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Abstract

We formulate a variational principle for a collection of projectors in an indefinite
inner product space. The existence of minimizers is proved under general assumptions.

In a recent book it was proposed to formulate physics with a new variational principle
in space-time [2]. In the present paper we construct minimizers of this variational principle.
In order to make the presentation self-contained and easily accessible, we introduce the
mathematical framework from the basics (see Sections 1 and 2). Thus this paper can
be used as an introduction to the mathematical setting of the principle of the fermionic
projector. However, the reader who wants to get a physical understanding is referred
to [2].

Our variational principle is set up in finite dimension, and thus the continuity of the
action is not an issue. The difficulties are the lack of compactness and the fact that there is
no notion of convexity. Therefore, we need to derive suitable estimates (Sections 4 and 6)
before we can use the direct method of the calculus of variations (Sections 7 and 8). Our
main results can be understood already after reading Sections 1 and 2 and are stated in
Section 5 (see Theorem 5.2, Theorem 5.3 and Corollary 5.5).

1 Discrete Space-Time and the Fermionic Projector

Let H be a finite-dimensional complex vector space, endowed with a sesquilinear form
<.|.> : H × H → C, i.e. for all u, v,w ∈ H and α, β ∈ C,

<u | αv + βw> = α <u | v> + β <u | w>

<αu + βv | w> = α <u | w> + β <v | w> .

We assume that <.|.> is symmetric,

<u | v> = <v | u> ,

and non-degenerate,

<u | v> = 0 ∀ v ∈ H =⇒ u = 0 .

Note that <.|.> is in general not positive, and it is therefore not a scalar product. We
also refer to (H,<.|.>) as an indefinite inner product space. To a non-degenerate subspace
of H we can associate its signature (p, q), where p and q are the maximal dimensions of
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positive and negative definite subspaces, respectively (for more details see [1, 3] and the
examples in Section 3).

Many constructions familiar from scalar product spaces can be carried over to indefinite
inner product spaces. In particular, we define the adjoint of a linear operator A : H → H
by the relation

<u | Av> = <A∗u | v> ∀ u, v ∈ H .

A linear operator A is said to be unitary if A∗ = A−1 and symmetric if A∗ = A. It is
called a projector if it is symmetric and idempotent,

A∗ = A = A2 .

Let M be a finite set. To every point x ∈ M we associate a projector Ex. We assume
that these projectors are orthogonal and complete in the sense that

Ex Ey = δxy Ex and
∑
x∈M

Ex = 11 . (1)

Equivalently, we can say that the images of the projectors Ex give a decomposition of H
into orthogonal subspaces,

H =
⊕
x∈M

Ex(H) . (2)

Furthermore, we assume that the images Ex(H) ⊂ H of these projectors are non-dege-
nerate and all have the same signature (n, n). We refer to (n, n) as the spin dimension.
Relation (2) shows that the dimension of H must be equal to m ·2n, where m = #M
denotes the number of points of M . The points x ∈ M are called discrete space-time
points, and the corresponding projectors Ex are the space-time projectors. The struc-
ture (H,<.|.>, (Ex)x∈M ) is called discrete space-time.

We now introduce one more projector P on H, the so-called fermionic projector, which
has the additional property that its image P (H) is negative definite. In other words, P (H)
has signature (0, f) with f ∈ N. The vectors in the image of P have the interpretation as
the quantum mechanical states of the particles of our system, and we call f = dim P (H)
the number of particles. We remark that in physical applications [2] these particles are
Dirac particles, which are fermions, giving rise to the name “fermionic projector”.

A space-time projector Ex can be used to restrict an operator to the subspace Ex(H) ⊂
H. Using a more graphic notion, we also refer to this restriction as the localization at the
space-time point x. For example, using the completeness of the space-time projectors (1),
we readily see that

f = Tr P =
∑
x∈M

Tr(ExP ) . (3)

The expression Tr(ExP ) can be understood as the localization of the trace at the space-
time point x, and summing over all space-time points gives the total trace. We call Tr(ExP )
the local trace of P . When forming more complicated composite expressions in the pro-
jectors P and (Ex)x∈M , it is convenient to use the short notations

P (x, y) = Ex P Ey and u(x) = Ex u .

Referring to the orthogonal decomposition (2), P (x, y) maps Ey(H) to Ex(H) and vanishes
otherwise. It is often useful to regard P (x, y) as a mapping only between these subspaces,

P (x, y) : Ey(H) �→ Ex(H) .
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Using (1), we can write the product Pu as follows,

(Pu)(x) = Ex Pu =
∑
y∈M

Ex P Ey u =
∑
y∈M

(Ex P Ey) (Ey u) ,

and thus
(Pu)(x) =

∑
y∈M

P (x, y) u(y) .

This relation resembles the representation of an operator with an integral kernel. There-
fore, we call P (x, y) the discrete kernel of the fermionic projector. The discrete kernel can
be used for expressing general operator products; for example,

P Ex P Ey =
∑
z∈M

P (z, x) P (x, y) .

2 A Variational Principle

We want to form a positive quantity which depends on the form of the fermionic projector
relative to the space-time projectors. Since scalar invariants (like the trace or the deter-
minant) can be introduced only for operators which map a vector space into itself, we first
define the closed chain Axy by

Axy = P (x, y) P (y, x) = Ex P Ey P Ex : Ex(H) �→ Ex(H) . (4)

We often omit the subscripts ‘xy’. Let λ1, . . . , λ2n be the zeros of the characteristic poly-
nomial of A, counted with multiplicities. We define the spectral weight |A| by

|A| =
2n∑
j=1

|λj | .

