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Abstract

We consider a model introduced in [10] with two species (η and ξ) of particles, repre-
senting respectively malignant and normal cells. The basic motions of the η particles
are independent random walks, scaled diffusively. The ξ particles move on a slower
time scale and obey an exclusion rule among themselves and with the η particles. The
competition between the two species is ruled by a coupled birth and death process.
We prove convergence in the hydrodynamic limit to a system of two reaction diffusion
equations with measure valued initial data.

1 Introduction

We are reexamining a model for competition between malignant and normal cells intro-
duced in [10]. The main point of the model is that there are three natural time scales.
[Unfortunately in the biological applications] the fastest one is the random walk of the
malignant cells; the next one is the time scale of motion of normal cells, described by an
exclusion process where normal cells cannot jump over sites occupied either by normal or
by malignant cells (we will refer to this for brevity as a coupled exclusion). Finally, the
slowest time scale, called macroscopic, is the one described by a birth-death process which
models the competition between the two species.

Calculating the local invariant measures is crucial for the behavior of the system on the
macroscopic time scale. For technical reasons in [10] a stirring process was introduced to
replace the coupled exclusion, not really motivated by the model itself, and, under such
an assumption, the local invariant measures were found to be products of Poisson and
Bernoulli measures.

Here we deal with the original model, with coupled exclusion, where the global invari-
ant measures are not known, even if births and deaths are neglected. However, at least
heuristically, the fact that on the time scale of the exclusion process the random walks of
the malignant cells have already averaged out their positions, should give the stirring with
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slowly varying coefficient process considered in [10]. But the usual methods of deriving
hydrodynamic limits do not seem to apply here: the lack of knowledge of the invariant
measures, even neglecting the birth-death process, seems to preclude the use of entropy
methods. We refer to [9] for a general survey on entropy methods in hydrodynamic limits
and to [11], [12] for specific applications to reaction-diffusion equations. On the other
hand, the presence in the reaction terms of transcendental, non polynomial functions,
makes it awkward an analysis of the BBGKY hierarchy of equations, as used in [4], [2]
and [1].

So here we introduce a new method. The main point is that for our system, the
energy estimate that holds for the deterministic limit, can also be obtained for mesoscopic
averages of the stochastic system, obtaining H2

1 a-priori bounds which allow to derive a
substitute for the so called “two block estimate” of [8].

We also get bounds for the L2 distance of our mesoscopic field variables from the
deterministic solutions, derived by an explicit computation of the generator applied to
the difference squared. To control the “most dangerous terms” we use homogenization
techniques which play the role of the “one block estimates” in hydrodynamic limits, see
again [8].

The different scales reflect also in the initial data. We suppose regularity of the malig-
nant cells initial distribution on the macroscopic scale, while the normal cells distribution
is only smooth on a smaller scale, related to the slower time scaling of their time evolution.
This involves yet another homogenization process which leads to a limit coupled system
of reaction diffusion equations with measure valued initial data for the normal cells.

In Section 2 we define the particles process, in Section 3 a discrete deterministic systems
of reaction diffusion equations and in Section 4 mesoscopic variables. In Section 5 we
discuss the choice of the initial state and in Section 6 we state our main results. In Section
7 we give a brief sketch of the proofs. In Section 8 we prove a priori bounds on exponential
moments of the occupation variables and regularity in space of the mesoscopic fields. In
Section 9 we prove regularity in time, while in Sections 10 and 11 we prove local ergodic
theorems (one block estimates) for the normal and, respectively, malignant cells. We have
shifted to some appendices the more computational parts of the proofs.

2 The particles model

We discretize the unit torus Ω of R
d by intersecting it with the lattice εZd, ε−1 ∈ N, and

denote by Ωε its image in stretched coordinates:

Ωε =
{
x = (x1, .., xd) ∈ Z

d : 1 ≤ xi ≤ ε−1, 1 ≤ i ≤ d
}

(2.1)

As a rule we will use x, y, z.. for lattice sites and r, r′... for points in R
d.

Particle configurations are non negative integer valued functions on Ωε extended pe-
riodically to the whole Z

d; in particular we consider configurations η : Z
d → N and

ξ : Z
d → {0, 1}. η(x) and ξ(x), x ∈ Z

d, are thus the number of η and ξ particles at any
site y in Ωε equal to x modulo Ωε. η and ξ are interpreted as malignant and respectively
normal cells.
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The evolution is described by a Markov process whose generator L, defined on all
functions of (η, ξ) and whose dependence on ε is not made explicit, has the expression

L = L(η) + L(ξ)

L(η) = ε−2L(η,0) + L(η,+) + L(η,−)

L(ξ) = ε−2aL(ξ,0) + L(ξ,+) + L(ξ,−) (2.2)

with

L(η,0)f(η, ξ) =
∑
x∈Ωε

∑
e:|e|=1

η(x)[f(ηx,x+e, ξ) − f(η, ξ)] (2.3)

where, denoting by 1x the configuration with only one particle at x, ηx,x+e = η+1x+e−1x,
(same notation is used for ξ configurations).

L(ξ,0)f(η, ξ) =
∑
x∈Ωε

∑
e:|e|=1

ξ(x)[1 − ξ(x+ e)]1η(x+e)=0[f(η, ξx,x+e) − f(η, ξ)] (2.4)

Denoting below by κ, κ′ and κi positive coefficients, the latter non decreasing functions of
i bounded by κi ≤ cebi, b and c positive constants, and writing ηx,± = η±1x, ξx,± = ξ±1x,

L(η,+)f(η, ξ) =
∑
x∈Ωε

κη(x)[f(ηx,+, ξ) − f(η, ξ)]

L(η,−)f(η, ξ) =
∑
x∈Ωε

η(x)
(
κη(x)(1 − ξ(x)) + κη(x)+1ξ(x)

)
[f(ηx,−, ξ) − f(η, ξ)] (2.5)

L(ξ,+)f(η, ξ) =
∑
x∈Ωε

κ′

2d

∑
e:|e|=1

ξ(x)[1 − ξ(x+ e)]1η(x+e)=0 [f(η, ξx+e,+) − f(η, ξ)]

L(ξ,−)f(η, ξ) =
∑
x∈Ωε

ξ(x)κη(x)+1[f(η, ξx,−) − f(η, ξ)] (2.6)

The indices 0,+,− above refer respectively to displacements, births and deaths of
particles, whose species is then indicated by η and ξ. Notice that, as ε → 0, the scaling
factors ε−2 and ε−2a make displacements occur on a much faster scale than births and
deaths with the η particles moving much faster than the ξ particles.

3 Discrete reaction-diffusion equations

The limit reaction diffusion equations that we will derive, can be approximated on the
lattice Ωε, by the two equations

dU

dt
= F (U, V ),

dV

dt
= G(U, V ) (3.1)
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(U(t), V (t)) = {(U(x, t), V (x, t)), x ∈ Ωε, t ≥ 0} and where F = F (U, V ) and G = G(U, V )
are given by

F (U, V ) = ε−2∆U + κU − F−
1 (U) − F−

2 (U)V (3.2)

G(U, V ) = e−U ε−2a∆V + κ′V (1 − V )e−U − V G−(U) (3.3)

with ∆ the discrete Laplacian on Z
d (see (8.7), (5.3) and (8.8))

F−
1 (U) = e−U

∑
i≥0

U i

i!
i κi, F−

2 (U) = e−U
∑
i≥0

U i

i!
i [κi+1 − κi]

G−(U) = e−U
∑
i≥0

U i

i!
κi+1 (3.4)

By going to un-stretched coordinates, x→ εx, Ωε → Ω ∩ εZd and ε−2∆ → ∆ the discrete
laplacian on εZd, (3.1) becomes the ε-mesh discretization of the reaction diffusion system
considered in [10].

Our aim is to prove closeness between (3.1) and the Markov process defined in the
previous section. This will be achieved by introducing suitable functions (u(x, η), v(x, ξ)),
x ∈ Ωε, (defined in terms of convolutions of the original η and ξ variables) and comparing
their evolution with the orbits (U(t), V (t)) of (3.1). An important step in this direction
will be a comparison between the generator L and the generator D associated to (3.1),
D being the transport operator with domain the space of all functions ψ(U, V ) which are
differentiable in all U(x) and V (x), and which is defined as

D = F
∂

∂U
+G

∂

∂V
≡
∑
x∈Ωε

F (x)
∂

∂U(x)
+G(x)

∂

∂V (x)
(3.5)

D transports along the orbits (U(t), V (t)) solutions of (3.1).

4 Mesoscopic variables

We denote by πt the semigroup

πt = et∆ (4.1)

with ∆ the discrete laplacian on Ωε, so that the kernel πt(x, y) is the probability that a
simple random walk which jumps with intensity 2d with equal probability on its n.n. sites,
reaches y at time t having started from x at time 0.

With α < 1 and β < a positive parameters whose value will be instead specified later,
we shorthand

u(η) = pα ∗ η, v(ξ) = qβ ∗ ξ, pα = πε−2+2α , qβ = πε−2a+2β (4.2)
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and denote by u(x, η) and v(x, ξ) the values at x of u and v
We will use throughout the paper the notation:

〈f, g〉 = εd
∑
x∈Ωε

f(x)g(x), ‖f‖2 = 〈f, f〉 (4.3)

The key for proving closeness between (u(ηt), v(ξt)) and (U(t), V (t)) will be a proof that L
acts on functions of (u, v) approximately as D acts on functions of (U, V ) (D is the trans-
port generator defined in the previous section). We will make the statement quantitative,
by studying the quantities

(L+D)‖u− U‖2, (L+D)‖v − V ‖2 (4.4)

along the trajectories of the Markov process and the solutions of (3.1). Thus if (u, v) are
close to (U, V ) and L to D, then the quantities in (4.4) will be small. The converse is (to
some extent) also true, as it follows from the martingale theory. Indeed the expressions
in (4.4) are the two compensators in the martingale relations

‖u(ηt) − U(t)‖2 − ‖u(η0) − U(0)‖2 =
∫ t

0
(L+D)‖u(ηs) − U(s)‖2ds +M1(t) (4.5)

‖v(ξt) − V (t)‖2 − ‖v(ξ0) − V (0)‖2 =
∫ t

0
(L+D)‖v(ξs) − V (s)‖2ds+M2(t) (4.6)

where (U(s), V (s)) solves (3.1) and M1(t), M2(t) are suitable martingales.
We will prove bounds for the two integrals on the r.h.s. of (4.5) and (4.6) in terms of∫ t

0
‖u(ηs) − U(s)‖2 + ‖v(ξs) − V (s)‖2. We will also show that with probability going to

1 the martingales vanish in the limit as ε → 0. All that will allow to reach an integral
inequality in closed form for ‖u(ηs) − U(s)‖2 + ‖v(ξs) − V (s)‖2 and to prove that the
solution vanishes in the limit ε→ 0.

Choice of α and β, assumptions on a.
We assume:
α <

d

d+ 2
, (see Theorem 6).

2a < (1 − α)d, 2a < 1, β < a
d

d+ 2
(see Theorem 7).

β <
5a
17

, (see Theorem 11).

5 Choice of the initial state

In this section we choose the initial law µε of the process. It is now convenient to underline
dependence on ε and we do that by adding a superscript ε when needed. The picture we
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have in mind is that after a finite time t0, during which the η and the ξ particles move
independently of each other, the interaction is suddenly switched on with the evolution
ruled, after this time, by the generator L. We count times from when the interaction
starts, setting this time equal to 0.

We suppose that the state at time −t0 is a fixed (but ε dependent) configuration
(ηε−t0 , ξ

ε−t0). Due to the general class of processes that we are considering, it is convenient
to assume that

sup
ε>0

sup
x∈Ωε

ηε−t0(x) = C <∞ (5.1)

We do not want to make other assumptions on the configurations and we do not impose
a particular behavior as ε → 0, which will instead determined by the same evolution. In
this way our theory can cover many possible, interesting scenarios, for brevity we do not
expand here the issue.

The probability µε at time 0 is defined as the law at time t0 of the free process which
starts from (ηε−t0 , ξ

ε−t0) and has generator ε−2L(η,0) + ε−2aL(ξ,st), where L(η,0) is defined
in (2.2) while L(ξ,st) is the generator of the stirring process acting on the ξ variables. It
is well established in the literature, see for instance [4], that µε is a “local equilibrium
measure”, namely, to leading order in ε, it is locally close to a product measure with the
η(x) variables close to Poisson. Moreover, the averages of the η variables change smoothly
on the scale ε−1, while the scale of the ξ particles is ε−a, see Theorem 1 below, where

U ε0(x) = µε(uε(x, η)), V ε
0 (x) = µε(vε(x, ξ)) (5.2)

and where ∇ is the lattice gradient:

e · ∇f(x) = f(x+ e) − f(x), |e| = 1 (5.3)

The following theorem is proved in Appendix A for the η particles and in Appendix B for
the ξ’s.

Theorem 1. µε is such that

lim
ε→0

µε
(
‖uε(η) − U ε0‖2 + ‖vε(ξ) − V ε

0 ‖2
)

= 0 (5.4)

sup
ε>0

sup
x∈Ωε

(
U ε0(x) + ε−1|∇U ε0(x)|

)
<∞, sup

ε>0
sup
x∈Ωε

ε−a|∇V ε
0 (x)| <∞ (5.5)

In the general setup we are considering there is no reason to expect convergence as
ε→ 0 of U ε0 and V ε

0 , but, by standard arguments, it is known that convergence is regained
by going to subsequences:
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Theorem 2. For any sequence ε′ → 0 there is a subsequence ε → 0 so that the following
holds.

• There exists a bounded, Lipschitz function U0(r), r ∈ Ω, such that

lim
ε→0

sup
x∈Ωε

|U ε0(x) − U0(εx)| = 0 (5.6)

• For each r ∈ Ω, there is a translational invariant probability measure πr on the
space of [0, 1]-valued functions V on R

d which are uniformly Lipschitz, such that for any
positive integer n, any smooth function F on R

n and any test functions φ, φi, i = 1, .., n,∫
F (. . . , φi ∗ V, . . . ) πr(dV ) is a measurable function of r and

lim
ε→0

εd
∑
x∈Ωε

φ(εx)F
(
. . . , εad

∑
y

φi(εay)V ε
0 (x+ y), . . .

