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Abstract
A rigorous derivation is given of a rod theory for a multiphase material,
starting from three-dimensional nonlinear elasticity. The stored energy
density is supposed to be nonnegative and to vanish exactly on a set
consisting of two copies of the group of rotations SO(3). The two po-
tential wells correspond to the two crystalline configurations preferred
by the material. We find the optimal scaling of the energy in terms of
the diameter of the rod and we identify the limit, as the diameter goes
to zero, in the sense of Γ-convergence.

1 Introduction

In this paper we give a rigorous derivation of a one-dimensional theory of elastic
thin beams made of a multiphase material. More precisely, let Ωh = (0, L)×hS
be the reference configuration of a thin beam, where S is a bounded domain in
R

2 with Lipschitz boundary and h is a (small) positive parameter. Given an
elastic deformation v : Ωh → R

3 , we define

E(h)(v) :=
1
h2

∫
Ωh

W (∇v(z)) dz (1.1)

as the elastic energy (per unit cross-section) associated to v . We suppose that
the stored energy density W : M

3×3 → R is nonnegative and vanishes exactly on
the set

K := SO(3) ∪ SO(3)H,
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where SO(3) is the group of rotations, i.e., SO(3) := {R ∈ M
3×3 : RT R =

Id,det R = 1}, and H is a matrix in M
3×3 with det H > 0. This multiple-well

structure of W occurs typically in models for materials undergoing solid-solid
phase transformations, the two copies of SO(3) corresponding to the two different
crystalline configurations preferred by the material.

In [4] Bhattacharya and James pointed out that low energy deformations in
the thin film limit have a very different structure with respect to low energy
states in bulk materials. If Id represents the austenite phase and H one of the
martensitic variants, then they are usually incompatible in bulk, so that the only
zero energy states are the trivial ones. In contrast, the limiting two-dimensional
thin film theory allows for interfaces which may be incompatible in the thick-
ness direction. The incompatibility condition becomes even less stringent in the
one-dimensional limit (see [11]). In particular, given two deformation gradients
Id and RH , it is always possible to construct a sequence of three-dimensional
deformations (v(h)) such that their gradients converge to a juxtaposition of Id
and RH and their energy E(h) is bounded from above by Ch .

The main results of this paper are two. We first show that the scaling E(h) ∼ h
is optimal (see Theorem 2.4), provided that a phase transitions indeed occurs.
Then, in Theorems 2.4 and 3.1 we identify the limit, in the sense of Γ-convergence,
corresponding to this scaling. The notion of Γ-convergence, introduced by De
Giorgi, has proved to be a successful tool for the problem of rigorous derivation
of lower dimensional theories starting from three-dimensional elasticity (in the
nonlinear setting see, e.g., [1], [8], [9], [12], [16], [17], [18]). For a comprehensive
introduction to Γ-convergence we refer to the book [7]. A very interesting alter-
native approach for the derivation of rod theories which is based on the use of
centre manifolds for a rod of infinite length has been developed by Mielke [14, 15].

To state our results more precisely, it is convenient to introduce in (1.1) the
following change of variables:

z1 = x1, z2 = hx2, z3 = hx3,

and to rescale deformations according to y(x) := v(z(x)), so that y is a map
from Ω := (0, L)×S into R

3 . We introduce the notation

∇hy :=
(

∂1y

∣∣∣∣1h∂2y

∣∣∣∣ 1
h

∂3y

)

and the functional

I(h)(y) :=
∫

Ω
W (∇hy(x)) dx = E(h)(v).

On the stored energy function W : M
3×3 → [0,+∞) we require the following

conditions:

(i) W ∈ C0(M3×3);
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(ii) W is frame-indifferent, i.e., W (F ) = W (RF ) for every F ∈ M
3×3 and

R ∈ SO(3);

(iii) there exist C1, C2 > 0 such that C1 dist2(F,K) ≤ W (F ) ≤ C2 dist2(F,K)
for every F ∈ M

3×3 .

The lower bound in (iii) is a natural condition, it states that the energy wells
are non-degenerate. The upper bound, however, is rather restrictive. It is, e.g.,
incompatible with the natural condition that W should blow up for infinite com-
pression, i.e., W (F ) → ∞ as detF → 0+ . The upper bound in (iii) is mainly
used in the proof of the limes inferior estimate in Theorem 2.4. There we modify
a given low energy sequence in order to enforce affine boundary conditions near
±∞ . The bound is used to ensure that this modification has negligible energy.
By a slight refinement of this argument we could work with the weaker upper
bound W (F ) ≤ Cdist2(F,K) + Cdist3(F,K) but this is still incompatible with
blow-up of the energy at infinite compression.

