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Abstract

The Kronecker tensor-product approximation combined with the H-matrix techniques provides an
efficient tool to represent integral operators as well as certain functions F (A) of a discrete elliptic op-
erator A in R

d with a high spatial dimension d. In particular, we approximate the functions A−1 and
sign(A) of a finite difference discretisation A ∈ R

N×N with a rather general location of the spectrum.
The asymptotic complexity of our data-sparse representations can be estimated by O(np logq n), p = 1, 2,
with q independent of d, where n = N1/d is the dimension of the discrete problem in one space direc-
tion. In this paper (Part I), we discuss several methods of a separable approximation of multi-variate
functions. Such approximations provide the base for a tensor-product representation of operators. We
discuss the asymptotically optimal sinc quadratures and sinc interpolation methods as well as the best
approximations by exponential sums. These tools will be applied in Part II continuing this paper to the
problems mentioned above.

AMS Subject Classification: 65F50, 65F30, 46B28, 47A80
Key Words: hierarchical matrices, Kronecker tensor-product, Sinc interpolation, Sinc quadrature, approxi-
mation by exponential sums

1 Introduction

In the wide range of applications the efficient numerical representation to certain multi-dimensional nonlocal
operators posed in Rd, d ≥ 2, is needed. Examples of such nonlocal operators are multi-dimensional integral
operators, solution operators of elliptic, parabolic and hyperbolic boundary value problems, Lyapunov and
Riccati solution operators in control theory, spectral projection operators associated with the matrix sign
function and the density matrix ansatz for solving the Schrödinger and Hartree-Fock equations, as well as
collision integrals in the deterministic Boltzmann equation. As soon as computational issues are concerned,
we are faced with the challenging problem of an accurate representation of large fully populated matrices or
tensors (generally given only implicitly) in special data-sparse formats.

The class of hierarchical (H) matrices allows an approximate matrix arithmetic with almost linear
complexity [11]-[14], [9]. An H-matrix approximation of the class of operator-valued functions of elliptic
operators was developed in [4]-[6], [10]. For multi-dimensional problems, even approximations with linear
complexity O(nd) are not satisfactory due to the “curse of dimensionality”. To avoid an exponential scaling
in d, one can try to represent the corresponding data (matrices and vectors) in a tensor-product form (cf.
[1, 15, 19]) to reach the complexity O(dnp logq n) (p, q ≥ 1 independent of d). To decrease the exponent p,
we use the hierarchical format for each factor, reducing the cost to O(dn logq n).

In [7], the H-matrix techniques combined with the Kronecker tensor-product approximation (cf. [15, 19])
were applied to represent the inverse of a discrete elliptic operator in a hypercube (0, 1)d ∈ Rd. We recall
that the hierarchical Kronecker tensor-product (HKT) approximation of a matrix is defined as follows. Given

1



a matrix A ∈ C
N×N of dimension N = nd, we approximate A by a matrix A(r) of the form

A(r) =
r∑

k=1

V 1
k ⊗ · · · ⊗ V d

k ≈ A, (1.1)

where the V �
k are n× n-matrices and ⊗ denotes the Kronecker product operation. The crucial parameter is

r, the number of products in (1.1), called the Kronecker rank (cf. [15]). Furthermore, each Kronecker factor
V �

k is supposed to be represented in the H-matrix form. The complexity of the HKT approximation can be
estimated by O(dn logq n), where q is some fixed constant independent of d. Rank-one approximations of
high-order tensors are, e.g., discussed in [23].

The HKT approximation of integral operators posed in Rd is well understood, since it can be reduced to
the separable approximation of the explicitly given kernel function together with an H-matrix representation
of the factors V �

k (cf. [15] related to the case d = 2). In Part II of this paper, we address this topic in the
case of rather general shift-invariant kernel functions with d ≥ 2.

A broad class of nonlocal operators in mathematical physics can be described by operator-valued functions
of an elliptic operator. Concerning the elliptic operator A given in the form

A = −
d∑

j=1

∂

∂xj
aj(x)

∂

∂xj
+

d∑
j=1

bj(x)
∂

∂xj
+ c(x), x = (x1, ..., xd) ∈ (0, 1)d,

we further assume

aj(x) = aj(xj), bj(x) = bj(xj) and c(x) = c1(x1) + ...+ cd(xd).

To derive the tensor-product representation, we employ a finite difference discretisation A of A (e.g., a
three-point stencil in each variable) using a uniform tensor-product grid in Rd with n grid points in each
spatial direction. We are considering a matrix-valued function F (A) based on some integral representation.
For instance, a negative fractional power of a positive definite matrix A can be represented by the integral

A−σ =
1

Γ(σ)

∫ ∞

0

tσ−1e−tAdt (σ > 0) (1.2)

(cf. [7]), provided that the integral exists. The discretisation matrix has the form A =
∑d

j=1 Aj with
A,Aj ∈ RN×N , N = nd, where the matrices Aj are mutually commutable.

We apply an exponentially convergent quadrature rule to represent the integral (1.2) by a sum involving
only factorised expressions,

A−σ ≈
M∑

k=−M

ckt
σ−1
k

d∏
j=1

exp(−tkAj), (tk, ck ∈ R quadrature points and weights),

which leads to the desired HKT representation.

Remark 1.1 Note that with the choice A = −∆, the representation (1.1) is of particular interest in the cases
σ = 1/2 (preconditioner of the Laplace-Beltrami operator (−∆)1/2, and for hypersingular integral operators,
e.g., in BEM applications), σ = 1 (inverse Laplacian), and σ = 2 (preconditioner for the biharmonic
operator).

There is a large class of matrix-valued functions F (A) that can be approximated directly by exponential
sums,

Fr(A) :=
r∑

k=1

ck exp(tkA) ≈ F (A), ck ∈ R, (1.3)

such that r grows only logarithmically with respect to the desired accuracy. Then the separability property
of exponentials can be easily adapted.

In some cases the approximation by exponential sums can be constructed by using some intermediate
integral representations involving operator resolvents. The construction of an HKT approximation of the
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inverse matrix and, in particular, of resolvents (zI − A)−1, z ∈ C, allows to approximate a rather general
class of matrix-valued analytic functions, which can be represented by the Dunford-Cauchy integral, which,
in turn, can be approximated by a quadrature formula

F (A) :=
1

2πi

∫
Γ

F (z)(zI −A)−1dz ≈
M∑

k=−M

ckF (zk)(zkI −A)−1, (1.4)

where Γ is a curve containing the spectrum of A.
For the particular matrix-valued function F (A) = sign(A) (see Part II of this paper), a tensor-product

representation can be based on an efficient quadrature for the integral

sign(A) =
1
cF

∫
R+

F (tA)
t

dt (1.5)

with certain functions F (say, with F (t) = t exp(−t2) or with F (t) = sin(t)−t cos(t)
t2 ).

Keeping in mind the above arguments, in this paper we focus on the construction of efficient quadratures
for a class of (improper) integrals as well as on the approximation of analytic functions by exponential sums.

2 Sinc Interpolation and Quadrature

2.1 Separation by Integration

If a function of ρ can be written as the integral

ϕ(ρ) =
∫

Ω

eρF (t)G(t)dt

over some Ω ⊂ R and if quadrature can be applied, one obtains ϕ(ρ) ≈ ∑
ν ωνeρF (xν)G(xν ). Setting

ρ =
∑d

i=1 xi , we get the separable approximation

ϕ(x1 + . . .+ xd) ≈
∑

ν
cν

d∏
i=1

exiF (xν), cν = ωνG(xν).

