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Abstract

An approach is presented for the efficient manipulation of matrices arising from the Galerkin
discretisation of boundary element operators for the Helmholtz equation. Using H-matrix and
H2-matrix techniques, different methods are proposed for the low frequency and high frequency
regimes. In both cases the methods are numerically stable and are proved to have almost linear
complexity for the storage and the cost of the matrix-vector multiplication. Problems that have
aspects of both regimes pose no difficulty. The efficiency of the methods is demonstrated by
numerical examples.

1 Introduction

Many physical problems (e.g. acoustics, electromagnetic scattering) require the solution of the
Helmholtz equation; see [20]. We investigate the numerical solution of the Helmholtz equation by
the boundary element method (BEM). In such methods the boundary is subdivided into n elements
and the problem is reduced to the solution of an n × n linear system of equations. The system of
linear equations arises from the discretisation of integral operators such as

(Au)(x) =
∫

Γ
s(x, y)u(y)dy, (1)

where Γ is the boundary and s(x, y) is the fundamental solution or a suitable directional derivative
of the fundamental solution. The linear system resulting from BEM discretisation is dense making
direct methods for the solution of the system prohibitively expensive. To reduce the complexity
from O(n3) for the direct methods, or from O(n2) for iterative methods, the so-called fast methods
can be used (e.g. H-matrices, panel clustering, FMM, wavelet methods [7, 13, 14, 17]). In this paper
we describe how a combination of H-matrix and H2-matrix techniques can be used to compress
matrices arising from the discretisation of integral operators for low or high frequency Helmholtz
equation. As for other fast methods (panel clustering and FMM) we make use of a separable
expansion of the kernel function

s(x, y) ≈
K∑

i,j=0

s̃i,jui(x)vj(y). (2)

For the high frequency regime in two dimensions the number of elements n is proportional to
the wave number κ, and in three dimensions n is proportional to κ2. If h is a parameter controlling
the mesh size, this corresponds to κh = const. A further complication is that for a fixed accuracy
we can expect the length of expansion K in (2) also to be proportional to κ and hence strongly
dependent on n. For a low frequency, κ is a constant with respect to n and hence the length of
the expansion is constant for a fixed accuracy. The fast multipole method (FMM) has previously
been used to accelerate the solution of the high frequency Helmholtz problem. Initially one or two
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level versions were recommended which gave O(n3/2) or O(n4/3) algorithms [22, 23], but recently
a number of multilevel implementations were reported on, both in 2D and 3D, with complexity
O(n loga n) for some small constant a [1, 8]. Most of these methods suffer from numerical instability
at low frequencies. The approach presented in this paper is closest to the approach for the high
frequency regime of Amini and Profit [1]. However, we give new error bounds and consider the case
of the low frequency regime and problems with aspects of both regimes.

Our method divides the matrices arising from discretisation into admissible parts which are
then approximated by an H2-matrix or a low rank matrix. For low frequency all the parts are
approximated by low rank matrices, giving rise to an H-matrix approximation, whereas for high
frequency a combination of an H-matrix and an H2-matrix is used. We will use Graf’s addition
theorem for Bessel functions and the integral representation of Bessel functions [24] to construct
the H2-matrices; this is the standard approach in fast multipole methods. For the construction
of low rank matrices we use ACA, see [2], though any other method designed for asymptotically
smooth functions is applicable. Only a brief description of H- and H2-matrix methods will be
given, for more detail see [4, 12, 15]. The resulting algorithm has a complexity of O(n log2 n). Our
method is numerically stable at all frequencies in a very natural way making the implementation
relatively simple and allowing small scale details of the boundary in the high frequency regime.
We allow for interaction between clusters of different sizes, which is usually not the case in the
fast multipole methods for the Helmholtz equation. The combination of H2-matrices with low-
rank matrices except from providing stability also allows for a greater control of memory and time
requirements of the method. There is a range of frequencies for which both the H-matrix and the
H2-matrix technique are applicable. The optimal choice depends on the memory resources and on
the number of times the Galerkin matrix is to be applied to a vector. The efficiency of the method
is demonstrated by numerical examples. One of the advantages of hierarchical matrix methods is
the possibility of further algebraic recompression [3, 11]. These are directly applicable and effective
in the low frequency regime, however the standard recompressions for H2-matrices in the case of
the Helmholtz equation are too expensive in the high frequency regime. One of interesting further
improvements would be the extension of recompression techniques to the high frequency regime.

1.1 Statement of the problem

Let Ω ∈ R
d, d = 2, 3, be a bounded domain with boundary Γ and exterior Ω+. We are interested

in the numerical solution of the exterior Helmholtz equation,

∆u + κ2u = 0, x ∈ Ω+, (3)

where the wave number κ is a positive real parameter. The boundary conditions can be a combi-
nation of Dirichlet and Neumann data:

αu(x) + β
∂u

∂n
(x) = f(x), x ∈ Γ. (4)

To make the solution unique, a condition at infinity is necessary:∣∣∣∣∂u

∂r
− iκu

∣∣∣∣ ≤ c

r2
at ∞. (5)

The unique fundamental solution of the Helmholtz elliptic operator, respecting the condition at
infinity, in 2D is the Hankel function of the first kind of order 0,

Gκ(x, y) = H0(κ‖x − y‖). (6)

In 3D the fundamental solution is the zero order spherical Hankel function of the first kind,

Gκ(x, y) =
eiκ‖x−y‖

‖x − y‖ . (7)
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To solve this problem numerically using BEM, the boundary elliptic partial differential equation is
formulated as a boundary integral equation. To discretise the integral operators which are of the
form (1), where the singularity function s(x, y) is the fundamental solution or a suitable derivative,
Galerkin’s method can be applied. If we use {φ1, . . . , φn} as both the test and trial bases then the
Galerkin matrix has the entries

Aij =
∫

Γ

∫
Γ

s(x, y)φi(x)φj(y)dxdy. (8)

For asymptotically smooth singularity functions s(·, ·), H-matrix techniques have already been
successfully applied [16]. A function s(·, ·) is said to be asymptotically smooth if for multi-indices
α, β ∈ N

d

|∂α
x ∂β

y s(x, y)| ≤ C(α + β)!c|α|+|β|
0 ‖x − y‖−|α|−|β|−σ (9)

holds for constants C, c0, σ ∈ R>0, where σ is the degree of the singularity of s. For the Helmholtz
kernel Gκ in two and three dimensions the inequality

|∂α
x ∂β

y Gκ(x, y)| ≤ C(α + β)!c|α|+|β|
0 eκ‖x−y‖‖x − y‖−|α|−|β|−σ (10)

holds for constants C, c0, σ ∈ R>0 depending on the dimension. Since all integrations in (8) are
over a compact set ∂Ω, Gκ restricted to this domain is asymptotically smooth, however with a
constant which increases exponentially with κ. This shows that if κdiam(∂Ω) is a small constant,
we are in the low frequency regime and all the usual H-matrix techniques can be applied. However,
in the high frequency regime where κh is a constant, the above bound increases exponentially as we
demand more accuracy, i.e., as the mesh parameter h is decreased. To the latter problem H-matrix
techniques cannot be applied without the more involved structure of H2-matrices.

