in the surface description of Γ again is very large while they are resolved by a
fine boundary element mesh. Here, the goal is to solve the corresponding linear system on the fine mesh
efficiently, e.g., by multigrid methods. Since the efficiency of fast solvers such as multigrid methods and
wavelets are based on a hierarchical discretisation of the underlying problem, they loose their efficiency
since standard boundary elements do not allow the low dimensional discretisation of the underlying
equation due to the very large number of geometric details in the surface.

We will introduce Composite Boundary Elements (CBE) which can be regarded as a coarsening strategy
for boundary element spaces allowing the low dimensional discretisation of boundary integral operators on
complicated surfaces. The minimal dimension of the space is independent of the number and size of the
geometric details in Γ. The construction will be based on a graph coarsening algorithm and can be applied to
(unstructured) finite element meshes for the discretisation of partial differential equations as well.

In the literature, various methods exist for coarsening finite element spaces. Some of the them are based
on coarsening of simplicial meshes in the Euclidean space (see, e.g., [13], [12], [21], [18], [9], [3], [2], [8]) some
of them are based on the construction of auxiliary meshes (see, e.g., [26], [10], [27]) or reduced meshes ([14]).

Also, algebraic multigrid methods involve in many cases a graph coarsening (see [20], [25], [4], [17], [1],
[19]).

For boundary element methods, the literature is not as vast as for finite element methods. Multigrid
methods for non-local operators (including also operators of negative order) are described, e.g., in [5], [6],
and [7]. A combination of algebraic multigrid methods with data-sparse representation of boundary integral
operators has been described in [15] and [16].

Coarsening strategies for wavelet discretisation have been presented for boundary integral equations, e.g.,
in [24], [22].

2 Finite and Boundary Element Methods

We assume in an abstract way that a bilinear form a : Hµ (Ω)×Hµ (Ω) → R is given which is continuous and
Hµ-coercive and injective: There exist constants C1, c2 > 0 and C2 ≥ 0 such that, for all u, v ∈ Hµ (Ω), there
holds

|a (u, v)| ≤ C1 ‖u‖Hµ(Ω) ‖v‖Hµ(Ω) (2.1a)

Re a (u, u) ≥ c2 ‖u‖2
Hµ(Ω) − C2 ‖u‖2

Hν(Ω) for some ν < µ. (2.1b)

u �= 0 =⇒ sup
w∈Hµ(Γ)

a (u, w) > 0. (2.1c)

For given right-hand side f ∈ (Hµ (Ω))′, we are seeking u ∈ Hµ (Ω) such that

a (u, v) = f (v) ∀v ∈ Hµ (Ω) . (2.2)

It is well known that conditions (2.1a-c) ensure existence, uniqueness and well-posedness of problem (2.2).

Let S ⊂ Hµ (Ω) be a finite dimensional subspace of Hµ (Ω). Then, the Galerkin discretisation is given by
seeking uS ∈ S such that

a (uS, v) = f (v) ∀v ∈ S.

We are left with the problem of constructing (a nested sequence of) appropriate (finite element) spaces
S ⊂ Hµ (Ω) . Let G0 denote a conforming (in the sense of Ciarlet) triangulation of a bounded domain Ω ⊂ Rd

resp. of a d-dimensional hypersurface Ω ⊂ Rd+1. Let

Θ0 : set of vertices in G0, E0 : set of edges in G0. (2.3)
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We assume that – due to the possibly very complicated shape of Ω – the numbers �G0, �Θ0, �E0 are very large
accordingly and the goal of this paper is to define an algorithm for coarsening the corresponding finite element
space. Note that we will use throughout the paper the terminology finite element space for both, boundary
element space on surfaces and classical finite element space on a domain. As the “standard” finite element
space we consider the space of continuous, piecewise linear functions

S0 :=
{
u ∈ C0(Ω) | ∀τ ∈ G0 : u|τ ∈ P1

}
. (2.4)

(Note that, for curved elements, the pullbacks χτ : τ̂ → τ to the unit element τ̂ have to satisfy u ◦ χτ ∈ P1

instead of u ∈ P1).

Remark 2.1 The coarsening algorithm is not restricted to the case that S0 is the space of continuous, piecewise
linear functions. The interpolation operators (cf. Subsection 3.2.2) can be modified in a canonical way, so
that the coarsening strategies can be applied to piecewise constant discontinuous boundary element spaces or
higher order elements as well.