We introduce the Lagrangian L[A] by

L[A] = |A2| − 1
2n

|A|2 (5)

and form the action S by summing over the discrete space-time points,

S[P ] =
∑

x,y∈M

L[Axy] . (6)

Our variational principle is to

minimize S[P ] by varying P , (7)

keeping the number of particles f as well as discrete space-time (H,<.|.>, (Ex)x∈M ) fixed.
Before moving on to simple examples in the next section, we now give a few general

explanations. First of all, let us verify that the action is non-negative. According to the
Schwarz inequality,

|A| =
2n∑
j=1

|λj | ≤
⎛
⎝ 2n∑

j=1

1

⎞
⎠

1
2
⎛
⎝ 2n∑

j=1

|λj|2
⎞
⎠

1
2

=
√

2n |A2| 12 ,
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and squaring both sides we find that L[A] ≥ 0. Our Lagrangian can also be written in the
form

L[A] =
1
4n

n∑
i,j=1

(|λi| − |λj|)2 , (8)

as is easily verified by multiplying out the square in (8). This shows that the Lagrangian
vanishes only if the |λj | are all equal. Thus one can say qualitatively that our variational
principle tries to achieve that the zeros of the characteristic polynomial of A all have the
same absolute value.

The Lagrangian L[Axy] is symmetric in its two arguments x and y, as the following
consideration shows. For any two quadratic matrices B and C, we choose ε not in the
spectrum of C and set Cε = C−ε11. Taking the determinant of the relation Cε(BCε−λ) =
(CεB − λ)Cε, we can use that the determinant is multiplicative and that detCε 
= 0 to
obtain the equation det(BCε−λ) = det(CεB−λ). Since both determinants are continuous
in ε, this equation holds even for all ε ∈ R, proving the elementary identity

det(BC − λ11) = det(CB − λ11) .

Applying this identity to the closed chain,

det(Axy − λ11) = det(P (x, y)P (y, x) − λ11)
= det(P (y, x)P (x, y) − λ11) = det(Ayx − λ11) ,

we conclude that the operators Axy and Ayx have the same characteristic polynomial, and
thus

L[Axy] = L[Ayx] ∀x, y ∈ M . (9)

It is a simple but important observation that a joint unitary transformation of all
projectors,

Ex → UExU−1 , P → UPU−1 with U unitary (10)

keeps the action unchanged, because

P (x, y) → U P (x, y) U−1 , Axy → UAxyU
−1

det(Axy − λ11) → det
(
U(Axy − λ11) U−1

)
= det(Axy − λ11) ,

and so the λj stay the same. Such unitary transformations can also be used to vary
the fermionic projector. However, since we want to keep discrete space-time fixed, we
are only allowed to consider unitary transformations which do not change the space-time
projectors,

Ex = UExU−1 ∀ x ∈ M . (11)

Then (10) reduces to the transformation of the fermionic projector

P → UPU−1 . (12)

Unitary transformations of the form (11, 12) are called gauge transformations. The condi-
tions (11) mean that U maps the subspaces Ex(H) into itself. Hence U splits into a direct
sum of unitary transformations

ExU : Ex(H) �→ Ex(H) , (13)
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which act “locally” on the subspaces associated to the individual space-time points. Obvi-
ously, the gauge transformations form a group, referred to as the gauge group G. Localizing
the gauge transformations according to (13), we obtain at any space-time point x the so-
called local gauge group. The local gauge group is the group of isometries of Ex(H) and
can thus be identified with the group U(n, n).

One may ask why the space-time projectors are to be kept fixed in our variational prin-
ciple (7). More generally, one could vary both P and the (Ex)x∈M , fixing only the integer
parameters f and n. Recall that the space-time projectors are equivalently described by
the orthogonal decomposition (2) together with the condition that the subspaces Ex(H)
should all have signature (n, n). For two different sets of space-time projectors, we can
find a unitary transformation which maps the corresponding subspaces Ex(H) onto each
other. Then the transition from one set of space-time projectors to the other is described
by the unitary transformation Ex → UExU−1. Since such unitary transformations leave
the action unchanged if also the fermionic projector is transformed according to (10), it is
no loss in generality to fix the space-time projectors throughout.

It is instructive to consider our framework in a concrete basis of H. Then our inner
product can be represented in the form

<u | v> = (u | Sv) ,

where (.|.) is the canonical scalar product on C
2mn. Here S is a Hermitian matrix (meaning

that (u | Sv) = (Su | v) ∀ u, v ∈ H), referred to as the signature matrix. By choosing the
basis of H appropriately, we can arrange that S is diagonal with eigenvalues equal to ±1.
In particular, S is unitary and S2 = 11. The signature matrix is useful for calculations.
For example,

<u | Av> = (u | SAv) = (A†Su | v) = (SA†Su | Sv) = <SA†Su | v> ,

where the dagger denotes transposition and complex conjugation. Thus the adjoint can
be expressed by

A∗ = SA†S .

A matrix is symmetric if and only if the matrix SA is Hermitian. As one already sees in
the two-dimensional example

S =
(

1 0
0 −1

)
, A =

(
1 1
−1 −1

)
, (14)

a symmetric matrix in an indefinite inner product space need not be diagonalizable. This
explains why after (4) we had to speak of “zeros of the characteristic polynomial” and
not of “eigenvalues.” Note that the matrix A in (14) is nilpotent and thus |A| = 0. This
shows that the spectral weight is not a matrix norm, not even on symmetric operators.
We remark that it seems impossible to introduce any other basis independent matrix
norm; in particular, the analogue of the Hilbert-Schmidt norm (Tr(A∗A))

1
2 vanishes in

the example (14). Even if a symmetric matrix is diagonalizable, its eigenvalues are in
general not real, as can be seen in the example

S =
(

1 0
0 −1

)
, A =

(
0 1
−1 0

)
. (15)

At least, the calculation

det(A − λ11) = det
(
A† − λ

)
= det

(
S(A† − λ)S

)
= det

(
A∗ − λ

)
= det

(
A − λ11

)
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shows that the characteristic polynomial of a symmetric matrix A has real coefficients. In
other words, the non-real λj always appear in complex conjugate pairs.