)

=
∫

Ω
φ(r)

∫
F (. . . , φi ∗ V, . . . ) πr(dV ) (5.7)

6 Main results

We suppose the law µε of (η0, ξ0) (at time 0) as specified in the previous section and
denote by P εµε and Eεµε law and expectation of the process (ηt, ξt)t≥0 with generator L
which starts from µε. We will study the limit as ε → 0 of the process (uε(ηt), vε(ξt)t≥0

along a subsequence convergent at time 0 in the sense of Theorem 2 (ε → 0 below, will
always mean the limit along such a subsequence).

Theorem 3. Let a, α and β verify the inequalities at the end of Section 4. Then there
are a 2× 2 matrix A with constant, positive entries and a two vector Rε(t) whose positive
components depend on (ηs, ξs)s≤t, so that, for any t ≥ 0,(

‖uε(ηt) − U ε(t)‖2

‖vε(ξt) − V ε(t)‖2

)
≤
(
‖uε(η0) − U ε(0)‖2

‖vε(ξ0) − V ε(0)‖2

)
+
∫ t

0
A

(
‖uε(ηs) − U ε(s)‖2

‖vε(ξs) − V ε(s)‖2

)
ds + Rε(t)

(6.1)

lim
ε→0

Eεµε

(
sup
s≤t

Rε(s)
)

= 0 (6.2)

As a corollary of Theorems 1 and 3, there is C > 0 so that, for any δ > 0 and any
T > 0,

lim
ε→0

P εµε

(
sup
t≤T

{‖uε(ηt) − U ε(t)‖2 + ‖vε(ξt) − V ε(t)‖2} ≤ eCT δ

)
= 1 (6.3)
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which proves that the random fields (uε(ηt), vε(ξt)) become deterministic as ε → 0 ap-
proaching the same limit behavior as (U ε(t), V ε(t)). The latter is described by the follow-
ing, “two scale” reaction diffusion system.

The limit evolution. Let U(r, t), r ∈ Ω, t ≥ 0, be a smooth, non negative, bounded
function, U(r, 0) = U0(r), U0 as in (5.6). For any r ∈ Ω, define the semigroup Tt;r on
the space of Lipschitz function V (r′) r′ ∈ R

d with values in [0, 1], by setting Tt;r(V )(r′) =
V (r′, t) equal to the solution of

dV (r′, t)
dt

= e−U(r,t)∆V (r′, t) + κ′V (r′, t)
[
1 − V (r′, t)

]
e−U(r,t)

−V (r′, t)G−(U(r, t)) (6.4)

with V (r′, 0) = V (r′). The dependence of Tt;r(V ) on U(r, t) has not been made explicit.
Call

W (r, t) =
∫
Tt;r(V )(0) πr(dV ) (6.5)

where {πr(dV ), r ∈ Ω} is the family of probabilities introduced in (5.7). Since Tt;r(V ) has
values in [0, 1] and depends smoothly on V , the r.h.s. of (6.5) is well defined and W (r, t)
is a measurable function of r. Define U∗(r, t), r ∈ Ω, t ≥ 0, as the solution starting from
U0 of

dU∗

dt
= ∆U∗ + κU∗ − F−

1 (U∗) − F−
2 (U∗)W (6.6)

We will say that U(r, t) is a fixed point of the above scheme (or just a fixed point) if,
for given U0 and {πr(dV ), r ∈ Ω} as above, U(r, t) = U∗(r, t) for all r ∈ Ω and t ≥ 0. By
standard arguments, details are omitted, we have:

Theorem 4. There is a unique fixed point U(r, t) of the above scheme. Moreover, if a,
α and β are as in Theorem 3, then for any t and δ positive, any positive integer n, any
bounded, smooth function f on R

n
+ and any test functions φ, φ1, .., φn,

lim
ε→0

εd
∑
x∈Ωε

φ(εx)U ε(x, t) =
∫

Ω
φ(r)U(r, t) dr (6.7)

lim
ε→0

εd
∑
x∈Ωε

φ(εx)f
(
. . . , εad

∑
y

φi(εay)V ε(x+ y, t), . . .
)

=
∫

Ω
φ(r)

∫
f(. . . , φi ∗ V, . . . ) πr,t(dV ) (6.8)
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7 Scheme of proof

By default, in the sequel a, α and β satisfy the inequalities stated at the end of Section
4. The proof of Theorem 3 is based on the analysis of the two martingale relations (4.5)-
(4.6). The whole art of the matter is to prove that the “two compensators”, namely the
two integrals on the l.h.s. of (4.5)-(4.6), can be written as sum of terms which fall in the
following two categories. The first one is made by elements which are bounded by time
integrals of ‖uε(ηt) − U ε(t)‖2 or ‖vε(ηt) − V ε(t)‖2, multiplied by coefficients which are
uniformly bounded. These terms then contribute to the integral in (6.1). All the other
terms must be proved to vanish as ε→ 0, so that they contribute to the error term Rε(t)
in (6.1).

A common feature to the analysis of all terms, is to control the large values of the
variables η. A-priori L∞ bounds are derived in Section 8, where we show uniform in ε
integrability of exponential moments ebηt(x), for any b > 0. The result is quite standard as
the process can be stochastically bounded by one having only linear births. More subtle
is another bound that we use extensively in the proofs, namely that the probability that
uε(x, ηt) exceeds a suitably large value M = M(t) (but independent of ε) vanishes as
ε → 0. The proof of these statements is given in Appendix A, where we also recall from
the literature results on independent random walks and random walks with independent
branchings.

The other general ingredient, common to many of the proofs, is regularity in space of
uε and vε. In Section 8 we prove H2

1 bounds uniform in ε which are obtained by mimicking
the PDE proofs for the limit equations. Besides regularity in space we need also regularity
in time of uε. A result, maybe not optimal, but good enough for our applications, is proved
in Section 9.

Such regularity estimates are the main subroutines we use to bound the “two compen-
sators” (4.5) and (4.6). The detailed classification of all the terms which appear when
computing explicitly the two compensators is reported in Appendix C. This is just some
simple, but lengthy algebra, not at all deep, but necessary for the proof of Theorem 3,
the compromise was to shift the computations to an appendix. Most of the terms in this
expansion can be directly bounded using the boundedness and regularity estimates men-
tioned above, the bounds being uniform in ε and over compact time intervals. There are
however some terms which do not fit in such an “easy class”. The origin of the problem
is the typical one in the derivation of non linear hydrodynamical equations, where one
needs to identify non linear microscopic obervables in terms of the parameters of the limit
equation: in our case we find local functions of ηt and of ξt and we need to express them in
terms of (generally different) functions of uε(ηt) and vε(ξt), (which is easy if the functions
are linear). The crucial point is that these non linear terms appear in the form of time
and space averages and we will solve the problem by proving local ergodic properties of
the process, reminiscent of the well known “one block estimates” in the theory of hydro-
dynamic limits. The “two block estimates” are here replaced by the H2

1 regularity already
mentioned. The one block estimates are not proved using Dirichlet forms, but closeness of
the process in short times to a process with no deaths and births. The main difficulty here
is that the ξ process reminds of but it is not the stirring process, because the ξ particles
are allowed to jump only on sites where no η particles are present. The local ergodic av-
erages for the η particles are easier to study, their analysis is reported in Section 10. The
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result for the ξ particles is instead given in Section 11. The core of the proof is to show
a homogenization property for which the ξ particles move feeling to main order only the
empirical average of the η’s. The real difficulty is to prove that such a property extends
to such long times for the stirring to reach local equilibrium.

8 Boundedness and regularity in space

In this section we will prove L∞ and H2
1 a priori bounds which will be extensively used

in the proofs of Theorem 3. We start from the former, which are uniform bounds on the
expectations of ηt and uε(ηt):

Theorem 5. For any b > 0 and any t ≥ 0

sup
ε>0

sup
x∈Ωε

Eεµε

(
ebηt(x)

)
≤ exp{[eb − 1]eκtC} (8.1)

with κ as in Section 2 and C as in (5.1). Moreover, for any τ > 0 there are M and c so
that

sup
t≤τ

sup
x∈Ωε

P εµε

(
uε(x, ηt) ≥M

)
≤ cε(1−α)d (8.2)

Proof. Let (η+
t )t≥0 be the process with generator ε−2L(η,0) +L(η,+) which starts from

µε. Then there is a coupling of (η+
t )t≥0 with the original process (ηt, ξt)t≥0 (defined by

the generator L of (2.2)) such that η+
0 = η0 and η+

t ≥ ηt for all t > 0. By an abuse of
notation we still denote by P εµε and Eεµε , law and expectation w.r.t. the coupled process.
In Appendix A it is proved that

sup
ε>0

sup
x∈Ωε

Eεµε

(
ebη

+
t (x)

)
≤ exp{[eb − 1]eκtC} (8.3)

sup
t≤τ

sup
x∈Ωε

Eεµε

([
uε(x, η+

t ) − Eεµε

(
uε(x, η+

t )
)]2) ≤ cε(1−α)d (8.4)

Since ebηt(x) ≤ ebη
+
t (x), (8.1) follows from (8.3).

Let M = 2eκτC, then, since Eεµε

(
uε(x, η+

t )
)
≤ eκtC,

P εµε

(
uε(x, η+

t ) ≥M
)
≤ P εµε

(
|uε(x, ηt) − Eεµε

(
uε(x, η+

t )
)
| ≥ eκτC

)
so that

P εµε

(
uε(x, η+

t ) ≥M
)
≤ 4c
M2

ε(1−α)d (8.5)
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Since uε(x, ηt) ≤ uε(x, η+
t ), (8.2) follows from (8.5). �

We will next prove bounds on the H2
1 norm of uε, which will play the role of the “two

blocks estimates” in the language of hydrodynamic limit theory. Before stating definition
and results, let us recall how similar bounds are obtained for the heat equation ut = ∆u

in the unit torus Ω. The “entropy”
∫

Ω
u2 dr gives

∫
Ω
u2(t) dr −

∫
Ω
u2(0) dr = −2

∫ t

0

∫
Ω
|∇u|2dr

Then, supposing
∫

Ω
u2(0) dr <∞, for any t > 0,

∫ t

0

∫
Ω
|∇u|2dr < 1

2

∫
Ω
u2(0) dr

The proof of Theorem 6 below mimics the above argument, but let us first introduce
some notation and definitions which translate to the lattice the analogous notions in the
continuum. If f is a function on Ωε, we write

‖f‖2
H2

1
:= ε−2‖∇f‖2 (8.6)

with ∇f the lattice gradient of f . We also recall that the same rules as in the continuum
hold as well for the discrete gradient and laplacian. Namely, denoting by E+ the set of
unit vectors e with positive components, we have, recalling (5.3) for notation and resisting
to the temptation of writing (−e) · ∇f = −(e · ∇f), which is false,

∆f(x) =
∑
e∈E+

[(−e) · ∇ + e · ∇]f(x) =
∑
e∈E+

{(−e) · ∇} {(e · ∇)} f(x) (8.7)

< g, e · ∇f >=< (−e) · ∇g, f >, < g,∆f >= − < ∇g,∇f > (8.8)

the last equality following from the second one in (8.7) and the first one in (8.8).

Theorem 6. For any t > 0, there is c so that

sup
ε>0

Eεµε

( ∫ t

0
‖uε(ηs)‖2

H2
1
ds
)
≤ c (8.9)

Proof. We start from the martingale relation:

‖uε(ηt)‖2 = ‖uε(η0)‖2 +
∫ t

0
L(η)‖uε(ηs)‖2ds+M ε

t , Eεµε

(
M ε
t

)
= 0 (8.10)
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After a simple computation which exploits that discrete gradient and laplacian satisfy the
same relations as in the continuum, see (8.7)-(8.8),

ε−2L(η,0)‖uε‖2 = −2‖uε‖2
H2

1
+Rε1(η) (8.11)

Rε1(η) = 2εd
∑
x,z

ε−2|∇pα(x, z)|2η(z) (8.12)

L(η,+)‖uε‖2 = 2κ‖uε‖2 +Rε2(η), L(η,−)‖uε‖2 ≤ Rε5(η, ξ) (8.13)

Rε2(η) = κεd
∑
x

∑
z

pα(x, z)2η(z) (8.14)

Rε5(η, ξ) = εd
∑
x

∑
z

pα(x, z)2
[
η(z)κη(z) + ξ(z)(κη(z)+1 − κη(z))

]
(8.15)

(the seemingly random labelling of the remainder terms Rεi is for “historical reasons”). By
taking the expectation in (8.10),

2Eεµε

(∫ t

0
‖uε(ηs)‖2

H2
1
ds
)
≤ Eεµε

(
‖uε(η0)‖2

)
+Eεµε

( ∫ t

0
Rε1(ηs) +Rε2(ηs) +Rε5(ηs, ξs) + 2κ‖uε(ηs)‖2 ds

)
(8.16)

By (8.1) there is c1 = c1(t), independent of ε, so that the r.h.s. of (8.16) is bounded by
c1(1 +

∑
z

[ε−2|∇pα(0, z)|2 + pα(0, z)2]). There is c2 so that,

∑
z

ε−2|∇pα(z)|2 ≤ c2ε
−2+2(1−α)+d(1−α)

∑
z

pα(z)2 ≤ c3ε
d(1−α) (8.17)

which vanishes as ε→ 0 because of the assumption α <
d

d+ 2
and (8.9) is proved. �

We have a H2
1 bound for vε as well, see Theorem 7 below, but we need first the following

corollary of Theorem 6:

Corollary 1. For any z ∈ Ωε and t > 0∫ t

0
εd
∑
x∈Ωε

|uε(x+ z, ηs) − uε(x, ηs)| ≤
√
td ε |z|

( ∫ t

0
‖uε(ηs)‖2

H2
1

)1/2
(8.18)
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Proof. For any z, there is “a coordinate curve” {yi}i=0,..,N such that y0 = 0, yN = z,
with ei := yi+1 − yi, i = 0, .., N − 1, a unit vector, and

∑
|ei| = |z1| + · · · + |zd|, having

denoted by zi the i-th component of z. Then, recalling (5.3) for notation,

uε(x+ z, η) − uε(x, η) =
∑
i

ei · ∇uε(x+ yi, η)

Hence

εd
∑
x∈Ωε

|uε(x+ z, η) − uε(x, η)| ≤
∑
i

εd
∑
x∈Ωε

|ei · ∇uε(x+ yi, η)|

≤
√
d
(∑

i

εd
∑
x∈Ωε

|ei · ∇uε(x+ yi, η)|2
)1/2

≤
√
d ε|z| ‖uε(ηs)‖H2

1
(8.19)

and (8.18) follows by Cauchy-Schwartz. �

Theorem 7. For any t > 0 there is c so that

sup
ε>0

Eεµε

( ∫ t

0
ε−2a‖∇vε(ηs)‖2 ds

)
≤ c (8.20)

Proof. We start once again from a martingale relation:

‖vε(ξt)‖2 = ‖vε(ξ0)‖2 +
∫ t

0
L(ξ)‖vε(ξs)‖2ds+M ε

t , Eεµε

(
M ε
t

)
= 0 (8.21)

We use the following two identities (where E+ is the set of unit vectors in Z
d with non

negative components)

∑
z

ξ(z)ξ(z + e)[(−e) · ∇ + e · ∇]qβ(z − x) = 0, e ∈ E+ (8.22)

∑
e∈E+

∑
z

ξ(z)[(−e) · ∇ + e · ∇]qβ(z − x) = ∆vε(x) (8.23)

to get

ε−2aL(ξ,0)‖vε‖2 = 2ε−2a〈vε, e−uε
∆vε〉 + 2Sε + 2Cε +Rε4 (8.24)

where

Sε(ξ, η) =
∑
e:|e|=1

εd
∑
x

vε(x)ε−2a
∑
z

[e · ∇qβ(z − x)]ξ(z)(1 − ξ(z + e))

×[1η(z+e)=0 − e−u
ε(z+e)] (8.25)



14 A. De Masi, S. Luckhaus and E. Presutti

Cε(ξ, η) = ε−2a
∑
e:|e|=1

εd
∑
x

∑
z

ξ(z)(1 − ξ(z + e))
[
e−u

ε(z+e) − e−u
ε(x)
]
e · ∇qβ(z − x)

(8.26)

Rε4(ξ, η) = ε−2a
∑
e:|e|=1

εd
∑
x

∑
z

ξ(z)(1 − ξ(z + e))1η(z+e)=0

(
e · ∇qβ(z − x)

)2 (8.27)

The proof that

lim
ε→0

∣∣ ∫ t

0
Eεµε

(
Sε(ξs, ηs)ds

)∣∣ = 0 (8.28)

follows from Theorem 9 below (details are left to an appendix, Appendix D). We will use
the present theorem only after Theorem 9, so that there is no circularity in our arguments.