The above argument applies as well for the matrix-valued function ϕ(A) with A =
∑d

i=1 Ai and pairwise
commutable matrices Ai. In §2.2 we discuss the Sinc quadrature in the case of Ω = R and study the
quadrature error. If the integration domain Ω is different from R, one has first to apply a suitable substitution.

On the other hand, the best approximation of ϕ(ρ) by exponential sums,

ϕ(ρ) ≈
∑

ν
cνe−ωνρ (2.1)

(e.g., with respect to the maximum norm), leads to an approximation whose separation rank is expected to
be close to optimal.

2.2 Definitions

In this section, we present Sinc quadrature rules for computing the integral

I(f) =
∫

Ω

f(ξ)dξ (Ω = R or Ω = R+) . (2.2)

In the case of Ω = R, following [5], H1(Dδ) is the set of all complex-valued functions f , which are analytic
in the strip Dδ := {z ∈ C : |�m z| ≤ δ} with some δ < π

2 , such that

N(f,Dδ) :=
∫

∂Dδ

|f(z)| |dz| =
∫

R

(|f(x+ iδ)| + |f(x− iδ)|) dx <∞.
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Let

S(k, h)(x) =
sin [π(x − kh)/h]
π(x− kh)/h

(k ∈ Z, h > 0, x ∈ R) (2.3)

be the k-th Sinc function with step size h, evaluated at x. Given f ∈ H1(Dδ), h > 0, and M ∈ N0, the
corresponding Sinc interpolant (cardinal series representation) reads as

C(f, h) =
∞∑

ν=−∞
S(ν, h)f(νh).

We use the conventional notations

CM (f, h) =
∑M

ν=−M S(ν, h)f(νh), EM (f, h) = f − CM (f, h),

T (f, h) = h
∑∞

k=−∞ f(kh), TM (f, h) = h
∑M

k=−M f(kh),

η(f, h) = I(f) − T (f, h), ηM (f, h) = I(f) − TM (f, h).

(2.4)

Here η(f, h) represents the quadrature error via the Sinc interpolant C(f, h),

∫
R

f(ξ)dξ ≈
∫

R

∞∑
ν=−∞

S(ν, h)f(νh)dξ = T (f, h),

and ηM (f, h) includes in addition the corresponding truncation error T (f, h) − TM (f, h), while EM (f, h)
describes the interpolation error by the truncated Sinc interpolant.

2.3 Standard Error Estimates

If f ∈ H1(Dδ) and
|f(ξ)| ≤ C exp(−b|ξ|) for all ξ ∈ R with b, C > 0, (2.5)

then the quadrature error ηM from (2.4) satisfies

|ηM (f, h)| ≤ C

[
e−2πδ/h

1 − e−2πδ/h
N(f,Dδ) +

1
b

exp(−bhM)
]

(2.6)

(cf. [18]). Furthermore, under the same assumptions on f ∈ H1(Dδ), the interpolation error is bounded by

‖EM (f, h)‖∞ ≤ C

[
e−πδ/h

2πδ
N(f,Dδ) +

1
bh

exp(−bhM)
]
. (2.7)

Equalising both terms in (2.6) or (2.7) leads us to the following result. In the case of (2.6), the choice
h =

√
2πδ/bM yields the exponential convergence rate

|ηM (f, h)| ≤ Ce−
√

2πδbM (2.8)

with a positive constant C independent of M , depending only on f, δ, b (cf. [18, 5, 6]). Note that 2M + 1
is the number of quadrature points. If f is an even function, the number of quadrature points reduces to
M + 1.

In the case of (2.7), the choice h =
√
πδ/bM implies

‖EM (f, h)‖∞ ≤ CM1/2e−
√

πδbM (2.9)

with a positive constant C depending only on f, δ, b (cf. [18]).
In the case Ω = R+ one has to substitute the integral (2.2) by ξ = ϕ(ζ) such that ϕ : R → R+ is a

bijection. This changes the integrand f into f1 := ϕ′ · (f ◦ ϕ) . Assuming f1 ∈ H1(Dδ), I(f1) is now defined
for Ω = R and one can apply (2.5)-(2.8) to the transformed function.
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2.4 Improved Quadrature Error Estimates

The error estimate in (2.8) has an exponent involving
√
M. Under stronger assumptions it is possible to

improve
√
M to M/ logM as we show next (see [6] for a proof).

Proposition 2.1 Let f ∈ H1(Dδ) with some δ < π
2 . If f satisfies the stronger condition

|f(ξ)| ≤ C exp(−bea|ξ|) for all ξ ∈ R with a, b, C > 0 (2.10)

instead of (2.5), then the error ηM of TM (f, h) satisfies

|ηM (f, h)| ≤ C

[
e−2πδ/h

1 − e−2πδ/h
N(f,Dδ) +

e−ahM

ab
exp(−beahM )

]
.

The choice h = log(2πaM
b )/ (aM) leads to

|ηM (f, h)| ≤ C N(f,Dδ) e−2πδaM/ log(2πaM/b). (2.11)

Remark 2.2 Let f ∈ H1(Dδ). Note that the quadratures from §2.3 and §2.4 apply also to matrix-valued
functions f(ξ) = F (ξ;A), in particular, to functions leading to A−1, e.g., (1.2), (1.5) (see numerics in
Section 5). In the case of diagonalisable matrices, the error analysis for the corresponding quadratures
applied to F (ξ;A) is similar to the analysis of parameter dependent scalar functions f(ξ; ρ), where ρ ∈ σ(A)
(cf. [6, 7]). For the class of analytic functions of A, which can be represented by the Dunford-Cauchy integral
(1.4), the analysis is analogous.

In the following Sections 4-5, we take a closer look to two integrals of real functions, which are transformed
in such a way that either (2.8) or (2.11) hold.

2.5 Improved Interpolation Error Estimates

Assuming the faster decay rate (2.10) of f , it is possible to improve the estimates (2.7) and (2.9).

Proposition 2.3 Let f ∈ H1(Dδ) with some δ < π
2 . If f satisfies (2.10), then the interpolation error EM

of CM (f, h) satisfies

‖EM (f, h)‖∞ ≤ C

[
e−πδ/h

2πδ
N(f,Dδ) +

e−ahM

abh
exp(−beahM )

]
. (2.12)

The choice h = log(πaM
b )/ (aM) leads to

‖EM (f, h)‖∞ ≤ C (1 + o(1))
N(f,Dδ)

2πδ
e−πδaM/ log(πaM/b). (2.13)

Proof. The error E(f, h) := f − C(f, h) allows the same estimate as in the standard case (see first term in
the right-hand side of (2.7)),

‖E(f, h)‖∞ ≤ C
e−πδ/h

2πδ
N(f,Dδ). (2.14)

The truncation error bound hinges only upon the decay rate in (2.10),

‖C(f, h) − CM (f, h)‖∞ ≤
∑

|k|≥M+1

|f(kh)| ≤ 2C
∞∑

k=M+1

e−beakh ≤ 2C
baheahM

e−beahM

, (2.15)

which proves the second term in the right-hand side of (2.12). For the chosen h, the first term in the
right-hand side in (2.12) dominates, hence (2.13) follows.
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For applications in finite element (FEM) and boundary element methods (BEM), we reformulate the
previous result for parameter-dependent functions g(x, y), y ∈ Y ⊂ Rm, defined on the reference interval
x ∈ (0, 1]. Following the approach in [16], we introduce the mapping

ζ ∈ Dδ 
→ φ(ζ) =
1

cosh(sinh(ζ))
, δ <

π

2
. (2.16)

Clearly, (0, 1] = φ(R) and, moreover, φ(ζ) decays twice exponentially,

|φ(ζ)| ≤ 2 exp
(
−cos δ

2
e|�e ζ|

)
, ζ ∈ Dδ .