3 Coarsening of Finite Element and Boundary Element Spaces

In this section, we will present an algorithm which generates a sequence of coarsened finite element spaces, i.e.,
lower dimensional subspaces of S0. We will use negative indices, e.g., E−1, E−2, . . . for quantities on coarser
levels.

The construction of the coarsened finite element spaces is recursive and starts with the “standard” finite
element space S0. In this light, we assume that a set of vertices Θ−�, a set of edges E−� ⊂ Θ−� × Θ−�, and
the basis functions (ϕ−�,x)x∈Θ−�

of the space S−� are already generated. In the sequel, we will explain how
to generate the next coarser level (Θ−�−1, E−�−1) based on this input.

3.1 Graph Coarsening

First we will introduce some notations.

Notation 3.1 Let G denote a graph, embedded in Rd, which consists of a set of vertices Θ ⊂ Rd and set of
edges E ⊂ Θ × Θ. Layers about a vertex x ∈ Θ of width n ∈ N0 are defined by the recursion

L(0) (x) := {x} ,

L(i+1) (x) := {y ∈ Θ | ∃z ∈ Li (x) : (y, z) ∈ E} ∪ L(i) (x) .

The distance distG (x, y) of two points x, y ∈ Θ in the graph G is the minimal number of edges in E which are
necessary to connect x and y, i.e.,

distG (x, y) := min
{

n : y ∈ L(n) (x)
}

.

For a subset ω ⊂ Θ and x ∈ Θ, we define

distG (x, ω) := min
y∈ω

distG (x, y) .

If G, Θ, E are supplied with a level index �, e.g., G�, the corresponding layers are denoted by L(i)
� (x) and

the distance by dist� (x, y).

The algorithm consists of two steps: 1: Geometric coarsening, 2: Definition of the basis functions.

The geometric coarsening starts with the selection of coarse nodal points. Once, these points have been
selected, the set of edges for the coarse graph will be generated. We employ heuristic criteria in such a way
that for a regularly refined simplicial mesh the coarse meshes satisfy these criteria.

For a graph (Θ−�, E−�), we first define the set of coarse nodal points Θ−�−1. The definition of the set of
edges, then, depends on a control parameter η ∈ {2, 3} and is given by

E−�−1 := {(x, y) ∈ Θ−�−1 × Θ−�−1 : dist� (x, y) ≤ η} . (3.1)
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Algorithm 3.2
procedure choice of coarse grid points:

Initialisation: Θtemp := Θ−�; Θ−�−1 := ∅;
begin
1: Pick some x ∈ Θtemp; (3.2)

Θ−�−1 := Θ−�−1 ∪ {x};
Θtemp := Θtemp\L(1)

−� (x);
if Θtemp �= ∅ goto 1;
Generate E−�−1 := {(x, y) ∈ Θ−�−1 × Θ−�−1 : dist� (x, y) ≤ η}

end;

This algorithm selects coarse grid nodes out of the finer meshes Θ−� in an unstructured (random) way.
An advanced version of this algorithm is based on the following idea. If a sequence of simplicial meshes is
generated by standard mesh refinement strategies, i.e., by connecting midpoints of edges, then, any two coarse
mesh points have a distance of two edges in the finer mesh. In this light, we define the modification of the
selection algorithm as follows. Only the first coarse grid point is chosen randomly. After that, the neighbours
of second order of the already chosen coarse grid points are collected in a list and will be picked first in the
next step.

Algorithm 3.3
procedure advanced choice of coarse grid points:

Initialisation: Θtemp := Θ−�; Θ−�−1 := ∅; Ntemp := ∅;
begin
1: if Ntemp = ∅ choose some x ∈ Θtemp else choose some x ∈ Ntemp;

Θ−�−1 := Θ−�−1 ∪ {x};
Θtemp := Θtemp\L(1)

−� (x);
Ntemp := {y ∈ Θ−� : dist−� (y, Θtemp) = 2};
if Θtemp �= ∅ goto 1;
Generate E−�−1 := {(x, y) ∈ Θ−�−1 × Θ−�−1 : dist� (x, y) ≤ η}

end;

Remark 3.4 The update of the set Ntemp and the computation of the set of edges E−�−1 can be easily realised
locally. We do not present the details here.

3.2 Space Coarsening

In the next step, we will define composite finite elements on these thinned-out graphs in a recursive, hierarchical
way. Since G0 is a standard finite element mesh the definition of the corresponding finite element space S0 is
as usual (see (2.4)).