From Corollary 1, it follows that

∣∣ ∫ t

0
Eεµε

(
Cε(ξs, ηs)

)
ds
∣∣ ≤ cε1−2a (8.29)

Similarly to (8.17), for a suitable constant c, we have that

|Rε4(ξ, η)| ≤ cε−2a+2(a−β)+d(a−β) (8.30)

which also vanishes in the limit ε→ 0 because of the assumption β <
d

d+ 2
a. We denote

by χM,x(s) the characteristic function of uε(x, ηs) ≤M , and we write

2ε−2a〈vε, e−uε
∆vε〉 ≤ −2ε−2ae−M‖∇vε‖2 + Rε

5 + Rε
6 (8.31)

where

Rε
5 = −2ε−2a〈vε,∇e−uε∇vε〉, Rε

6 = −2ε−2a〈[1 − χM ]∇vε, e−uε∇vε〉 (8.32)

Since |∇e−f | ≤ |∇f | if f ≥ 0, by (8.9), and since |vε| ≤ 1, |∇vε| ≤ 2d,∫ t

0
|Rε

5| ≤ cε1−2a (8.33)

By (8.2), we have

sup
s≤t

Eεµε

(
|Rε

6(ξs, ηs)|
)
≤ cεd(1−α)−2a (8.34)

We next observe that,

L(ξ,+)‖vε‖2 ≤ 2κ′‖vε‖2 +Rε8, L(ξ,−)‖vε‖2 ≤ Rε9 (8.35)

where

Rε8 = κ′εd
∑
x

1
2d

∑
e:|e|=1

∑
z

qβ(x, z)2ξ(z)[1 − ξ(z + e)]1η(z+e)=0 (8.36)
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Rε9 = εd
∑
x

∑
z

qβ(x, z)2ξ(z)κη(z)+1 (8.37)

Since∑
z

qβ(0, z)2 ≤ cεd(a−β) (8.38)

and since κn ≤ cebn, by (8.1), also R8 and R9 give a vanishing contribution. We have
therefore proved that there is a positive function ϕε(t) → 0 as ε→ 0 such that∫ t

0
Eεµε

(
ε−2aL(ξ)‖vε(ξs)‖2

)
ds ≤ −2ε−2ae−M

∫ t

0
Eεµε

(
‖∇vε(ξs)‖2

+2κ′
∫ t

0
‖vε(ξs)‖2

)
ds+ ϕε(t) (8.39)

Thus from (8.21) and (8.39) we get

e−MEεµε

( ∫ t

0
ε−2a‖∇vε(ξs)‖2ds

)
≤ Eεµε

(
‖vε(ξ0)‖2

)
+ κ′t+ ϕε(t) (8.40)

Theorem 7 is proved. �

We conclude the section with the following corollary of Theorem 6.

Corollary 2. For any t > 0 there is C̄ so that

sup
ε>0

sup
x∈Ωε

sup
s≤t

|U ε(x, s)| ≤ C̄ (8.41)

Furthermore for any t > 0 there is c so that for any s ≤ t

〈[vε(ξs) − V ε(s)], [e−u
ε(ηs) − e−U

ε(s)]ε−2a∆V ε(s)〉 ≤ e−C̄

10
ε−2a‖∇{vε(ξs) − V ε(s)}‖2

+c
(
‖uε(ηs) − U ε(s)‖2 + ‖vε(ξs) − V ε(s)‖2

+ε1−2a
{
‖uε(ηs)‖2

H2
1

+ ‖U ε(s)‖2
H2

1

})
(8.42)

Proof. (8.41) follows from the first inequality in (5.5). From the second inequality in
(5.5) it follows that the solution V ε(x, t) of (3.1) is such that for any t there is C so that

sup
ε>0

sup
x∈Ωε,s≤t

ε−a|∇V ε(x, s)| = C <∞ (8.43)

Then, by (8.8)

〈[vε − V ε], [e−u
ε − e−U

ε
]ε−2a∆V ε〉 ≤ C

(
〈ε−a|∇{vε − V ε}|, |e−uε − e−U

ε |〉

+〈|vε − V ε|, ε−a|∇{e−uε − e−U
ε}|〉
)
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Since |e−uε − e−U
ε | ≤ |uε − U ε|, using the inequality 2|db| ≤ δd2+δ−1b2, with b = |uε−U ε|,

d = ε−a|∇{vε − V ε}|, and δ = e−C̄(5C)−1, we get

〈[vε − V ε], [e−u
ε − e−U

ε
]ε−2a∆V ε〉 ≤ e−C̄

ε−2a

10
‖∇{vε − V ε}‖2 + eC̄(5C2)‖uε − U ε‖2

+C
(
‖vε − V ε‖2 +

ε−2a

2
‖∇uε‖2 +

ε−2a

2
‖∇U ε‖2

)

having also used that |∇e−f | ≤ |∇f | if f ≥ 0. Recalling the definition of ‖f‖H2
1

in (8.20)
we then get (8.42). �

9 Regularity in time

Besides regularity in space, we will also need estimates on the regularity of uε(x, ηt) as a
function of the time t. This is needed in Section 11 and Appendix D, and the statement
we will prove here is just what used in the sequel, with no aim at generality. We denote
by P εηt,ξt

and Eεηt,ξt
, conditional law and expectation of the process (ηs, ξs)s≥t, given the

state (ηt, ξt) at time t.

Theorem 8. For any τ and γ positive, with 2γ < (1 − α)d, there is c so that for any
t ≤ τ , ε > 0, x ∈ Ωε and any s ∈ (t, ε2γ ]

Eεµε

(∣∣∣uε(x, ηs) − π(s−t)ε−2 ∗ uε(x, ηt)
∣∣∣) ≤ cε2γ (9.1)

where π(s−t)ε−2 ∗ uε(x, ηt) =
∑
y

π(s−t)ε−2(x, y)uε(y, ηt).

Proof. We define an auxiliary process (θs, ξs)s≥t, θs = (η(F,a)
s , η

(F,d)
s , η

(b)
s ) and the

following random variables on this process,

ηs := η(F,a)
s + η(b)

s , η(F )
s := η(F,a)

s + η(F,d)
s (9.2)

The main point of the definition will be that
(
ηs, ξs

)
s≥t has the same law as our process of

Section 2 (i.e. with generator L), while η(F )
s has the law of the independent process with

generator ε−2L(η,0). The η(F,a)
s particles are called free and alive; η(F,d)

s free but dead; η(b)
s

newly born, which already hints at the way the whole process will be defined. We set
η

(F,d)
t = η

(b)
t = 0, so that ηt = η

(F,a)
t . The process (θs, ξs) at times s ≥ t is defined in terms

of the generator L̃ which we set equal to L̃ = L1 +L(ξ), with L(ξ) as in Section 2 (reading
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η = η(F,a) +η(b)). L1 is ε−2L
(0)
1 +L

(+)
1 +L

(−)
1 . L(0)

1 is the generator of independent motion
for the three types of η particles.

L
(+)
1 f(θ, ξ) =

∑
x∈Ωε

κη(x) [f(θ + 1x,b, ξ) − f(θ, ξ)] (9.3)

where 1x,b, 1x,(F,d) and 1x,(F,a) below are the configurations with only one particle at x
respectively of type b, (F, d) and type (F, a);

L
(−)
1 f(θ, ξ) =

∑
x∈Ωε

η(x)
(
κη(x)(1 − ξ(x)) + κη(x)+1ξ(x)

)
×{1η(b)(x)=0[f(θ − 1x,(F,a) + 1x,(F,d), ξ) − f(θ, ξ)]

+1η(b)(x)>0[f(θ − 1x,b, ξ) − f(θ, ξ)]} (9.4)

It is then easy to check that (ηs, ξs) is our original process and η(F ) is the independent
process.

By an abuse of notation we still denote by Eεµε the expectation relative to the process
which after time t has generator L̃. Then

Eεµε

(∣∣∣uε(x, ηs) − π(s−t)ε−2 ∗ uε(x, ηt)
∣∣∣) ≤ Eεµε

(∣∣∣uε(x, η(F )
s ) − π(s−t)ε−2 ∗ uε(x, ηt)

∣∣∣)
+Eεµε

(
uε(x, η(b)

s ) − uε(x, η(F,d)
s )

)
(9.5)

Recalling that uε(x, η(b)
t ) − uε(x, η(F,d)

t ) = 0,

Eεµε

(
uε(x, η(b)

s ) − uε(x, η(F,d)
s )

)
=
∫ s

t

∑
y

π(s−s′)ε−2(x, y)

×Eεµε

(
(L(+)

1 + L
(−)
1 ){uε(y, η(b)

s′ ) − uε(y, η(F,d)
s′ )}

)
(9.6)

Since

(L(+)
1 + L

(−)
1 )uε(y, η(b)) ≤ κuε(y, η)

(L(+)
1 + L

(−)
1 )uε(y, η(F,d)) ≤

∑
z

pα(y, z)η(z)κη(z)+1

by Theorem 5,

Eεµε

(∣∣∣uε(x, ηs) − π(s−t)ε−2 ∗ uε(x, ηt)
∣∣∣)

≤ Eεµε

(∣∣∣uε(x, η(F )
s ) − π(s−t)ε−2 ∗ uε(x, ηt)

∣∣∣)+ cε2γ (9.7)

Let

η̃s(y) = η(F )
s (y) − π(s−t)ε−2 ∗ ηt(y) (9.8)

then

uε(x, η(F )
s ) − π(s−t)ε−2 ∗ uε(x, ηt) = pα ∗ η̃s(x) (9.9)
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and, by Cauchy-Schwartz, the square of the first term on the r.h.s. of (9.7) is bounded by

Eεµε

(∣∣∣pα ∗ η̃s(x)
∣∣∣2) = Eεµε

(∑
y

p2
α(x, y)η̃s(y)

2
)
≤ c′ε(1−α)d (9.10)

because Eεηt,ξt

(
η̃s(y)η̃s(z)

)
= 0 for z �= y by (A.7). The last inequality in (9.10) follows

from Theorem 5. By assumption, (1 − α)d > 2γ and this concludes the proof of the
theorem. �

10 Local ergodic theorems

In this section we will prove a local equilibrium result, close in spirit to what in the
hydrodynamic literature is called the “Gibbs-Boltzmann principle”, [3], or the “one block
estimate”, [8]. The question concerns time averaged quantities and the aim is to prove
closeness to their equilibrium expectations with parameters determined by local empirical
means (local equilibrium). This can be reduced in our case (see Appendix D) to study
decay of time correlations. Decay of time correlations is then proved in Theorems 9 and
10 below respectively in the case of some bounded and unbounded local functions of ηt.

Theorem 9. For any τ > 0 there is c so that for any ε > 0, x, y ∈ Ωε, |x− y| ≥ ε−1+α/2

and t ≤ τ ,∣∣∣Eεµε

(
{1ηt+ε2α(x)=0 − e−u

ε(x,ηt)}{1ηt+ε2α (y)=0 − e−u
ε(y,ηt)}

)∣∣∣ ≤ cε2α (10.1)

Proof. The proof uses the same auxiliary process introduced in the beginning of the
proof of Theorem 8, to which we refer for notation. To compute the expectation we
decompose the unity by writing 1 = (1x,= + 1x,>)(1y,= + 1y,>), where

1z,= = 1
η
(F,d)

t+ε2α (z)+η
(b)

t+ε2α (z)=0
, 1z,> = 1

η
(F,d)

t+ε2α (z)+η
(b)

t+ε2α (z)>0

Observe that

η(F )(z) = η(z) ⇔ 1z,= = 1 (10.2)

Since η(F,d)
t = 0 and η(b)

t = 0, similarly to (9.6) we have

Eεµε

(
1z,>

)
≤ Eεµε

(
η

(F,d)
t+ε2α(z) + η

(b)
t+ε2α(z)

)
≤ cε2α (10.3)

Hence

l.h.s. of (10.1) ≤
∣∣∣Eεµε

(
{1

η
(F )

t+ε2α (x)=0
− e−u

ε(x,ηt)}{1
η
(F )

t+ε2α (y)=0
− e−u

ε(y,ηt)}
)∣∣∣

+
∣∣∣Eεµε

(
η

(F,d)
t+ε2α(x) + η

(b)
t+ε2α(x) + η

(F,d)
t+ε2α(y) + η

(b)
t+ε2α(y)

)∣∣∣
≤ cε2α (10.4)
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By Theorem 5,

P εηt

(
{η(F )
t+ε2α(x) = 0}

)
=
∏
z

(
1 − πε−2+2α(z, x)

)ηt(z)
= exp

{∑
z

ηt(z) log[1 − πε−2+2α(z, x)]
}

= e−u
ε(x,ηt) +R, |R| ≤ cε(1−α)d

Using the assumption that |x−y| ≥ ε−1+α/2, we then conclude the proof of (10.1), because
(1 − α)d > 2α. �

Denoting by Pρ and Eρ law and expectation w.r.t. the product of identical Poisson
measures with mean ρ > 0, given a function g = g(n), n ∈ N, we shorthand

fε(ηt, ηt+ε2α(x), ηt+ε2α(y)) := 1uε(x,ηt)≤M,uε(y,ηt)≤M
{
g(ηt+ε2α(x)) − Euε(x,ηt)(g)

}
×
{
g(ηt+ε2α(y)) − Euε(y,ηt)(g)

}
(10.5)

with M as in (8.2).