In particular, we have |φ(ζ)| ≤ 2 exp(− cos δ
2 e|ζ|) for ζ ∈ R. Let

Dφ(δ) := {φ(ζ) : ζ ∈ Dδ} ⊃ (0, 1] (2.17)

be the image of Dδ. One checks easily that Dφ(δ) ⊂ Sr(0)\{0}, where Sr(0) is the disc around zero with a
certain radius r > 1. Therefore, if a function g is holomorphic on Dφ(δ), then

f(ζ) := φα(ζ)g(φ(ζ)) for any α > 0

is also holomorphic on Dδ.

Note that the finite Sinc interpolation CM (f(·, y), h) =
M∑

k=−M

f(kh, y)Sk,h together with the back-

transformation ζ = φ−1(x) = arsinh(arcosh( 1
x )) and multiplication by x−α yields the separable approxi-

mation

gM (x, y) :=
M∑

k=−M

φ(kh)αg(φ(kh), y) · x−αSk,h(φ−1(x)) ≈ g(x, y) (2.18)

of the function g(x, y) for x ∈ (0, 1] = φ(R) and y ∈ Y . Since φ(ζ) is an even function, the separation rank
in (2.18) is reduced to r = M + 1. The error analysis is given by the following statement.

Corollary 2.4 Let Y ⊂ Rm be any parameter set and assume that for all y ∈ Y the functions g(·, y) together
with their transformed counterparts f(ζ, y) := φα(ζ)g(φ(ζ), y) satisfy the following conditions:
(a) g(·, y) is holomorphic on Dφ(δ), and supy∈Y N(f(·, y), Dδ) <∞ ;
(b) f(·, y) satisfies (2.10) with a = 1 and with certain C, b for all y ∈ Y .
Then, for all y ∈ Y , the optimal choice h := log M

M of the step size yields the pointwise error estimates

|EM (f(·, y), h)| = |f(ζ, y) − CM (f(·, y), h)(ζ)| ≤ C
N(f(·, y), Dδ)

2πδ
e−πδM/ log M , (2.19)

|g(x, y) − gM (x, y)| ≤ |x|−α ∣∣EM (f(·, y), h)(φ−1(x))
∣∣ . (2.20)

Proof. Due to the properties of φ : Dδ → Dφ(δ), condition (a) implies f ∈ H1(Dδ), hence, in view of (b),
we can apply Proposition 2.3. Now N(f,Dδ)

2πδ e−πδM/ log M corresponds to (2.14), while the evaluation of (2.15)
for the present h yields the bound 2C

b log M e−bM , which is asymptotically faster decaying as M → ∞.

The approximant (2.18) implies the bound (2.20) for g − gM (x, y).
The singularity at x = 0 is avoided by restricting x to [h, 1] (h > 0). In applications with a discretisation

step size h it suffices to apply this estimate for |x| ≥ const ·h. Since usually 1/h = O(nβ) for some β (and n
the problem dimension), the factor |x|−α is bounded by O(nαβ) and can be compensated by the exponential
decay in (2.19) with respect to M. Note that Remark 2.2 remains valid here.

Corollary 2.4 and estimate (2.20) will be applied in Section 6.

2.6 Sinc Interpolation of Multi-Variate Functions

Given a multi-variate function F : Rd → R (d ≥ 1), we are interested in its approximation by a separable
expansion of the form

Fr(ζ1, ..., ζd) :=
r∑

k=1

Φ1
k(ζ1) · · ·Φd

k(ζd) ≈ F,
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where the set of univariate functions {Φ�
k(·) : 1 ≤ � ≤ d, 1 ≤ k ≤ r} may be fixed or chosen adaptively (see

the discussion in [1, 15, 19]). For numerical efficiency the so-called separation rank r should be reasonably
small.

Next, we introduce the tensor-product Sinc interpolation CM with respect to the first d− 1 variables,

CMF := C1
M ...Cd−1

M F,

where C�
MF = C�

M (F, h) denotes the univariate Sinc interpolation from (2.4) applied to the variable ζ� ∈ I�.
Here, I� = R is the �-th factor in Rd = I1 × ...× Id. For each fixed � ∈ {1, . . . , d− 1}, choose the variable ζ�
and define the remaining parameter set by Y� := I1 × ... × I�−1 × I�+1 × ... × Id ∈ Rd−1. This defines the
univariate parameter-dependent function F�(·, y) : I� → R, which is the restriction of F onto the interval I�
with fixed parameter y ∈ Y�. The estimation of the error F −CMF requires the so-called Lebesgue constant
ΛM ≥ 1 characterised by

||CM (f, h)||∞ ≤ ΛM ||f ||∞ for all f ∈ C(R). (2.21)

Stenger [18, p. 142] proves the inequality

ΛM = max
x∈R

M∑
k=−M

|S(k, h)(x)| ≤ 2
π

(
3
2

+ γ + log(M + 1)
)
≤ 2
π

(3 + log(M)) (2.22)

with Euler’s constant γ = 0.577... . Note that we also have

∞∑
k=−∞

|S(k, h)(x)|2 = 1 (x ∈ R)

(cf. [18, p. 142]), which indicates ΛM = 1 with respect to the L2-norm in (2.21) instead of the L∞-norm.
Now we are able to prove the counterpart of Proposition 2.3 for the multi-variate interpolation error, which
now is denoted by

EM (F, h) = F − CM (F, h).

Proposition 2.5 For each � = 1, ..., d− 1 we assume that for any y� ∈ Y� the functions F�(·, y�) satisfy the
following conditions:
(a) F�(·, y�) ∈ H1(Dδ) with N(F�(·, y�), Dδ) <∞ uniformly in y� ∈ Y�;
(b) F�(·, y�) satisfies (2.10) with a = 1 and with certain C, b for all y� ∈ Y�.
Then, for all y� ∈ Y�, the optimal choice h := log M

M of the step size yields the pointwise error estimate

|EM (F, h)(ζ)| = |F (ζ) − CM (F, h)(ζ)| ≤ CΛd−1
M

2πδ
max

�=1,...,d−1
N(F�(·, y�), Dδ) e

−πδM
log M (2.23)

of EM (F, h) with ΛM defined by (2.22) and y� = (ζ1, . . . , ζ�−1, ζ�+1, . . . , ζd) .

Proof. The proof is based on the multiple use of (2.13) and the triangle inequality combined with the
estimation involving the Lebesgue constant (cf. [13, Prop. 4.3]).

In FEM/BEM applications we often deal with functions G(x) defined in a hypercube in Rd. Specifically,
we consider a function G : (0, 1]d → R which is holomorphic in each variable x� ∈ Dφ(δ) ⊃ (0, 1), 1 ≤ � ≤
d−1, but possibly with a singularity at the endpoint x� = 0 of (0, 1]. In this case the polynomial interpolation
is no longer efficient, however, the Sinc interpolation method can be applied successfully. Given α ≥ 0, we
introduce a possibly modified function F : Rd → R by

F (ζ1, ..., ζd) =

{
d−1∏
�=1

φα(ζ�)

}
G(φ(ζ1), ..., φ(ζd)) (φ from (2.16)) .