For the finite element basis function corresponding to the level −� − 1 and a nodal point y ∈ Θ−�−1, we
employ the ansatz

ϕ−�−1,y =
∑

x∈Θ−�

α(−�−1)
x,y ϕ−�,x, (3.3)

where the interpolation weights will be specified later. This ansatz automatically guarantees nestedness of the
corresponding composite finite element spaces

S−� := span {ϕ−�,x : x ∈ Θ−�} ,

S0 ⊃ S−1 ⊃ S−2 ⊃ . . . ⊃ S−� ⊃ S−�−1 ⊃ . . . .

The choice of the coefficients α
(−�−1)
x,y in (3.3) will be related to the standard case, where (S−�)� is a sequence of

nested finite element spaces on regular and nested simplicial finite element meshes, by means of the following
conditions.
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1. (Lagrange property)

∀x, y ∈ Θ−�,x : ϕ−�,x (y) =
{

1 x = y,
0 otherwise.

2. (Interpolation property) For a simplex τ and a vertex y of τ , let λτ,y denote the affine function with
values 1 at y and 0 at all other vertices of τ . For x ∈ Θ−�, y ∈ Θ−�−1, we define1 (cf. Figure 1)

α(−�−1)
x,y :=

{
λτ,y (x) if y is a vertex of a simplex τ ∈ G−�−1 with x ∈ τ,
0 otherwise. (3.4)

�

�
� � �

�
�

�
� � �

Figure 1: Construction of the interpolation weights αx,y. The piecewise affine function λτ,y is evaluated at
the fine grid point x.

The definition of the coefficients α
(−�−1)
x,y consists of two steps:

(a) For any y ∈ Θ−�, construct a simplex τ with vertices in Θ−�−1 such that x ∈ τ (resp. dist (x, τ) is
small). This step is in analogy to the first case in (3.4).

(b) Compute the weights α
(−�−1)
x,y .

Remark 3.5 In the special case of a regular, nested sequence of triangulations, there holds, for any u−�−1 ∈
S−�−1,

u−�−1 =
∑

x∈Θ�

u−�−1 (x)ϕ�,x on Ω.

Choosing u−�−1 as the basis function ϕ−�−1,y and using the Lagrange property, we obtain the relation

α(−�−1)
x,y = ϕ−�−1,y (x)

for all x ∈ Θ−� and y ∈ Θ−�−1. Hence, in this standard case, the definition of the weights α
(−�−1)
x,y in (3.4)

coincides with the standard definition.

3.2.1 Selection of Nodal Points for the Interpolation Operator

Below, both steps (a,b) will be described in an algorithmic way. Procedure choice of interpolation points
depends on a parameter γ ≥ d+1 which controls the number of coarse grid points which are examined for the
choice of the interpolation points. Furthermore, an abstract function check quality(x, {z0, z1, . . . , zd}) ∈ R≥0

is employed to measure the interpolation quality of nodal points zi, 0 ≤ i ≤ d, for an evaluation point x. The
interpolation quality is considered to be optimal if check quality is minimal. The details are described
later. Here, we proceed with the algorithm for selecting the set of coarse grid points for the definition of the
interpolation operator.

1This definition will be refined if Ω is d-dimensional manifold (cf. Section 3.2.2).
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Algorithm 3.6
procedure choice of interpolation points (γ : integer);
begin

for all x ∈ Θ−� do begin
if x ∈ Θ−�−1 then Θint (x) := {x} else
begin

initialise Θtemp := ∅; i := 0;
while �Θtemp < γ do begin

Θtemp := Θtemp ∪
(
L(i)
−� (x) ∩ Θ−�−1

)
; i := i + 1

end;
quality := +∞;
for all subsets A ⊂ Θtemp with �A = d + 1 do begin

q := check quality (x, A) ;
if q < quality then begin quality := q; Θint (x) := A end

end
end

end
end;

3.2.2 Definition of Interpolation Weights

It remains to define the coefficients α
(−�−1)
x,y by using the set Θint (x) of interpolation points as defined in

Algorithm 3.6. For x = y ∈ Θ−�−1 we simply put

α(−�−1)
x,x := 1 (3.5a)

and, for y /∈ Θint (x), we set
α(−�−1)

x,y := 0. (3.5b)

For the remaining cases, y ∈ Θint (x) \ {x}, we distinguish two cases.

1. Ω ⊂ Rd is a d-dimensional domain.

Let x ∈ Θ−�\Θ−�−1 and Θint (x) be constructed as in procedure choice of interpolation points. For
any y ∈ Θint (x), an affine function p ∈ P1, p : R

d → R is uniquely defined by the condition

∀z ∈ Θint (x) : p (z) =
{

1 z = y,
0 z �= y.