We assume that the two wells are strongly incompatible in the sense of Matos
[13] and Šverák [19]. By polar decomposition and a linear change of variables we
may assume H symmetric. Hence in a suitable orthonormal basis H is diagonal,
i.e., H = diag(λ1, λ2, λ3). Since detH > 0, we may suppose that λi > 0. In
the following we always suppose that the material has been cut in such a way
that the x1 axis in the reference configuration of the rod corresponds to the first
eigenvector of H . For positive definite diagonal matrices the incompatibility
condition is

3∑
i=1

(1 − λi)(1 − detH/λi) > 0. (1.2)

In Theorem 2.4 we prove that given any sequence of deformations (y(h)) ⊂
W 1,2(Ω; R3) satisfying

1
h

I(h)(y(h)) ≤ C for every h,

there exists a subsequence (not relabeled) such that the deformation gradients
∇hy(h) converge weakly in L2(Ω; M3×3) to a limit of the form (∂1y | d2 | d3),
where y ∈ W 1,∞((0, L); R3) and d2, d3 ∈ L∞((0, L); R3). Moreover, there exists
a finite number of disjoint intervals in (0, L) (whose union we call A) such that

(∂1y | d2 | d3) ∈
{

co (SO(3)) a.e. in A,
co (SO(3)H) a.e. in (0, L) \ A,

(1.3)

where co (M) denotes the convex hull of M for any M ⊂ M
3×3 . In Theorems 2.4

and 3.1 we show that the Γ-limit of the functionals 1
hI(h) can be expressed in

terms of the functions y , d2 , d3 , and of the set A . More precisely, it is propor-
tional to the number of transition points of the matrix (∂1y | d2 | d3) between the
convex hulls of the two wells.
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The last section is devoted to the study of the limit functional. In particular,
we remark that, if no force terms or boundary conditions are considered, the
limit problem becomes trivial. Indeed, given a deformation y ∈ W 1,∞((0, L); R3)
with |∂1y| ≤ max{1, λ1}, one can always find d2, d3 ∈ L∞((0, L); R3) such that
(∂1y | d2 | d3) belongs to the convex hull of only one well, so that the energy
associated to y is zero. If |∂1y| > max{1, λ1}, the energy is infinite, since the
constraint (1.3) can never be satisfied. Instead, if force terms are present, it may
be energetically convenient to have transition points between the convex hulls of
the two wells, as shown in Remark 4.2.

2 Compactness and lower bound

The following estimate will be crucial in the proof of the compactness result of
Theorem 2.4 below. For the proof we refer to [5].

Theorem 2.1 Let U be a bounded Lipschitz domain in R
n , n ≥ 2, and let

K := SO(n)∪SO(n)H , where H = diag(λ1, . . . , λn), λi > 0 such that
∑n

i=1(1−
λi)(1 − detH/λi) > 0. Then there exists a positive constant C(U,H) with the
following property: for each u ∈ W 1,2(U ; Rn) there is an associated matrix F ∈ K
such that

‖∇u − F‖L2(U) ≤ C(U,H)‖dist(∇u,K)‖L2(U).

Theorem 2.1 generalizes the rigidity estimate for a single well problem [8,
Thm. 3.1] to the case of two strongly incompatible wells. We note also that
Theorem 2.1 is invariant under uniform scaling and translation of the domain;
e.g., the same value of C(U,H) serves for λU + a , and the rescaled function
λu((x − a)/λ) may be associated with the same F ∈ K .

For any R ∈ SO(3) we introduce the two following quantities, which represent
the cost associated to a transition of the deformation from one well to the other.

γ−
H(R) := inf

{∫
(−M,M)×S

W (∇v(x)) dx : M > 0, v ∈ W 1,2
loc (R×S),

∇v = H a.e. in (−∞,−M)×S, ∇v = R a.e. in (M,+∞)×S
}
,

γ+
H(R) := inf

{∫
(−M,M)×S

W (∇v(x)) dx : M > 0, v ∈ W 1,2
loc (R×S),

∇v = R a.e. in (−∞,−M)×S, ∇v = H a.e. in (M,+∞)×S
}
.

Remark 2.2 In general one cannot guarantee that γ−
H(R) = γ+

H(R) for every
R ∈ SO(3). The equality is true if the material satisfies isotropy conditions.
Assume for instance that the stored energy density is transversely isotropic, i.e.,

W (FR) = W (F ) for every F ∈ M
3×3 and R ∈ G ,
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where

G :=
{

R ∈ SO(3) : ∃R′ ∈ SO(2) such that R =
(

1 0
0 R′

)}
.

In this case it is easy to show that γ−
H(R) = γ+

H(R) for every R ∈ SO(3).

Using the growth conditions on W and frame indifference, we show in the
next proposition that γ±

H(R) are actually independent of R .

We will use the notation x′ =
(

x2

x3

)
.

Proposition 2.3 Assume W satisfies conditions (i)-(iii). Let γ±
H := γ±

H(Id).
Then γ±

H(R) = γ±
H for every R ∈ SO(3).

Proof. – It is enough to prove the statement for γ−
H , the proof for γ+

H being
completely analogous.

Let R,Q ∈ SO(3). Let M > 0 and v ∈ W 1,2
loc (R×S) be such that

∇v = H a.e. in (−∞,−M)×S, (2.1)
∇v = R a.e. in (M,+∞)×S. (2.2)

For every k ∈ N let Rk : R → SO(3) be a smooth function satisfying Rk(x1) = R
for x1 ≤ 0 and Rk(x1) = Q for x1 ≥ k . Then, consider the function uk : R×S →
R

3 defined by

uk(x) :=
∫ x1

0
Rk(s)e1 ds + Rk(x1)

(
0
x′

)
.

Note that uk is smooth and its gradient satisfies

∇uk(x) = Rk(x1) + ∂1Rk(x1)
(

0
x′

)
⊗ e1; (2.3)

so, in particular, we have that

∇uk = R in (−∞, 0)×S, (2.4)
∇uk = Q in (k,+∞)×S. (2.5)

Now let vk : R×S → R
3 be the function defined by

vk(x) :=

{
v(x) for x ∈ (−∞,M)×S,
uk(x1 − M,x′) + ck for x ∈ [M,+∞)×S.