3 Simple Examples

In order to get a first impression of our variational principle, we now consider a few simple
examples. We begin with the case m = 1 of one space-time point. In this case, the only
space-time projector E is the identity, and the sum over the space-time points in (6) drops
out. Thus

S = |A2| − 1
2n

|A|2

with A = P 2. Using that P is idempotent and that its only non-vanishing eigenvalue is
one with multiplicity f , we find

S = |P | − 1
2n

|P |2 = f − f2

2n
.

Hence the action is unchanged if the fermionic projector is varied. This can also be
understood from the fact that with only one space-time point, the condition (11) is trivial,
and therefore any variation of P can be realized as a gauge transformation (12). The
situation becomes more interesting with two space-time points, as the next example shows.

Example 3.1 Choose M = {1, 2} with spin dimension (1, 1) and f = 1. Then H is
4-dimensional, and by choosing a suitable basis we can arrange that

S =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ , E1 =

(
11 0
0 0

)
, E2 =

(
0 0
0 11

)
, (16)

where for E1/2 we used a block matrix notation (thus every matrix entry stands for a
2× 2-matrix). Again in this block matrix notation, the gauge transformations (11) are of
the form

U =
(

U1 0
0 U2

)
, (17)

where (Ux)x∈M are two independent “local” unitary transformations on Ex(H) of the form

Ux =
(

cosh ϑ sinhϑ
sinhϑ cosh ϑ

)
with ϑ ∈ R.

Thus the local gauge group is U(1, 1), and the gauge transformations (17) are elements of
the gauge group G = U(1, 1) ⊗ U(1, 1).

Since we consider a system of one particle (f = 1), the fermionic projector P must be
a projector on a one-dimensional, negative definite subspace. It is convenient to write P
using bra/ket-notation as

P = −|u><u | with <u | u> = −1 . (18)

A possible choice is

u =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ and thus P =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (19)
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A short calculation yields that |A11| = |A2
11| = 1, and all other Aij vanish. Thus

S = L(A11) = |A2
11| −

1
2
|A11|2 =

1
2

.

It turns out that the above P is not a minimizer. Namely, choosing

u =
1√
2

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ , P =

1
2

⎛
⎜⎜⎝

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎞
⎟⎟⎠ (20)

we get a smaller value for the action,

|Aij |2 = |A2
ij | =

1
16

for all i, j ∈ M

S = 4 L(A11) = 4
(

1
16

− 1
2 · 16

)
=

1
8

.

Let us verify that this indeed the minimum. Representing a general P in the form (18),
we can use the gauge freedom (17) to arrange that u is of the form u = (0, cos ϕ, 0, sin ϕ)
with ϕ ∈ [0, 2π). A short calculation yields that

|A11|2 = |A2
ij | = cos8 ϕ , |A22|2 = |A2

22| = sin8 ϕ

|A12|2 = |A2
12| = |A21|2 = |A2

21| = sin4 ϕ cos4 ϕ

S =
∑

i,j∈M

|A2
ij | −

1
2
|Aij |2 =

1
2
(
cos4 ϕ + sin4 ϕ

)2 =
1
2
(
2 sin4 ϕ − 2 sin2 ϕ + 1

)2
,

and the last function really attains its minimum when sin2 ϕ = 1/2. �

In the above example, our variational principle has, up to gauge transformations, a
unique minimum. The fact that the configuration (19) where the particle is localized at
the first space-time point is not optimal can be understood qualitatitively by saying that
our variational principle “tends to spread out particles in space-time.” We will quantify
this observation later (see Lemma 6.1); it will be important in our analysis. We also
point out that the local gauge group is non-compact, and that the set of gauge-equivalent
minima UPU−1 with P and U according to (20, 17) form an unbounded family of matrices.
This explains why minimizers cannot be constructed with simple compactness arguments.

We next consider a system of two particles.

Example 3.2 Choose M = {1, 2} with spin dimension (1, 1) and f = 2. Thus the discrete
space-time is the same as in Example 3.1; it is again described by (16). However, P now
maps onto a two-dimensional negative subspace of H. Since the subspaces Ex(H) have
at most one-dimensional negative subspaces, one may expect that the spaces Ex(H) ∩
P (H), x ∈ M , should both be one-dimensional. This is indeed the case, as the following
consideration shows. Since P (H) ⊂ H is a negative subspace of maximal dimension (recall
that H has signature (2, 2)), its orthogonal complement (11−P )(H) is a positive subspace.
This allows us to introduce on H a scalar product (.|.)P by

(u | v)P = <u | (11 − P ) v> − <u | P v>. (21)
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For clarity, we denote the corresponding Hilbert space by (H, (.|.)P ). Since P is symmetric
in H and commutes with itself, it is obvious from (21) that the operator P is self-adjoint
in H. Furthermore, we let Ex be the projectors on the subspaces Hx := Ex(H) ⊂ H (thus
the Ex are self-adjoint with respect to (.|.)P ; note that they are in general different from
the Ex, which are symmetric with respect to <.|.>). Then the operator P1 := E1PE1 is
self-adjoint on the Hilbert space (H1, (.|.)P ), and we can diagonalize it. For an eigenvalue λ
and corresponding eigenvector u ∈ H1, we write the eigenvalue equation as follows,

((P − λ11) u | v)P = 0 ∀ v ∈ H1 . (22)

In the case λ = 1, we evaluate this equation for v = u and use that (11 − P )2 = 11 − P ,

0 = ((P − 11)2 u | u)P = ((P − 11) u | (P − λ) u)P

and thus Pu = u ∈ H1. Hence we have found one vector in E1(H) ∩ P (H). If the other
eigenvalue of P1 were also equal to one, we could repeat the above argument to conclude
that P (H) spans E1(H), which is a contradiction because E1(H) is not negative. If on
the other hand we have an eigenvalue λ 
= 1, we can rewrite (22) with (21) and use
that (11 − P ) v = 0 to obtain

0 = ((P − λ11) u | v)P = (λ − 1) <Pu | v> ∀ v ∈ H1 .