Then,
α(−�−1)

x,y := p (x) . (3.5c)

2. Ω ⊂ Rd+1 is a d-dimensional manifold.

Then, the points in Θint (x) define a d-dimensional hyperplane Ex in Rd+1 in a unique way. However, it
may happen that x /∈ Ex. Let P⊥

x : R
d+1 → Ex be the orthogonal projection of R

d+1 onto Ex. For any
y ∈ Θint (x), an affine function p ∈ P1 (in the d-dimensional variables of Ex) is uniquely determined by

∀z ∈ Θint (x) : p (z) =
{

1 z = y,
0 z �= y.

In this case, we set
α(−�−1)

x,y := p
(
P⊥

x (x)
)
. (3.5d)

We have now all ingredients at hand for the definition of composite finite element spaces based on graph
coarsening.
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We briefly recall the setting.

i. A sequence of mesh points (Θ�)
0
�=−L is generated by one of the algorithms in Subsection 3.1.

ii. The coefficients
(
α(�)

)0

�=−L
are given as in (3.5a), (3.5b), and (3.5c) resp. (3.5d).

iii. For any fine grid point x ∈ Θ−�, let Θint (x) by defined by algorithm choice of interpolation points.
Vice versa, for any coarse grid point x ∈ Θ−�−1, the dual set Θ�

int (x) ⊂ Θ−� is defined by

Θ�
int (x) := {y ∈ Θ−� : x ∈ Θint (y)} .

iv. The standard nodal basis functions on the given mesh G0 are denoted by (ϕ0,x)x∈Θ0
.

Definition 3.7 Let (i)-(iv) be satisfied. The composite finite element basis functions are given by

∀y ∈ Θ−�−1 : ϕ−�−1,y :=
∑

x∈Θ�
int(y)

α(−�−1)
x,y ϕ−�,x

and the corresponding composite finite element spaces based on graph coarsening by

S−� := span {ϕ−�,x : x ∈ Θ−�} .

Remark 3.8 The spaces (S�)
0
�=−L are nested. The representation of the trivial injection ι : S−�−1 ↪→ S−�

with respect to the basis (ϕ−�−1,x)x∈Θ−�−1
and (ϕ−�,x)x∈Θ−�

is the matrix

p−�,−�−1 : R
Θ−�−1 → R

Θ−� ,

p−�,−�−1 (x, y) := α(−�−1)
x,y .

3.2.3 Realisation of the Function check quality

In this section, we will describe some (heuristic) strategies to measure the quality of a set of interpolation
nodes with respect to a point evaluation in x. Let x ∈ Rd and A = {zi : 0 ≤ i ≤ d} be a set of points. The
function check quality will be a combination of the following three criteria.

Criterion 1: The distortion of the set A is measured by the function c2 (A). For its definition we
distinguish between two cases.

1. Ω is a d-dimensional Euclidean domain. Then,

c1 (x, A) :=
(diamA)d

vol (A)
,

where vol (A) is the volume of conv (A).

2. If Ω is the surface of a (d + 1)-dimensional bounded Euclidean domain, then

c1 (x, A) :=
(diamA)d

vol (A)
,

where vol (A) is the d-dimensional surface volume of (conv A) ∩ Ω and, in this case,

diamA := max {distgeo (zi, zj) : 0 ≤ i < j ≤ d} ,

where distgeo is the geodetic distance of two surface points.

Criterion 2:

1. If Ω is a d-dimensional Euclidean domain, we set c2 (x, A) := 0.
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2. If Ω is a d-dimensional manifold and EA is the hyperplane through the points in A, then

c2 (x, A) :=

∥∥x − P⊥
A x

∥∥
(diamA)2

,

where P⊥
A is as in (3.5d).

Criterion 3:
Finally, we measure the distance of the point x from the simplex which is spanned by the vertices of A :

c3 (x, A) :=
dist (x, conv A)

diamA
.

4 Numerical Tests for Choosing the Control Parameters in the
Algorithms

The algorithms for coarsening finite element spaces depend on various heuristic criteria and related control
parameters and we have performed numerical experiments in order to find appropriate choices of such param-
eters.

Problem 4.1 Let S be the unit sphere in R3 and f : S → R be the function f (x) := log ‖x − x0‖ with
x0 := (2, 2, 0)ᵀ. Let S� be the (abstract) finite element space and let f� denote the L2-projection of f onto S�.
Then, we study the error

‖f − f�‖L2(S)

depending on the control parameters for the definition of S�.