By (2.2) and (2.4) we can choose the constant ck such that the function vk

belongs to the space W 1,2
loc (R×S). Moreover, by (2.1) we have that ∇vk = H a.e.

in (−∞,−M)×S , while by (2.5) we have that ∇vk = Q in (M + k,+∞)×S .
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Therefore, M +k and vk are admissible for the infimum problem defining γ−
H(Q);

hence,

γ−
H(Q) ≤

∫
(−M,M+k)×S

W (∇vk(x)) dx

=
∫

(−M,M)×S
W (∇v(x)) dx +

∫
(0,k)×S

W (∇uk(x)) dx, (2.6)

where the last equality follows from the fact that ∇vk = ∇v = H a.e. in
(−∞,−M)×S by (2.1). Now, we claim that

lim
k→+∞

∫
(0,k)×S

W (∇uk(x)) dx = 0. (2.7)

If this is true, then we can pass to the limit in (2.6), as k → +∞ , obtaining

γ−
H(Q) ≤

∫
(−M,M)×S

W (∇v(x)) dx

for every M > 0 and v ∈ W 1,2
loc (R×S) which are admissible for the infimum

problem defining γ−
H(R). Therefore, we have γ−

H(Q) ≤ γ−
H(R), and hence the

thesis.
Let us prove (2.7). By frame indifference and the growth condition from above

on W we have∫
(0,k)×S

W (∇uk(x)) dx =
∫

(0,k)×S
W (RT

k (x1)∇uk(x)) dx

≤ C2

∫
(0,k)×S

dist2(RT
k (x1)∇uk(x),K) dx

≤ C2

∫
(0,k)×S

|RT
k (x1)∇uk(x) − Id|2dx

≤ C2

∫
(0,k)×S

∣∣∣∣RT
k (x1)∂1Rk(x1)

(
0
x′

)∣∣∣∣
2

dx, (2.8)

where the last inequality follows from (2.3). Using the boundedness of Rk , we
obtain the following estimate:∫

(0,k)×S

∣∣∣∣RT
k (x1)∂1Rk(x1)

(
0
x′

)∣∣∣∣
2

dx ≤ C

∫ k

0
|RT

k (x1)∂1Rk(x1)|2dx1

≤ C

k
|R − Q|2.

Now the claim (2.7) follows from (2.8) and the previous inequality. �

In the following we denote by A the class of subsets of (0, L) which are finite
unions of disjoint open intervals. Given A ∈ A , we call ∂−A the set of points
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a ∈ (0, L) ∩ ∂A such that (a − ε, a) ⊂ (0, L) \ A and (a, a + ε) ⊂ A for some
ε > 0. We call ∂+A the set of points a ∈ (0, L) ∩ ∂A such that (a − ε, a) ⊂ A
and (a, a + ε) ⊂ (0, L) \ A for some ε > 0.

Now we can state and prove the main result of this section.

Theorem 2.4 Assume W satisfies conditions (i)-(iii) and (1.2). Let (y(h)) ⊂
W 1,2(Ω; R3) be a sequence such that

lim sup
h→0+

1
h

∫
Ω

W (∇hy(h)(x)) dx ≤ c. (2.9)

Then there exist a subsequence (not relabeled) such that

∇hy(h) ⇀ (∂1y | d2 | d3) weakly in L2(Ω; M3×3),

where the functions y , d2 , and d3 are independent of x2 and x3 and satisfy
y ∈ W 1,∞((0, L); R3) and d2, d3 ∈ L∞((0, L); R3). Moreover, there exists A ∈ A
such that

(∂1y | d2 | d3) ∈
{

co (SO(3)) a.e. in A,
co (SO(3)H) a.e. in (0, L) \ A.

(2.10)

Finally, for each such subsequence we have

lim inf
h→0+

1
h

∫
Ω

W (∇hy(h)(x)) dx ≥ γ−
H H0(∂−A) + γ+

H H0(∂+A). (2.11)

Proof. – We split the proof in two parts.

1) Compactness of the sequence (y(h)).

Using the growth condition from below on W we deduce from (2.9) that, up to
subsequences, (∇hy(h)) is uniformly bounded in L2(Ω; M3×3). Therefore, there
exists a subsequence (not relabeled) converging to some (∂1y | d2 | d3) weakly in
L2(Ω; M3×3).

We now divide (0, L) into subintervals of length ∼ h . We then can apply the
rigidity estimate in Theorem 2.1 to the Cartesian product of a subinterval and
the cross-section S . This yields a good approximation of ∇hy(h) by a map F (h) :
(0, L) → K which is constant on each subinterval. Appyling the rigidity estimate
to the union of two neighbouring subintervals we will see that an energetic cost
of order h arises whenever F (h) switches from SO(3) to SO(3)H or vice versa.
This implies a uniform upper bound on the number of switching points and hence
strong convergence of the sets Ah where F (h) ∈ SO(3).

To implement this strategy in detail let kh := [L/h] , where [x] denotes the
largest integer less than or equal to x . We consider a partition of [0, L] in kh

subintervals of length τh := L/kh and we apply Theorem 2.1 to the function
v(h)(z) = y(h)(z1,

z2
h , z3

h ) first restricted to the set (a, a + 2h)×hS for every a ∈
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[0, L − τh) ∩ τhN and then, restricted to the set (L − 2h,L)×hS . This provides
for every h > 0 and for every a ∈ [0, L) ∩ τhN a constant F h(a) ∈ K such that∫

(a,a+τh)×S
|∇hy(h)(x) − F h(a)|2dx ≤ C

∫
(a,a+2h)×S

dist2(∇hy(h)(x),K) dx

(2.12)
for every a ∈ [0, L − τh) ∩ τhN , and∫

(L−τh,L)×S
|∇hy(h)(x)− F h(L − τh)|2dx ≤ C

∫
(L−2h,L)×S

dist2(∇hy(h)(x),K) dx.