We proceed by describing some concepts used to construct both H- and H2-matrices.

2 H- and H2-matrices: The basics

2.1 Cluster tree

Let the boundary Γ be subdivided into n disjoint panels πj, j ∈ I := {1, . . . , n}. We consider
piecewise constant basis functions φj , such that supp φj = πj, j ∈ I. Let TI be a tree whose nodes
are clusters, i.e., subsets of the index set I. The root of the tree is the cluster containing all the
indices τroot = I. TI is a cluster tree if the following conditions hold:

• If τ ∈ TI has sons, then the sons form a partition of the father, i.e., τ =
⋃̇{τ ′ : τ ′ ∈ sons(τ)}.

• For every τ ∈ TI , #sons(τ) = 2, and #τ > 0.

• There exists a constant Cleaf such that, for each leaf τ , #τ ≤ Cleaf.

We say that the root of the tree is at level 0, and that if a parent is at level l then its children
are at level l + 1. We introduce the notation

Ωτ := ∪i∈τπi ⊆ Γ

for the subset of Γ corresponding to a cluster τ ∈ TI . It is sometimes useful to consider the set of
clusters which are at the same level of the cluster tree:

T
(l)
I := {τ ∈ TI : τ at level l}.

A couple of simple properties of this tree will be useful for later analysis:

• the number of clusters is bounded by 2n − 1,

• at level l there are at most 2l clusters.
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2.2 Admissibility condition

Since the fundamental solution is singular on the diagonal, we cannot expect that a separable
expansion as in (2) can be valid in all of the domain. So we define admissible blocks for which we
can expect that such an expansion can be found.

For each τ ∈ TI let a centre cτ ∈ R
d and a radius rτ > 0 be given such that Ωτ ⊆ D(cτ , rτ ) =

{y ∈ R
d | ‖y − cτ‖2 < rτ}. Then we say that a block b = τ × σ ∈ TI × TI is admissible if for some

η < 1
rτ + rσ ≤ η‖cτ − cσ‖2. (11)

Equivalently we say that the clusters τ and σ are well-separated.

2.3 Block cluster tree

To easily access such blocks we create a block cluster tree TI×I . The root of the tree is the node
I × I. Then for b = τ × σ ∈ TI×I we proceed as follows:

• If b is admissible add it to the set of admissible leaves L+ of TI×I .

• If τ and σ are leaves of TI , add b to the set of inadmissible leaves L−.

• Otherwise, repeat the procedure for all pairs formed by the sons of τ and σ ( if one of the
clusters has no sons use the cluster instead), which are then the sons of b in the tree TI×I .

The levels of the block cluster tree can be defined as in the case of the cluster tree.

2.4 Low rank approximation

Let b = τ × σ ∈ L+ be an admissible block at level l. Define a matrix Aτ,σ corresponding to this
block by

(Aτ,σ)kj :=

{∫
Ωτ

∫
Ωσ

s(x, y)φk(x)φj(y)dxdy, if k ∈ τ and j ∈ σ

0, otherwise.

We consider next, how such a matrix can be approximated by a matrix of a lower rank.

2.4.1 Singular value decomposition (SVD)

If the fundamental solution s(·, ·) is an asymptotically smooth function then it can be shown that the
singular values of Aτ,σ decay exponentially. Let Aτ,σ = UΣV T be a singular value decomposition
of Aτ,σ with singular values ordered so that Σ11 ≥ Σ22 · · · ≥ Σnn ≥ 0. Then for any ε > 0
there exists k ≥ 1 such that Σk+1,k+1 ≤ ε, with Σn+1,n+1 := 0. For asymptotically smooth
functions k = O(logd−1(1/ε)). As an approximation we can use the rank k reduced singular value
decomposition

Aτ,σ ≈ UkΣkV
T
k ,

where Σk := diag(Σ11,Σ22, . . . ,Σkk), and Uk and Vk consist of the first k columns of matrices U
and V respectively. The error of the approximation in the spectral norm is bounded by ε:

‖Aτ,σ − UkΣkV
T
k ‖2 ≤ ε.

2.4.2 Adaptive-cross approximation to the SVD

Adaptive cross approximation (ACA) is a rank revealing method. It has been shown in [2] that
under suitable conditions for matrices arising from the Galerkin discretisation of the single layer
potential for asymptotically smooth kernels an approximation of the reduced SVD can be obtained
by ACA in O(nk) time. A hybrid method combining ACA and interpolation is the so-called hybrid
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cross approximation (HCA), which can be used for a larger class of operators of asymptotically
smooth kernels; see [5].

We do not give details of the ACA algorithm. The reader can think of it as a function that
given an accuracy ε > 0 and the matrix Aτ,σ corresponding to an admissible block b = τ ×σ ∈ L+,
in time O(nk) returns two rank k matrices Ak, Bk ∈ C

n×k such that

‖Aτ,σ − AkB
T
k ‖2 < ε.

Note that since ACA is not an exact method, it does not produce the optimal rank k. However, in
practice it produces results close to the optimum. The optimum can be reached by SVD, but the
cost of computing the exact SVD is much higher.

2.4.3 Separable expansion

Let us assume that for all x ∈ Ωτ and all y ∈ Ωσ a separable expansion of the fundamental solution
is valid, the expansion being of the following form

s(x, y) ≈
Kτ∑
i=1

Kσ∑
j=1

s̃i,j(cτ , cσ)ui(x, cτ )vj(y, cσ),

where cτ and cσ are as before the centres of the clusters Ωτ and Ωσ. The length of expansion Kτ

is defined for each cluster and as we see later depends on the size of the cluster.
We can now approximate the matrix Aτ,σ corresponding to the block τ ×σ by a matrix of rank

min{Kτ ,Kσ} defined by

(Ãτ,σ)kl :=

{∑Kτ
i=1

∑Kσ
j=1 s̃i,j(cτ , cσ)

∫
Ωτ

ui(x, cτ )φk(x)dx
∫
Ωσ

vj(y, cσ)φl(y)dy, if k ∈ τ and l ∈ σ

0, otherwise.

Hence we have that

Ãτ,σ = UτSτ,σV T
σ , Uτ ∈ C

n×Kτ , Vσ ∈ C
n×Kσ , Sτ,σ ∈ C

Kτ×Kσ ,

where

(Uτ )ki =

{∫
Ωτ

ui(x, cτ )φk(x)dx, if k ∈ τ and i = 1, . . . Kτ

0, if k /∈ τ,

(Vσ)lj =

{∫
Ωσ

vj(y, cσ)φl(y)dy, if l ∈ σ and j = 1, . . . Kσ

0, if l /∈ σ.

We call Uτ the row cluster basis for cluster τ and Vσ the column cluster basis for cluster σ. The
possibly dense coefficient matrix Sτ,σ is defined by Sij = s̃i,j(cτ , cσ).

Finally we define the sparse matrix corresponding to the inadmissible blocks by

(A�)kl :=

{
Akl, if ∃b = τ × σ ∈ L− such that k ∈ τ and l ∈ σ,

0 otherwise.