Theorem 10. With the notation of (10.5), suppose g(n) ≤ ebn, b > 0, then, for any
τ > 0 there is c so that, for any ε > 0 and t ≤ τ ,

lim
ε→0

sup
x �=y

∣∣∣Eεµε

(
fε(ηt, ηt+ε2α(x), ηt+ε2α(y))

)∣∣∣ = 0 (10.6)

Proof. By (10.2) and (10.3),∣∣∣Eεµε

(
fε(ηt, ηt+ε2α(x), ηt+ε2α(y))

)
− Eεµε

(
fε(ηt, η

(F )
t+ε2α(x)η(F )

t+ε2α(y))
)∣∣∣

≤ Eεµε

(
f2
ε

)1/2
cεα ≤ c′εα (10.7)

The last inequality uses first that the functions 1uε(z,ηt)≤MEuε(z,ηt)(g), z = x, y, are
bounded and then Theorem 8.1 (as f2

ε is exponentially bounded).
To simplify the computations, it is now convenient to expand g in Poisson polynomials,

we refer to Appendix A for definition and properties. We just recall here that the Poisson
polynomial of order n, denoted by dn(·) and defined in (A.1), is such that Eu(dn) = un.
By (A.4),

g(η(x)) =
∞∑
n=0

an
n!
dn(η(x)), |an| ≤ |eb + 1|n (10.8)

For any ω ∈ N
Ωε we call |ω| =

∑
x∈Ωε

ω(x) and define

Dω(η) =
∏
z∈Ωε

dω(z)(η(z)) (10.9)

Call

gn(ηt+ε2α(z)) = dn(ηt+ε2α(z)) − u(z, ηt)n (10.10)
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and denote by Eεηt,ξt
the conditional expectation given ηt, ξt at time t. By (A.7)

Eεηt,ξt

(
gn(η

(F )
t+ε2α(x))gm(η(F )

t+ε2α(y))
)

=
∑
ω′

n,ω
′
m

π
(0)
ε−2+2α(ωn,x, ω′

n)π
(0)
ε−2+2α(ωm,y, ω′

m){Dω′
n+ω′

m
(ηt)

+uε(x, ηt)nuε(y, ηt)m −Dω′
n
(ηt)uε(y, ηt)m −Dω′

m
(ηt)uε(x, ηt)n} (10.11)

where ωk,z is the configuration with k particles at z and π(0)
t (ω, ω′) is the kernel of etL

(η,0)
.

By (A.11), there is c(t) bounded on the compacts, so that calling Aε,t(n) = c(t)n[1 +
n!εn1n≥ε−1],

|Eεµε

(
1uε(x,ηt)≤M,uε(y,ηt)≤Mgn(η

(F )
t+ε2α(x))gm(η(F )

t+ε2α(y))
)
|

≤ Aε,t(n+m) +Aε,t(n)Mm +Aε,t(m)Mn +Mn+m (10.12)

Thus, recalling (10.8), given any δ > 0 there is N so that∣∣∣Eεµε

(
f(ηt, η

(F )
t+ε2α(x)η(F )

t+ε2α(y))
)
−

∑
n≤N,m≤N

anam
n!m!

Eεµε

(
1uε(x,ηt)≤M,uε(y,ηt)≤M

×gn(η(F )
t+ε2α(x))gm(η(F )

t+ε2α(y))
)∣∣∣ ≤ δ (10.13)

Theorem 10 will then follow from showing that for any fixed N ,

lim
ε→0

sup
x �=y

sup
n,m≤N

∣∣∣Eεµε

(
1uε(x,ηt)≤M,uε(y,ηt)≤Mgn(η

(F )
t+ε2α(x))gm(η(F )

t+ε2α(y))
)∣∣∣ = 0 (10.14)

The proof of (10.14) is reported at the end of Appendix A; it is based on a cancellation
on the r.h.s. of (10.11) among the terms which appear when we limit the sum over ω′

n

and ω′
m to ω′

n, ω′
m and ω′

n + ω′
m being all ≤ 1 and when we take only non diagonal terms

in the expansions of uε(z, ηt)k, k = n,m, z = x, y, (recall the definition (4.2) of uε as a
sum of terms). It is then shown in Appendix A that the contribution of the other terms
vanishes proportionally to a positive power of ε, the proportionality coefficient has a “bad
dependence” on N , but since N is held fixed as ε→ 0, this does not give problems. �

11 Homogenization and convergence to the Stirring Process

In this section we will prove that the process ξt is close to the stirring process on time inter-
vals so long for the latter to reach local equilibrium, which implies that also ξt approaches
the same local equilibrium state, see Theorem 11 below. The statement is proved in two
steps. We first prove a homogenization result at “short times”. Recalling that the gener-
ator for displacements of ξ particles is ε−2aL(ξ,0), the ξ particles start moving at times of
order ε2a. On such a time scale, we will prove that to leading order the ξ particles move as
stirring with a time dependent intensity determined by the local empirical averages of the
η-particles. The result is then extended to longer times of order ε2β (recall β < a), when
the ξ-particles, like the stirring, become themselves also approximately exchangeable.
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The result is used in Appendix E to control a term Q which is the most dangerous one
among those which appear in the computation of (4.4). After some maquillage operations
whose details are given in Appendix E, the space time averages involved in the expression
(4.5) lead to study expectations of a measure νετ , τ > 0, which is a space time average of
the original µε. νετ is in fact defined as the probability on N

Ωε×{0, 1}Ωε whose expectations
are

νετ (f) = εd
∑
x∈Ωε

∫
−
τ

0

Eεµε

(
Sxf(ηt, ξt)

)
(11.1)

with Sx the shift by x on the torus Ωε.
We fix a large constant C (C = eM , see Appendix E), and shorthand

T = Cε2β, B = {x : |x| ≤ ε−a+β/2} (11.2)

We also write x for a subset of Ωε, |x| for its cardinality and call

gx(ξ) =
∏
x∈x

ξ(x) (11.3)

We can now state the main theorem in this section.

Theorem 11. Let T as in (11.2), then

lim
ε→0

sup
x⊂B,|x|=4

∣∣∣Eενε
τ

(
gx(ξT )

)
− νετ

(∏
x∈x

{
∑
z

πTε−2a(x, z)ξ0(z)}
)∣∣∣ = 0 (11.4)

The proof of the theorem is divided in five steps. From the proof it will be clear that
the result extends to |x| ≤ n, for any finite fixed positive integer n.

Step 1: Stirring Process and Duality.
We will prove (11.4) using extensively the self-duality of the stirring process. The stirring
on {0, 1}Ωε is the process defined by the generator Lst

Lstf(x) =
∑

z,z′:|z−z′|=1 on Ωε

[f(xz,z
′
) − f(x)] (11.5)

where the sum is over ordered pairs of nearest neighbor sites on the torus Ωε (a bond
is counted twice, in agreement with (2.4)) and xz,z

′
is defined as in Section 2, once we

identify x with the configuration ξx(z) = 1 iff z ∈ x. We will also shorthand

pt(x, y) = etL
st
(x, y) (11.6)

Given γ ≥ β, we divide the time interval [0, T ] into a union of intervals [tn, tn+1]. If
γ = β there is only one interval, if γ > β we define iteratively tn = tn−1 + ε2γ , n ≤ N + 1,
where N + 1 is the first integer such that tN+1 ≥ T and then rename (if necessary)
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tN+1 = T . The choice γ = β is possible only in d > 2. In fact we will need in our analysis
γ such that

a > γ > a− β (11.7)

On the other hand we have already used (as in Theorem 7) that β <
d

d+ 2
a so that the

condition γ = β together with (11.7) imposes 2β > a, hence
d

d+ 2
a >

a

2
, which is satisfied

only in d > 2, (in d > 2 we then choose γ = β with β smaller but close enough to
d

d+ 2
a

so that (11.7) holds).
We will compute Eενε

τ

(
gx(ξT )

)
by successive conditioning on (ηtn , ξtn), n = N,N −

1, .., 1, 0. Modulo errors which vanish in the limit ε → 0, at each step we always have to
compute the expectation of the “same” function gy, with |y| = 4. The origin of such a
strong result is the self-duality of the stirring.

On each time interval [tn, tn+1] we compare ε−2aL(ξ,0)gx(ξt) with ε−2acLstgx(ξt), the
former acting on ξt the latter on x, see (11.10) below. The choice of the intensity c is
critical. In the generator L(ξ,0) the intensity is proportional to 1ηt(x)=0 which by Theorem
9 can be replaced by e−u

ε(x,ηt−ε2α). We would like to further approximate it by putting
e−u

ε(0,ηtn−1 ). We will see that the error of shifting x to 0 is under control, but for time
shifts we only have Theorem 8. Thus, instead of setting c = e−u

ε(0,ηtn−1 ) as we would have
liked, we will set c = e−w

ε(t,tn−1,ηtn−1 ), where

wε(t, tn−1, ηtn−1) =
∑
y

π(t−ε2α−tn−1)ε−2(0, y)uε(y, ηtn−1) (11.8)

To implement the above strategy, it is convenient to rewrite

L(ξ,0)gx(ξ) =
∑

z,z′:|z−z′|=1

|ξ(z) − ξ(z′)|
(
ξ(z)1η(z′)=0 + ξ(z′)1η(z)=0

)(
gx(ξz,z

′
) − gx(ξ)

)

and telescopic sum

1ηt(z)=0 = [1ηt(z)=0 − e−u
ε(z,ηt−ε2α )] + [e−u

ε(z,ηt−ε2α ) − e−u
ε(0,ηt−ε2α )]

+[e−u
ε(0,ηt−ε2α ) − e−w

ε(t,tn−1,ηtn−1)] + e−w
ε(t,tn−1,ηtn−1 ) (11.9)

doing the same for 1ηs(z′)=0. Since

gx(ξz,z
′
) = gxz,z′ (ξ)

we get

L(ξ,0)gx(ξt) = e−w
ε(t,tn−1,ηtn)Lstgx(ξt) +H1(x, t) + · · · +H3(x, t) (11.10)

where Hi comes from the i-th term of the telescopic sum and dependence on ξ and η is
not made explicit. Notice that the actual generator of the process is ε−2aL(ξ,0), so that
also “the error terms” Hi get multiplied by ε−2a.



Two scale hydrodynamic limits 23

Step 2: The time interval [tN , tN+1].
(11.10) is the desired duality relation, which states that modulo the errors Hi we can
compute the expectation of gx(ξt) by applying the stirring to gx thought of as a function
of x. The statement will become hopefully clear below. Set

Atn,tj (ηtj ) :=
∫ tn+1

tn

e−w
ε(t,tj ,ηtj ), j < n (11.11)

recalling that in the whole sequel, x0 ⊂ B and |x0| = 4 (we rename by x0 the set x in
(11.2) where B is also defined). We set 2B = {x : |x| ≤ 2ε−a+β/2}. Using (11.10) and
recalling (11.6), we get

Eενε
τ

(
gx0(ξtN+1

)
)

= Eενε
τ

( ∑
y⊂2B

pAtN ,tN−1
(ηtN−1

)ε−2a(x0, y)gy(ξtN )
)

+ R(1)
N (11.12)

R(1)
n =

∫ tn+1

tn

∑
y

p(tN−t)ε−2a(x0, y)Eενε
τ

(
{L′gy(ξs) + ε−2a[H1(y, s) + · · · +H3(y, s)]}

)

where L′ = L(ξ,+) + L(ξ,−). The remainder term R
(1)
N will be bounded later, together

with the analogous terms coming from iterating the above analysis to the successive time
intervals. But we are not yet ready for the iteration, because the first term on the r.h.s.
of (11.12) has not the same expression as the term we started from, since it depends on
ηtN−1

. To fix the problem we do a Taylor-Lagrange expansion to first order in the small
parameter [AtN ,tN−1

(ηtN−1
) −AtN ,0(η0)].

Shorthand

bn(λ) := λAtn,tn−1(ηtn−1) + (1 − λ)Atn,0(η0) (11.13)

then

Eενε
τ

(
gx0(ξtN+1

)
)

=
∑
y

pAtN ,0(η0)ε−2a(x0, y)Eενε
τ

(
gy(ξtN )

)
+ R(1)

N + R(2)
N (11.14)

where

R(2)
N =

∫ 1

0
Eενε

τ

(∑
y

[
AtN ,tN−1

(ηtN−1
) −AtN ,0(η0)

]
ε−2a

×pbN (λ)ε−2a(x0, y)Lstgy(ξtN )
)
dλ (11.15)

One may wonder why not to put since from the beginning (i.e. in (11.9)) wε(t, 0, η0) instead
of wε(t, tN−1, ηtN−1

). The reason is that, at this stage, the replacement is just a time change
in the stirring process, and its influence is smoothened by the mixing properties of the
stirring, as it will become clear when bounding R(2)

n .