(2.13)
By interpolation we define a piecewise constant map F (h) : [0, L) → K such that
F (h)(x1) = F h(a) for every x1 ∈ [a, a+ τh). Summing the inequalities (2.12) and
(2.13), we obtain∫

Ω
|∇hy(h)(x) − F (h)(x1)|2dx ≤ C

∫
Ω

dist2(∇hy(h)(x),K) dx. (2.14)

It is convenient to introduce the sets

Jh :=
{
a ∈ [0, L) ∩ τhN : F (h)(x1) ∈ SO(3) for x1 ∈ [a, a + τh)

}
,

Ah :=
⋃

a∈Jh

[a, a + τh),

so that we can write F (h) as

F (h) = R(h)(χAh
Id + (1 − χAh

)H),

where R(h) : [0, L) → SO(3) is piecewise constant. We claim that the number
of points of ∂Ah ∩ (0, L) is uniformly bounded with respect to h . Indeed, if
a ∈ ∂Ah ∩ (0, L), then either F (h)(x1) = R(h)(x1) for x1 ∈ [a − τh, a) and
F (h)(x1) = R(h)(x1)H for x1 ∈ [a, a + τh), or F (h)(x1) = R(h)(x1)H for x1 ∈
[a − τh, a) and F (h)(x1) = R(h)(x1) for x1 ∈ [a, a + τh). Assume the latter (the
proof for the former being completely analogous) and apply Theorem 2.1 to v(h)

restricted to the set (a − 2h, a + 2h)×hS . This provides F̃ h ∈ K such that∫
(a−τh,a+τh)×S

|∇hy(h)(x) − F̃ h|2dx ≤ C

∫
(a−2h,a+2h)×S

dist2(∇hy(h)(x),K) dx.

(2.15)
Assume F̃ h ∈ SO(3)H . Then,

τh|F̃ h − R(h)(a)|2 =
∫

(a,a+τh)×S
|F̃ h − F (h)(x1)|2dx

≤ 2
∫

(a,a+τh)×S
|∇hy(h)(x) − F̃ h|2dx + 2

∫
(a,a+τh)×S

|∇hy(h)(x) − F (h)(x1)|2dx

≤ C

∫
(a−2h,a+2h)×S

dist2(∇hy(h)(x),K) dx, (2.16)
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where the last inequality follows from (2.15) and (2.12). Since |F̃ h − R(h)(a)| ≥
dist(SO(3),SO(3)H) =: δ , inequality (2.16) implies that

τhδ2 ≤ C

∫
(a−2h,a+2h)×S

dist2(∇hy(h)(x),K) dx.

In the case F̃ h ∈ SO(3) the same inequality can be proved by comparing F̃ h

with F (h) on (a − τh, a).
Summing over all a ∈ ∂Ah ∩ (0, L), we have

τhδ2H0(∂Ah ∩ (0, L)) ≤ C

∫
Ω

dist2(∇hy(h)(x),K) dx

≤ C

∫
Ω

W (∇hy(h)(x)) dx.

Using the bound in (2.9) and the definition of τh we deduce that

H0(∂Ah ∩ (0, L)) ≤ Cδ−2hτ−1
h ≤ Cδ−2, (2.17)

whence the claim.
From (2.17) it follows that the sequence (χAh

) converges, up to subsequences,
to χA strongly in L1(0, L), where A is a finite union of disjoint intervals.

Since the sequence (F (h)) is uniformly bounded in L∞((0, L); M3×3), it con-
verges, up to subsequences, to some F ∈ L∞((0, L); M3×3) in the weak* topol-
ogy of L∞((0, L); M3×3). From (2.14) and (2.9) it follows that the weak limit
(∂1y|d2|d3) of ∇hy(h) agrees with F . Thus the matrix (∂1y | d2 | d3) does not de-
pend on the variables x2, x3 and belongs to L∞((0, L); M3×3). Moreover, since
(χAh

F (h)) converges weakly to χAF , property (2.10) holds true.

2) Liminf inequality

Since ∂−A and ∂+A contain a finite number of points, we can write them as

∂−A = {αi : i = 1, . . . , n}, ∂+A = {βj : j = 1, . . . , n′},

where |n − n′| ≤ 1.
Since χAh

→ χA and since the number of points in ∂Ah is uniformly bounded,
there exist ε > 0, αh

i → αi and βh
j → βj such that

(αh
i − 2ε, αh

i − ε) ⊂ (0, L) \ Ah, (αh
i + ε, αh

i + 2ε) ⊂ Ah,
(βh

j − 2ε, βh
j − ε) ⊂ Ah, (βh

j + ε, βh
j + 2ε) ⊂ (0, L) \ Ah.

(2.18)

Moreover, ε can be chosen so small that all the intervals (αh
i − 2ε, αh

i + 2ε) and
(βh

j − 2ε, βh
j + 2ε) are mutually disjoint. It thus suffices to establish the lower

bound for one of these intervals.
Set

v(h)(z1, z2, z3) :=
1
h

y(h)(αh
i + hz1, z2, z3), Lh :=

ε

h
.