We can now define an approximation to the Galerkin matrix A by

Ã := A� +
∑

τ×σ∈L+

Ãτ,σ

= A� +
∑

τ×σ∈L+

UτSτ,σV T
σ . (12)
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2.5 H-matrices

Definition 2.1 Let TI×I be a block cluster tree as defined before and let k : L+ → N be a rank
distribution. We define the set of H-matrices as

H (TI×I , k(·)) := {M ∈ C
n×n| rank(Mb) ≤ k(b) for all admissible leaves b = τ × σ ∈ L+}.

If k(b) ≤ kmax for all b ∈ L+, it can be shown that the cost of storage and the cost of matrix-
vector multiplication of an H-matrix is O(nkmaxp), where p > 1 is the depth of the block cluster
tree TI×I .

Approximations to the Galerkin matrix A from this set can be, for example, obtained by
applying ACA to each admissible block of the matrix A. In the low frequency case, we expect
kmax = O(logd−1(1/ε)) for a fixed accuracy ε > 0, giving almost linear complexity for both the
storage and the cost of matrix-vector multiplication. However, in the high frequency regime, we
expect kmax = O(n) which gives unacceptable quadratic complexity for the storage and matrix
arithmetics. Hence for high frequencies another approach is required.

2.6 H2-matrices

For the construction of low rank approximations of admissible blocks we will use the separable
expansion of the kernel; see Section 2.4.3. To optimise the cost of the matrix multiplication by a
vector we require a further condition on the matrices Uτ and Vσ described in Section 2.4.3.

2.6.1 Nested bases

Let τ and σ be parent nodes in the cluster tree TI such that b = τ × σ ∈ L+ and let τ ′ and τ ′′ be
the children of τ and σ′ and σ′′ the children of σ. Then assume that

there exist TU
τ ′,τ , TU

τ ′′,τ , T V
σ′,σ, T V

σ′′,σ,

such that

Uτ =

(
Uτ ′TU

τ ′,τ

Uτ ′′TU
τ ′′,τ

)
∈ C

n×Kτ and Vσ =

(
Vσ′T V

σ′,σ

Vσ′′T V
σ′′,σ.

)
∈ C

n×Kσ . (13)

The matrices T V
τ ′,τ and TU

τ ′,τ are called transfer matrices.
With this final condition the description of the H2-matrix representation of the discretised

integral operator is finished. An approximation of the form (12) with fixed bases Uτ , Vσ, is called
a uniform H-matrix. If also the cluster bases are nested, it is called an H2-matrix. In the next
subsection we show how such a format can be used for fast approximate multiplication of the
Galerkin matrix by an arbitrary vector.

2.6.2 Fast matrix-vector multiplication

For an arbitrary vector u ∈ C
n we consider the computation of an approximation v to Au. The

straightforward method would be to apply the approximation Ã directly. However, the properties
of the H2-matrix representation can be used to construct the approximation more efficiently as
described by the following four step procedure:

1. Upward pass from level p to level 0 of the tree TI

• for all leaves σ ∈ TI , ûσ := V T
σ u

• for all parents σ on the current level, ûσ := (T V
σ′,σ)Tûσ′ + (T V

σ′′,σ)Tûσ′′

2. Far field interaction

• for all τ ∈ TI , v̂τ :=
∑

τ×σ∈L+

Sτ,σûσ, where Sτ,σ is the coefficient matrix; see Section 2.4.3.
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3. Downward pass from level 0 to level p of tree TI

• initialise the output vector v to zero

• for all parents τ on the current level, v̂τ ′ := v̂τ ′ + TU
τ ′,τ v̂τ and v̂τ ′′ := v̂τ ′′ + TU

τ ′′,τ v̂τ

• for every leaf τ ∈ TI , v := v + Uτ v̂τ

4. Near field interaction

• v := v + A�u.

It is not immediately obvious how efficient is the above method of matrix-vector multiplication in
the case of the high frequency Helmholtz equation. The first step of the algorithm (the computation
of uσ for all leaves σ) has the cost

∑
τ∈T

(p)
I

#τKτ ≤ n max
τ∈T

(p)
I

Kτ . Applying a general interaction

matrix Sτ,σ to a vector costs O(KτKσ). Hence we need to make sure that the expansion lengths
are small (constant) at the lowest level p and that either they are also small at higher levels or that
the structure of the interaction matrices (and of the transform matrices TU and T V ) is particularly
simple, e.g. Toeplitz or diagonal. Hence some constraints on the H2-matrix representation are
necessary. These constraints influence the choice of the separable expansion. Two possible choices
for the two-dimensional problem are described in the next section.

3 The two-dimensional problem

3.1 The low frequency regime: H-matrix

An H-matrix approximation to the Galerkin matrix A can be obtained by the following procedure:

• Choose ε > 0.

• Construct the cluster tree and the block cluster tree.

• For each admissible leaf b = τ × σ ∈ L+ find the low rank approximation Mτ,σ to the matrix
Aτ,σ using ACA with the prescribed accuracy ε.

• For each inadmissible leaf b = τ × σ ∈ L− set Mτ,σ := Aτ,σ.

The method for constructing the cluster and block cluster trees is not crucial in this procedure.

3.1.1 Complexity estimates

Suppose that the H-matrix constructed by the above procedure is in the set H(TI×I , k(·)) and
define kmax := max{k(b) : b ∈ L+}.

To estimate the complexity of the storage and the cost of matrix-vector multiplication, as for
sparse matrices, we quantify a sparsity property of the block cluster tree TI×I .

Definition 3.1 Define the sparsity constant of TI×I by

Csp := max
{

max
τ∈TI

#{σ ∈ TI | τ × σ ∈ TI×I}, max
σ∈TI

#{τ ∈ TI | τ × σ ∈ TI×I}
}

.

We assume that Csp is indeed a constant independent of n, as proved in [12] for standard
situations. With this assumption we can prove almost linear complexity estimates.

Lemma 3.1 Let M ∈ H(TI×I , k(·)) and kmax := max{k(b) : b ∈ L+} and let p be the depth of
TI×I. Then

Nst ≤ 2Csp(p + 1)max{kmax, Cleaf}n and NH · v ≤ 2Nst,

where Nst is the storage requirement and NH · v the complexity of the matrix-vector multiplication.
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Figure 1: We compute low rank approximations AkBT
k to the matrix Aτ,σ, where τ×σ ∈ L+, by ACA and by

SVD. As we increase κ we plot the minimum rank necessary for the two methods such that ‖Aτ,σ−AkBT
k ‖2 <

ε for some fixed ε > 0.

We recall that Cleaf is an upper bound for the number of indices in a leaf cluster; see Section 2.1.
The proof of the lemma can be found in [12].

Assuming that the depth of the tree is O(log n) we obtain almost linear complexity O(kmaxn log n).
The difficulty with the Helmholtz problem is that kmax can be large. We shall give extensive nu-
merical comparisons in the section on numerical results. Here we discuss the approximation of the
matrix corresponding to a single admissible block.

Let b = τ × σ be an admissible block. Let the clusters Ωτ and Ωσ have the same diameter r.
We fix an accuracy ε = 10−5 and numerically investigate the rank of the approximation produced
by ACA as κr is increased. We compare this with the optimal rank obtained by SVD. The results
are displayed in Figure 1. As expected the increase in the necessary rank is linear with respect to
the increase in rκ. This highlights the fact that H-matrices cannot be used in the high frequency
regime. Note also that the rank obtained by ACA is quite close to the optimal rank, even for large
rκ. Hence for a low value of κdiam(Ω) the method is efficient.