This means that <Pu | v> = 0 for all v ∈ E1(H), implying that Pu ∈ E2(H). Thus we
have found a vector in E2(H) ∩ P (H). Now the other eigenvalue of P1 must be equal to
one, because otherwise P (H) would span E2(H), and we would again get a contradiction.
We conclude that there are vectors u1 and u2 with

0 
= ux ∈ Ex(H) ∩ P (H) ,

and since P (H) has dimension two, these two vectors clearly span P (H).
Using the gauge freedom (17), we can arrange that u1 is a multiple of the vec-

tor (0, 1, 0, 0), and u2 is proportional to (0, 0, 0, 1). Then P must be of the form

P =

⎛
⎜⎜⎝

0 0 0 0
∗ ∗ ∗ ∗
0 0 0 0
∗ ∗ ∗ ∗

⎞
⎟⎟⎠ ,

where the stars stand for any complex matrix entries. Using furthermore that P is sym-
metric, idempotent and has two-dimensional range, we conclude that P must be equal to
the matrix

P =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ . (23)

This means that the two particles must be localized, one at each space-time point. The
fermionic projector is unique up to gauge transformations. �

The argument of this example shows more generally that our variational principle becomes
trivial when the number of particles is equal to the maximal dimension m·n of negative
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subspaces of H. This is intuitively clear, because in this case there is (up to gauge trans-
formations) only one possible configuration: at each space-time point we must localize n
particles.

The most interesting case is when the number of particles is large, but still much
smaller than the number of space-time points.

Example 3.3 Choose 1 � f � m with spin dimension (1, 1). In this case, we can
represent discrete space-time by the following matrices,

S =

⎛
⎜⎜⎜⎜⎜⎝

1 0
0 −1

1 0
0 −1

. . .

⎞
⎟⎟⎟⎟⎟⎠

and

E1 =

⎛
⎜⎝

11
0

. . .

⎞
⎟⎠ , E2 =

⎛
⎜⎝

0
11

. . .

⎞
⎟⎠ , . . . , Em .

One possibility to choose P is to localize each of the f particles similar to (23) at one of
the space-time points. However, the resulting value for the action

S =
f

2

is certainly not minimal. It is better if, in analogy to (20), each particle is evenly spread
over m/f space-time points (we here assume for simplicity that m/f is an integer). A
short calculation yields

S =
f

2

(
f

m

)2

.

There is no reason why this configuration should be optimal. It is completely unknown
how the minimizer looks like in general. �

The case of physical interest is spin dimension (2, 2) (or more generally (2N, 2N)
with N ≥ 1), because in this case the vectors of H can be identified with the Dirac
wave functions of relativistic quantum mechanics. We expect the general structure of the
minima to be very complicated. Our qualitative picture is that, depending on the value
of the so-called filling factor f/(nm), the minimizers should induce relations between the
discrete space-time points which for large m should correspond to different geometric
configurations of the space-time points. To give a specific example for such a “relation
between the discrete space-time points”, we finally remark that two points x, y ∈ M may
be called timelike or spacelike separated if the matrix Axy has a purely real spectrum or has
also complex spectral points, respectively. As explained in [2, §5.6], this relation should,
in a suitable limit in which discrete space-time goes over to a continuum space-time, give
the causal structure of a Lorentzian manifold.

4 Positive Operators, Lower Bounds for the Lagrangian

We now introduce a concept which will be an important ingredient to our existence proof.
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Def. 4.1 A symmetric operator A on an indefinite inner product space of signature (p, q)
is said to be positive if

<u | Au> ≥ 0 ∀ u ∈ H .

Expressed with the signature matrix, we can say that A is positive if and only if the
matrix SA is positive semi-definite on C

p+q endowed with the standard Euclidean scalar
product. To avoid confusion, we point out that the statements “A is positive” and “the
image of A is positive” are completely different. In the two-dimensional examples

S =
(

1 0
0 −1

)
, A1 =

(
1 0
0 −1

)
, A2 =

(
0 0
0 −1

)
, (24)

the operator A1 is positive, although its image has signature (1, 1). The operator A2 is
also positive, but its image is negative. The last example also shows that the trace of
a positive operator can be negative. At least, the projector on a positive subspace is a
positive operator, as the following argument shows.

Lemma 4.2 The operator (−P ) (with P the fermionic projector) is a positive operator.

Proof. Using that P is idempotent, symmetric, and maps to a negative subspace, we
obtain for all u ∈ H,

<u | (−P )u> = −<u | P 2 u> = −<Pu | Pu> ≥ 0 .

We now collect a few elementary but useful properties of positive operators.

Lemma 4.3 Suppose that A is a positive operator on H. Then

(i) If Q is a projector in H, the operator QAQ is again positive.

(ii) For all u, v ∈ H,
|<u | Av>| ≤

√
<u | Au>

√
<v | Av> . (25)

Proof. Part (i) is obvious because <u |QAQ u> = <Qu |AQu> ≥ 0. Part (ii) can be
regarded as the Schwarz inequality for the positive semi-definite inner product (.|.)A :=
<.|A.>. The proof is almost as simple as in scalar product spaces: First note that for
all a, b ∈ H,

0 ≤ (a − b | a − b)A = (a | a)A + (b | b)A − 2Re (a | b)A .

By changing the phase of the vector a, we can arrange that (a | b)A ≥ 0. Thus

2 |(a | b)A| ≤ (a | a)A + (b | b)A ∀ a, b ∈ H . (26)

Suppose that (u |u)A = 0. Then applying (26) for a = u/ε and b = εu with a
parameter ε > 0 gives

2 |(u | v)A| ≤ ε2 (v | v)A ,

and letting ε → 0, we see that (25) is trivially satisfied. The same argument applies
if (v | v)A = 0. In the remaining case (u |u)A 
= 0 and (v | v)A 
= 0, we apply (26) with

a =
(

(v | v)A
(u | u)A

) 1
4

u , b =
(

(u | u)A
(v | v)A

) 1
4

v .
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Compared to the situation for general symmetric operators as explained after (14),
positive operators have nice spectral properties, as the following approximation argument
shows.