10 M.G. Mora and S. Müller

Then ∇v(h) = ∇hy(h) and by (2.14), (2.9), (2.18), and the definition of Ah we
have∫

(−2Lh,−Lh)×S
dist2(∇v(h), SO(3)H) dz +

∫
(Lh,2Lh)×S

dist2(∇v(h), SO(3)) dz ≤ C.

Thus Proposition 2.5 below yields

1
h

∫
(αh

i −2ε,αh
i +2ε)×S

W (∇hy(h)) dx =
∫

(−2Lh,2Lh)×S
W (∇v(h)) dz

≥ γ−
H − C

h

ε
.

The same estimate holds for the set (βh
j − 2ε, βh

j + 2ε) × S , provided that γ−
H is

replaced with γ+
H . Since the relevant intervals are disjoint this yields (2.11) and

the proof of Theorem 2.4 is finished. �

Proposition 2.5 There exists C ∈ R such that for all L ≥ 3 and all v ∈
W 1,2((−2L, 2L) × S, R3) the following implication holds: if∫

(−2L,−L)×S
dist2(∇v, SO(3)H) dz +

∫
(L,2L)×S

dist2(∇v, SO(3)) dz ≤ C0,

then ∫
(−2L,2L)×S

W (∇v) dz ≥ γ−
H − C

C0

L
.

Proof. – There exists j ∈ {L,L + 1, . . . , 2L − 1} such that∫
(j,j+1)×S

dist2(∇v, SO(3)) dz ≤ C0

L
.

The rigidity estimate [8, Thm. 3.1] and the Poincaré inequality imply that there
exists R ∈ SO(3) and c ∈ R

3 such that∫
(j,j+1)×S

(
|v − c|2 + |∇v − R|2

)
dz ≤ C

C0

L
. (2.19)

Let ϕ ∈ C∞(R) be a cut-off function, i.e., ϕ = 1 on (−∞, 0), ϕ = 0 on (1,+∞),
0 ≤ ϕ ≤ 1, and set

w(x) = ϕ(x1 − j)v(x) + (1 − ϕ(x1 − j))(Rx + c) for x1 ∈ [0,+∞)×S.

Then

|∇w − R| ≤ C|∇v − R| + C|v − (Rx + c)| for x1 ∈ [j, j + 1]×S, (2.20)
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and w = v on (0, j]×S , while w = Rx+ c on [j +1,+∞)×S ⊃ [2L,+∞)×S . In
view of (2.19) and (2.20) and the upper growth condition (iii) on W we deduce
that ∫

(0,∞)×S
W (∇w) dz ≤

∫
(0,j)×S

W (∇v) dz + C
C0

L
.

Modifying v similarly on (−2L,−L)×S we obtain a function w such that

w =

{
R′Hx + c′ on (−∞,−2L]×S,

Rx + c on [2L,∞)×S

and ∫
(−2L,2L)×S

W (∇w) dz ≤
∫

(−2L,2L)×S
W (∇v) dz + C

C0

L
.

By definition of γ−
H and Proposition 2.3 the left-hand side is bounded from below

by γ−
H and this finishes the proof. �

3 Upper bound

We recall that A denotes the class of subsets of (0, L) which are finite unions of
disjoint open intervals.

Theorem 3.1 Assume W satisfies (i)-(iii) and (1.2). Let y ∈ W 1,∞((0, L); R3),
d2, d3 ∈ L∞((0, L); R3) have the following property: there exists A ∈ A such that

(∂1y | d2 | d3) ∈
{

co (SO(3)) a.e. in A,
co (SO(3)H) a.e. in (0, L) \ A.

(3.1)

Then, there exists a sequence (y(h)) ⊂ W 1,2(Ω; R3) such that

∇hy(h) ⇀ (∂1y | d2 | d3) weakly in L2(Ω; M3×3), (3.2)

and
lim sup
h→0+

1
h

∫
Ω

W (∇hy(h)(x)) dx ≤ γ−
H H0(∂−A) + γ+

H H0(∂+A). (3.3)

Proof. – We first consider the case where the matrix F := (∂1y | d2 | d3) is
piecewise constant with values in K . In this case there exist 0 = a0 < a1 < · · · <
an+1 = L and Fi ∈ K , i = 0, . . . , n , such that

F =
n∑

i=0

χ(ai,ai+1)Fi.

With this notation the set ∂−A is given by all points ai ∈ (0, L) such that
Fi−1 ∈ SO(3)H and Fi ∈ SO(3), while the set ∂+A is given by all ai ∈ (0, L)
such that Fi−1 ∈ SO(3) and Fi ∈ SO(3)H .
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Let (σh) be a sequence of positive numbers such that h � σh � 1, i.e.,
σh → 0 and hσ−1

h → 0. For every h positive we first define y(h) outside a
neighbourhood of the points ai in the following way:

y(h)(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0

(
x1

hx′

)
if x ∈ [0, a1 − σh)×S,

Fi

(
x1

hx′

)
+ c

(h)
i if x ∈ [ai + σh, ai+1 − σh)×S, i = 1, . . . , n − 1,

Fn

(
x1

hx′

)
+ c

(h)
n if x ∈ [an + σh, L)×S,

where the constants c
(h)
i , i = 1, . . . , n will be chosen later in a suitable way.

In order to define y(h) on the sets [ai−σh, ai +σh)×S , let us consider a point
ai with i = 1, . . . , n .