Step 3: The iteration.
The first term on the r.h.s. of (11.14) has now the same structure as its l.h.s. so we can
iterate. Calling

A(n)(η0) := AtN ,0(η0) + · · · +Atn,0(η0), n ≤ N, A(N+1n)(η0) ≡ 0 (11.16)
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we get

Eενε
τ

(
gx0(ξtN+1

)
)

= Eενε
τ

(∑
y

pA(0)(η0)ε−2a(x0, y)gy(ξ0)
)

+
2∑
i=1

N∑
n=0

R(i)
n (11.17)

where, analogously to (11.15),

R(2)
n =

∫ 1

0
Eενε

τ

(∑
y

[
Atn,tn−1(ηtn−1) −Atn,0(η0)

]
ε−2a

×p[A(n+1)(η0)+bn(λ)]ε−2a(x0, y)Lstgy(ξtn)
)
dλ (11.18)

Step 4: Bounds on the remainders.
The following bounds hold:

• The contribution of R(1)
n is bounded by cε2γ−2a+2γ . Indeed the term H3 is bounded

using Theorem 8 by cε2γ−2a+2γ , while all the other terms are smaller. In fact, by
(10.1) the term withH1 is bounded proportionally to ε2γ−2a+2α, so that, by the choice
of α, it is ≤ cε2γ−2a+2γ . The term with H2 can be written as the sum of two terms.
The first one takes into account the case when all the particles remain in the ball of
radius 2ε−a+β/2 (i.e. twice the radius of the ball where they are initially). This term
is then bounded using (8.18), proportionally to ε2γ−2a+1−a+β/2. The second term
(contributing to H2) covers the case when there is at least a particle which travels by
e−a+β/2 in a time ε−2a+2β and it is therefore bounded by c exp

{
− c′ε−β

}
. Finally,

the term with L′gy(ξs) is bounded by cε2γ , because, by Theorem 5, Eενε
τ
(κηs(·)+1) ≤ c.

• The contribution of R(2)
n is bounded by

c ε2γ−2a+2β [(tN − tn)ε−2a]−1/2−1/12 (11.19)

c a positive constant. The bound is derived in Appendix B by exploiting estimates
on the stirring process known in the literature.

The total contribution of all the remainders is then bounded by

c {ε2γ−2a+2γε2β−2γ + ε−2a+2βT 1/2−1/12ε2a(1/2+1/12)} (11.20)

with T = Cε2β. The first term vanishes by (11.7), the second one if β >
5a
17

which is

compatible with the condition β <
d

d+ 2
a.

Step 5: Conclusion.
By (11.17)∣∣∣Eενε

τ

(
gx0(ξtN+1

)
)
− νετ

(∑
y

pA(0)(η0)ε−2a(x0, y)gy(ξ0)
)∣∣∣ ≤ cεδ
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where cεδ, δ > 0, shorthands the bound (11.20) on the remainders. We are going to prove
that

νετ

(
ε−2aA(0)(η0) ≥

Ce−M

2
ε−2a+2β

)
≥ 1 − cεβ (11.21)

Eνε
τ

(∫
−

Cε2β

0

|e−wε(t,0,η0) − e−u
ε(0,η) |

)
≤ cεβ (11.22)

Proof of (11.21)-(11.22). Recall that

ε−2aA(0)(η0) = ε−2a

∫ Cε2β

0
e−w

ε(t,0,η0), wε(t, 0, η0) =
∑
y

π(t−ε2α)ε−2(0, y)uε(y, η0)

By (8.2),

νετ
(
e−u

ε(0,η) ≤ e−M
)
≤ cε(1−α)d (11.23)

so that

νετ

(∫
−

Cε2β

0

e−w
ε(t,0,η0) <

e−M

2

)
≤ cε(1−α)d

+νετ
(∫
−

Cε2β

0

|e−wε(t,0,η0) − e−u
ε(0,η)| ≥ e−M

2

)
(11.24)

and (11.21) follows from (11.22), which we prove next:

νετ

(
|e−wε(t,0,η0) − e−u

ε(0,η)|
)

≤
∫
−

Cε2β

0

νετ

(∑
y

π(t−ε2α)ε−2(0, y)|uε(y, η) − uε(0, η)|
)

≤ ε{
∫
−

Cε2β

0

∑
y

π(t−ε2α)ε−2(0, y)|y|} νετ
(
‖uε(η)‖H2

1

)

having used (8.19). Since
∑
y

π(t−ε2α)ε−2(0, y)|y| ≤ ε−1+β and

Eενε
τ

(
‖uε(ηs)‖H2

1

)
=
∫
−

τ

0

Eεµε
τ

(
‖uε(ηt)‖H2

1

)
≤ cτ−1/2

(the last inequality follows from (8.9) and Cauchy-Schwartz), (11.22) and hence (11.21).
By (B.3), we then have∣∣∣Eενε

τ

(
gx0(ξtN+1

)
)
− νετ

(
{
∏
x∈x

∑
y

πA(0)(η0)ε−2a(x, y)}gy(ξ0)
)∣∣∣ ≤ c[εδ + εβ + ε(−2a+2β)/12]

Moreover, by (11.22) and (11.21),

Eνε
τ

(∑
y

|πA(0)(η0)ε−2a(x, y) − πCε−2a+2βe−uε(0,η)(x, y)|
)
≤ cε−2a+3β

(Ce−M/2)ε−2a+2β
+ cεβ

and the theorem is proved. �



26 A. De Masi, S. Luckhaus and E. Presutti

A Independent and branching random walks

In this appendix we prove the statements in the text which refer to independent ran-
dom walks and to independent random walks with independent branchings. We start by
recalling some of the main properties of independent random walks on Z

d.

Poisson polynomials. The Poisson polynomial of degree k, k ≥ 1, is defined as

d1(n) ≡ 1, dk(n) = n(n− 1) · · · (n− k + 1), k > 1 (A.1)

We have denoted by n the argument of the polynomial because we are going to restrict dk
to N. The following remarkable identities hold:

1η(x)=i =
∞∑
n=0

(−1)n

n!
dn+i(η(x)) (A.2)

ebη(x) =
∞∑
n=0

(eb − 1)n

n!
dn(η(x)) (A.3)

If f(n) is exponentially bounded, say |f(n)| ≤ ebn, then

f(η(x)) =
∞∑
n=0

an
n!
dn(η(x)), |an| ≤ |eb + 1|n (A.4)

The above can and will be applied to κη(x) (and to κnη(x), n ∈ N, as well), because κη(x),
which is the function which appears in the generator L in Section 2, has been supposed
to be exponentially bounded.

Poisson multi-polynomials. The Poisson multi-polynomial Dω, ω : Ωε → N, is

Dω(η) =
∏
x∈Ωε

dω(x)(η(x)) (A.5)

The duality relation

L(η,0)Dω(η) = L(ω,0)Dω(η) (A.6)

holds, namely the independent generator on Dω(η) is the same either if it acts on ω or on
η. Denoting by π(0)

t (·, ·) the kernel of etL
(·,0)

, it directly follows from (A.6) that∑
η′
π

(0)
t (η, η′)Dω(η′) =

∑
ω′
π

(0)
t (ω, ω′)Dω′(η) (A.7)

e(L
(η,0)+L′)tDω =

∑
ω′
π

(0)
t (ω, ω′)Dω′ +

∫ t

0

∑
ω′
π

(0)
t−s(ω, ω

′)e(L
(η,0)+L′)s{L′Dω} (A.8)

where L′ is some generator acting on functions of (η, ξ).
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Notation. We will use the following notation: 1x denotes the configuration ω with
only one particle at x; ω±ω′ is the configuration with ω(x)±ω′(x) at x (the relation with
the minus sign being defined only if ω′ ≤ ω); |ω| =

∑
x∈Ωε

ω(x). Then

π
(0)
t (ω, ω′) =

∑
y1,..,yn

{
n∏
i=1

πt(xi, yi)}1ω′=
P

i 1yi
(A.9)

In particular π(0)
t = πt when restricted to η : |η| = 1.

Proof of Theorem 1. We will prove here only the statements of the theorem relative
to the variables η. Recalling (5.2), by (A.7),

U ε0(x) = µε(uε(x, η)) =
∑
y

pα(x, y)µε
(
η(y)

)
=
∑
y

pα(x, y)
∑
z

πε−2t0(y, z)η
ε
−t0(z)

Thus |U ε0(x)| ≤ C, if C is the sup in (5.1). Moreover,

ε−1|∇U ε0(x)| ≤ ε−1 sup
z

|∇πε−2t0(0, z)| ≤
c

t0

which proves the first inequality in (5.5).
For future reference we also observe that the same argument used above shows that

µε(Dω(η)) =
∑
ω′
π

(0)
t0 Dω′(η−t0) ≤ C |ω| (A.10)

Call η̃(x) = η(x) − µε(η(x)), then

µε(‖uε − U ε‖2) = εd
∑
x∈Ωε

∑
z,z′

pα(x, z)pα(x, z′)µε(η̃(z)η̃(z′))

Shorthanding ωz = 1z and ωz,z′ = 1z + 1z′ ,

µε
(
η̃(z)η̃(z′)

)
= µε

(
Dωz,z′

)
− µε(Dωz)µ

ε(Dωz′ ) + 1z=z′ µε(η(z))

so that

µε(‖uε − U ε‖2) = εd
∑
x∈Ωε

∑
z∈Ωε

pα(x, z)2µε(η(z))

+
∑
z∈Ωε

[
∑
y∈Ωε

pα(x, y)πε−2t0(y, z)]
2η−t0(z) ≤ cε(1−α)d

and the part of Theorem 1 relative to the η variables is proved. �

The proof of Theorem 5 uses the following bound:
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Theorem 12. There is a constant c > 0 so that for any t > 0 and any ω,

Eεµε

(
Dω(ηt)

)
≤ Eεµε

(
Dω(η+

t )
)
≤
(
eκt(C + 2c

√
t)
)|ω|(1|ω|≤ε−1 + |ω|!(eε)|ω|1|ω|≥ε−1

)
(A.11)

where η+
t is the process with generator ε−2L(η,0) + L(η,+).

Proof. We will first prove that:

L(η,+)Dω(η) = κ|ω|Dω + κ
∑
x∈Ωε

ω(x)[ω(x) − 1]Dω−1x (A.12)

(recall that |ω| =
∑
x

ω(x), [ω − 1x](z) = ω(z) for all z �= x and [ω − 1x](x) = ω(x) − 1).

Indeed

L(η,+)Dω(η) = κ
∑
x

[∏
y �=x

dω(y)(η(y))
]
η(x)

[
dω(x)(η(x) + 1) − dω(x)(η(x))

]
and (A.12) follows from

k[dn(k + 1) − dn(k)] = ndn(k) + n[n− 1]dn−1(k)

By (A.8) and (A.12),

Eεµε

(
Dω(η+

t )
)

=
∑
ω′
π

(0)
t (ω, ω′)µε

(
Dω′(η)) + κn

∫ t

0

∑
ω′
π

(0)
t−s(ω, ω

′)Eεµε

(
Dω′(η+

s )
)

+κ
∑
y∈Ωε

∫ t

0

∑
ω′
π

(0)
t−s(ω, ω

′)ω′(y)[ω′(y) − 1]Eεµε

(
Dω′−1y(η+

s )
)

Let ω =
n∑
i=1

1xi . Recalling (A.9), the last term can then be written as

κ
∑
y∈Ωε

{∫ t

0

∑
y1,..,yn

{
n∏
i=1

πt−s(xi, yi)}{
n∑
i=1

1yi=y}{[
n∑
i=1

1yi=y] − 1}Eεµε

(
DP

1yi−1y
(η+
s )
)

Since {
n∑
i=1

1yi=y}{[
n∑
i=1

1yi=y] − 1} =
∑
i,j �=i

1yi=yj=y, we get

κ
∑
i,j �=i

∑
y1,..,yn

1yi=yj

∫ t

0
{
n∏
�=1

πt−s(x�, y�)}Eεµε

(
DP

� �=j 1y�
(η+
s )
)

≤ κ
∑
i,j �=i

∑
y1,., �yj ,.,yn

∫ t

0
{
∏
� �=j

πt−s(x�, y�)}{sup
x,y

πt−s(x, y)}Eεµε

(
DP

� �=j 1y�
(η+
s )
)

and since κ sup
x,y

πt−s(x, y) ≤ c
ε√
t− s

,

≤ cεn(n− 1)
∫ t

0

1√
t− s

sup
ω∗:|ω∗|=n−1

∑
ω′:|ω′|=n−1

π
(0)
t−s(ω

∗, ω′)Eεµε

(
Dω′(η+

s )
)
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Since µε
(
Dω(η0)

)
≤ C |ω|,

Eεµε

(
Dω(η+

t )
)
≤ eκnt

(
Cn +

n−1∑
k=1

[cε]k[n(n− 1)2 · · · (n− k + 1)2(n− k)]Ik(t)Cn−k
)

where

Ik(t) =
∫ t

0

1√
t− s1

· · ·
∫ sk−1

0

1√
t− sk

=
(2
√
t)k

k!