3.1.2 Stability and recompression

One fact we would like to note here, is that the construction of H-matrices using ACA and the
subsequent matrix-vector multiplication are numerically stable regardless of accuracy or frequency.
This is unlike most of the fast multipole implementations for the Helmholtz equation which be-
come unstable at low frequencies. Depending on the multipole expansion, various techniques, like
regularisation, have been applied to combat this instability; see [25]. The procedure described in
this section is a simple way of producing an efficient almost linear and completely stable algorithm
for the storage and arithmetics of Galerkin matrices for the low frequency problem. Note also
that ACA is only one way of constructing the H-matrix, arguably the simplest. Other possibili-
ties include the already mentioned HCA and interpolation. Further algebraic compressions, which
sometimes crucially decrease the computational times, can also be applied to the once constructed
H-matrix; see [11]. These recompressions can compensate for a poor selection of clusters and block
cluster trees and also for the difference between the optimal SVD and the approximative ACA.

3.2 The high frequency regime: H2-matrix

In this section we describe two ways of obtaining an H2-matrix representation of the Galerkin matrix
in almost linear time allowing for almost linear complexity for the matrix-vector multiplication.
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3.2.1 Separable expansions

For the analysis in this section we will need a result due to Graf [24]. For ease of notation, for a
vector x ∈ R

2 we denote its polar coordinates by (ρx, θx). In the following, Jn(·) denotes the Bessel
function of the first kind of order n and Hn(·) the Hankel function of the first kind of order n.

Theorem 3.1 Let x, y ∈ R
2 and let z = x − y. Then

Jn(ρz)e±in(θz−θx) =
∞∑

m=−∞
Jn+m(ρx)Jm(ρy)e±im(θx−θy).

If ρx > ρy, the following identity holds:

H0(ρz) =
∞∑

m=−∞
Hm(ρx)Jm(ρy)e±im(θx−θy).

Let us now consider the situation depicted here:

cτ x 

cσ 
y 

We will use the following notation in this section:

x − cτ = ρτ
x(cos θτ

x, sin θτ
x)

y − cσ = ρσ
y (cos θσ

y , sin θσ
y ) (14)

cτ − cσ = ρτ×σ(cos θτ×σ, sin θτ×σ).

Also let z := (y − cσ) − (x − cτ ) ∈ R
2.

Point x is allowed to vary inside the cluster Ωτ and y inside the cluster Ωσ. We assume that
the clusters are well-separated meaning that there exist ρτ , ρσ > 0 and 0 < η < 1 such that

‖x − cτ‖ ≤ ρτ , ‖y − cσ‖ ≤ ρσ, and ρτ + ρσ ≤ ηρτ×σ . (15)

In this situation the following expansion is readily obtained from the result of Graf:

H0(κ‖y − x‖) =
∞∑

m=−∞
Hm(κρτ×σ)eimθτ×σ

Jm(κρz)e−imθu

=
∞∑

m=−∞

∞∑
l=−∞

uk(x,cτ )︷ ︸︸ ︷
Jl+m(κρτ

x)e−i(l+m)θτ
x

s̃k,l(cτ ,cσ)︷ ︸︸ ︷
Hm(κρτ×σ)eimθτ×σ

vl(y,cσ)︷ ︸︸ ︷
Jl(κρσ

y )eilθσ
y . (16)

Truncating this expansion gives a way of constructing finite approximations necessary for the H2-
matrix format. To get an estimate of the error due to the truncation, we give bounds for the Bessel
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and Hankel functions. It is helpful to recall that Bessel functions are Fourier coefficients of plane
waves:

Jn(r) =
1
2π

∫ 2π

0
eir sin θe−inθdθ, n = 0, 1, . . . . (17)

Note also that J−n = (−1)nJn. The relationship between Bessel functions and plane waves will be
of crucial importance for all the results in this section. For this reason, we also give a bound for
the error in the approximation of Bessel functions by a sum of plane waves.

Lemma 3.2 Let rmax, r, ρ > 0 and n ∈ Z be such that r ≤ rmax and ρ < |n|. Then

|Jn(r)| ≤ ermax sinha−a|n|, for any a > 0, (18a)

|Hn(ρ)| ≤
√

2 +
2
π

e−ρ sinh δ+δ(|n|+1), δ = arcosh ((|n| + 1)/ρ). (18b)

Also,∣∣∣∣∣Jn(r) − 1
K

K∑
l=1

eir sin( 2πl
K

)e−
2πiln

K

∣∣∣∣∣ ≤ 2
ermax sinha−(K−n)a

1 − e−Kσ
, for any K ∈ N and a > 0. (19)

Proof: Since |Jn(r)| = |J−n(r)| and |Hn(ρ)| = |H−n(ρ)|, without loss of generality we can assume
that n ≥ 0.

For a fixed r, cn := Jn(r) is the nth Fourier coefficient of the complex analytic function f(z) :=
eir sin z. For any a > 0, f is analytic in the horizontal strip |Im z| < a and hence g(w) := f(1

i log w)
is analytic in the annulus e−a < |w| < ea. The Fourier coefficients of f are just the Laurent
coefficients of g which can be bounded by Cauchy’s estimate; see [18]. This gives the inequality

|cn| ≤ max
|Im| z<a

|f(z)|e−an,

which in turn gives the inequality

|cn| ≤ er sinha−an ≤ ermax sinha−an, for any a > 0.

This finishes the proof of (18a). Note that if n > rmax, the bound ermax sinh a−an reaches its minimum
at a = arcosh (n/rmax).

To obtain the bound in (18b) we use the integral representation of Hn(·)

Hn(ρ) = Jn(ρ) +
i

π

∫ π

0
sin(ρ sin θ − nθ)dθ − i

π

∫ ∞

0
(ent + (−1)ne−nt)e−ρ sinh tdt,

which can be found in [10]. From this, we immediately have the bound

|Hn(ρ)| ≤
√

2 +
2
π

∫ ∞

0
ent−ρ sinh tdt.

Since e(n+1)t−ρ sinh t < e(n+1)δ−ρ sinh δ, for δ = arcosh((n + 1)/ρ) and any t > 0, we have that

2
π

∫ ∞

0
ent−ρ sinh tdt ≤ 2

π

∫ ∞

0
e−tdt e(n+1)δ−ρ sinh δ =

2
π

e(n+1)δ−ρ sinh δ.

With this the proof of the second inequality is finished.
The quantity that we want to bound in (19) is the remainder of the composite trapezoidal rule

for 2π-periodic functions. The periodic integrand is fn(θ) := exp(ir sin θ) exp(−inθ). Since fn(·) is
an entire function, the remainder is bounded by the expression

2 max
|Im z|<a

|fn(z)| e−Ka

1 − e−Ka
, for any a > 0;
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see [9]. The proof is finished by finding a bound for fn(·):

max
|Im z|<a

|fn(z)| ≤ ermax sinh a+na, for any a > 0.