Next we prove the counterpart of Corollary 2.4 for the error of the multi-variate Sinc interpolation. We
define the univariate function G�(·, y�) : I� → R with I� = (0, 1], analogously to the previous construction.
Similarly, the function F (ζ) gives rise to the partially evaluated univariate function F�(ζ�, y�).
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Corollary 2.6 For each � = 1, ..., d−1, we assume that for any fixed y� ∈ Y� the functions G�(·, y�) : I� → R

together with their transformed counterparts F�(ζ�, y�) satisfy the following conditions:
(a) G�(·, y�) is holomorphic on Dφ(δ) (cf. (2.17)), and N(F�, Dδ) <∞ uniformly in y� ∈ Y�;
(b) F�(·, y�) satisfies (2.10) with a = 1 and with certain C, b for all y� ∈ Y�.
Then, for all y� ∈ Y�, the optimal choice h := log M

M of the step size yields the pointwise error estimate

|G(x) −GM (x)| ≤
d−1∏
�=1

x−α
�

∣∣EM (F, h)(φ−1(x))
∣∣ (x ∈ (0, 1]d = φ(Rd)), (2.24)

where EM (F, h) is bounded by (2.23) and the corresponding interpolant GM is given by

GM (x) :=
M∑

k1,k2,...,kd−1=−M

G(φ(k1h), ..., φ(kd−1h), xd)
d−1∏
�=1

φα(k�h) · x−α
� Sk,h(φ−1(x�)) ≈ G(x). (2.25)

Proof. Conditions (a), (b) ensure that the corresponding requirements in Proposition 2.5 applied to F�(·, y�)
are valid. Then (2.24) is a direct consequence of (2.23). The second assertion holds by definition.

The respective Kronecker rank is r = (2M + 1)d−1, where M is related to the resulting error ε by
M = O(δ−1| log ε| · log | log ε|). In BEM applications we typically have δ = π

| log h| , where h is the element
size (see example in Section 7.5).

3 On Best Approximation by Exponential Sums

In Section 4 we apply the Sinc quadrature1 to the integral 1
ρ =

∫∞
0

e−ρξdξ and in Section 5 to the integral
1
ρ = 1√

π

∫∞
−∞ e−ρ2t2dt to obtain an exponentially convergent sum of exponentials approximating the inverse

function 1
ρ . Instead, one can directly determine the best approximation of a function with respect to a

certain norm by exponential sums
n∑

ν=1
ωνe−tνx or

n∑
ν=1

ωνe−tνx2
, where ων , tν ∈ R are to be chosen optimally.

For special examples we will compare the best approximations with the Sinc quadrature results.
We recall some facts from the approximation theory by exponential sums (cf. [2]). The existence result

is based on the fundamental Big Bernstein Theorem: If f is completely monotone for x ≥ 0, i.e.,

(−1)nf (n)(x) ≥ 0 for all n ≥ 0, x ≥ 0,

then it is the restriction of the Laplace transform of a measure to the half-axis:

f(z) =
∫

R+

e−tzdµ(t).

For n ≥ 1, consider the set E0
n of exponential sums and the extended set En:

E0
n :=

{
u =

n∑
ν=1

ωνe−tνx : ων , tν ∈ R

}
,

En :=

{
u =

�∑
ν=1

pν(x)e−tνx : tν ∈ R, pν polynomials with
�∑

ν=1

(1 + degree(pν)) ≤ n

}
.

Now one can address the problem of finding the best approximation to f over the set En characterised by
the best approximation error d(f,En) := infv∈En ‖f − v‖∞.

We recall the complete elliptic integral of the first kind with modulus κ,

K(κ) =
∫ 1

0

dt√
(1 − t2)(1 − κ2t2)

(0 < κ < 1)

(cf. [22, §1.14.19.1]), and define K′(κ) := K(κ′) by κ2 +(κ′)2 = 1. The following theorem is presented in [2].
1Generalised Gaussian quadratures for certain improper integrals were described in [21].
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Theorem 3.1 Assume that f is completely monotone and analytic for �e z > 0, and let 0 < a < b. Then2

for the uniform approximation on the interval [a, b],

lim
n→∞ d(f,En)1/n ≤ 1

ω2
, where ω = exp

πK(κ)
K′(κ)

with κ =
a

b
.

In the case discussed below, we have κ = 1/R for possibly large R. Applying the asymptotics

K(κ′) = ln 4
κ + C1κ+ ... for κ′ → 1,

K(κ) = π
2 {1 + 1

4κ
2 + C1κ

4 + ...} for κ→ 0,

of the complete elliptic integrals (cf. [8]), we obtain

1
ω2

= exp
(
−2πK(κ)

K(κ′)

)
≈ exp

(
− π2

ln(4R)

)
≈ 1 − π2

ln(4R)
.

The latter expression indicates that the number n of different terms to achieve a tolerance ε is asymptotically

n ≈ | log ε|
| logω−2| ≈

| log ε| ln (4R)
π2

.

This result shows the same asymptotical convergence in n as the corresponding bounds in the later Lemmata
4.3, 5.2.

The best approximation to 1/ρµ in the interval [1, R] with respect to a weighted L2-norm is reduced to
the minimisation of an explicitly given differentiable functional. Given R > 1, µ > 0, N ≥ 1, find the 2N
real parameters α1, ω1, ..., αN , ωN ∈ R, such that

Fµ(R;α1, ω1, ..., αN , ωN ) :=
∫ R

1

W (x)
( 1
xµ

−
N∑

i=1

ωie−αix
)2

dx = min . (3.1)

In the important particular case of µ = 1 and W (x) = 1, the integral (3.1) can be calculated in closed form3:

F1(R;α1, ω1, ..., αN , ωN) = 1 − 1
R

− 2
N∑

i=1

ωi [Ei(−αi) − Ei(−αiR)]

+
1
2

N∑
i=1

ω2
i

αi

[
e−2αi − e−2αiR

]
+ 2

∑
1≤i<j≤N

ωiωj

αi + αj

[
e−(αi+αj) − e−(αi+αj)R

]

with the integral exponential function Ei(x) = −∫ x

−∞
et

t dt (cf. [22, p. 122]). In the special case R = ∞, the
expression for F1(∞; . . .) even simplifies. Gradient or Newton type methods with a proper choice of the
initial guess can be used to obtain the minimiser of F1.

Optimisation with respect to the maximum norm leads to the nonlinear minimisation problem
infv∈E0

n
‖f − v‖L∞[1,R] involving 2n parameters {ων, tν}n

ν=1. The numerical algorithm follows the Remez
algorithm (see [22, §7.5.2]). For our particular application with f(x) = 1

x we have the same asymptotical
dependence n = n(ε,R) as in the later Lemmata 4.3 and 5.2, however, the numerical results indicate a
noticeable improvement compared with the quadrature method (cf. Lemma 4.3) at least for small numbers
n ≤ 15. Numerical results for the best approximation of 1

x by sums of exponentials can be found in [2] and
[3]; a full list of numerical data is presented in www.mis.mpg.de/scicomp/EXP SUM/1 x/tabelle.

4 Integral
∫∞

0 e−ρtdt and Applications

We consider the Laplace integral transform

1
ρ

=
∫ ∞

0

e−ρξdξ (ρ > 0) , (4.1)

2The same result holds for E0
n, but the best approximation may belong to the closure En of E0

n.
3In the general case, the integral (3.1) may be approximated by certain quadrature.
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with the integrand f(ξ) = e−ρξ. We assume that ρ varies in [Rmin, Rmax] , where Rmin > 0 is required, while
Rmax = ∞ is included. Since Rmin can be changed by a simple scaling, in the following we use the choice
Rmin = 1, while Rmax is renamed by R.