Calling Bn(ε) = max
k≤n

(nε)k,

Eεµε

(
Dωn,x(η+

t )
)
≤ Bn(ε)eκnt

n∑
k=0

(
n
k

)
[2c

√
t]kCn−k ≤ Bn(ε)[eκt(C + 2c

√
t)]n

Finally, Bn(ε) ≤ 1 for n ≤ ε−1 and otherwise Bn(ε) ≤ εnn!en (by the Stirling formula
nn ≤ n!en), hence (A.11). �

Proof of Theorem 5. We complete here the proof of Theorem 5 by proving (8.3) and
(8.4). By (A.3),

Eεµε

(
ebη

+
t (x)

)
=

∞∑
n=0

(eb − 1)n

n!
Eεµε

(
Dωn,x(η+

t )
)

(A.13)

where ωn,x = n1x is the configuration with n particles, all at x. By (A.11),

Eεµε

(
ebη

+
t (x)

)
≤

∞∑
n=0

ebn

n!
[eκt(C + 2c

√
t)]n +

∑
n≥ε−1

(
eb+1[eκt(C + 2c

√
t)ε
)n

≤ 2 exp
{
ebeκt(C + 2c

√
t)
}

for ε small enough, which proves (8.1).
We will next prove that

Eεµε

(
|uε(x, η+

t ) − Eεµε

(
uε(x, η+

t )
)
|2
)
≤ ce2κtε(1−α)d (A.14)

Proceeding as in the proof of Theorem 1,

l.h.s. of (A.14) =
∑
z,z′

pα(x, z)pα(x, z′)V2(z, z′, t) +
∑
z

pα(x, z)2Eεµε

(
(η+
t (z))

)

V2(z, z′, t) = Eεµε

(
Dωz,z′ (η

+
t ) − Eεµε

(
Dωz(η

+
t )
)
Eεµε

(
Dωz′ (η

+
t )
))

Since L(η,+)d2(η(x)) = 2κ[d2(η(x)) + η(x)],

l.h.s. of (A.14) ≤
∑
z

pα(x, z)2Eεµε

(
η+
t (z)

)
+ e2κt

∑
z

πε−2+2α+ε−2(t+t0)(x, z)
2η−t0(z)

+2κ
∑
z

∫ t

0
e2κ(t−s)πε−2+2α+ε−2(t−s)(x, z)

2Eεµε

(
η+
s (z)

)
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Using the inequality Eεµε

(
η+
t (z)

)
≤ Ceκt, we then get (A.14). �

Proof of (10.14). We fix ω′
n and ω′

m on the r.h.s. of (10.11) and expand the three
terms uε(x, ηt)n, uε(y, ηt)m and uε(x, ηt)nuε(y, ηt)m, starting from the former.

uε(x, ηt)n =
∑

z1..zn∈Xn,ω′
n, �=

n∏
i=1

pα(x, zi)ηt(zi) +
∑

z1..zn /∈Xn,ω′
n, �=

n∏
i=1

pα(x, zi)ηt(zi)

where Xn,ω′
n, �= = {z1..zn : ω′

n(zi) = 0, i = 1, .., n; zi �= zj for all i �= j}. Thus

uε(x, ηt)n = T + S, T =
∑

z1..zn∈Xn,ω′
m, �=

{
n∏
i=1

pα(x, zi)}DP
i 1zi

(ηt)

S =
∑

z1..zn /∈Xn,ω′
m, �=

n∏
i=1

pα(x, zi)ηt(zi) (A.15)

We next bound S:

S ≤
n∑
i=1

{
∑

zi:ω′
m(zi)≥1

pα(x, zi)ηt(zi)}
∑

z1.. �zi..zn

∏
i�=j

pα(x, zj)ηt(zj)

+
∑
i�=j

{
∑

z:ω′
m(z)=0

pα(x, z)2ηt(z)2}
∑

z1.. �zi.. �zj..zn

∏
� �=i,j

pα(x, z�)ηt(z�)

Recalling that uε(x, ηt) ≤M in (10.14),

S ≤Mn−1
n∑
i=1

∑
zi:ω′

m(zi)≥1

pα(x, zi)ηt(zi) +Mn−2
∑
i�=j

{
∑

z:ω′
m(z)=0

pα(x, z)2ηt(z)2}

and since dk(η(z))η(z) = dk+1(η(z)) + kdk(η(z)), Eεµε

(
Dω(ηt)

)
≤ c(t)|ω|, |ω| ≤ N ,

Eεµε

(
1uε(x,ηt)≤MDω′

m
(ηt)S

)
≤Mn−1n(mcε(1−α)d)[c(t)m+1 + c(t)mm]

+Mn−2n(n− 1)[c(t)2 + c(t)]c(t)m

so that the term with S does not contribute as ε→ 0. The term in (10.14) containing T ,
cf. (A.15), is

−
∑
ω′

m,ω
′
n

1ω′
n≤1,ω′

nω
′
m≡0 π

(0)
ε−2+2α(ωn,x, ω′

n)π
(0)
ε−2+2α(ωm,y, ω′

m)

×Eεµε

(
1uε(x,ηt)≤M1uε(y,ηt)≤MDω′

n+ω′
m

(ηt)
)

(A.16)

By an argument similar to the one used when bounding S, the error when dropping the
conditions on ω′

n is bounded by [n(n − 1) + nm]cε(1−α)dc(t)n+m. In conclusion the term
in (10.14) containing uε(x, ηt)nDω′

m
(ηt) is, modulo terms which vanish as ε→ 0,

−
∑
ω′

m,ω
′
n

π
(0)
ε−2+2α(ωn,x, ω′

n)π
(0)
ε−2+2α(ωm,y, ω′

m)

×Eεµε

(
1uε(x,ηt)≤M1uε(y,ηt)≤MDω′

n+ω′
m

(ηt)
)

(A.17)
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The analogous conclusion holds for the term with uε(y, ηt)mDω′
n
(ηt) so that the proof of

(10.14) reduces to the analysis of the term

Eεµε

( ∑
ω′

n,ω
′
m

π
(0)
ε−2+2α(ωn,x, ω′

n)π
(0)
ε−2+2α(ωm,y, ω′

m){uε(x, ηt)nuε(y, ηt)m −Dω′
n+ω′

m
(ηt)} (A.18)

Proceeding as in (A.15), and calling X�= = {z1..zn+m : zi �= zj for all i �= j}, we write, by
an abuse of notation, uε(x, ηt)nuε(y, ηt)m = T + S where

T =
∑

z1..zn+m∈X�=

{
n∏
i=1

pα(x, zi)}{
n+m∏
i=n+1

pα(y, zi)}ηt(z1)..ηt(zn+m)

S =
∑

z1..zn+m/∈X�=

{
n∏
i=1

pα(x, zi)}{
n+m∏
i=n+1

pα(y, zi)}ηt(z1)..ηt(zn+m)

The analysis is now completely analogous to the previous one, S is bounded exploiting
the presence of the characteristic functions uε(x, ηt) ≤M and uε(y, ηt) ≤M , T is equal to
a Dωm+n Poisson multi-polynomial with ωm+n ≤ 1 and |ωm+n| = m+ n, after which the
condition that ωm+n ≤ 1 can be dropped with a vanishing error, thus proving that (A.18)
vanishes as ε→ 0 uniformly in x, y and n,m ≤ N . �

B Stirring process

In [6]-[7] it is proved that:

Theorem 13. Let p(∞)
t (x, y) and π

(∞)
t (x, y) denote the kernel of the semigroups of the

stirring and of the independent processes in the whole Z
d. Then, given any n ≥ 1 (but the

case n = 1 is trivial, because pt(x, y) ≡ πt(x, y)), any dimension d ≥ 1, there is c so that,
for any x, |x| = n,∑

y

∣∣∣p(∞)
t (x, y) − π

(∞)
t (x, y)

∣∣∣ ≤ ct−1/12 (B.1)

The bound (B.1) cannot hold in our case where the processes are defined on the torus
Ωε, because pt(x, y) and πt(x, y) have different limits as t→ ∞: the former converges to the
uniform distribution of n distinct sites in Ωε while in the latter the exclusion condition is
dropped. However in our applications we consider times t ≤ τ (with the stirring amplified
by a factor ε−2a, thus times ≤ ε−2aτ for the process with generator Lst. Since

∑
y:|y−x|>ε−1

pt(x, y) ≤ c
e−ε−2/t

√
t

(B.2)
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(B.1) remains valid for the processes in Ωε provided t ≤ ε−2aτ and with c in (B.1) depen-
dent on τ :

sup
ε>0

sup
t≤ε−2aτ

sup
|x|=n

t1/12
∑
y

∣∣∣pt(x, y) − π
(0)
t (x, y)

∣∣∣ ≤ cn(τ) (B.3)

Proof of Theorem 1. (Relative to the ξ particles). By definition

µε(ξ(x)) =
∑
y

πt0ε−2a(x, y)ξ−t0(y) (B.4)

hence

ε−a|∇µε(ξ(x))| ≤ c√
t0

(B.5)

uniformly in ε and x ∈ Ωε, which proves the second inequality in (5.5). We have

‖vε(x, ξ) − V ε
0 (x)‖2 =

∑
y

qβ(x, y)2[ξ(y) − µε(ξ(y))]2

+
∑
y �=z

qβ(x, y)qβ(x, z)[ξ(y) − µε(ξ(y))][ξ(z) − µε(ξ(z))] (B.6)

The µε expectation of the first term is bounded by cεa−β . The expectation of the sec-
ond term is computed using (B.3) and it is then bounded by c[t0ε−2a]−1/12. The second
inequality in (5.4) is proved. �

Proof of (11.19). By (9.1),

ε−2a|AtN ,tN−1
(ηtN−1

) −AtN ,0(η0)| ≤ cε2γ+2β−2a (B.7)

which is the first factor in (11.19). The proof of (11.19) then follows from the following
theorem:

Theorem 14. For any n > 1 there is c so that for any x, |x| = n, t ≤ ε−2τ ,

sup
‖ψ‖∞≤1

∣∣∣∑
z

pt(x, z)Lstψ(z)
∣∣∣ ≤ c

t1/2+1/12
(B.8)

where the sup is over all functions ψ(z), |z| = n which are bounded by 1.

Proof. We quote from the literature, [5], the following bound: there is c so that, for
any z, z′, |z − z′| = 1 and any t ≤ ε−2aτ ,∑

y

∣∣pt(x(z,z′), y) − pt(x, y)
∣∣ ≤ c√

t
(B.9)
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where x(z,z′) is the configuration obtained from x by exchanging the content of the sites z
and z′: thus, if they are both contained in x or both in its complement, then x(z,z′) = x;
otherwise a particle of x is displaced from z to z′ or viceversa. we need to estimate∑

y

pt(x, y)Lstψ(y) =
∑
z

pt/2(x, z)L
stφ(z), φ(z) :=

∑
y

pt/2(z, y)ψ(y) (B.10)

Let ∇i denote the gradient acting on the variable zi and E+ the set of all positively
oriented unit vectors of Z

d. Then

Lstφ(z) =
n∑
i=1

∑
|e|=1

1zj �=zi+e,j �=i {φ(z(zi,zi+e)) − φ(z)} = T1 + T2 (B.11)

T1(z) =
n∑
i

∑
e∈E+

1zj �=zi±e,j �=i [(−e) · ∇i][e · ∇i]φ(z)

T2(z) =
∑
i,j

∑
|e|=1

1zj=zi−e,1zk �=zi+e,k �=i {φ(z(zi,zi+e)) − φ(z)}

From (B.10), after “integrating by parts”,

∑
z

pt/2(x, z)T1(z) =
n∑
i

∑
e∈E+

∑
z

{(e · ∇i)[pt/2(x, z) (B.12)

×1zj �=zi±e,j �=i]}{(e · ∇i)φ(z)} (B.13)

Recalling the definition of φ in (B.10) and using (B.9), we bound the gradient of φ by
c/
√
t. The first factor in (B.13) is instead estimated using (B.3), and gives the desired

bound ct−1/2−1/12. The term with T2(z), see (B.11), is treated similarly and (11.19) is
proved. �

C Proof of Theorem 3. First part

In this and in the next three Appendices we will bound

Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ

0
(L+D){‖uε − U ε‖2 + ‖vε − V ε‖2}

∣∣∣) (C.1)

We will start by an explicit computation of (L + D)‖uε − U ε‖2 and (L + D)‖vε − V ε‖2

obtaining expressions which are sums of Laplacian and Reaction terms. The latter are those
produced by the L(η,0)+D(η,0) and L(ξ,0)+D(ξ,0), with D(η,0) and D(ξ,0) the laplacian parts
of D, D is defined in Section 3. The Reaction terms instead are produced by L(η,+)+D(η,+)

and L(ξ,+) +D(ξ,+) for the births and by L(η,−) +D(η,−) and L(ξ,−) +D(ξ,−) for the deaths,
having denoted by D(η,±) and D(ξ,±) the reaction terms in D.

A finer classification of all the terms distinguishes those denoted by Bεi which are
bounded proportionally to ‖uε − U ε‖2 + ‖vε − V ε‖2 and those which when inserted in
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(C.1) vanish as ε → 0. They will be generically called remainders. Among them we call
Rεi and Cεi those which can be estimated using the a priori bounds of Section 8, Sεi those
bounded in Appendix D exploiting the results of Section 10. There are two more terms,
H which is bounded in Remarks 1 below using Corollary 2 and Q, studied in Appendix
E using the analysis in Section 11. In Appendix F we bound the martingale terms in
(4.5)-(4.6), thus completing the proof of Theorem 3.

In the sequel we will often drop ε from the notation.

C.1 Laplacian terms

A computation essentially similar to the one in the proof of Theorem 6 yields

(L(η,0) +D(η,0))‖u− U‖2 = −2‖u− U‖2
H2

1
+Rε1 (C.2)

where Rε1, defined in (8.12), vanishes as ε → 0, see (8.17), and for this reason is called a
Rε term. We will not take advantage of the negative sign of the H2

1 term −2‖u − U‖2
H2

1
,

which will be just bounded by 0.
In an analogous way,

(L(ξ,0) +D(ξ,0))‖v − V ‖2 = −2ε−2a〈∇(v − V ), e−U∇(v − V )〉 + 2H
+Rε3 +Rε4 + 2Sε1 + 2Cε1 (C.3)

where Rε4 is defined in (8.27) and bounded in (8.30),

H(ξ, η) = ε−2a〈v − V, [e−u − e−U ]∆v〉 (C.4)

Rε3(ξ, η) = −2ε−2a〈v − V, (∇e−U )∇(v − V )〉 (C.5)

Sε1(ξ, η) =
∑
e:|e|=1

εd
∑
x

[v(x) − V (x)]ε−2a
∑
z

e · ∇qβ(z − x)

×
{
ξ(z)(1 − ξ(z + e))[1η(z+e)=0 − e−u(z+e)]

}
(C.6)

Cε1(ξ, η) = ε−2a
∑
e:|e|=1

εd
∑
x

[v(x) − V (x)]
∑
z

ξ(z)(1 − ξ(z + e))

×[e−u(z+e) − e−u(x)]e · ∇qβ(x, z) (C.7)

Remarks 1. From (8.42) we get that

−2ε−2a〈∇(v − V ), e−U∇(v − V )〉 + 2H ≤ c
(
‖u− U‖2 + ‖v − V ‖2 + ε1−2a‖u‖H2

1

)
(C.8)

From (8.18) and (8.9) it follows that

Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
Cε1(ξt, ηt)

∣∣∣) ≤ ε−2a
∑
e,z

|e · ∇qβ(x, z)|
∫ τ

0
εd
∑
x

|e−u(z+e) − e−u(x)| ≤ cε1−2a

(C.9)
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In Appendix D we prove that

lim
ε→0

Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
Sε1(ξt, ηt)

∣∣∣) = 0

Finally, since |∇e−U | ≤ cε, |Rε3| ≤ cε1−2a.

C.2 The Reactions terms

• Birth process, η-particles.

(L(η,+) +D(η,+))‖u− U‖2 = 2κ‖u− U‖2 +Rε2 (C.10)

where Rε2(η) is defined in (8.14) and bounded by cε(1−α)d, see the proof of Theorem 6.

• Death process, η-particles.