4.1 Influence of the Constants c1, c2, c3

The goal of the first experiment is to find an appropriate weighting of the constants c1, c2, c3 for the definition
of the function check quality. We have used Algorithm 3.2 to select the coarse nodal points. The given fine
mesh consists of 65538 nodal points. In the following table “�dof” denotes the number of nodal points. The
values in the table denote the L2-error of the best approximation for Problem 4.1. The notation x−m is short
for x × 10−m.

�dof c1 c2 c3 c1 + c2 c1 + c3 c2 + c3 c1 + c2 + c3

65538 2.58−6 2.58−6 2.58−6 2.58−6 2.58−6 2.58−6 2.58−6

15203 2.08−5 2.23−5 2.01−5 2.09−5 2.01−5 2.31−5 2.01−5

3044 1.23−4 1.40−4 1.32−4 1.24−4 1.20−4 1.26−4 1.21−4

560 7.67−4 8.41−4 8.51−4 7.71−4 7.40−4 7.34−4 7.41−4

94 5.26−3 5.40−3 4.95−3 5.23−3 5.11−3 4.69−3 5.12−3

Based on these results, we have used, in the sequel, for all experiments the choice

check quality (x, A) := c2 (x, A) + c3 (x, A) .

4.2 Comparison of the Coarsening Strategies

The goal of the next experiment is the comparison of the basic Algorithm 3.2 with the advanced version, i.e.,
Algorithm 3.3. The quantity “rel sparsity” is the average number of non-zero entries per matrix line, more
precisely, if Ntot denotes the total number of non-zero elements in the system matrix, then rel sparsity:=
Ntot/�dof. The quantity “error” denotes the L2-error for Problem 4.1. In order to compare the convergence
rates we compute the exponent s in C1 (�dof)−s by using the errors of two consecutive levels

rate :=
log e−�

e−�+1

log n−�+1
n−�

.
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Remark 4.2 We have chosen the two-dimensional (very regular) surface of the unit ball as our test example
because we expect, for the standard case of regularly refined meshes and linear finite elements, optimal conver-
gence rates, i.e., s = 1. Since our coarsening algorithm does not ensure that locally linear functions are always
represented on the coarse mesh exactly, the comparison with these optimal convergence rates is the hardest test
for our coarsening algorithm.

Strategy 1 Strategy 2
# dof rel spars error rate # dof rel spars error rate
65538 7.0 2.58−6 65538 7.0 2.58−6

15203 14.9 2.31−5 1.50 21846 13.0 9.28−6 1.16
3044 21.9 1.26−4 1.06 5333 18.3 5.80−5 1.30
560 25.6 7.34−4 1.03 634 24.1 5.08−4 1.02
94 26.1 4.69−3 1.03 89 25.6 3.75−3 1.02

We clearly see the improvement of the advanced selection strategy 2. The L2-error is smaller compared
to the error of the simple (random) selection strategy. Note that the convergence rates are close to the linear
convergence rates for regularly refined simplicial meshes (cf. Remark 4.2).

4.3 Selection of Coarse Graph Edges

The definition of the set of edges in the coarse graph (cf. (3.1)) depends on the parameter η which determines
the distance of coarse graph points which will be connected. The following table compares the choices η = 2, 3.
We have used the advanced algorithm for the selection of coarse graph points.

η = 2 η = 3
�dof rel sparsity error rate �dof rel sparsity error
65538 7.0 2.58−6 − 65538 7.0 2.58−6 −
21846 13.0 9.28−6 1.16 21846 13.0 9.28−6 1.16
7186 19.0 2.53−5 0.90 5333 18.3 5.80−5 1.30
2329 19.6 8.15−5 1.04 634 24.1 5.08−4 1.02
721 21.1 3.10−4 1.11 89 25.6 3.75−3 1.02

The errors in both cases are of similar size. By taking into account the different number of nodal points it
turns out that the errors are slightly better in the case η = 2. Since also the sparsity of the matrix is slightly
better compared to η = 3, we have fixed the choice η = 2 in the sequel.

4.4 Sparsity of the System Matrix

We have performed a numerical experiment to get insight how the sparsity of the mass matrix behaves on
increasingly coarser levels. Let

M−� :=
(
(ϕ−�,x, ϕ−�,y)L2(Ω)

)
x,y∈Θ−�

.

For this experiment, we have chosen a given fine mesh which contains 262146 nodal points.