Lemma 4.4 A positive operator A on an indefinite inner product space of signature (p, q)
has a purely real spectrum. The zeros (λj)j=1,...,2n if its characteristic polynomial (again
counted with multiplicities) can be ordered as follows,

λ1 ≤ · · · ≤ λq ≤ 0 ≤ λq+1 ≤ · · · ≤ λp+q .

Proof. We choose a matrix representation with signature matrix S and set Aε = A + εS.
Clearly, the matrices Aε converge to A as ε → 0. Since the spectrum is continuous in ε, it
suffices to prove the lemma for the matrix Aε and any ε > 0.

The matrix Aε is symmetric and strictly positive in the sense that for all u 
= 0,

<u | Aεu> = <u | Au> + <u | S u> ≥ <u | S u> = (u | u) > 0 .

Hence we can introduce a scalar product by

(u | v)Aε := <u | Aεv> .

Since the operator Aε is symmetric and commutes with itself, it is clearly self-adjoint in
the Hilbert space (H, (.|.)Aε). Thus we can choose an eigenvector basis (uj)j=1,...,p+q. The
corresponding eigenvalues λj satisfy the identity

λj <uj | uj> = <uj | Aεuj> = (uj | uj)Aε > 0 .

Thus p of the eigenvalues are positive, whereas the other q eigenvalues are negative.

Note that a positive operator is in general not diagonalizable, as the example (14) shows.
The above lemmas can be used to get lower estimates of our Lagrangian and the

action, which shed some light on the mathematical behavior of our variational principle.
It is obvious from (3) that the local trace is non-zero at least at some x ∈ M . The next
lemma shows that the Lagrangian of Axx can be bounded below by expressions involving
the local trace at x.

Proposition 4.5 Let P be a symmetric operator on (H,<.|.>) such that (−P ) is positive.
Then, using again the notation (4, 5),

L[Axx] ≥ |Tr(ExP )|4
64n2

(27)

L[Axx] ≥ |Tr(ExP )|2 inf σ
(
Axx|Ex(H)

)
. (28)

Proof. According to Lemma 4.3 (i), the operator (−P (x, x)) : Ex(H) �→ Ex(H) is
positive. Lemma 4.4 tells us that the zeros of the characteristic polynomial of P (x, x),
which we denote by (µj)j=1,...,2n, are all real and have the ordering

µ1 ≤ · · · ≤ µn ≤ 0 ≤ µn+1 ≤ · · · ≤ µ2n . (29)

This allows us to write the local trace as follows,

Tr(ExP ) =
2n∑
j=1

µj =
2n∑

i=n+1

|µi| −
n∑

j=1

|µj | =
1
n

2n∑
i=n+1

n∑
j=1

(|µi| − |µj|) , (30)
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where the last equality is obvious if one notices that when for example adding up the |µi|,
the sum over j can be carried out giving a factor n. We now take absolute values and
increase the right side by taking more summands,

|Tr(ExP )| ≤ 1
n

2n∑
i,j=1

∣∣∣|µi| − |µj |
∣∣∣. (31)

Now we can proceed with Hölder’s inequality to obtain

|Tr(ExP )| ≤ 1
n

(
4n2
) 1

2

⎛
⎝ 2n∑

i,j=1

∣∣∣|µi| − |µj |
∣∣∣2
⎞
⎠

1
2

= 2

⎛
⎝ 2n∑

i,j=1

∣∣∣|µi| − |µj|
∣∣∣2
⎞
⎠

1
2

(32)

|Tr(ExP )| ≤ 1
n

(
4n2
) 3

4

⎛
⎝ 2n∑

i,j=1

∣∣∣|µi| − |µj |
∣∣∣4
⎞
⎠

1
4

=
√

8n

⎛
⎝ 2n∑

i,j=1

∣∣∣|µi| − |µj|
∣∣∣4
⎞
⎠

1
4

. (33)

Since the matrix Axx is the square of P (x, x), the zeros of its characteristic polynomial,
again denoted by (λj)j=1,...,2n, satisfy the relations

0 ≤ λj = |µj |2 ∀ j = 1, . . . , 2n . (34)

Using the formula (8) for the Lagrangian, we then obtain

L(Axx) =
2n∑

i,j=1

(λi − λj)2 =
2n∑

i,j=1

(|µi| − |µj|)2 (|µi| + |µj |)2 . (35)

The last expression can be bounded from below in two ways. Either we use the inequality

(|µi| + |µj |)2 ≥ (|µi| − |µj |)2

and apply (33) to obtain (27). Or we use the estimate

2n∑
i,j=1

(|µi| − |µj|)2 (|µi| + |µj |)2 ≥ 4 min
j

|µj |2
2n∑

i,j=1

(|µi| − |µj|)2

together with (34) and (32), giving (28).

The inequality (27) immediately gives a positive lower bound for the action.

Corollary 4.6 In the setting of Section 1, the action (6) satisfies the inequality

S[P ] ≥ f4

64n2 m3
.

Proof. We first apply Hölder’s inequality in (3),

f ≤ m
3
4

(∑
x∈M

|Tr(ExP )|4
) 1

4

. (36)
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Dropping the contributions for x 
= y in (6), we obtain the lower bound

S[P ] =
∑

x,y∈M

L[Axy] ≥
∑
x∈M

L[Axx] , (37)

and using (27) and (36) gives the claim.