4.1 Standard Quadrature

The substitution ξ = log(1 + eu) results into

1
ρ

=
∫

R

e−ρ log(1+eu)

1 + e−u
du =

∫
R

f1(u)du, f1(u) :=
e−ρ log(1+eu)

1 + e−u
(ρ ≥ 1) . (4.2)

This strange looking substitution is chosen to compensate for the unsymmetric behaviour of e−ρξ. The new
integrand f1 is exponentially decaying for u→ ∞ as well as for u→ −∞.

For the integral (4.2) we are able to apply the Sinc quadrature.

Lemma 4.1 Let δ < π/2. Then the function from (4.2) satisfies f1 ∈ H1(Dδ) with a uniform bound
N(f,Dδ) <∞ for all ρ ≥ 1. In particular, the behaviour is

|f1(u)| ≤ e−ρ�e u for �eu ≥ 0, |f1(u)| ≤ e−|�e u| for �eu ≤ 0 (u ∈ Dδ).

Under the condition ρ ≥ 1, (2.5) holds with C = b = 1 and the choice h =
√

2πδ/M yields the quadrature
result TM (f1, h) with the error estimate (2.8) uniformly for all ρ ≥ 1.

Proof. a) The zeros of 1 + eu are ±ikπ (k ∈ Zodd) and therefore outside of Dδ. Hence, f1(u) is analytic in
Dδ.

b) For u = ξ + iη ∈ Dδ we claim that �e log(1 + eu) ≥ max(0, ξ). For a proof we use

�e log(1 + eu) =
1
2

log(|1 + eu|2) =
1
2

log(1 + 2eξ cos(η) + e2ξ) ≥ 1
2

log(e2ξ) = ξ

in the case of ξ ≥ 0 and 1
2 log(1 + 2eξ cos(η) + e2ξ) ≥ 1

2 log(1) = 0 otherwise.
c) Part b) together with 1/ |1 + e−u| ≤ 1 proves the inequality |f1(u)| ≤ e−ρ�e u for �eu ≥ 0.
d) For �eu ≤ 0 we use �e log(1 + eu) ≥ 0 (i.e. |e−ρ log(1+eu)| ≤ 1) and 1/ |1 + e−u| ≤ 1/ |e−u| = e�e u =

e−|�e u|.
e) If ρ ≥ 1, the norm N(f,Dδ) is bounded independently of ρ and hence the error estimate (2.8) is

uniform in ρ.
The finite sum TM (f1, h) can be interpreted as an exponentially convergent quadrature for the integral

(4.2). Lemma 4.1 ensures that the tolerance ε can be achieved with M = O(| log ε|2) uniformly with respect
to ρ ∈ [1,∞).

4.2 Improved Quadrature

In order to apply the improved estimate (2.11), we apply a second substitution u = sinh(w) and obtain the
integral

1
ρ

=
∫

R

f2(w)dw with f2(w) = cosh(w)f1(sinh(w)) =
cosh(w)

1 + e− sinh(w)
e−ρ log(1+esinh(w)). (4.3)

The decay of f2 on the real axis is

f2(w) ≈ 1
2
ew− ρ

2 ew

as w → ∞, f2(w) ≈ 1
2
e|w|− 1

2 e|w|
as w → −∞,

corresponding to C = 1
2 , b = min{1, ρ}/2, a = 1 in (2.10). A particular difficulty is the behaviour of f2(w)

for w ∈ Dδ with �ew < 0, since the exponent −ρ log(1 + esinh(w)) may become positive. This effect requires
the use of a ρ-dependent δ in the next lemma.

Remark 4.2 We note that the choice of δ does not change the quadrature, but only effects the error bound
(see Proposition 2.1 for the choice of δ).
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As usual, we denote w = x+ iy, x, y ∈ R. Note that sinh(w) = X + iY with

X = sinh(x) cos(y), Y = cosh(x) sin(y) for w ∈ Dδ.

Given δ < π/2, we introduce the constant x1 = x1(δ) = arsinh( 1
cos δ ) > 0. Now set

A :=
(

1 +
π2

4
+ log2(3ρ)

)
/2, B :=

π2

4
/

(
A+

√
A2 +

π2

4

)
, (4.4)

and define

δ(ρ) := arcsin(
√
B), x0(ρ) := − arsinh

(
log(3ρ)

cos(δ(ρ))

)
= −O(log log(3ρ)). (4.5)

Lemma 4.3 Let δ < π/2. Then the following estimates of f2 from (4.3) in Dδ cover all values of x = �ew:

|f2(w)| ≤ cosh(x)
1 − e−X

exp
(−ρ log(eX − 1

)
)
∣∣∣∣
X=sinh(x) cos(y)

� 1
2
ex−ρ sinh(x) cos(y) (4.6a)

� 1
2
ex−ρ cos(δ)

2 e|x|
for w ∈ Dδ, x1 < x→ +∞,

|f2(w)| ≤
√

2 for w ∈ Dδ, 0 ≤ x ≤ x1(δ) and δ ≤ 0.93 < π/2, (4.6b)

|f2(w)| ≤ 1
2
ex+sinh(x) cos(y) ≤ 1

2
ex− cos(δ)

2 e|x|
for w ∈ Dδ, x0(ρ) ≤ x ≤ 0 (4.6c)

with 0 > x0(ρ) = −O(log log(3ρ)) and δ ≤ δ(ρ) = O(
π/2

log(3ρ)
),

|f2(w)| ≤
√

3
1 − 3− cos(δ)/ cos(δ(ρ))

1
2
e−x+ sinh(x) cos(y) ≤ Ce|x|−

cos(δ)
2 e|x|

(4.6d)

for w ∈ Dδ, 0 > x0(ρ) ≥ x→ −∞
with x0(ρ) and δ(ρ) described in (4.5). Hence f2 ∈ H1(Dδ), while δ ∈ (0, δ(ρ)] for ρ ≥ 1 leads to the finite
norm N(f2, Dδ) ≤ const < ∞ independent of ρ. If ρ ranges in [1, R], the choice δ = δ(R), a = 1, b = 1/2
in Proposition 2.1 implies the uniform quadrature error estimate

|ηM (f2, h)| ≤ C exp
(
−2πδ(R)M

log(2πM)

)
� C exp

(
− π2M

log(3R) log(π2M)

)
. (4.6e)

Proof. a) Again, the zeros of 1 + esinh(w) are outside of Dδ, so that f2(u) is analytic in Dδ.
b) The assumption x > x1 ensuresX > 1. The same argument as in Lemma 4.1 shows �e log(1+eX+iY ) =

1
2 log(1 + 2eX cos(Y ) + e2X). The worst case is cos(Y ) = −1 (which happens only for x ≥ x0(δ) > 0) and
yields �e log(1 + eX+iY ) ≥ log(eX − 1). This proves (4.6a).

c) x ≤ x1 implies sinhx ≤ 1
cos δ . From cosh(x) =

√
1 + sinh2 x one concludes that Y = cosh(x) sin(y) ≤

tan δ
√

1 + cos2 δ. The restriction δ ≤ 0.93 guarantees Y ∈ (−π/2, π/2) and thus �e eX+iY > 0. As a conse-
quence �e

(−ρ log(1 + esinh(w))
)
< 0 and

∣∣1 + e− sinh(w)
∣∣ > 1 show |f2(w)| ≤ |cosh(w)| ≤ √

1 + cos−2 δ ≤ √
2.

d) By the definition (4.5) we have that4 cosh(x) ≤ π/ (2 sin(δ(ρ)) and |Y | ≤ π
2 holds for x ≥ x0(ρ). This

ensures �e
(−ρ log(1 + esinh(w))

)
< 0 and therefore

|f2(w)| ≤
∣∣∣∣ cosh(w)
1 + e− sinh(w)

∣∣∣∣ ≤ ex

2(1 + e−X)
≤ 1

2
ex+sinh(x) cos(y) ≤ 1

2
ex+sinh(x) cos(δ).

e) For x ≤ x0(ρ) we have X ≤ − log(3ρ)
cos(δ(ρ)) cos y ≤ − log(3ρ), so that as in Part b)

�e
(
−ρ log(1 + esinh(w))

)
= −ρ

2
log(1 + 2eX cos(Y ) + e2X) ≤ −ρ

2
log(1 − 2eX) ≤ −ρ

2
log(1 − 2

3ρ
).