Suppose first that ai ∈ ∂−A . Then from Proposition 2.3 it follows that for
every η > 0 there exist Mi > 0 and vi ∈ W 1,2

loc (R×S) such that

∇vi = Fi−1 a.e. in (−∞,−Mi)×S, ∇vi = Fi a.e. in (Mi,+∞)×S, (3.4)

and ∫
(−Mi,Mi)×S

W (∇vi) dx ≤ γ−
H + η. (3.5)

Similarly, if ai ∈ ∂+A , then for every η > 0 there exist Mi > 0 and vi ∈
W 1,2

loc (R×S) such that (3.4) is satisfied and∫
(−Mi,Mi)×S

W (∇vi) dx ≤ γ+
H + η. (3.6)

In both cases we define y(h) on the set [ai − σh, ai + σh)×S as

y(h)(x) := hvi

(
x1 − ai

h
, x′
)

+ d
(h)
i ,

where the constant d
(h)
i will be chosen later.

If ai /∈ ∂−A ∪ ∂+A , then Fi−1 and Fi belong both to the same well. If
Fi−1, Fi ∈ SO(3), we can construct a smooth function Pi : R → SO(3) such that
Pi(0) = Fi−1 and Pi(1) = Fi . We set P

(h)
i (x1) := Pi

(
x1−ai+σh

2σh

)
and we define

for x ∈ [ai − σh, ai + σh)×S

y(h)(x) :=
∫ x1

ai−τh

P
(h)
i (s)e1 ds + P

(h)
i (x1)

(
0
x′

)
+ d

(h)
i , (3.7)

where the constants d
(h)
i will be chosen later in a suitable way. If Fi−1, Fi ∈

SO(3)H , we can construct a smooth function Pi : R → SO(3)H such that Pi(0) =
Fi−1 and Pi(1) = Fi and we define y(h) in [ai − σh, ai + σh)×S as in (3.7).
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It is easy to see that for h small enough the constants c
(h)
i and d

(h)
i can be

chosen in such a way that y(h) ∈ W 1,2(Ω; R3). Indeed, assume c
(h)
1 , . . . , c

(h)
i−1 ,

d
(h)
1 , . . . , d

(h)
i−1 have been chosen. Then, we define d

(h)
i and c

(h)
i in the following

way. If ai ∈ ∂−A ∪ ∂+A , we need to require that

Fi−1

(
ai − σh

hx′

)
+ c

(h)
i−1 = hvi

(
−σh

h
, x′
)

+ d
(h)
i

and

Fi

(
ai + σh

hx′

)
+ c

(h)
i = hvi

(σh

h
, x′
)

+ d
(h)
i

for a.e. x′ ∈ S . Since σh
h > Mi for h small enough, by (3.4) this is equivalent to

d
(h)
i = Fi−1

(
ai

0

)
+ c

(h)
i−1, c

(h)
i = d

(h)
i − Fi

(
ai

0

)
.

If ai /∈ ∂−A ∪ ∂+A , since P
(h)
i (ai − σh) = Fi−1 and P

(h)
i (ai + σh) = Fi , it is

enough to take d
(h)
i and c

(h)
i such that

d
(h)
i = Fi−1

(
ai − σh

0

)
+ c

(h)
i−1

and

c
(h)
i = d

(h)
i − Fi

(
ai + σh

0

)
+ 2σh

∫ 1

0
Pi(t)e1 dt.

Let us prove that (∇hy(h)) converges to F strongly in L2(Ω; M3×3), so that
also condition (3.2) is satisfied. Indeed, since ∇hy(h) coincides with F outside
the sets (ai − σh, ai + σh)×S , i = 1, . . . , n , we have only to show that

lim
h→0+

∫
(ai−σh,ai+σh)×S

|∇hy(h) − F |2dx = 0 (3.8)

for every i = 1, . . . , n . If ai ∈ ∂−A ∪ ∂+A , performing a change of variables and
using (3.4), we have that∫

(ai−σh,ai+σh)×S
|∇hy(h) − F |2dx

≤ h

∫
(−σh

h
,0)×S

|∇vi − Fi−1|2dx + h

∫
(0,

σh
h )×S

|∇vi − Fi|2dx

= h

∫
(−Mi,0)×S

|∇vi − Fi−1|2dx + h

∫
(0,Mi)×S

|∇vi − Fi|2dx ≤ Ch. (3.9)

If ai /∈ ∂−A ∪ ∂+A , then for every x ∈ (ai − σh, ai + σh)×S we have

∇hy(h)(x) = P
(h)
i (x1) + h∂1P

(h)
i (x1)

(
0
x′

)
⊗ e1

= Pi

(
x1 − ai + σh

2σh

)
+

1
2
hσ−1

h ∂1Pi

(
x1 − ai + σh

2σh

)(
0
x′

)
⊗ e1,

(3.10)
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whence

|∇hy(h)(x)| ≤ ‖Pi‖L∞(0,1) + Chσ−1
h ‖∂1Pi‖L∞(0,1) ≤ C.

Therefore, the integral of |∇hy(h) − F |2 on (ai − σh, ai + σh)×S is small. In
connection with (3.9) this yields (3.8).