We point out that for the estimates of Proposition 4.5 it is crucial that the maximal
dimensions of the positive and negative definite subspaces of Ex(H) coincide. If we consid-
ered more general discrete space-times with spin dimension (p, q), then in the case p 
= q
the last transformation in (30) would no longer be valid, and the statements of Lemma 4.5
and Corollary 4.6 would break down. This can most easily be seen in the extreme ex-
ample of spin dimension (0, q), where by “localizing” q particles similar to (19) at the
space-time point x we could arrange that P (x, x) = 11|Ex(H). Then Axx would be the
identity, and L[Axx] would vanish, although the local trace Tr(ExP ) would be equal to q.
By localizing all particles in this way at individual space-time points, we could construct
minimizers of the action which are not particularly interesting. This consideration is the
reason why in this paper we only consider systems of spin dimension (n, n). We feel that,
apart from their physical significance, these systems are the ones for which the minimizers
of our variational principle should have the most interesting mathematical structure.

5 Statement of the Main Results

For the estimates of Proposition 4.5 it was essential that the operator (−P ) was positive,
but P did not necessarily need to be a projector. This is the motivation for considering
our variational principle on a more general class of operators, which we now introduce.

Def. 5.1 An operator P on an inner product space (H,<.|.>) is said to be of class Pf if

(i) The operator (−P ) is positive.

(ii) The operator P has trace f and rank at most f .

Clearly, the fermionic projector as introduced in Section 1 is of class Pf . The next theorem
shows that our variational principle behaves nicely on Pf .

Theorem 5.2 The action (6) attains its minimum in Pf , i.e. there is P ∈ Pf with

S[P ] = inf
Q∈Pf

S[Q] .

The theorem makes no statement on uniqueness, and indeed we do not see a reason why
the minimizer should be unique. For the proof we will use the direct method of the
calculus of variations. By starting with different minimal sequences, our method allows
to construct all minimizers.

It is not known whether the minimizer from Theorem 5.2 is a projector. Also, one
might want to consider the variational principle under various constraints. In this respect,
the following theorem is very useful.

Theorem 5.3 Suppose that (Pk)k∈N is a sequence of operators of class Pf such that the
following two conditions are satisfied,

13



(A) The series S[Pk] is bounded.

(B) The local trace is bounded away from zero in the sense that for suitable δ > 0,

|Tr(ExPk)| ≥ δ ∀ k ∈ N, x ∈ M .

Then there is a subsequence (Pkl
) and a sequence of gauge transformations Ul ∈ G such

that the gauge-transformed operators have a limit

P := lim
l→∞

UlPkl
U−1

l ,

and the actions converge,
S[P ] = lim

l→∞
S[Pkl

] .

Thus the only obstruction is that in a minimal sequence the local trace (as defined after (3))
must not go to zero at any space-time point. It is an open problem whether this condition
is only a technical condition needed in our proof, or whether it is really necessary for the
theorem to hold. Also, it is not clear whether condition (B) will be satisfied for a general
minimal sequence of fermionic projectors (see also the remark at the end of Section 6).

Using the ansatz
Φ(t, r, ϑ, ϕ) = e−iωt−ikϕ R(r) Θ(ϑ), (38)

the wave equation can be separated into an angular and a radial ODE,
In order to give an example for a variational principle with constraints, we finally

consider homogeneous operators.

Def. 5.4 A fermionic projector P is called homogeneous if for any x0, x1 ∈ M there is
a permutation σ : M �→ M with σ(x0) = x1 and a gauge transformation U ∈ G such that

P (σ(x), σ(y)) = U P (x, y) U−1 ∀x, y ∈ M .

We remark that this definition generalizes the usual notion of “homogeneity” as defined
via a symmetry group K acting transitively on space-time. Namely, in this case we take
for any x0, x1 ∈ M a group element g ∈ K with g(x0) = x1 and set σ(x) = g(x), together
with unitary maps Ux : Ex(H) → Eg(x)(H) which identify the corresponding spinor spaces.
Homogeneous operators seem of physical interest because the vacuum should be described
by a homogeneous fermionic projector.

Corollary 5.5 Varying P in the class of homogeneous fermionic projectors, the action (6)
attains its minimum.

Proof. Let P be a homogeneous fermionic projector. Then, with σ and U as in Defini-
tion 5.4,

Tr(Ex1P ) = Tr(P (x1, x1)) = Tr(U P (x0, x0) U−1) = Tr(P (x0, x0)) .

Thus the local trace is the same at all space-time points, and from (3) we conclude that

Tr(ExP ) =
f

m
∀ x ∈ M .

Hence we can apply Theorem 5.3 with ε = f/m.

14



6 A Lower Bound for the Local Trace

In this section we shall analyze how the infimum of our action depends on the number of
space-time points. Thus for fixed spin dimension (n, n) and a fixed number of particles f ,
we consider for any m ∈ N a discrete space-time (H,<.|.>, (Ex)x∈M ) with m = #M (note
that this discrete space-time is unique up to isomorphisms). We define

I(f,m) = inf{S[P ] | P ∈ Pf}
J(f,m) = inf{S[P ] | P fermionic projector}

}
. (39)

In the case f > mn, when the set of fermionic projectors is empty, we set J(f,m) =
∞. The functions I and J are strictly positive by Corollary 4.6. Also, it is obvious
that I(f,m) ≤ J(f,m). Apart from simple examples as considered in Section 3, nothing
is known about the values of I(f,m) and J(f,m). In particular, it would be interesting
to know whether I(f,m) is always strictly smaller than J(f,m).

Our next lemma shows that the functions I(f,m) and J(f,m) are strictly decreasing
in the parameter m. This can be understood from the fact that if m is increased, the
particles can spread out over more space-time points, making the infimum of the action
smaller.

Lemma 6.1 The functions I and J defined by (39) satisfy the inequalities

I(f,m + 1) ≤
(

1 − 3
4m

)
I(f,m) , J(f,m + 1) ≤

(
1 − 3

4m

)
J(f,m) . (40)

Proof. Let P be an operator of class Pf in a discrete space-time (H,<.|.>, (Ex)x∈M )
with M = {1, . . . ,m}. Introducing a discrete space-time (Ĥ,<.|.>, M̂) where M̂ =
{0, . . . ,m} consists of one more space-time point, there is a unitary transformation U
from H to the subspace K = ⊕m

x=1Êx(Ĥ) of Ĥ which maps the space-time projectors Ex

to the Êx in the sense that Ex = U−1ÊxU for all x = 1, . . . ,m. In other words, we can
identify (H,<.|.>, (Ex)x∈M ) with the discrete space-time (K,<.|.>, (Êx)x∈M ). Using this
identification, the operator P maps K to itself, and extending it by zero to Ê0(Ĥ), we
obtain an operator

P : Ĥ �→ Ĥ with E0 P = 0 = P E0 .