4With x0 = − arsinh
“

log(3ρ)
cos(δ)

”
it follows that cosh(x0) =

q
1 + sinh2(x0) =

r
1 +

“
log(3ρ)
cos(δ)

”2
. Then the condition |Y | =

|cosh(x0) sin(δ)| ≤ π
2

is equivalent to sin2(δ) + tan2(δ) log2(3ρ) ≤ π2

4
. Due to tan2(δ) = sin2(δ)

1−sin2(δ)
, we obtain a quadratic

equation in sin2(δ), whose solution is given by B from (4.4).
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The function − ρ
2 log(1− 2

3ρ) decreases with ρ ≥ 1 leading to − ρ
2 log(1− 2

3ρ ) ≤ log 3
2 and the bound exp( log 3

2 ) =√
3 in (4.6d). Together with 1/|1 + e− sinh(w)| ≤ 1/|1 − e−X | = eX/(1 − eX) ≤ eX/(1 − esinh(x0(ρ)) cos(δ)) =

eX/(1 − e−
log(3ρ)

cos(δ(ρ)) cos(δ)) = eX/(1 − 3− cos(δ)/ cos(δ(ρ))) and eX = esinh(x) cos(δ) we obtain (4.6d).
Lemma 4.3 ensures that the tolerance ε can be achieved with M = O(logR| log ε|) uniformly in ρ ∈ [1, R].

4.3 Numerics

In the numerical example below, we apply the quadrature to f2 using the simplified choice h = C0
log M

M . All
computations in this paper were performed with single precision arithmetic in MATLAB 5.3(R11).

Figures 4.1 and 4.2 (semi-logarithmic scale) illustrate the exponential convergence in the intervals
ρ ∈ [1, 1000] and ρ ∈ [1, 18 000], respectively. The numerical results indicate an almost linear dependence
of the quadrature error on ρ, i.e., instead of the slower exponential factor in exp(− π2

log(3ρ)M/ log( π2M
log(3ρ) ))

predicted by (4.6e), we observe the behaviour O(ρe−cM) = O(e−cM+log ρ). If this would be true, we obtain
a desired error bound ε by M = O(log 1

ε + log ρ) .
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Figure 4.1: The absolute quadrature error for (4.3) for 1 ≤ ρ ≤ 103 with M = 16 (left), M = 32 (middle),
M = 64 (right).
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Figure 4.2: The absolute quadrature error for (4.3) for 1 ≤ r ≤ 18000 with M = 16 (left), M = 32 (middle),
M = 64 (right).

Both the standard and the modified quadrature (cf. Lemma 4.3) can be applied to represent inverse
matrices with spectrum in [1, R]. In the next examples, we present the error ‖x − A−1

(r)Ax‖∞ of different
quadratures approximating the inverse of the finite difference Laplacian A = (−∆h)−1 in Rd, where x ∈ Rd

is chosen as a random tensor-product vector (there is the intrinsic difficulty to calculate a multi-dimensional
matrix-norm). Since for all fifty six cases listed in tables below the independent random arrays have been
used, we consider the corresponding results as rather convincing. The first table represents the convergence
of the order e−c

√
M of the standard quadrature for (4.1).
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standard approximation to (−∆h)−1 in [0, 1]d with N = nd, n = 128
M 4 9 16 25 36 49 64

d = 3 5.010-2 2.010-3 1.410-4 1.210-4 1.710-6 2.410-8 1.910-9
d = 6 3.110-3 5.010-5 5.310-6 9.510-7 5.310-8 7.710-10 2.910-12
d = 9 6.710-5 2.310-7 1.010-6 1.010-6 1.610-9 3.110-10 3.110-12
d = 12 2.410-6 3.210-6 7.610-8 7.510-10 5.710-11 2.910-13 6.210-14

The next table gives the error for the quadrature (4.1) of the order e−cM/ log[cond(A)]. We observe that
the latter approximation shows faster exponential convergence for larger M , while the first version is more
preferable for smaller M .

improved approximation to (−∆h)−1 in [0, 1]d with N = nd, n = 128
M 4 9 16 25 36 49 64

d = 3 2.410-2 3.810-2 5.610-2 9.910-5 2.610-6 8.210-10 7.010-12
d = 6 1.910-2 1.510-3 3.710-4 7.710-7 4.510-9 8.210-12 1.110-14
d = 9 3.010-3 3.010-3 1.010-5 1.610-7 1.010-9 1.410-12 1.710-15
d = 12 3.010-7 3.910-5 1.010-8 7.810-9 1.810-10 5.010-13 5.610-16

The last table shows that the approximation error depends only weakly on n, confirming the theoretical
predictions.

Approximation to (−∆h)−1 in [0, 1]d with d = 3, M = 25
n 4 8 16 32 64 128
ε 2.510-8 7.710-8 4.210-8 5.710-7 8.510-6 3.510-6

5 Integral
∫∞
−∞ e−ρ

2t2dt

The integrand of
1
ρ

=
1√
π

∫ ∞

−∞
e−ρ2t2dt (5.1)

shows a fast decay if ρ is not too small. However, the results of §2.3 do not yield uniform error bounds with
respect to ρ ≥ 1. The reason is that t = x+ iδ ∈ Dδ results in |e−ρ2t2 | = exp(−ρ2(x2 − δ2)). For −δ ≤ x ≤ δ,

the exponent is positive and therefore N(f,Dδ) ≈ O(eρ2
) circumvents reasonable error estimates.

The same difficulty arises when the substitution t = sinh(w) is used to get the twice exponential decay
of the integrand:

1
ρ

=
∫ ∞

−∞
f3(w)dw with f3(w) = cosh(w) exp(−ρ2 sinh2(w)). (5.2)

Lemma 5.1 For each ρ > 0, the symmetric (M + 1)-point quadrature for the integral (5.2) converges expo-
nentially with constants C, s in (2.11) depending on ρ.

Proof. Clearly, for each ρ > 0, the function f3(w) defined above satisfies all the conditions in Proposition
2.1. Thus, we choose h = C0

log M
M for some C0 and obtain exponential convergence as indicated in (2.11),

where the constants C and s depend on the parameter ρ.
We conclude that the symmetric quadrature for the integral (5.2) is acceptable only in an interval

ρ ∈ Iref = [Rmin, Rmax] with some fixed Rmin ∈ (0, 1) and Rmax > 1 of order O(1) (see numerical results
below). Hence, for a larger range of the parameter ρ ∈ [R1, R2] we have to split [R1, R2] into smaller
subintervals and by proper re-scaling reduce each to the approximation in Iref = [Rmin, Rmax]. In general,
we need p different intervals, when R2/R1 ≈ Qp with Q = Rmax/Rmin.