�
The bounds in the above lemma are close to optimal and can be effectively used to obtain the

number of terms needed in the separable expansion for a particular accuracy ε > 0. Instead, for
simplicity, in the remaining results we give only the asymptotic dependence on the accuracy ε.

Lemma 3.3 Let rmax > 0 and 0 < η < 1. There exists a constant C(η) such that for any ε > 0,
r, ρ ∈ R

+, and any M ∈ N with

r ≤ rmax = ηρ, M ≥ C(η)(rmax + log
1
ε
),

we have ∞∑
n=M

|Jn(r)| < ε and
∞∑

n=M

|Hn(ρ)Jn(r)| < ε.

Also, for any K ≥ 2M

M∑
n=0

|Hn(ρ)|
∣∣∣∣∣Jn(r) − 1

K

K∑
l=1

eir sin( 2πl
K

)e−
2πiln

K

∣∣∣∣∣ < ε.

Proof: Let us first prove the second inequality above. From (18a) and (18b) it follows that

|Hn(ρ)Jn(r)| ≤
√

2|Jn(r)| + ermax sinha−an−ρ sinh δ+δ(n+1), δ = arcosh((n + 1)/ρ), and any a > 0.

With the choice a = δ′ := arsinh( ρ
rmax

sinh δ), the above expression becomes

|Hn(ρ)Jn(r)| ≤
√

2|Jn(r)| + e−n(δ′−δ)+δ .

Since ρ > rmax we have that δ′ > δ for all n. Writing out the definitions of δ′ and δ, we see that
δ′ − δ = arsinh( ρ

rmax
sinh(arcosh(n+1

ρ )))− arcosh(n+1
ρ ) is an increasing function of n for n > ρ. Let

C(η) be such that C(η)η > 1. Then (n + 1)/ρ > M/ρ ≥ C(η)rmax/ρ = C(η)η > 1 and hence
by defining B(η) = arsinh( 1

η sinh(arcosh(C(η)η))) − arcosh(C(η)η) and by applying once more the
inequality (18a) we obtain that

|Hn(ρ)Jn(r)| = O(e−B(η)n+δ).

Note also that eδ ≤ earcosh(C(η)η) ≤ 2C(η)η. Hence, by summing the geometric series, we obtain
that ∞∑

n=M

|Hn(ρ)Jn(r)| = O

(
C(η)η

e−B(η)M

1 − e−B(η)

)
,

from which the result follows.
The rest of the proof is obtained in a similar manner by applying inequalities (18a) and

(19). �
Next we give a result describing a separable expansion obtained by truncating (16).

Theorem 3.2 Let (15) hold. Using notation (14), define vectors uM1 = u(x, cτ ) ∈ C
K1, vM2 =

v(y, cσ) ∈ C
K2, and a matrix SM1,M2 = S(cτ , cσ) ∈ C

K1×K2, where K1 = 2M1+1 and K2 = 2M2+1
for some M1,M2 ∈ N, by

(uM1)j = Jj−M1−1(κρτ
x)ei(j−M1−1)θτ

x , j = 1, . . . ,K1,

(vM2)k = Jk−M2−1(κρσ
y )e−i(k−M2−1)θσ

y , k = 1, . . . ,K2,
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(SM1,M2)jk = Hk−j+M1−M2(κρx)ei(k−j+M1−M2)θx , j = 1, . . . ,K1 and k = 1, . . . ,K2.

There exists a constant C(η) > 0 such that for any ε > 0, κ > 0, and M1 ≥ C(η)(κρτ + log(1
ε ))

and M2 ≥ C(η)(κρσ + log(1
ε ))

|H0(κ‖x − y‖) − uT
M1

SM1,M2vM2 | < ε(M1 + M2)
∣∣HM1+M2(κρτ×σ)

∣∣ .
Proof: For the proof we will need three inequalities. From Lemma 3.3 it follows that there

exists a constant C1(η) > 0 such that if M1 ≥ C1(η)(κρτ + log(1
ε )) and M2 ≥ C1(η)(κρσ + log(1

ε ))
then ∑

|m|>M1

|Jm(κρτ
x)| < ε/3 and

∑
|m|>M2

|Jm(κρσ
y )| < ε/3.

Since ρz = ‖y − cσ −x + cτ‖ ≤ ρτ + ρσ < ρτ×σ we have that there exists a constant C2(η) > 0 such
that for M > C2(η)(κ(ρτ + ρσ) + log 1

ε )∑
|m|>M

|Hm(κρτ×σ)Jm(κρz)| ≤ ε/3.

Define C(η) := max{C1(η), C2(η)}. By truncating the expansion (16) we obtain the following
expression for the remainder:

H0(κ‖x − y‖) − uT
M1

SM1,M2vM2 =
∑

|m|>M1+M2

Hm(κρτ×σ)eimθτ×σ
Jm(κρz)e−imθu +

∑
|m|≤M1+M2

Hm(κρτ×σ)
∑

|l+m|>M1∨|l|>M2

Jl+m(κρτ
x)e−i(l+m)θτ

xJl(κρσ
y )eilθσ

y .

Finally, the result follows from the fact that Hm(x) is a strictly increasing function of m for fixed
x. �

The term |HM1+M2(κρτ×σ)| can get exponentially large, but as we explain later in the paper,
to avoid numerical instability, separable expansions will only be used when for the particular ε
this term is bounded. Notice that the matrix S is Toeplitz and hence can be applied to a vector
using FFT in almost linear time. Alternatively, we can re-write the expansion so that the matrix
S is diagonal with the diagonal equal to the discrete Fourier transform of the vector obtained by
combining the first row and the first column of the Toeplitz matrix. In this case the basis vectors
become the discrete Fourier transforms of the original Bessel basis vectors.

The above result shows that a separable expansion for the fundamental solution Gκ(·) = H0(·)
exists, with basis functions ul(p− cτ ) = Jl(κ‖p− cτ‖)eilθp−cτ and vj(q − cσ) = uj(q − cσ). The fact
that the Bessel functions are Fourier transforms of plane waves, see (17), can be used to derive an
alternative separable expansion, which has the advantage that the coefficient matrix is diagonal.
The simple structure of the coefficient matrix is due to the following property of plane waves:

eiρb sin(θ−θb)eiρc sin(θ−θc) = eiρb+c sin(θ−θb+c), for all b, c ∈ R
2. (20)

This is a well known property of plane waves that was originally used to prove a special case of
Graf’s theorem; see [24].

Theorem 3.3 Let (15) hold. Using notation (14), define vectors uM = u(x, cτ ), vM = v(y, cσ) ∈
C

K and a diagonal matrix SM = S(cτ , cσ) ∈ C
K×K, where K = 2M + 1 for some M ∈ N, by

(uM )j = e−iκρτ
x sin(2πj/K−θτ

x), (vM )j = eiκρσ
y sin(2πj/K−θσ

y ),

(SM )jj =
1
K

M∑
n=−M

Hn(κρτ×σ)ein(θτ×σ−2πj/K), j = 1, . . . ,K.