Finally we establish (3.3). Since ∇hy(h)(x) ∈ K a.e. in the complement of
the sets (ai − σh, ai + σh)×S , i = 1, . . . , n , we have

1
h

∫
Ω

W (∇hy(h)) dx =
1
h

n∑
i=1

∫
(ai−σh,ai+σh)×S

W (∇hy(h)) dx. (3.11)

If ai ∈ ∂−A ∪ ∂+A , then by (3.4), (3.5), and (3.6) we have

1
h

∫
(ai−σh,ai+σh)×S

W (∇hy(h)) dx

=
∫
(−σh

h
,
σh
h )

W (∇vi) dx =
∫

(−Mi,Mi)×S
W (∇vi) dx

≤ γ+
Hχ∂+A(ai) + γ−

Hχ∂−A(ai) + η. (3.12)

Using the growth condition from above on W and (3.10), for every ai /∈ ∂−A∪∂+A
we obtain

1
h

∫
(ai−σh,ai+σh)×S

W (∇hy(h)) dx ≤ C2

h

∫
(ai−σh,ai+σh)×S

dist2(∇hy(h),K) dx

≤ C2

h

∫
(ai−σh,ai+σh)×S

|∇hy(h) − P
(h)
i |2dx

≤ Chσ−1
h

∫ 1

0
|∂1Pi(t)|2dt.

Since hσ−1
h → 0, we conclude that

lim
h→0+

1
h

∫
(ai−σh,ai+σh)×S

W (∇hy(h)) dx = 0 (3.13)

for every ai /∈ ∂−A∪∂+A . Combining (3.11), (3.12), and (3.13) we conclude that

lim sup
h→0+

1
h

∫
Ω

W (∇hy(h)) dx ≤ γ+
HH0(∂+A) + γ−

HH0(∂−A) + nη.

Consider now the general case. Given (∂1y | d2 | d3) satisfying (3.1), we can
find a sequence (Qj) of piecewise constant maps from (0, L) to M

3×3 such that
for every j

Qj ∈ SO(3) a.e. in A, Qj ∈ SO(3)H a.e. in (0, L) \ A,
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and
Qj ⇀ (∂1y | d2 | d3) weakly in L2(Ω; M3×3).

Using the previous construction, for every j there exists a sequence (y(h)
j ) such

that (∇hy
(h)
j ) converges to Qj strongly in L2(Ω; M3×3), as h → 0+ , and

lim sup
h→0+

1
h

∫
Ω

W (∇hy
(h)
j ) dx ≤ γ+

HH0(∂+A) + γ−
HH0(∂−A) +

1
j
.

In particular, we can construct a decreasing sequence (hj) converging to 0+ such
that for every j we have

‖∇hj
y

(hj)
j − Qj‖L2 <

1
j

and
1
hj

∫
Ω

W (∇hj
y

(hj)
j ) dx ≤ γ+

HH0(∂+A) + γ−
HH0(∂−A) +

1
j
.

Now, it is easy to see that the sequence (∇hj
y

(hj)
j ) converges to (∂1y | d2 | d3)

weakly in L2(Ω; M3×3) and

lim sup
j→+∞

1
hj

∫
Ω

W (∇hj
y

(hj)
j ) dx ≤ γ+

HH0(∂+A) + γ−
HH0(∂−A).

This concludes the proof. �

4 Study of the Γ-limit

In this section we study the behaviour of the limit functional in terms of the one-
dimensional limit deformations y ∈ W 1,∞((0, L); R3). If there are no additional
(radial) forces or boundary conditions then the limit problem becomes trivial and
the minimizer of the limit problem involves no phase change (see Theorem 4.1)
In the presence of radial forces, however, phase transitions can arise, leading to
a nontrivial limit problem, see Remark 4.2 below.

Theorem 4.1 Assume W satisfies conditions (i)-(iii) and (1.2). Then, the se-
quence of functionals ( 1

hI(h)) Γ-converges, as h → 0+ , to the functional

I(y) :=

{
0 if |∂1y| ≤ max{1, λ1} a.e. and ∂2y = ∂3y = 0 a.e.,
+∞ otherwise,

with respect to weak convergence in W 1,2(Ω; R3).
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It can be easily seen from the proof that the result still holds if a tangential
loading term of the form −h

∫
Ω σ1(x1)·∂1y is added to I(h) and the corresponding

term − ∫(0,L) σ1 · ∂1y is added to the limit functional I .

Proof. – The proof is split in two parts.

1) Liminf inequality.

Let y(h) , y ∈ W 1,2(Ω; R3) be such that y(h) ⇀ y weakly in W 1,2(Ω; R3). We
have to prove that

I(y) ≤ lim inf
h→0

1
h

I(h)(y(h)). (4.1)

We may assume that

lim inf
h→0

1
h

I(h)(y(h)) ≤ C.

Then, by Theorem 2.4 there exist u ∈ W 1,∞((0, L); R3), d2, d3 ∈ L∞((0, L); R3)
such that, up to subsequences, the sequence (∇hy(h)) converges to (∂1u | d2 | d3)
weakly in L2(Ω; M3×3). Therefore, ∂1y = ∂1u a.e., the function y does not
depend on the variables x2 , x3 and belongs to W 1,∞((0, L); R3). Moreover,
again by Theorem 2.4 there exists a set A ∈ A such that

(∂1y | d2 | d3) ∈
{

co (SO(3)) a.e. in A,
co (SO(3)H) a.e. in (0, L) \ A.

This condition implies that |∂1y| ≤ 1 a.e. in A and |∂1y| ≤ λ1 a.e. in (0, L) \A .
Therefore, inequality (4.1) is proved.

2) Existence of a recovery sequence.