The following example illustrates the quadrature applied to f3. Figure 5.1 shows that stable convergence
holds for the range [0.2, 10] of ρ. However, for a fixed value ρ (considered as a constant), the quadrature
applies and yields an accuracy ε with M = O(log2 1

ε ) (case of (5.1)) or M = O(log 1
ε · log log 1

ε ) (case of
(5.2)).
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Figure 5.1: Approximation to the integral (5.1) with ρ ∈ {0.2, 1, 10}, h = log M
M

To obtain robustness with respect to the parameter ρ, we propose another, non-symmetric quadrature.
For this purpose we rewrite the integral (5.1) as 1

ρ = 2√
π

∫∞
0

e−ρ2t2dt and then, similar to the previous
section, substitute t = log(1 + eu) and u = sinh(w):

1
ρ

=
∫

R

f(w)dw with f(w) := cosh(w)F (sinh(w)), F (u) :=
2√
π

e−ρ2 log2(1+eu)

1 + e−u
. (5.3)

Lemma 5.2 Let δ < π/2. Then for the function f from (5.3) we have f ∈ H1(Dδ), and, in addition, the
condition (2.10) is satisfied with a = 1. For ρ ≥ 1, the improved (2M + 1)-point quadrature (cf. Proposition
2.1) with the choice δ(ρ) = π

C+log(ρ) allows the error bound

|ηM (f, h)| ≤ C1 exp
(
− π2M

(C + log(ρ)) logM

)
. (5.4)

Proof. It is easy to check that f is holomorphic in Dδ and N(f,Dδ) < ∞ uniformly in ρ. The further
analysis is similar to that in Lemma 4.3.

Note that the quadrature error analysis in the more general case f(ρ) = 1/ρµ, µ > 0, can be found in
[17].

Numerical examples for this quadrature with values ρ ∈ [1, R], R ≤ 5000, are presented in Figure 5.2.
Again, we observe almost linear error growth in ρ. Similar results are observed in the case R > 5000.
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Figure 5.2: The absolute quadrature error for M = 64 with R = 200 (left), R = 1000 (middle), R = 5000
(right).

6 Gaussian Charge Distribution

In some cases the precise scaling of the argument, 1 ≤ ρ ≤ R, might not be possible as in the following
example.
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The energy of the interaction between two spherical Gaussian distributions of unit charges centred at
P, P ′ ∈ R3 is given by

Vpp′ :=
∫

R3

∫
R3

ρp(x)ρp′ (y)
‖x − y‖ dxdy with ρq(z) :=

( q
π

)3/2

exp(−q ‖z − P‖2)

(cf. [20]), where p, p′ ∈ R and x,y ∈ R3. In fact, the supports of the two Gaussian “basis functions” ρp,
ρp′ always have an overlap. Therefore, we are going to compare the accuracy of our quadrature from the
previous section with that one derived for the explicit expression obtained by analytic spatial integration
(often, this integration can be performed only numerically).

The exact integration using the incomplete gamma function F0(x) =
∫ 1

0 e−xt2dt ≡√ π
4x erf(

√
x), leads to

Vpp′ =

√
4α
π
F0

(
α ‖P − P ′‖2

)
, α =

pp′

p+ p′
.

In our example we choose α = 1. We use the integral representation on [0,∞),

F0(x) =
∫ ∞

0

exp
(
−x u2

1 + u2

)
du

(1 + u2)3/2
≡
∫ ∞

0

f(u)du , (6.1)

and derive the standard quadrature (setting h = π/
√
M)

F0(x) ≈ h
M∑

k=−M

ckf(uk), ck = uk = ekh,

which converges as O(exp(−s√M)). Figure 6.1 shows numerical results for this quadrature with different
M = 25, 64, 121 and for x ∈ [0, R], R = 100. This example confirms that the exponential convergence is
robust in R. Another important observation is that the error bound remains practically the same as that for
the integral (5.1) (see Fig. 5.2). This numerical result shows that our exponentially convergent quadrature

can be applied to compute accurately the integral Vpp′ =
√

4α
π F0(α ‖P − P ′‖2) in the wide range of the

physical parameter x = ‖P − P ′‖2.
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M=64, 0<x<100
0 20 40 60 80 100
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2
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x 10
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M=121, 0<x<100

Figure 6.1: The absolute quadrature error for the integrand (6.1) with M = 25 (left), M = 64 (middle),
M = 121 (right).

7 Separable Approximation of Multi-Variate Functions

As a by-product, the Sinc quadrature applied to the integrals (4.3) and (5.2) provides a separable approxi-
mation to the multi-variate functions

1
x1 + ...+ xd

and
1√

x2
1 + ...+ x2

d

(xi > 0, i = 1, ..., d).
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In the case of 1
x1+...+xd

, Lemma 4.3 shows that the separation rank k = 2M + 1 depends only linear-
logarithmically on both the tolerance ε > 0 and the upper bound R of ρ = x1 + ... + xd. In the case of
1/
√
x2

1 + ...+ x2
d, the dependence on ε and ρ =

√
x2

1 + ...+ x2
d is similar, hence in both cases there is no

dependence on the dimension d.
In the first case of 1

x1+...+xd
, the estimate (4.6e) implies that an approximation of accuracy ε is obtainable

with
M ≤ O (log(1

ε ) · logR
)
, (7.1)

provided that 1 ≤ x1 + ... + xd ≤ R, which can be achieved by a proper scaling. The numerical results
even support the better estimate M ≤ O (log(1

ε ) + logR
)

(see Figures 4.1, 4.2). In the second case of
1/
√
x2

1 + ...+ x2
d, we apply (5.4) and again obtain the bound (7.1), while our numerical results manifest a

rather stable behaviour of the quadrature error with respect to R (see Figure 5.2).

7.1 Example: Newton Potential

Our separable representation to the function ρ = 1/
√
x2

1 + ...+ x2
d directly results in a low Kronecker rank

tensor-product approximation (cf. [15]) to the classical Newton potential (Au) (x) :=
∫
Ω

u(y)
|x−y|dy defined by

the kernel function
1

|x− y| =
1√

(x1 − y1)2 + ...+ (xd − yd)2
(x, y ∈ R

d).

Indeed, with the Kronecker rank r = 2M + 1, where M satisfies (7.1), we readily obtain the separable
approximation of accuracy ε,

1
|x− y| ≈

r∑
k=1

Ckf
1
k (|x1 − y1|) · · · fd

k (|xd − yd|),

provided that 1 ≤ |x − y| ≤ R. Note that the Kronecker rank r does not depend on d. In FEM/BEM
applications by low order elements, one has R = O(h−1) (after a proper scaling), where h is the mesh
parameter.