(L(η,−) +D(η,−))‖u− U‖2 = T + 2〈u− U, [F−
1 (U) + F−

2 (U)V ]〉 +Rε3 − 2Sε2 (C.11)

where Rε3 is defined in (8.15), its expectation being bounded by cε(1−α)d, see again the
proof of Theorem 6. Shorthanding by χM,z the characteristic function that u(z, η) ≤M ,

T = −2εd
∑
x

[u(x) − U(x)]
∑
z

pα(x, z)χM,zF
−
1 (u(z))

−2εd
∑
x

[u(x) − U(x)]
∑
z

pα(x, z)ξ(z)χM,zF
−
2 (u(z))

and

Sε2(ξ, η) = εd
∑
x

[u(x) − U(x)]
∑
z

pα(x, z)
{[
η(z)κη(z) − χM,zF

−
1 (u(z))

]
+
[
ξ(z)η(z)[κη(z)+1 − κη(z)] − χM,zF

−
2 (u(z))

]}
(C.12)

We next write

T = −2〈u− U,F−
1 (U)〉 − 2〈u− U,F−

2 (U)V 〉
−2εd

∑
x

[u(x) − U(x)]F−
2 (U(x)){

∑
z

pα(x, z)ξ(z) − V (x)} − 2Bε1 +Rε6 (C.13)

where

Rε6 = −2εd
∑
x

[u(x) − U(x)]
∑
z

pα(x, z)

×
{

[F−
1 (U(z)) − F−

1 (U(x))] + ξ(z)[F−
2 (U(z)) − F−

2 (U(x))]

−(1 − χM,z)[F−
1 (U(z)) + ξ(z)F−

2 (U(z))]
}

(C.14)



36 A. De Masi, S. Luckhaus and E. Presutti

and

Bε1 = εd
∑
x

[u(x) − U(x)]
∑
z

pα(x, z)χM,z

{
[F−

1 (u(z)) − F−
1 (U(z))]

+ξ(z)[F−
2 (u(z)) − F−

2 (U(z))]
}

(C.15)

The first two terms on the r.h.s. of (C.13) simplify with the second term on the r.h.s. of
(C.11). We then add and subtract v(x) in the third term on the right hand side of (C.13),
so that

(L(η,−) +D(η,−))‖u− U‖2 = −2Sε2 − 2(Bε0 + Bε1) − 2Cε2 +Rε3 +Rε6 +Rε7 (C.16)

where

Bε0 = 〈u− U,F−
2 (U)(v − V )〉 (C.17)

Cε2(ξ, η) =< (pα − 1) � [(u− U)F−
2 (U)], v > (C.18)

Rε7(ξ, η) = εd
∑
x

[u(x) − U(x)]F−
2 (U(x))

∑
z

{
pα(x, z) −

∑
y

pα(x, y)qβ(y, z)
}
ξ(z)

(C.19)

Remarks 2. In Appendix D we prove that

lim
ε→0

Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
Sε2(ξt, ηt)

∣∣∣) = 0

By Theorem 5,

sup
t≤τ

Eεµε

(
|Rε6(ηt, ξt)|

)
≤ cMε

∑
z

pα(0, z)|z| + cε(1−α)d

The expression on the r.h.s. of (C.15) is called Bε1 because |Bε1| ≤ cM‖uε − U ε‖2, cM a
constant which depends on M . Similarly, |Bε0| ≤ cM (‖uε−U ε‖2+‖vε−V ε‖2, since F−

2 (U ε)
is uniformly bounded in compact time intervals.

From (8.18) and (8.9) it follows that

Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
Cε2(ξt, ηt)dt

∣∣∣) ≤ cε (C.20)

Calling t = ε−2+2α, s = ε−2a+2β , since

∑
z

|pα ∗ qβ(x, z) − pα(x, z)| =
∑
z

|πt+s(x, z) − πt(x, z)| ≤ c
s

t
= cε2(1−α−a+β)

the r.h.s. of (C.19) is indeed a R-term.
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• Birth process, ξ particles.

(L(ξ,+) +D(ξ,+))‖v − V ‖2 = T1 − 2κ′〈v − V, V (1 − V )e−U 〉 +Rε8 (C.21)

where Rε8 is defined in (8.36) and

T1 = 2κ′εd
∑
x

[v(x) − V (x)]
1
2d

∑
e:|e|=1

∑
z

qβ(z − x)ξ(z)[1 − ξ(z + e)]1η(z+e)=0

By adding and subtracting e−u(z+e) and calling

Sε3 = εd
∑
x

[v(x) − V (x)]
1
2d

∑
e:|e|=1

∑
z

qβ(z − x)ξ(z)[1 − ξ(z + e)]

×
[
1η(z+e)=0 − e−u(z+e)

]
(C.22)

we get

T1 = 2κ′Sε3 + 2εd
∑
x

[v(x) − V (x)]
κ′

2d

∑
e:|e|=1

∑
z

qβ(z − x)ξ(z)[1 − ξ(z + e)]

{
e−U(x)

+
[
e−U(z+e) − e−U(x)

]
+
[
e−u(z+e) − e−U(z+e)

]}

= 2κ′Sε3 + T2 +Rε10 + Bε2 (C.23)

where T2, Rε10 and Bε2 identify the corresponding terms in the previous line (Bε2 is explicitly
written in (C.28) below). We next write

T2 = 2εd
∑
x

[v(x) − V (x)]e−U(x) κ
′

2d

∑
e:|e|=1

∑
z

qβ(x, z)

{
V (x)[1 − V (x)]

+
[
v(x)[1 − v(x+ e)] − V (x)[1 − V (x+ e)]

]

+
[
ξ(z)[1 − ξ(z + e)] − v(x)[1 − v(x+ e)]

]}

= T3 + Bε5 + 2κ′Qε (C.24)

where, as before, T3, Bε5 and Qε identify the corresponding terms in the previous line, in
particular Qε is explicitly written in (C.27) below. Observe that T3 cancels with the first
term on the right hand side of (C.21). We rewrite Bε5 as

Bε5 = 2εd
∑
x

[v(x) − V (x)]e−U(x) κ
′

2d

∑
e:|e|=1

{
[1 − v(x+ e)](v(x) − V (x))

]

+V (x)(V (x+ e) − v(x+ e))

}
(C.25)

so that

(L(ξ,+) +D(ξ,+))‖v − V ‖2 = Bε5 + 2κ′Sε3 + 2κ′Qε + Bε2 +Rε8 +Rε10 (C.26)
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where

Qε = εd
∑
x

[v(x) − V (x)]e−U(x) 1
2d

∑
e:|e|=1

∑
z

qβ(z − x){ξ(z)[1 − ξ(z + e)] − v(z)[1 − v(z + e)]}

(C.27)

Bε2 = εd
∑
x

[v(x) − V (x)]
κ′

2d

∑
e:|e|=1

∑
z

qβ(z − x)ξ(z)[1 − ξ(z + e)][e−u(z+e) − e−U(z+e)]

(C.28)

Remarks 3. In Appendix D we prove that

lim
ε→0

Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
Sε3(ξt, ηt)

∣∣∣dt) = 0 (C.29)

We further observe that |Bε2|+ |Bε5| ≤ c(‖uε−U ε‖2 + ‖vε−V ε‖2). In Appendix E we prove
that

lim
ε→0

Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
Qε(ξt, ηt)

∣∣∣dt) = 0

• Death process, ξ-particles.

(L(ξ,−) +D(ξ,−))‖v − V ‖2 = −2εd
∑
x

[v(x) − V (x)]
∑
z

qβ(z − x)ξ(z)κη(z)+1

+2〈v − V, V G−(U)〉 +Rε9

where Rε9 is defined in (8.37). As before,

2εd
∑
x

[v(x) − V (x)]
∑
z

qβ(z − x)ξ(z)κη(z)+1

= 2S4 + εd
∑
x

[v(x) − V (x)]
∑
z

qβ(z − x)ξ(z) (C.30)

×
{
G−(U(x)) + [G−(U(z) −G−(U(x))] + [G−(u(z)) −G−(U(z))]

}
= 2Sε4 + 2〈v − V, vG−(U)〉 +Rε12 + 2Bε3 (C.31)

where

S4 = εd
∑
x

[v(x) − V (x)]
∑
z

qβ(z − x)ξ(z)
{
κη(z)+1 − χM,z(η)G−(u(z))

}
(C.32)

B3 = εd
∑
x

[v(x) − V (x)]
∑
z

qβ(z − x)ξ(z)χM,z(η)[G−(u(z)) −G−(U(z))] (C.33)
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Rε12 = 2εd
∑
x

[v(x) − V (x)]
∑
z

qβ(z − x)ξ(z)
{

[G−(U(z)) −G−(U(x))]

−(1 − χM,z(η))G−(U(z))
}

(C.34)

We thus have

(L(ξ,−) +D(ξ,−))‖v − V ‖2 = −2〈v − V, [v − V ]G−(U)〉 − 2S4 − 2B3 +Rε9 −Rε12
(C.35)

Remarks 4. Since G−(U ε) is uniformly bounded in compact time intervals, there is a
constant cM (which depends on M), so that |Bε3| ≤ cM (‖uε − U ε‖2 + ‖vε − V ε‖2). In
Appendix D it is proven that the term Sε4 gives a vanishing contribution as in (C.29).
Finally Rε12 is an R term because of (8.2).

C.3 Estimates of the remainders

From (C.2), (C.10) and (C.16) we get that

(L+D)‖u− U‖2 = −2‖u− U‖2
H2

1
+ 2κ‖u− U‖2 − 2(Bε0 + Bε1) + Rε

1 (C.36)

where

Rε
1(ξ, η) = −2Sε2 − 2Cε2 +

∑
k=1,2,3,6,7

Rεk (C.37)

We now observe that the first term in (C.36) is non positive and that from Remarks 2 we
get that given any τ > 0 there are c1 and c2 so that∣∣∣ ∫ τ

0
(L+D){‖uε(ηt) − U ε(t)‖2}dt

∣∣∣ ≤
∫ τ

0
{c1‖uε(ηt) − U ε(t)‖2 + c2‖vε(ξt) − V ε(t)‖2}

+
∫ τ

0
Rε

1(ξt, ηt)dt (C.38)

lim
ε→0

Eεµε

(∣∣∣ sup
τ ′≤τ

∫ τ ′

0
Rε

1(ξt, ηt)
∣∣∣) = 0 (C.39)

From (C.3), (C.26) and (C.35) we get that

(L+D)‖v − V ‖2 = −2ε−2a〈∇(v − V ), e−U∇(v − V )〉 + 2H
−2〈v − V, [v − V ]G−(U)〉 + Bε2 − 2Bε3 + Bε5 + Rε

2 (C.40)

where

Rε
2(ξ, η) = 2(Sε1 + κ′Sε3 + Sε4) + 2Cε1 + 2κ′Qε +

∑
k=3,4,8,9,10,12

Rεk (C.41)
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We now observe that the third term is non negative and by Remarks 1, 3 and 4 we get
given any τ > 0 there are c3 and c4 so that∣∣∣ ∫ τ

0
(L+D){‖vε(ηt) − V ε(t)‖2}dt

∣∣∣ ≤
∫ τ

0
{c3‖uε(ηt) − U ε(t)‖2 + c4‖vε(ξt) − V ε(t)‖2}

+
∫ τ

0
Rε

2(ξt, ηt)dt (C.42)

lim
ε→0

Eεµε

(∣∣∣ sup
τ ′≤τ

∫ τ ′

0
Rε

2(ξt, ηt)dt
∣∣∣) = 0 (C.43)

D The S terms

Denote by Xε
i , i = 1, .., 4, the terms in (4.5)-(4.6) which contain Sεi , (their explicit expres-

sions will be recalled below). The most dangerous one is Xε
1 because it appears with a

divergent multiplicative factor ε−2a, see (D.1). We thus start from this one, although the
following analysis covers, except for some coefficients which are different, the easier term
Sε3, where the dangerous factor ε−2a is absent.

Calling

aε1(t, y) =
∑
x,|e|=1

[vε(x, ξt) − V ε(x, t)][(−e) · ∇ + e · ∇]qβ(y − e− x)ξt(y − e)(1 − ξt(y))

the term of the remainder containing Sε1 is

Xε
1 := ε−2aEεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
εd
∑
y

aε1(t, y)[1ηt(y)=0 − e−u
ε(y,ηt)]

∣∣∣) (D.1)

We have

|Xε
1| ≤ ε−2aEεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
εd
∑
y

[1ηt+ε2α(y)=0 − e−u
ε(y,ηt)]

}∣∣∣)+ cε2(α−a) (D.2)

because the rate of change of ξt(x) is bounded by 2dε−2a + cebηt(x) and (D.2) follows from
Theorem 5. Thus

Xε
1 ≤ ε−2aEεµε

(∫ τ

0

∣∣∣εd∑
y

at,y[1ηt+ε2α(y)=0 − e−u
ε(y,ηt)]

∣∣∣)+ cε2(α−a)

≤ ε−2aEεµε

(∫ τ

0

∣∣∣εd∑
y

at,y[1ηt+ε2α(y)=0 − e−u
ε(y,ηt)]

∣∣∣2)1/2
+ cε2(α−a)

≤ ε−2a‖a‖τ sup
t≤τ

sup
|y−y′|≥ε−1+α/2

|Eεµε

(
ft(y)ft(y′)

)
| + cε2(α−a) + c′εαd/4−2a (D.3)
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where, ‖a‖ is the sup norm of at,y and

ft(y) = [1ηt+ε2α(y)=0 − e−u
ε(y,ηt)] (D.4)

By Theorem 9, |Eεµε

(
ft(y)ft(y′)

)
| ≤ cε2α so that Xε

1 → 0, thus concluding the analysis of
Sε1 (and of Sε3, as well).

Recalling (C.32),

Xε
4 := Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
εd
∑
y

aε4(t, y)
{
[κηt(y)+1 − χM,yG

−(uε(y, ηt)]
}∣∣∣)

aε4(t, y) =
∑
x

[vε(x, ξt) − V ε(x, t)]qβ(x, y)ξ(y)

Analogously to (D.2), we get

|Xε
4| ≤ Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
εd
∑
y

[κηt+ε2α (y)+1 − χM,yG
−(uε(y, ηt))]

∣∣∣)+ cε2α

≤ Eεµε

( ∫ τ

0
εd
∑
y

∣∣∣κηt+ε2α (y)+1 − χM,yG
−(uε(y, ηt))

∣∣∣)+ cε2α

≤ Eεµε

( ∫ τ

0
εd
∑
y

χM,y

∣∣∣κηt+ε2α (y)+1 −G−(uε(y, ηt))
∣∣∣)+ c[ε2α + ε(1−α)d/2]

having used Cauchy-Schwartz and Theorem 5 in the last inequality. Hence

Xε
4 ≤ τ sup

t≤τ
sup

|y−y′|≥ε−1+α/2

|Eεµε

(
gt(y)gt(y′)

)
| + cε2α + c′εαd/4−2a

gt(y) = χM,y[κηt+ε2α (z)+1 −G−(uε(z, ηt)] (D.5)

Since

G−(u) = Eu
(
κη(0)+1

)
, Eu

(
η(0)

)
= u (D.6)

(Eu is the expectation w.r.t. the Poisson law on N which has density u), by Theorem 10
we conclude that Xε

4 → 0.