Since P (x, y) vanishes when x = 0 or y = 0, the action of P is given by

S[P ] =
∑

x,y∈M

L[Axy] ,

and this also shows that our reinterpretation of P did not change its action.
Our method is to construct a unitary transformation V : Ĥ �→ Ĥ such that the action

of the operator
P̂ := V P V −1 (41)

is strictly smaller than that of P . First, in

S[P ] =
∑
x∈M

⎛
⎝∑

y∈M

L[Axy]

⎞
⎠
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we choose a point x ∈ M for which the inner sum is maximal. Then
∑
y∈M

L[Axy] ≥ S[P ]
m

. (42)

We choose V such that it is the identity on the subspaces Êy(Ĥ) for y 
∈ {0, x}, whereas
on the subspace Ê0(Ĥ) ⊕ Êx(Ĥ) it has in block matrix notation the form

V =
1√
2

(
11 11
−11 11

)
, V −1 =

1√
2

(
11 −11
11 11

)
.

A short calculation shows that the discrete kernels of P and P̂ are related by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P̂ (y, z) = P (y, z) if y, z 
∈ {0, x}
P̂ (y, z) =

1√
2

P (x, z) , P̂ (z, y) =
1√
2

P (z, x) if y ∈ {0, x} and z 
∈ {0, x}

P̂ (z, y) =
1
2

P (x, x) if y, z ∈ {0, x} .

Using that the Lagrangian is homogeneous in P of degree four, we obtain with the obvious
notation Âxy = P̂ (x, y) P̂ (y, x) that

S[P̂ ] =
∑

y,z �∈{0,x}
L[Ây,z] + 4

∑
y �∈{0,x}

L[Âxy] + 4 L[Âxx]

=
∑

y,z �∈{0,x}
L[Ay,z] +

∑
y �∈{0,x}

L[Axy] +
1
4
L[Axx]

and thus
S[P ] − S[P̂ ] =

∑
y �∈{0,x}

L[Axy] +
3
4
L[Axx] ≥ 3

4

∑
y∈M

L[Axy] .

Now we can put in (42) to obtain the inequality

S[P̂ ] ≤
(

1 − 3
4m

)
S[P ] .

Consider a minimal sequence Pk ∈ Pf (H). Then

I(m + 1, f) ≤ S[P̂k] ≤
(

1 − 3
4m

)
S[Pk] k→∞−→

(
1 − 3

4m

)
I(m, f) ,

proving the left inequality in (40). Similarly, if we let Pk be a minimal sequence of pro-
jectors, then the corresponding operators P̂k are also projectors (because (41) is a unitary
transformation), and we obtain the right inequality in (40).

Proposition 6.2 Let Pk ∈ Pf be a minimal sequence for the action (6), i.e.

lim
k→∞

S[Pk] = I(f,m) . (43)

Then there is δ > 0 such that

Tr(ExPk) ≥ δ ∀ k ∈ N, x ∈ M .
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Proof. We argue by contradiction. Assume that there is x ∈ M and a subsequence of (Pk)
(again denoted by (Pk)k∈N) such that limk→∞ Tr(ExPk) ≤ 0. Then we must clearly have
more than one space-time point, because otherwise Tr(ExP ) = Tr(P ) = f > 0. We
introduce the projector F = 11 − Ex and define for large k the series of operators Qk by

Qk = ck FPkF with ck :=
f

Tr(FPk)
. (44)

Since Tr(FPk) = Tr(Pk) − Tr(ExPk) → f , we know that

lim
k→∞

ck ≤ 1 . (45)

According to Lemma 4.3 (i), the operators (−Qk) are positive, and we normalized them
such that Tr Qk = f . Therefore, the operators Qk are again of class Pf . Since they vanish
identically on Ex(H), we can regard them as operators in a discrete space-time consisting
of m − 1 space-time points, and thus

S[Qk] ≥ I(m − 1, f) . (46)

Using that the Lagrangian is homogeneous of degree four, we obtain furthermore

S[Qk] = c4
k S[FPkF ] ≤ c4

k S[Pk] , (47)

where in the last step we used that the Lagrangians of Pk and FPkF coincide away of the
space-time point x; more precisely,

S[Pk] − S[FPkF ] = L[Axx] + 2
∑
y �=x

L[Axy] ≥ 0 .

Taking in (47) the limit k → ∞ and using (45, 43), we obtain in view of (46) that

I(m − 1, f) ≤ lim
k→∞

S[Qk] ≤ lim
k→∞

S[Pk] = I(m, f) ,

in contradiction to Lemma 6.1.

This proposition ensures that for a minimal sequence in Pf , condition (B) of Theorem 5.3
is satisfied. Thus Theorem 5.2 follows from Theorem 5.3. We point out that, unfortunately,
the above argument does not apply to a minimal sequence of projectors, because the
property to be idempotent gets lost when the operators are restricted similar to (44) to a
subspace of H.

7 Gauge Fixing, Rescaling

We now enter the proof of Theorem 5.3. Thus let (Pk)k∈N be a sequence of operators of
class Pf which satisfy conditions (A) and (B). We again choose a basis in H and let (.|.)
be the canonical scalar product on C

2nm. We let ‖.‖ be the corresponding Hilbert-Schmidt
norm, ‖A‖ := (Tr(A†A))

1
2 .

Our first task is to treat the non-compact gauge group G (as defined after (13)). We
denote the equivalence class of gauge-equivalent operators by 〈.〉G , i.e.