7.2 Example: log(x + y)

In boundary element methods (BEM), one is interested in a low separation rank representation of the kernel
function s(x, y) = log(x + y), x ∈ [0, 1], y ∈ [h, 1] with some small mesh-size parameter h > 0 (cf. [14, 15]).
A representation like

1
x+ y

=
k∑

m=1

Φm(x)Ψm(y) + δk with |δk| ≤ ε (7.2)

can be constructed by means of the quadrature applied to the integral (4.3) with ρ = x+ y and k = 2M +1.
Let ψm be the anti-derivatives of Ψm. Integration of (7.2) yields

log(x + y) =

y∫
1−x

dt
x+ t

=

y∫
1−x

(
k∑

m=1

Φm(x)Ψm(t) + δk

)
dt

=
k∑

m=1

Φm(x)[ψm(y) − ψm(1 − x)] + Sk = Φ0(x) +
k∑

m=1

Φm(x)ψm(y) + Sk

with Φ0(x) = −
k∑

m=1
Φm(x)ψm(1 − x) and |Sk| =

∣∣∣∣∣
y∫

1−x

δkdt

∣∣∣∣∣ ≤ ε. This resulting representation of log(x + y)

has the separation rank k + 1 and the same accuracy ε as (7.2).
In the next example we illustrate how to apply Corollary 2.4.
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7.3 Example: 1/(x + y)

Interesting examples like g(x, y) = 1
x+y (x, y > 0) have a singularity at x = −y. In the following, we discuss

the choice of δ such that g is holomorphic in the strip Dφ(δ) (see §2.5). Solving the equation cosh(z) = −1/y,
we find the singularity points zm = ± arcosh(1/y) + (1 ± 2m)iπ , m = 0, 1, ... . Now, by solving the equation
sinh(ζm) = zm we find ζm = log(zm +

√
1 + z2

m), �m(ζm) = arg(zm +
√

1 + z2
m). Suppose that y → 0,

hence minm∈N0{�m(ζm)} ≥ C0π/ arcosh(1/y) is achieved with m = 0, where C0 does not depend on y (we
actually have C0 ≈ 1). Taking m = 0 and suppressing all symmetric images, we come to the conclusion that
g(φ(ζ), y) is holomorphic in Dδ0 , where tan(δ0) = C0π/ arcosh(1/y) depends on y.

In the following, we fix y > 0 and, first, apply Corollary 2.4 with

δ = δ0 = arctan(C0π/ arcosh(1/y)),

and next (2.20) to obtain

|g(x, y) − gM (x, y)| ≤ C |x|−α N(f,Dδ)
2πδ0

e−πδ0M/ log M . (7.3)

In BEM applications we have x, y ≥ h → 0, where h > 0 is the mesh parameter, so that δ0 ≈ π
| log h/2|

depends only mildly on h. Then (7.3) leads to

|g(x, y) − gM (x, y)| ≤ C |h|−α N(f,Dδ)| log h/2|
2π2

e−π2M/(| log h/2| log M). (7.4)

Hence, the tolerance ε can be achieved with M = O(| log h|| log ε|) and with the Kronecker rank r = 2M +1.
Note that the error estimate for the function 1/(x + y), x, y ∈ [1, R], can be derived from (7.4) by the

substitution h = 1/R.
Similarly to the previous example, the Sinc approximation can be applied to functions like g(x, y) =

log(x + y), g(x, y) = (x2 + y2) log(x + y) (biharmonic kernel function) and to H(1)
0 (x + y) (2D Helmholtz

kernel).

7.4 Example: exp(−xy)

Next, we discuss the function g(x, y) = exp(−xy), x ≥ 0, y ∈ [1, λmax] ⊂ [1,∞), which arises in Part II of
our paper.

We consider the auxiliary function f(x, y) = x
1+x exp(−xy), x ∈ R+. This function satisfies all the

conditions of [18, Example 4.2.11] with α = β = 1 (see also [7, §2.4.2]), and hence, with the corresponding
choice of interpolation points xk := log[ekh +

√
1 + e2kh] ∈ R+, it can be approximated by

sup
0<x<∞

∣∣∣∣∣f(x, y) −
M∑

k=−M

f(xk, y)S(k, h) (log{sinh(x)})
∣∣∣∣∣ ≤ CM1/2e−cM1/2

with exponential convergence, where S(k, h) is the k-th Sinc function (cf. (2.3)) and h = C1/M
1/2 . The cor-

responding error estimate for the function g(x, y) is given by (2.20) with α = 1 (cf. [17] for the corresponding
numerical examples).

Alternatively, we can apply the integral representation (for x, y ≥ c > 0)

exp(−2xy) =
x√
π

∫
R+

s−3/2 exp(−x2/s− sy2)ds,

or, via the substitution s = et,

exp(−2xy) =
x√
π

∫
R

exp(− t

2
− x2e−t − y2et)dt.

Hence, one can approximate g(x, y) = exp(−xy) directly by an double exponential sum, i.e.,

exp(−xy) ≈
∑

1≤i≤j≤r

cije−bix
2
e−bjy2

, (x, y) ∈ [0, R]2,
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with symmetric coefficient matrix cij = cji. The corresponding minimisation problem for the L2-norm error
functional takes the form

minimise

∥∥∥∥∥∥ exp(−xy) −
∑

1≤i≤j≤r

cije−bix
2
e−bjy2

∥∥∥∥∥∥
2

L2

with respect to cij , bi,

which can be solved by the Newton-type methods. The separation rank is r, since exp(−xy) ≈
r∑

i=1

Φi(x)Ψi(y)

with Φi(x) = e−bix
2

and Ψi(y) =
r∑

j=1

cije−bjy2
.

Alternatively, the coefficients bi, bj can be precomputed by using certain approximations for exp(−cy)
by exponential sums (c > 0: lower bound of the variable x). Then the L2-orthogonal projection onto
span{e−bix

2
e−bjy2} determines the coefficients cij .

7.5 Example: Helmholtz Kernel in Rd

We consider the singularity function corresponding to the Helmholtz operator in Rd, d ≥ 2. Given κ ∈ R,
define the Helmholtz kernel function

g(x, y) :=
cos(κ|x− y|)

|x− y| = �e
eiκ|x−y|

|x− y| for (x, y) ∈ [0, 1]d × [0, 1]d

in Cartesian coordinates x = (x1, ..., xd), y = (y1, ..., yd) ∈ Rd. We mention that an analysis of polynomial
approximations to the Helmholtz kernel function is presented in [13] in the context of the hierarchical matrix
technique with standard admissibility criteria. The Sinc approximation below can be applied in the case of
a weakly admissible block (cf. [14]) with respect to the transformed variables ζ1, ..., ζd .

For (ζ1, ..., ζd) ∈ [0, 1]d, define

G(ζ1, ..., ζd) := g(x, y), ζ� = |x� − y�|, � = 1, ..., d,

which implies

G(ζ1, ..., ζd) := cos
(
κ
√
ζ2
1 + ...+ ζ2

d

)
/
√
ζ2
1 + ...+ ζ2

d .

We approximate the modified function

F (ζ1, ..., ζd) := (ζ1 · ... · ζd−1)α0G(ζ1, ..., ζd), 0 < α0 < 1,

on the domain Ω1 := [0, 1]d−1 × [h, 1], where h > 0 is a small parameter, which can be associated with the
mesh-size.

Now we apply Corollary 2.6 with δ = 1/| logh| to construct the approximation GM (x) via the interpola-
tion of F and obtain

|G(x) −GM (x)| ≤
d−1∏
�=1

x−α0
�

∣∣EM (F, h)(φ−1(x))
∣∣ (7.5)

≤ Chα0(1−d)| log h|Λd−1
M N0(F,Dδ) e−πM/(| log h| log M)

with ζ ∈ (0, 1]d, where the corresponding interpolant GM (x) is given by (2.25).
Note that in this example N0(F,Dδ) = O(eκ), while the Kronecker rank is given by r = (2M + 1)d−1.

Clearly, for a large parameter κ, the bound (7.5) does not provide a satisfactory complexity.
The intrinsic alternative to the multi-variate Sinc interpolation would be the following two-step

method: First, compute the polynomial interpolation to the entire function cos(κ
√
ζ2
1 + ...+ ζd ) with

r = O((logR | log ε|)d−1) and then multiply it with the HKT representation to the Newton potential as
above. However, in this case the resulting Kronecker rank (obtained as a product of the corresponding
ranks for the elementary factors) seems to be larger than for the Sinc interpolation method.
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