�dof rel sparsity
262146 7.0
60765 15.1
12208 22.1
2146 25.6
363 27.0
57 24.5

The numbers of the relative sparsity indicates that the average number of non-zero entries per row is about
25 and stays bounded with increasing number of coarsening steps. This is in accordance with the relative
sparsity for the mesh which contained 65538 nodal points (cf. Subsections 4.2, 4.3). For related situations,
the sparsity of coarsened system matrices has been investigated in [11, Note 3.7.1, Exercise 3.9.6] and [12,
Theorem 6].
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5 Application to a Hypersingular Integral Equation

Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary Γ. The normal field n exists almost everywhere
on Γ and is oriented toward the unbounded exterior domain. Consider the interior Neumann problem: Find
u such that

∆u = 0 in Ω,
∂u/∂n = gN on Γ,

|u (x)| ≤ C ‖x‖−1 as ‖x‖ → ∞.

The unknown Dirichlet data uD := u|Γ satisfy the boundary integral equation

WuD =
(

1
2
I − K ′

)
gN , (5.1)

where W is the hypersingular integral operator

Wϕ (x) = −f.p.

∫
Γ

ϕ (y)
∂2

∂ny∂nx

1
4π ‖x − y‖dsy for x ∈ Γ a.e.

Here, ∂/∂ny (resp. ∂/∂nx) denotes the normal derivative with respect to y (resp. x). This integral exists
only in the sense of a finite part integral which we abbreviate by f.p.

∫
. The operator K ′ is the adjoint of the

classical double layer operator and given by

K ′ϕ (x) =
∂

∂nx

∫
Γ

ϕ (y)
4π ‖x − y‖dsy for x ∈ Γ a.e.

It is well known that the variational form of equation (5.1) is well posed in the quotient space H1/2 (Γ) /R.

5.1 Convergence of Galerkin Boundary Element Solution

For the discretisation we employ the Galerkin Boundary Element Method by using the composite boundary
element spaces (S�)

0
�=−L. In order to avoid the discretisation of the quotient space we introduce a Lagrange

multiplier λ and consider the system of linear equation(
W−� 1−�

1ᵀ
−� 0

) (
u−�

λ

)
=

( (
1
2M−� − K′

−�

)
gN

µ

)
(5.2)

for some µ ∈ R. The matrices W−�, M−�, K′
−� are the basis representations of the operators W , I, K ′ in

their variational form with respect to the basis of S−�. The components of the vector 1−� have the constant
value 1. We have chosen µ = 0. The vector gN is the basis representation of the L2-orthogonal projection of
gN onto S−�.

We have considered Γ to be the surface of the unit sphere in R
3 and chosen gN such that

uD (x) =
1

‖x − x0‖
is the exact solution of (5.1).

We have chosen x0 = (1.1, 1.1, 0)ᵀ as an example where uD has a near-singularity at (1, 1, 0)ᵀ. The other
choice, x0 = (2, 2, 0)ᵀ, corresponds to a very regular solution.

In the following tables, we have depicted the discrete energy error

eH1/2 (−�) :=
∥∥uint

−� − ũ−�

∥∥
H1/2 ,

where uint
−� is the nodal interpolant of the exact solution uD. The function ũ−� is given by ũ−� = u−� + c,

where u−� =
∑

x∈Θ−�
(u−�)x ϕ−�,x is the composite boundary element function corresponding to the solution

vector u−� in (5.2) and the constant c is characterised by∥∥uint
−� − u−� − c

∥∥
L2 = min

µ∈R

∥∥uint
−� − u−� − µ

∥∥
L2 .

The corresponding L2-error is given by

eL2 (−�) :=
∥∥uint

−� − ũ−�

∥∥
L2 .
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The control parameters for our algorithm are chosen as explained in Section 4.
The following table contains the errors on different coarsening levels.

�dof x0 = (1.1, 1.1, 0)ᵀ x0 = (2, 2, 0)ᵀ

eL2 rateL2 eH1/2 rateH1/2 eL2 rateL2 eH1/2 rateH1/2

16386 1.79−5 2.29−5 4.88−6 4.97−6

5462 2.29−5 0.22 6.81−5 0.99 4.97−6 0.016 1.09−5 0.96
1805 5.84−5 0.84 1.40−4 0.65 8.55−6 0.49 2.54−5 0.79
565 1.82−3 2.96 5.01−3 3.08 1.21−4 2.28 3.33−4 2.21
179 3.15−3 0.48 6.00−3 0.16 2.95−4 0.78 5.71−4 0.47
53 2.27−2 1.62 3.84−2 1.53 1.53−3 1.35 2.25−3 1.13
19 4.52−2 0.67 6.30−2 0.48 5.98−3 1.32 7.97−3 1.23

In all cases, the errors increase with increasing coarsening levels in a reasonable way. As expected the L2-errors
are smaller than the H1/2-errors and the errors for the problem with the nearly singular solution are larger
compared to the very regular solution. Note that small values of “ rate(�)” indicate that the error is not
increased due to the coarsening process and, hence, small values are better than larger values.