There exists a constant C(η) > 0 such that for any ε > 0, κ > 0 and M ≥ C(η)(κ(ρτ +ρσ)+log(1
ε ))

|H0(κ‖x − y‖) − uT
MSMvM | < ε.
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Proof: The form of the separable expansion is obtained by first applying Theorem 3.1 which gives
the expansion

H0(κ‖x − y‖) =
∞∑

m=−∞
Hm(κρτ×σ)eimθτ×σ

Jm(κρz)e−imθu .

The next step is to truncate the above expansion and apply the trapezoidal rule to the Bessel
functions and use the separability property (20) of plane waves. The proof is completed by noticing
that Lemma 3.3 is directly applicable to the remainder of the truncation and of the quadrature.
�

The above form of the separable expansion is the most commonly used diagonal form in fast
multipole methods. For a more detailed derivation see [6]. As for the diagonal expansion obtained
from the Toeplitz one, the diagonal of S can be computed by a single application of FFT.

The great advantage of the second expansion is that the coefficient matrix is diagonal. However,
the first expansion may be advantageous when the diameters of clusters τ and σ are considerably
different, since in Theorem 3.2 we can choose M1 ∝ ρτ and M2 ∝ ρσ whereas in Theorem 3.3
we have only one parameter M that has to be chosen proportionally to the sum ρτ + ρσ. Both
expansions are potentially numerically unstable since the coefficient matrix S is in neither case
bounded. As is well known, this prevents the use of the diagonal expansion at low frequency,
whereas it is possible to regularise the expansion in Bessel functions; see [25]. We will say more
about stability later in the paper.

3.2.2 Construction of Uτ , Vσ

We now define the row cluster basis Uτ as before:

(Ûτ )ki =

{∫
Ωτ

(u(x, cτ ))iφk(x)dx, if k ∈ τ and i = 1, . . . Kτ

0, if k /∈ τ,

where we have two choices for u(x, cτ ) ∈ C
Kτ , either Bessel functions as given by Theorem 3.2 or

plane waves as given by Theorem 3.3. In either case, the condition that the bases are nested (13)
will not be satisfied. Hence, instead of defining these matrices for the non-leaf clusters in the same
way, we first define the transform matrices TU

τ ′,τ for each child-parent pair τ ′, τ and then define

Uτ := Ûτ , if τ a leaf, otherwise Uτ :=

(
Uτ ′TU

τ ′,τ

Uτ ′′TU
τ ′′,τ ,

)
, (21)

where τ ′ and τ ′′ are the children of τ . The matrices Vσ are defined in a similar fashion. To simplify
the notation slightly we will write Tτ ′,τ to denote TU

τ ′,τ for the rest of this section. It is clear that
the matrices Tτ ′,τ and Tτ ′′,τ should be defined so that the nestedness condition holds approximately

Ûτ ≈
(

Ûτ ′Tτ ′,τ

Ûτ ′′Tτ ′′,τ ,

)
. (22)

Since for an arbitrary vector ζ ∈ C
Kτ(

Ûτζ
)

k
=

{∫
Ωτ ′

φk(x)u(x, cτ )Tζdx, k ∈ τ ′,∫
Ωτ ′′

φk(x)u(x, cτ )Tζdx, k ∈ τ ′′,

and (
Ûτ ′Tτ ′,τζ

Ûτ ′′Tτ ′′,τζ

)
k

=

⎧⎪⎨⎪⎩
∫
Ωτ ′

φk(x)
(
TT

τ ′,τu(x, cτ ′)
)T

ζdx, k ∈ τ ′,∫
Ωτ ′′

φk(x)
(
TT

τ ′′,τu(x, cτ ′′)
)T

ζdx, k ∈ τ ′′,

we can see that the condition (22) is satisfied if

u(x, cτ ) ≈
{

TT
τ ′,τu(x, cτ ′), x ∈ Ωτ ′ .

TT
τ ′′,τu(x, cτ ′′), x ∈ Ωτ ′′ .

(23)
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3.2.3 Construction of Tτ ′,τ

Let τ be a parent cluster with child τ ′. We wish to construct the transform operator Tτ ′,τ so that
(23) is satisfied. Since we have two choices for the functions u(x, cτ ) we need also to construct two
transfer operators. First of all we explain how to transform one basis to the other.

Proposition 3.1 Let u1, u2 ∈ C
K where K = 2M + 1 for some M ∈ N. If u1 and u2 are defined

by
(u1)j = Jj−M−1(ρx)ei(j−M−1)θx and (u2)l = e−iρx sin(2πl/K−θx), j, l = 1, . . . ,K,

then
u1 = FMu2 + rM ,

where FM ∈ C
K×K is a shifted Fourier matrix defined by

(FM )jl = e2πil(j−M−1)/K ,

and there exists a constant C > 0 such that for any ε > 0 and all M > C(ρx + log(1
ε )) we have

‖rM‖∞ ≤ ε.

Proof: We proceed as follows:

Jj(ρx)eijθx =
1
2π

∫ 2π

0
eiρx sin θeij(θx−θ)dθ

=
1
2π

∫ 2π

0
e−iρx sin(θ−θx)eijθdθ

=
1
K

K∑
l=1

e−iρx sin(2πl/K−θx)e−2iπlj/K + (rM )j ,

where (rM )j is the remainder of the composite trapezoidal rule for 2π-periodic functions. The rest
of the proof goes along the lines of the proofs of Lemma 3.2 and Lemma 3.3. �
Note that FM and F−1

M can be applied to a vector using FFT in O(K log K) time.
The transform operator we wish to construct consists of a translation of the centre of expansion

and of interpolation used to change the length of the basis vector. From the fact (20) it is not
difficult to see that the translation is simple for the plane wave functions: As in Theorem 3.3, define
two basis vectors u1 := u(x, cτ ) and u2 := u(x, cτ ′) ∈ C

K , k = 2M +1, which have identical lengths
K but different centres cτ and cτ ′ . So

(u1)j = e−iκρτ
x sin(2πj/K−θτ

x) and (u2)j = e−iκρτ ′
x sin(2πj/K−θτ ′

x ), j = 1, . . . ,K.

From (20) we see that u1 = Du2 for a diagonal matrix D with

Djj = eiκ‖cτ−cτ ′‖ sin(2πj/K−θcτ−cτ ′ ).

For the Bessel functions, the change of the centre is not as simple but the interpolation is trivial.
It consists simply of truncation or padding by zeros of the basis vectors. Note that this procedure
introduces no additional error.

Combining the change of the centre of the plane waves and the interpolation of the Bessel
functions with Proposition 3.1 allows us to easily construct the transform operator for both types
of basis functions. The details are given in the next theorem.

Theorem 3.4 Let u1 ∈ C
K1 and u2 ∈ C

K2 where K1 = 2M1 + 1 and K2 = 2M2 + 1 for some
M1,M2 ∈ N. If u1 and u2 are defined by

(u1)j = e−iκρτ
x sin(2πj/K1−θτ

x) and (u2)l = e−iκρτ ′
x sin(2πl/K2−θτ ′

x ),
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for j = 1, . . . ,K1 and l = 1, . . . ,K2 then

u1 = DF−1
M1

PM1,M2FM2u2 + rM1,M2,

where FM1 , FM2 are shifted Fourier matrices as in Proposition 3.1, D ∈ C
K1×K1 is a diagonal

matrix with
Dll = eiκ‖cτ−cτ ′‖ sin(2πl/K1−θcτ−cτ ′ ),

and PM1,M2 is an K1 × K2 sparse matrix of zeros and ones, which is described by its action on a
vector 1 :

PM1,M2v =

{
(0, . . . , 0, (v)1, (v)2, . . . , (v)K1 , 0, . . . , 0)

T, if K2 > K1

((v)M1−M2+1, (v)M1−M2+2, . . . , (v)M1+M2+1)T, otherwise.