We have to show that for every y ∈ W 1,2(Ω; R3) there exist a sequence (y(h))
such that y(h) ⇀ y weakly in W 1,2(Ω; R3) and

lim sup
h→0

1
h

I(h)(y(h)) ≤ I(y). (4.2)

We can assume that ∂2y = ∂3y = 0 and |∂1y| ≤ max{1, λ1} a.e. in Ω.
Suppose λ1 > 1 and let N be the subset of (0, L) where |∂1y| > 0. Then we

define

τ1(x1) :=

{
∂1y(x1)/|∂1y(x1)| if x1 ∈ N ,
0 if x1 ∈ (0, L) \ N .

Since τ1 is measurable, we can construct a pair of measurable functions τ2, τ3 :
(0, L) → R

3 such that τ2 = τ3 = 0 a.e. in (0, L)\N and (τ1 | τ2 | τ3) ∈ SO(3) a.e.
in N . Now, if we set

d2 :=
λ2

λ1
|∂1y| τ2, d3 :=

λ3

λ1
|∂1y| τ3,
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then d2, d3 ∈ L∞((0, L); R3). Moreover, the matrix (∂1y | d2 | d3) satisfies

(∂1y | d2 | d3) = 0 a.e. in (0, L) \ N, (4.3)

(∂1y(x1) | d2(x1) | d3(x1)) =
|∂1y(x1)|

λ1
(τ1(x1) | τ2(x1) | τ3(x1))H a.e. in N. (4.4)

It is easy to see that 0 ∈ co (SO(3)H) and therefore, also tRH ∈ co (SO(3)H)
for every 0 ≤ t ≤ 1 and R ∈ SO(3). Since |∂1y| ≤ λ1 a.e., this fact together
with (4.3) and (4.4) implies that the matrix (∂1y | d2 | d3) belongs to the convex
hull of SO(3)H a.e. in (0, L). Applying Theorem 3.1 to y , d2 , d3 with A = ∅
we find a sequence y(h) converging to y weakly in W 1,2(Ω; R3) such that (4.2) is
satisfied.

The proof is analogous in the case λ1 ≤ 1. �

Remark 4.2 Let σ2, σ3 ∈ L2((0, L); R3). Consider the functionals

Ĩ(h)(y) :=
∫

Ω
W (∇hy(x)) dx −

∫
Ω
(σ2(x1)∂2y(x) + σ3(x1)∂3y(x)) dx

defined for every y ∈ W 1,2(Ω; R3). Integrating by parts on the cross-section S ,
one can see that the additional terms in the functional describes a radial force
acting along the rod.

Let (y(h)) ⊂ W 1,2(Ω; R3) be a sequence such that

lim sup
h→0+

1
h

Ĩ(h)(y(h)(x)) dx ≤ c.

Then, using the growth conditions from below on W and the Hölder inequality, we
deduce that, up to subsequences, (∇hy(h)) is uniformly bounded in L2(Ω; M3×3).
This implies in particular that

1
h

∫
Ω

W (∇hy(h)(x)) dx ≤ c.

Now, by Theorem 2.4 we have that

∇hy(h) ⇀ (∂1y | d2 | d3) weakly in L2(Ω; M3×3), (4.5)

with y ∈ W 1,∞((0, L); R3) and d2, d3 ∈ L∞((0, L); R3). Moreover, there exists
A ∈ A such that

(∂1y | d2 | d3) ∈
{

co (SO(3)) a.e. in A,
co (SO(3)H) a.e. in (0, L) \ A.

(4.6)

Finally, from (2.11) and (4.5) it follows that

lim inf
h→0+

1
h

Ĩ(h)(y(h)(x)) ≥ γ−
H H0(∂−A)+γ+

H H0(∂+A)−
∫ L

0
(σ2d2+σ3d3) dx1. (4.7)
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Applying Theorem 3.1, it is easy to show the following upper bound. Given
y ∈ W 1,∞((0, L); R3) and d2, d3 ∈ L∞((0, L); R3) satisfying property (4.6) for
some A ∈ A , there exists a sequence (y(h)) ⊂ W 1,2(Ω; R3) such that (4.5) holds
and

lim sup
h→0+

1
h

Ĩ(h)(y(h)(x)) ≤ γ−
H H0(∂−A)+γ+

H H0(∂+A)−
∫ L

0
(σ2d2+σ3d3) dx1. (4.8)

In this case it is not true in general that minimizers of the limit functional
determined by (4.7) and (4.8) have no transition points, that is, their deformation
gradient belongs to the same well almost everywhere. Assume for instance that
the entries of the matrix H are of the form λ2 = 1 + ε , λ3 = 1 − ε for some
ε ∈ (0, 1). Then the strong incompatibility condition (1.2) is satisfied if λ1 < 1

3 .
Assume that σ2(x1) = σ22(x1)e2 and σ3(x1) = σ33(x1)e3 , where σ22, σ33 ∈

L2(0, L) have the following property: there exists α ∈ (0, L) such that σ22 > 0
a.e. in (0, α), σ22 = 0 a.e. in (α,L), while σ33 = 0 a.e. in (0, α), σ33 > 0 a.e. in
(α,L). Then it is easy to see that if

∫ α

0
σ22(x1) dx1 >

γ−
H

ε
,

∫ L

α
σ33(x1) dx1 >

γ−
H

ε
,

it is energetically more convenient to have a transition point at α instead of
having deformation gradients lying in the convex hull of only one well.
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