The following figures illustrate the convergence behaviour with respect to the L2 and H1/2/R norm. The
left figure corresponds to the less regular case x0 = (1.1, 1.1, 0)ᵀ and the right figure to the very regular case
x0 = (2, 2, 0)ᵀ. In the case of linear boundary elements on regularly refined simplicial meshes, we expect a
convergence rate of order 2 for the L2-norm and a convergence rate of 3/2 for the H1/2/R norm. Hence, we
have included in the figures the functions h2 and h3/2 for a comparison.
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Finally, we compare the convergence rates for our graph coarsening algorithm with the convergence rates
on a standard hierarchy of regularly refined simplicial boundary element meshes for the less regular case of
x0 = (1.1, 1.1, 0)ᵀ. We see that the convergence behaviour is quite comparable with the convergence rates
obtained by regularly refined meshes.
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6 Convergence Rate of a Multigrid Method for the Hypersingular

Equation

The sequence of coarsened boundary element spaces can be used straightforwardly for solving the Galerkin
discretisation on the finest mesh via multigrid methods. We assume here that the reader is familiar with
multigrid methods and refer for a general reference, e.g., to [11]. We have chosen the ingredients for the
multigrid algorithm as follows:

1. Smoother: Damped Richardson iteration.

2. Prolongation: Representation of trivial injection ι−�,−�−1 : S−�−1 ↪→ S−� with respect to the basis
(ϕ−�−1,x)x∈Θ−�−1

. The matrix representation of ι−�,−�−1 is the (sparse) prolongation matrix p−�,−�−1

as in (3.8).

3. Coarse level system matrix: The coarse level system matrix is obtained by means of the Galerkin
product via the recursion

W−�−1 := pᵀ
−�,−�−1W−� p−�−�−1.

4. Choice of multigrid cycle: V- and W-cycle multigrid. We have always chosen the same number of
pre- and post-smoothing steps. (In the tables below, this number is denoted by “� smooth. steps”.)

5. Stopping criterion: The discrete L2-norm of the residual is smaller than 10−8. (The residual after
the i-th iteration is denoted by Ri.)

We have applied the multigrid method to the discretisation of the hypersingular integral equation on
different surfaces.

Example 6.1 In this case, the hypersingular boundary integral equation is considered on the surface of the
three-dimensional unit sphere. We have chosen the V-cycle multigrid method with one pre- and one post-
smoothing step.

The following table shows the small (about 0.15) and stable convergence rates which, practically, do not
deteriorate as the number of coarsening levels increases.

N = 258, 4 levels N = 1026, 5 levels N = 16386, 7 levels
� it. ‖Ri‖ ‖Ri+1‖

‖Ri‖ ‖Ri‖ ‖Ri+1‖
‖Ri‖ ‖Ri‖ ‖Ri+1‖

‖Ri‖
0 1.870−1 9.696−2 2.452−2

1 4.657−3 0.02 1.945−3 0.02 3.032−4 0.01
2 4.248−4 0.09 2.089−4 0.11 1.995−5 0.07
3 4.570−5 0.11 2.847−5 0.14 3.020−6 0.15
4 5.438−6 0.12 4.040−6 0.14 4.868−7 0.16
5 6.928−7 0.13 5.889−7 0.15 7.992−8 0.16
6 9.207−8 0.13 8.801−8 0.15 1.326−8 0.17
7 1.254−8 0.14 1.350−8 0.15 2.218−9 0.17
8 1.732−9 0.14 2.125−9 0.16

Figure 2: Crankshaft
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Example 6.2 In this case, the hypersingular boundary integral equation is solved on the surface of the
crankshaft which is depicted in Figure2 2. The finest mesh for the multigrid method contains 14146 nodes.
The coarsening is applied four times leading to graphs with 3347, 693, 130, and 19 nodes. We have tested
different numbers of pre- and post-smoothing steps and the V- and the W-cycle multigrid method.