We finally consider the remainder containing Sε2: it consists of the sum of two terms,
see (C.12), whose structures are essentially similar. For simplicity we only consider the
first one. We have

Xε
2 := Eεµε

(
sup
τ ′≤τ

∣∣∣ ∫ τ ′

0
εd
∑
x

[uε(x, ηt) − U ε(x, t)]
∑
z

pα(z − x)

×
[
ηt(z)κηt(z) − F−

1 (uε(z, ηt))
]∣∣∣) (D.7)

where

F−
1 (u) = Eu

(
η(0)κη(0)

)
(D.8)
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and, again,

Xε
2 ≤Mτ sup

t≤τ
sup

|y−y′|≥ε−1+α/2

Eεµε

(
ht(y)ht(y′)

)
+ cε2(α(7/4) + c′εαd/4−2a + c′′ε(1−α)d/2

ht(y) = ηt+ε2α(z)κηt+ε2α (z) − F−
1 (uε(z, ηt)) (D.9)

where the error cε2α(7/4) comes from having used Theorem 8 to express uεt+ε2α(·) as a linear
combination of uεt(·). We have then used Cauchy-Schwartz and Theorem 5 to bound the
contribution of uε > M .

E The term Q
In this appendix we will prove that for any τ > 0,

lim
ε→0

Eεµε

(
sup
τ ′≤τ

∣∣ ∫ τ ′

0
Q(ξt)

∣∣) = 0 (E.1)

with Q(ξ) defined in (C.27).
Since |vε(x, ξt) − V ε(x, t)| ≤ 1, |Q(ξt)| ≤ εd

∑
x∈Ωε

Sx|f ε(ξt)|, where

f ε(ξ) := κ′{
∑
z

1
2d

∑
e:|e|=1

qβ(z)ξ(z)[1 − ξ(z + e)]} − vε(0, ξ)[1 − vε(0, ξ)]

= κ′
(
vε(0, ξ)2 −

∑
z

1
2d

∑
e:|e|=1

qβ(z)ξ(z)ξ(z + e)
)

(E.2)

and |f ε(ξ)| ≤ κ′. For T > 0,

Eεµε

(
sup
τ ′≤τ

∣∣ ∫ τ ′

0
Q(ξt)

∣∣) ≤ Eεµε

(
sup
τ ′≤τ

∫ τ ′

0
|Q(ξt)|

)
= Eεµε

( ∫ τ

0
|Q(ξt)|

)
≤ τνετ (|f ε|)

≤ τEενε
τ

(
|f ε(ξT )|

)
+ 2Tκ′ (E.3)

with νετ defined in (11.1). It follows in fact from (11.1) that νετ is invariant under space
translations and that for any bounded function f∣∣∣Eενε

τ

(
f(ηt, ξt)

)
− νετ

(
f(η, ξ)

)∣∣∣ ≤ 2t
τ

sup
s≤τ+t

εd
∑
x∈Ωε

Eεµε

(
|Sxf(ηs, ξs)|

)
(E.4)

Hence the last term in (E.3), recalling that |f ε(ξ)| ≤ κ′.
By choosing T = eM ε2β with M as in (8.2), we get

l.h.s. of (E.3) ≤ τEενε
τ

(
1uε(0,η)<M |f ε(ξT )|

)
+ 2eM ε2β + τκ′ε(1−α)d (E.5)

We will then prove (E.1) by showing that

lim
ε→0

Eενε
τ

(
1uε(0,η)<Mf

ε(ξT )2
)

= 0, T = eM ε2β (E.6)
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We write x for a subset of Ωε, |x| for its cardinality and call

gx(ξ) =
∏
x∈x

ξ(x) (E.7)

Then f ε(ξ)2 =
∑
x

c(x)gx(ξ) (c(x) numerical coefficients) and

∣∣∣f ε(ξ)2 − ∑
x:|x|=4
x⊂B

c(x)gx(ξ)
∣∣∣ ≤ cε(a−β)d, B = {x : |x| ≤ ε−a+β/2} (E.8)

where, ∑
x:|x|=4

|c(x)| ≤ c,
∑

x:|x|<4

|c(x)| ≤ cε(a−β)d,
∑
x �⊂B

|c(x)| ≤ ceε
−β

(E.9)

Then (E.6) follows from (11.4). In fact∑
z

πε−2(a−β)eM−uε(0,η0)(x, z)ξ0(z) =
∑
y

πε−2(a−β)[eM−uε(0,η0)−1](x, y){
∑
z

qβ(y, z)ξ0(z)}

=
∑
y

πε−2(a−β)[Me−uε(0,η0)−1](x, y)v
ε(y, ξ0) = vε(0, ξ0) +Rε

Rε =
∑
y

eε
−2(a−β)[eM−uε(0,η0)−1](x, y)[vε(y, ξ0) − vε(0, ξ0)]

By Theorem 6,

Eενε
τ

(
|vε(y, ξ0) − vε(0, ξ0)|

)
≤ cεa|y| (E.10)

so that |Rε| ≤ c′εaε−a+β. Then

lim
ε→0

sup
x�B,|x|=4

∣∣∣Eενε
τ

(
1uε(0,η)<Mgx(ξT )

)
− Eενε

τ

(
vε(y, ξ0)4

)∣∣∣ = 0

Hence (E.6), using (E.8)-(E.9), thus concluding the proof of (E.1).

F Proof of Theorem 3. Conclusion

With reference to (C.38) and (C.42), we call A the 2 × 2, matrix with entries c1, c2, c3, c4
and we define the following two dimensional vector Rε(t) = (Rε1(t), R

ε
2(t))

Rεi(t) :=
∫ t

0
Rε
i(ξs, ηs)ds+Mi(t), i = 1, 2 (F.1)

where M1(t) and M2(t) are the mean zero martingales defined in (4.5) and (4.6) respec-
tively. Thus (6.1) is proven. From (C.39) and (C.43) it follows that (6.2) holds for the
first term on the right hand side of (F.1).
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We are thus left with the proof that also the martingale terms verify (6.2). We first
notice that

(
Eµε

(
sup
s≤t

|Mi(s)|
))2

≤ Eµε

(
sup
s≤t

Mi(s)2
)

≤ 4E
ε
µε

(
Mi(t)2

)
, i = 1, 2 (F.2)

and then write (see for instance Chapter 2 of [4]):

Mi(t)2 −
∫ t

0
γi(s)ds =: Ni(t) is a martingale , i = 1, 2 (F.3)

where the compensators γi of M2
i , i = 1, 2 are given in (F.4) below,

γi(s) = LX2
i − 2XiLXi, i = 1, 2 (F.4)

where

X1(s) = ‖uε(ηs) − U ε(s)‖2, X2(s) = ‖vε(ξs) − V ε(s)‖2

Going back to (F.3), we have for all t > 0,

E
ε
µε

(
Mi(t)2

)
= E

ε
µε

(
Ni(t) +

∫ t

0
γi(s)ds

)
≤ E

ε
µε

(
Xi(0)2

)
+ t sup

s≤t
E
ε
µε

(|γi(s)|) (F.5)

Since by Theorem 1 the first term on the right hand side of (F.5) vanishes in the limit
ε→ 0, the proof of Theorem 3 is concluded by the next Lemma.

Lemma 1. For any t > 0,

lim
ε→0

sup
s≤t

E
ε
µε

(|γi(s)|) = 0 (F.6)

Proof. We first compute γ1 and, recalling that L(η) is the sum of three generators, we get
for each of them the sum of three terms that we classify as A, B and C remainders.

L(η)‖u− U‖4 − 2‖u− U‖2L(η)(‖u− U‖2) =
3∑
i=1

[Ai + 4Bi + 4Ci] (F.7)

where

A1 = ε−2ε2d
∑
x,y,z

η(z)|∇pα(x− z)|2|∇pα(y − z)|2

B1 = ε−2ε2d
∑
x,y,z

[u(y) − U(y)]η(z)
∑
e:|e|=1

|e · ∇pα(x− z)|2e · ∇pα(y − z)

C1 = ε−2ε2d
∑
x,y,z

[u(y) − U(y)][u(x) − U(x)]η(z)∇pα(x− z) · ∇pα(y − z) (F.8)
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A2 = κε2d
∑
x,y,z

η(z)pα(x− z)2pα(y − z)2

B2 = κε2d
∑
x,y,z

[u(y) − U(y)]η(z)pα(x− z)2pα(y − z)

C2 = κε2d
∑
x,y,z

[u(y) − U(y)][u(x) − U(x)]η(z)pα(x− z)pα(y − z) (F.9)

Finally, calling ϕ(η, ξ; z) = η(z)κη(z)[1 − ξ(z)] + η(z)κη(z)+1ξ(z),

A3 = ε2d
∑
x,y,z

ϕ(η, ξ; z)pα(x− z)2pα(y − z)2

B3 = −ε2d
∑
x,y,z

[u(y) − U(y)]ϕ(η, ξ; z)pα(x− z)2pα(y − z)

C3 = ε2d
∑
x,y,z

[u(y) − U(y)][u(x) − U(x)]ϕ(η, ξ; z)pα(x− z)pα(y − z) (F.10)

By (8.1), (8.17) and (8.9) (details are omitted)

lim
ε→0

3∑
i=1

sup
s≤t

Eµε

(∣∣Ai(s) + 4Bi(s) + 4Ci(s)
∣∣) = 0 (F.11)

We next compute γ2 and, as before, for each of the three generators we get the sum of
three terms that we classify as Ā, B̄ and C̄ remainders.

L(ξ)‖v − V ‖4 − 2‖v − V ‖2L(η)(‖v − V ‖2) =
3∑
i=1

[
Āi + 4B̄i + 4C̄i

]
(F.12)

where, calling ψe(ξ, η; z) = ξ(z)[1 − ξ(z + e)]1η(x+e)=0,

Ā1 = ε−2aε2d
∑
x,y,z

∑
e:|e|=1

ψe(ξ, η; z)|∇qβ(x− z)|2|∇qβ(y − z)|2

B̄1 = ε−2aε2d
∑
x,y,z

[v(y) − V (y)]
∑
e:|e|=1

ψe(ξ, η; z)|e · ∇qβ(x− z)|2e · ∇qβ(y − z)

C̄1 = ε−2aε2d
∑
x,y,z

[v(y) − V (y)][v(x) − V (x)]ψe(ξ, η; z)∇qβ(x− z) · ∇qβ(y − z)

Ā2 =
κ′

2d
ε2d
∑
x,y,z

ψe(ξ, η; z)qβ(x− z)2qβ(y − z)2

B̄2 =
κ′

2d
ε2d
∑
x,y,z

[v(y) − V (y)]ψe(ξ, η; z)qβ(x− z)2qβ(y − z)

C̄2 =
κ′

2d
ε2d
∑
x,y,z

[v(y) − V (y)][v(x) − V (x)]ψe(ξ, η; z)qβ(x− z)qβ(y − z) (F.13)
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Finally, calling φ(η, ξ; z) = ξ(z)κη(z)+1,

Ā3 = ε2d
∑
x,y,z

φ(η, ξ; z)qβ(x− z)2qβ(y − z)2

B̄3 = −ε2d
∑
x,y,z

[v(y) − V (y)]φ(η, ξ; z)qβ(x− z)2qβ(y − z)

C̄3 = ε2d
∑
x,y,z

[v(y) − V (y)][v(x) − V (x)]φ(η, ξ; z)qβ(x− z)qβ(y − z) (F.14)

Since the variables are bounded by 1, by (8.9) (details are again omitted)

lim
ε→0

3∑
i=1

sup
s≤t

Eµε

(∣∣Āi(s) + 4B̄i(s) + 4C̄i(s)
∣∣) = 0 (F.15)

Lemma 1 is proved. �

Acknowledgments
Two of us, A.D.M. and E.P., acknowledge very kind hospitality at the Max Planck

Institute. The research has been partially supported by MURST, COFIN and NATO
Grant PST.CLG.976552.



Two scale hydrodynamic limits 47

References

[1] C. Boldrighini, A. De Masi, A. Pellegrinotti: Non equilibrium fluctuations in par-
ticle systems modelling reaction-diffusion equations. Stochastic Processes and their
Applications 42, 1–30, (1992).

[2] C. Boldrighini, A. De Masi, A. Pellegrinotti, E. Presutti: Collective phenomena in
interacting particle systems. Stochastic Processes and their Applications 25, 137–152,
(1987).

[3] T. Brox, H. Rost: Equilibrium fluctuations of stochastic particle systems: the role of
conserved quantities . Ann. Probab. 12, 742–759, (1984).

[4] A. De Masi, E. Presutti: Mathematical methods for hydrodynamical limits. Lecture
Notes in Mathematics 1501, Springer-Verlag, (1991).

[5] A. De Masi, E. Presutti, E. Scacciatelli: The weakly asymmetric simple exclusion
process. Ann. Inst. H. Poincare’ A 25, 1–38, (1989).

[6] P. Ferrari, E. Presutti, E. Scacciatelli, M.E. Vares: The symmetric simple exclusion
process. I probability estimates. Stochastic processes and applications, 89–105, (1991).

[7] P. Ferrari, E. Presutti, E. Scacciatelli, M.E. Vares: The symmetric simple exclusion
process. II applications. Stochastic processes and applications, 107–115, (1991).

[8] M.Z. Guo, G.C. Papanicolaou, S.R.S. Varadhan: Non linear diffusion limit for a
system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988).
1501, Springer-Verlag, (1991).

[9] C. Kipnis, C. Landim: Scaling limits of interacting particle systems. Springer, (1999).

[10] S. Luckhaus, L. Triolo: The continuum reaction-diffusion limit of a stochastic cellular
growth model. Preprint 10/03 Dip. Matematica, Univ. Roma Tor Vergata. To appear
in Rend. Acc. Lincei. (2004)

[11] M. Mourragui: Comportement hydrodynamique et entropie relative des processus de
sauts, de naissances et de morts. Ann. Inst. H. Poincaré Probab. Statist. 32, 361-385,
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