There exists a constant C > 0 such that for any ε > 0, M1 > C(ρτ + log(1
ε )), and any M2 >

C(ρσ + log(1
ε ))

‖rM1,M2‖∞ < ε.

From this result it is clear that we can define the transform operator for plane waves as

TU
τ ′,τ := DF−1

M1
PM1,M2FM2 . (24)

From Proposition 3.1, it follows that the transform operator for Bessel functions should be defined
as

TU
τ ′,τ := FM1DF−1

M1
PM1,M2. (25)

Since in both cases Vσ = Uσ, we have that

T V
σ′,σ = TU

σ′,σ.

Note that it is possible to construct the transform operators in linear time and to apply them to a
vector in log-linear time using FFT.

3.2.4 Construction of Sτ,σ

We consider two cases. In the first case we assume that for each τ × σ ∈ L+ we have diam(Ωτ ) ≈
diam(Ωσ). For this case we choose to define the row and cluster bases using plane waves. Then we
define Sτ,σ := S(cτ , cσ) ∈ C

K×K given by Theorem 3.3. This would be the standard approach in
fast multipole methods for the Helmholtz equation.

In the second case we allow for clusters of different sizes. For this case we define the row and
cluster bases using Bessel functions. We could now simply define Sτ,σ using Theorem 3.2, however,
we choose to use the diagonal expansion again. In this case row and cluster bases need to be
transformed to plane waves from Bessel functions. Hence, we define the coefficient matrix by

Sτ,σ := PKτ ,KFKS(cτ , cσ)F−1
K PK,Kσ .

This allows us to choose Kτ , Kσ and K independently from each other and as small as possible.
We could equally have chosen plane waves as the basis functions, but then the prolongation from
Kτ to K would consist of two applications of FFT rather than one, and the same for the restriction
from K to Kσ. We should note here that it is possible to perform the prolongation and restriction
of plane wave basis in O(K) time by nearest-neighbour approximation; see [19]. It is, however, not
clear for how large a value of K is this profitable.

1PM1,M2 simply appends zeros to the beginning and the end of a vector if M2 > M2, otherwise it truncates entries
from the front and the end of the vector.
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3.3 Complexity analysis

We now have all the ingredients necessary for the construction of the H2-matrix representation.
We construct the H2-matrix approximation by the following procedure:

• Choose ε > 0.

• Construct the cluster tree TI and the block cluster tree TI×I .

• For each cluster τ ∈ TI and some constant C1 > 0 set Kτ = 
C1κdiam(Ωτ ) + C1 log 1
ε �. If τ

is a leaf, construct the row and cluster bases Uτ and Vτ .

• For each parent cluster τ construct Tτ,τ ′ and Tτ,τ ′′ using (24) or (25).

• For each admissible leaf b = τ × σ ∈ L+ construct the coefficient matrix Sτ,σ ∈ C
K×K using

Theorem 3.3, where K = Kτ + Kσ.

• For each inadmissible leaf b = τ × σ ∈ L− set Mτ,σ := Aτ,σ.

Before we estimate the computational complexity of the construction of the matrix and the cost
of matrix-vector multiplication we make a couple of assumptions that hold in standard situations.
The first assumption is as before that Csp is a constant. The second assumption, pertinent to the
two dimensional problem, is that there exists a constant C2, such that for any level l∑

τ∈T
(l)
I

diam(Ωτ ) ≤ C2. (26)

This condition simply prevents pathological cases, such as the case where each child cluster has the
same diameter as its parent cluster. A standard algorithm for the construction of the cluster tree,
as described in [12], would prevent such a case from happening. In the best case, when the diameter
of each child cluster is exactly half the diameter of its parent, (26) holds for C2 = diam(Ω). The
condition is useful since it gives the following inequality:∑

τ∈T
(l)
I

Kτ ≤ C1(C2 κ + #T
(l)
I ).

Also, recall that there are at most 2n − 1 clusters in the cluster tree TI . Hence for any level L,

L∑
l=0

#T
(l)
I ≤ 2n − 1.

Now we are in a position to give estimates for the storage and the cost of construction and matrix-
vector multiplication.

Lemma 3.4 (Storage) If p is the depth of TI×I and (26) holds, then there exists a constant C
depending only on C1, C2, and Csp such that

Nst ≤ C(pκ + n) and Ncon ≤ C(pκ log κ + n log κ),

where Nst is the storage requirement and Ncon the cost of the construction of the H2-matrix.

Proof: The cost of storing and constructing the row and column cluster bases for the leaf clusters
is the same. It can be estimated as follows:∑

τ∈T
(p)
I

#τKτ ≤ Cleaf

∑
τ∈T

(p)
I

Kτ

≤ CleafC1(C2κ + #T
(p)
I )

≤ CleafC1(C2κ + n).
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The cost of storing the coefficient matrices is equal to

∑
b=τ×σ∈L+

(Kτ + Kσ) =
p∑

l=0

∑
τ∈T

(l)
I

Kτ#{σ : τ × σ ∈ L+ or σ × τ ∈ L+}

≤ Csp

p∑
l=0

∑
τ∈T

(l)
I

Kτ

≤ CspC1

p∑
l=0

(C2κ + #T
(l)
I )

≤ CspC1(C2κ(p + 1) + 2n − 1).

Since for each coefficient matrix we require a single application of FFT, the cost of the construction
is larger than the storage cost by a logarithmic factor:

CspC1(C2κ(p + 1) + 2n − 1) log(κ + 1).

The cost of the construction and of the storage of transfer matrices is the same and bounded by

p−1∑
l=0

∑
τ∈T

(l)
I

2Kτ ≤ 2C1(C2κ(p + 1) + 2n − 1).

Finally, as for H-matrices, the cost of constructing and storing the matrices corresponding to
the inadmissible blocks is O(n). This gives the final result. �

Lemma 3.5 (Multiplication) Under the same conditions as in the previous lemma there exists
a constant C such that

NH · v ≤ CNcon,

where NH · v is the cost of matrix-vector multiplication.

Proof: We compute the cost of matrix-vector multiplication following the steps of the fast al-
gorithm explained in Section 2.6.2. The reasoning is the same as in the proof of the previous
lemma.

1. Upward pass.

(a) The cost of applying the cluster bases to a vector for the leaves is the same as the cost of
constructing them. Hence by the proof of Lemma 3.4 the total cost for all leaf clusters
is O(κ + n).

(b) The cost of applying the transform matrices to a vector is larger than the cost of con-
structing them since applications of FFT are necessary. The further logarithmic factor
gives the complexity O(pκ log κ + n log κ).

2. Far field interaction

(a) The cost of multiplication is the same as the cost of constructing the coefficient matrices
since in both cases FFT is used. Hence the cost is O(pκ log κ + n log κ).