# smooth. steps 1 # smooth. steps 3 # smooth. steps 5
# it ‖Ri‖ ‖Ri+1‖

‖Ri‖ ‖Ri‖ ‖Ri+1‖
‖Ri‖ ‖Ri‖ ‖Ri+1‖

‖Ri‖
1 1.170279e-03 0.18 3.871218e-04 0.06 2.114952e-04 0.03
5 6.158399e-05 0.53 5.911402e-06 0.40 2.014413e-06 0.32

10 4.682441e-06 0.63 6.136114e-08 0.41 6.824922e-09 0.32
13 1.269176e-06 0.66 4.103323e-09 0.41
15 5.552864e-07 0.66
26 7.753820e-09 0.69

Table 1: Multigrid on the crankshaft: V-cycle.

# smooth. steps 1 # smooth. steps 2 # smooth. steps 3
# it ‖Ri‖ ‖Ri+1‖

‖Ri‖ ‖Ri‖ ‖Ri+1‖
‖Ri‖ ‖Ri‖ ‖Ri+1‖

‖Ri‖
1 2.201703e-04 0.03 1.480443e-04 0.02 1.130168e-04 0.02
5 6.456771e-06 0.50 7.205130e-07 0.33 9.140126e-08 0.21
7 1.867704e-06 0.55 8.619274e-08 0.35 4.683665e-09 0.23

10 3.437266e-07 0.57 4.297848e-09 0.38
17 9.115666e-09 0.60

Table 2: Multigrid on the crankshaft: W-cycle.

We see that the convergence rates are worse for complicated geometries but, still, bounded properly away
from 1. Based on these results, we recommend to use three pre- and post-smoothing steps (or an advanced
smoothing iteration) within a V -cycle multigrid method.

Example 6.3 As an example of a very complicated geometry, we considered to a brick of size 10×10×1 with
100 holes as depicted in Figure 3.

Figure 3: Brick with 100 holes

The finest mesh contains 21430 nodes and the coarsening algorithm has been applied four times, leading
to graphs with 5129, 997, 151, and 13 nodes. Again, we have tested the multigrid algorithm with different
numbers of pre- and post-smoothing steps and the V - and W -cycle multigrid method. The results are depicted
in the Tables 3 and 4.

This example shows that for this very complicated geometry the reduction of the highly oscillatory parts of
the iteration error require an increased number of smoothing steps. However, the convergence rates are still

2The figures of the crankshaft and the brick with many holes (Example 6.3) have been generated by the program NETGEN
by J. Schöberl (see [23]).
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# smooth.steps=5 # smooth.steps=8 # smooth.steps=11
# it ‖Ri‖ ‖Ri+1‖

‖Ri‖ ‖Ri‖ ‖Ri+1‖
‖Ri‖ ‖Ri‖ ‖Ri+1‖

‖Ri‖
5 2.469671e-03 0.84 1.584542e-03 0.78 1.076976e-03 0.74

10 1.148291e-03 0.87 5.582200e-04 0.82 2.949363e-04 0.78
20 3.298951e-04 0.90 9.512725e-05 0.84 2.938303e-05 0.80
50 1.288089e-05 0.90 6.722382e-07 0.85 3.711182e-08 0.80
56 6.867950e-06 0.90 2.522530e-07 0.85 9.821014e-09 0.80
76 8.538130e-07 0.90 9.649817e-09 0.85

100 7.062925e-08 0.90

Table 3: Multigrid on the surface of the perforated brick: V-cycle

# smooth. steps 1 # smooth. steps 4 # smooth. steps 7
# it ‖Ri‖ ‖Ri+1‖

‖Ri‖ ‖Ri‖ ‖Ri+1‖
‖Ri‖ ‖Ri‖ ‖Ri+1‖

‖Ri‖
5 4.889144e-03 0.85 1.540067e-03 0.78 7.022789e-04 0.70

10 2.883596e-03 0.92 5.187998e-04 0.82 1.361742e-04 0.73
20 1.479629e-03 0.94 8.037822e-05 0.84 7.014665e-06 0.75
43 4.174018e-04 0.95 1.578873e-06 0.85 9.459614e-09 0.75
50 2.937840e-04 0.95 4.884850e-07 0.85
74 9.398491e-05 0.95 8.928938e-09 0.84

100 2.904106e-05 0.96

Table 4: Multigrid on the surface of the perforated brick: W-cycle

bounded away from one. For example, 50 V-cycle iterations are necessary (with eight pre- and post-smoothing
steps) to reduce the discrete L2-norm of the residual below 10−6.
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