〈P 〉G = {UPU−1 | U ∈ G} .
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We consider for any fixed k ∈ N the variational principle

minimize {‖Q‖ | Q ∈ 〈Pk〉G} . (48)

If (Ql)l∈N is a minimal sequence of this variational principle, the Hilbert-Schmidt norms
of the Ql are uniformly bounded. Thus we can use a compactness argument to select
a convergent subsequence. We conclude that the variational principle (48) attains its
minimum. We choose for each k a minimizer and denote it by P̂k. We point out that the
above construction of the P̂k involves the norm ‖.‖ and thus depends on the choice of our
basis of H. This will be no problem in what follows because the minimizers obtained by
choosing different norms will be gauge equivalent. We refer to our method of arbitrarily
choosing one representative of each gauge equivalence class as gauge fixing; it can be
understood in analogy to the gauge fixing used in electrodynamics or in general relativity.

In the case that the sequence of operators (P̂k) has a subsequence of bounded Hilbert-
Schmidt norm, we can by compactness choose a subsequence which converges to an oper-
ator P . Since our action is obviously continuous, this P would be the desired minimizer.
Thus it remains to consider the case when the Hilbert-Schmidt norm is unbounded for
any subsequence of (P̂k); in other words, that

‖P̂k‖ → ∞ . (49)

We introduce new operators Rk by rescaling the P̂k,

Rk = αk P̂k with αk :=
1

‖P̂k‖
k→∞−→ 0 .

Then obviously ‖Rk‖ ≡ 1, and thus we can, again after choosing a subsequence, assume
that the Rk converge,

Rk → R .

It is clear from their construction that the operators Rk and R have the following
properties: The operators (−Rk) and (−R) are positive and normalized,

‖Rk‖ = 1 = ‖R‖ . (50)

Their traces are given by

Tr(Rk) = αk f , Tr(R) = 0 , (51)

and their action is computed to be

S[Rk] = α4
k S[Pk] , S[R] = 0 . (52)

Finally, the local trace of Rk is bounded from below,

|Tr(ExRk)| ≥ δ αk ∀ k ∈ N, x ∈ M . (53)

8 Existence of Minimizers

Our goal is to show that the properties (50–53) contradict the fact that the P̂k are min-
imizers of (48) (this then implies that the case (49) cannot occur, completing the proof
of Theorem 5.3). For any x ∈ M , the operator T := −R(x, x) is positive according to
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Lemma 4.3 (i). From Lemma 4.4 we conclude that the zeros (µj)j=1,...,2n of its character-
istic polynomial are all real and ordered as in (29). Since L[T 2] = 0, the absolute values
of the µj must all be equal, and thus there is a parameter µ ≥ 0 such that

µ1 = . . . µn = −µ and µn+1 = . . . µ2n = µ .

In the case µ > 0, we know by the continuity of the spectrum that for large k,

inf σ
(
(Tk)2|Ex(H)

)
≥ µ2

2

(with Tk := −Rk(x, x)). Combining the lower bound (28) with (52, 53), we obtain

µ2

2
δ2 α2

k ≤ L[T 2
k ] ≤ S[Rk] = α4

k S[Pk] ,

and taking the limit k → ∞, we obtain a contradiction to the fact that the S[Pk] are
uniformly bounded away from zero according to Corollary 5.5.

It remains to consider the case µ = 0 where the operator T is nilpotent. As in the proof
of Lemma 4.4, we approximate T by the strictly positive operators Tε = T + εS. Diago-
nalizing the Tε by unitary transformations Uε on Ex(H), the diagonal matrices UεTεU

−1
ε

converge to zero as ε → 0. Hence for any Ψ ∈ H,

<Ψ | Uε T Uε Ψ> + <Ψ | Uε S Uε Ψ> = <Ψ | Uε Tε Uε Ψ>
ε→0−→ 0 .

Since the summands on the left are both positive, we conclude that <Ψ | UεTUε Ψ> → 0
for all Ψ ∈ H and thus

lim
ε→0

UεTUε = 0 .

For given κ > 0 we choose ε such that ‖UεTUε‖ < κ/2 and subsequently k so large that
‖Tk − T‖ < κ/(2 ‖Uε‖ ‖U−1

ε ‖). Then

‖Uε Tk U−1
ε ‖ ≤ ‖Uε‖ ‖Tk − T‖ ‖U−1

ε ‖ + ‖Uε T U−1
ε ‖ ≤ κ .

Since κ can be chosen arbitrarily small, we conclude that there is a subsequence of the Tk

(which we denote again by (Tk)k∈N) together with unitary transformations Uk such that

lim
k→∞

Uk Tk U−1
k = 0 .

Extending the Uk by the identity to the subspaces Ey(H), y 
= x, we obtain a sequence of
gauge transformations such that

Uk Rk U−1
k → R̃ .

Since these gauge transformations act only on Ex(H), it is clear that R(y, z) = R̃(y, z)
if y, z 
= x. By construction, R̃(x, x) = 0. The Schwarz inequality, Lemma 4.3 (ii), tells
us that also the entries R̃(x, y) and R̃(y, x) for y 
= x vanish. Since we chose the opera-
tors P̂k such that their Hilbert-Schmidt norm was minimal among all gauge-equivalent
operators, the Hilbert-Schmidt norm of the operators Rk (which were obtained from
the P̂k only by rescaling) cannot be decreased by a subsequent gauge transformation,
and thus ‖Uk Rk U−1

k ‖ ≥ ‖Rk‖. Taking the limit k → ∞, we find that ‖R̃‖ ≥ ‖R‖. Since
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these operators coincide up to matrix elements where R̃ vanishes, the operators R̃ and R
must coincide. In particular, R(x, x) = 0.

We conclude that the diagonal entries R(x, x) of R all vanish. Again applying the
Schwarz inequality, Lemma 4.3 (ii), we see that the off-diagonal entries of R are also zero.
Thus R = 0, in contradiction to (50).
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