3. Downward pass

(a) Same cost as in 1b.

4. Near field interaction
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(a) Since A� is sparse, the cost is O(n).

Combining the above estimates gives the result. �
Since we are interested in the high frequency regime, i.e., κ ∝ n, assuming p = O(log n) we have

that the cost of storage is O(n log n) and the cost of construction and matrix-vector multiplication
is O(n log2 n). However, in practical situations κ is considerably smaller than n so that we expect
the costs to behave closer to O(n) and O(n log n) for the storage and matrix-vector complexity
respectively.

At this stage we could proceed to the numerical results, however for the sake of better efficiency
and numerical stability a closer look needs to be taken at the expansions used in the derivation.

3.4 High and low frequency problems; stability: H- and H2-matrices

An important deficiency of the presented separable expansions is their numerical instability. In
both cases the coefficient matrices Sτ,σ cannot be bounded. This is due to the fact that Hl(ρ)
diverges to infinity very quickly when l > ρ. The expansion in Bessel functions can be regularised
by scaling. This is used in [25], however the authors sacrifice the Toeplitz structure for stability. It
is possible to preserve the structure and stabilise by scaling, this, however, forces us to use a sum
of three H2-matrices instead of a single one which is too great a sacrifice in terms of computational
time. Here we propose a much simpler remedy which is easy to implement and has been shown to
be effective.

The instability problems of the expansions used in this paper have attracted a lot of atten-
tion over the years. We will use one observation only, and that is that for a fixed ε > 0 there
exists a constant C(ε, η) such that ‖Sτ,σ‖∞ is bounded for admissible blocks b = τ × σ for which
κmin{diam(Ωτ ),diam(Ωσ)} ≥ C(ε, η); see [21]. Accordingly, we divide the set of admissible leaves
L+ into two disjoint subsets L+

1 and L+
2 :

L+
1 := {τ × σ ∈ L+ : κmin{diam(Ωτ ),diam(Ωσ)} ≥ C(ε, η)} and L+

2 := L+/L+
1 .

After choosing the precision and constructing the cluster and block cluster trees, we construct an
approximation to the Galerkin matrix by the following procedure:

• For each leaf τ construct the row and cluster bases Uτ and Vτ .

• For each parent cluster τ construct Tτ,τ ′ and Tτ,τ ′′ .

• For each b = τ × σ ∈ L+
1 construct the coefficient matrix Sτ,σ.

• For each b = τ × σ ∈ L+
2 construct a low rank approximation Mτ,σ to Aτ,σ using ACA.

• For each inadmissible leaf b = τ × σ ∈ L− set Mτ,σ := Aτ,σ.

Using the complexity estimates developed for the pure H-matrix and pure H2-matrix formats
it is not difficult to see that the complexity proved in the previous section is preserved since the low
rank matrices are used only in the domains with size of a bounded number of wavelengths. Separable
expansions are used only in domains that are large enough so that the numerical instability is not
visible.

With this we have finished our description of an O(n log2 n) algorithm. In the next section we
give numerical results illustrating the practicability of our method.

4 Numerical results

In this section we demonstrate how our algorithm behaves in practice through numerical examples.
We do this by considering the simple example of the discretisation of the single layer potential on
an ellipse using a Galerkin method with piecewise constant basis functions. Since eventually we
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n Setup (s) MV mult. (s) Mem. (MB) Mem/n (kB)

1024 3.6 0.003 4 4.2

2048 7.7 0.006 9 4.6

4096 17.4 0.013 19 4.9

8192 37.3 0.028 41 5.2

16384 81.8 0.062 88 5.7

32768 169.2 0.127 189 6.1

65536 363.1 0.27 398 6.4

131072 785.4 0.545 839 6.7

262144 1735.8 1.44 1762 7.1

Table 1: CPU times and memory consumption in the low frequency regime with κ = 64.

plan to discretise operators for which the symmetry is lost, we do not make use of the fact that
the resulting matrix is symmetric. The ellipse is given by the equation x2 + (y/2)2 = 22. The
computations are done on a 3 GHz Intel PC. In all computations the error is controlled so that
‖A − Ã‖∞ < 10−5. This is checked exactly only for matrices of size less than 215 = 32768. For
larger matrices the error is estimated by comparing 100 randomly chosen columns of A and Ã.

4.1 The low frequency regime

For the low frequency regime we fix κ = 64 and increase the number of panels n. To approximate
the Galerkin matrix we use the H-matrix obtained by ACA as described in section 3.1. The results
are shown in Table 1. As expected both the computational times and memory consumption scale
close to linearly. The matrix-vector multiplication is very fast even for a quarter of a million degrees
of freedom.

4.2 High frequency regime

For the high frequency regime we increase both n and κ, keeping n/κ = const. We apply the mixed
format of an H2-matrix with low-rank matrices obtained by ACA as described in section 3.2; the
results are shown in Table 2. We allow for clusters of different sizes to be admissible hence we use
the variant with Bessel basis functions. As predicted, we see that the storage increases as O(n)
and the matrix-vector multiplication as O(n log n).

For interest, we also apply the method designed for the low frequency regime. Namely, we
approximate the Galerkin matrix by a pure H-matrix obtained using ACA; the results are shown
in Table 3. We see that up to κ = 128 the results are the same for the two methods; this is because
for κ of that size no admissible block is of sufficient size to allow for a stable separable expansion.
This also explains the sudden jump in the time needed for one matrix-vector multiplication when
going from n = 4096 to n = 8192. For n > 216 = 65536 the H-matrix approach consumes too much
memory hence the blank entries in Table 3. Nevertheless, it is an interesting observation that for
all other cases the matrix-vector multiplication is considerably faster using the H-matrix approach,
the difference becoming smaller for larger n. The advantage of the H2-matrix approach can be
seen in the much lower setup time and memory consumption. Which method is preferable for a
particular choice of n and κ depends not only on available memory but also on the convergence of
the iterative method that is eventually used for the solution of the linear systems arising from the
discretisation.
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n κ Setup (s) MV mult. (s) Mem. (MB) Mem/n (kB)

1024 32 3.11 0.003 3 3.8

2048 64 7.66 0.006 9 4.6

4096 128 18.79 0.014 21 5.5

8192 256 42.08 0.166 57 7.4

16384 512 73.53 0.434 99 6.4

32768 1024 148.7 0.878 200 6.4

65536 2048 301.3 2.02 402 6.4

131072 4096 629.7 4.37 806 6.5

262144 8192 1305 9.84 1607 6.4

Table 2: CPU times and memory consumption in the high frequency regime for approximation with an
H2-matrix stabilised by low-rank matrices.

n κ Setup (s) MV mult. (s) Mem. (MB) Mem/n (kB)

1024 32 3.11 0.003 3 3.8

2048 64 7.66 0.006 9 4.6

4096 128 18.79 0.014 21 5.5

8192 256 45.86 0.034 53 6.8

16384 512 122.8 0.086 139 8.9

32768 1024 324.7 0.228 385 12.3

65536 2048 939.4 0.664 1141 18.3

131072 4096 – – – –

262144 8192 – – – –

Table 3: CPU times and memory consumption in the high frequency regime for approximation with an
H-matrix.
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