
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Data-sparse approximation of non-local

operators by H2-matrices

(revised version: August 2006)

by

Steffen Börm

Preprint no.: 44 2005

Data-sparse approximation of non-local
operators by H2-matrices

Steffen Börm

August 10, 2006

Many of today’s most efficient numerical methods are based on multilevel
decompositions: The multigrid algorithm is based on a hierarchy of grids,
wavelet techniques use a hierarchy of basis functions, while fast panel-
clustering and multipole methods employ a hierarchy of clusters.

The high efficiency of these methods is due to the fact that the hierarchies
are nested, i.e., that the information present on a coarser level is also present
on finer levels, thus allowing efficient recursive algorithms.

H2-matrices employ nested local expansion systems in order to approxi-
mate matrices in optimal (or for some problem classes at least optimal up
to logarithmic factors) order of complexity. This paper presents a criterion
for the approximability of general matrices in the H2-matrix format and an
algorithm for finding good nested expansion systems and constructing the
approximation efficiently.

1 Introduction

In order to handle large systems of linear equations efficiently, the corresponding matrices
have to be represented or at least approximated in a data-sparse form. In some situations,
this is relatively simple: if most of the matrix entries are zero, it is sufficient to store the
remaining non-zero entries.

For more general matrices, the task of finding a data-sparse representation can be far
more complicated. It can even be impossible to solve, e.g., if the matrix coefficients
are entirely random. We can only hope to find efficient representations if we can exploit
special properties of the matrix. There are two important examples of non-local matrices
allowing data-sparse approximations:

If the system results from the discretization of an elliptic partial differential equation,
the matrix describing the system is sparse and corresponds in a suitable sense to a con-
tinuous problem, which makes it possible to employ multigrid and related algorithms in
order to evaluate the inverse of the sparse matrix in optimal or near-optimal complexity,
although it is a non-local operator.

1

If the system results from the discretization of an integral operator, it is possible to
approximate the underlying kernel function by separable functions, i.e., tensor prod-
ucts like polynomials or multipole expansions, in order to construct blockwise low-rank
approximations which can be used to speed up the evaluation of the dense matrix.

It can be shown [2] that both techniques are related: the densely populated matrix
corresponding to one step of a multilevel iteration exhibits a blockwise low-rank structure
which is very similar to that of panel-clustering [20, 22, 23] or multipole [21, 15, 16]
methods.

The optimal order of complexity of modern multilevel algorithms relies on the fact that
the grids of the underlying hierarchy are (at least approximately) nested, because this
implies that the algorithm can be formulated in a recursive way which re-uses results of
preceding levels and leads to an exponential decay of the number of operations required
per level, so that the total complexity is dominated by the complexity of the operations
on the finest level.

Nested structures can also be used to construct approximation schemes of optimal
order of complexity for integral operators. This is especially simple for panel-clustering
methods based on polynomial expansions of constant order [19, 11, 8], since here the
expansion systems are already nested. For multipole techniques [15, 16], the general
polynomials are replaced by harmonic functions.

The algebraic counterparts of panel-clustering techniques are hierarchical matrices
(H-matrices) [17, 18, 13, 6]: low-rank matrices take the place of separated expansions,
the decomposition of the geometric domain is replaced by a decomposition of the index
set. The resulting data-sparse representation makes it possible to perform algebraic
operations like adding, multiplying or inverting matrices (approximatively) in almost
optimal complexity.

H2-matrices [19, 7, 9, 3] are a specialization of H-matrices which take advantage of
nested expansion systems in order to reach the optimal order of complexity: both the
number of elementary operations required for arithmetic operations [4] and the number
of units of storage required for the representation of the matrix grow linearly in the
number of degrees of freedom.

The high efficiency of H2-matrix techniques depends crucially on the nested structure
of the expansion systems. In some situations, e.g., for polynomial expansion of fixed order
[8], the construction of nested structures is trivial, but in general even their existence is
not obvious.

This paper is organized as follows: Section 2 provides the basic framework of H2-
matrices and cluster bases. Section 3 contains the fundamental approximation result:
a general matrix can be approximated by an H2-matrix if and only if each element of
a family of submatrices, called “total cluster basis”, can be approximated by low-rank
matrices. Section 4 describes a practical algorithm which can be used to compute an
H2-matrix approximation of a general matrix. The numerical experiments of Section 5
demonstrate that integral operators and solution operators of elliptic partial differential
equations can indeed be approximated by H2-matrices.

2

2 H2-matrices

We will now briefly recall the structure of H2-matrices [19, 7].

2.1 Block structure

The basic idea of hierarchical matrix techniques is to identify subblocks of the matrix
which admit a data-sparse approximation. In order to find these admissible blocks
efficiently, we introduce a hierarchy of subsets:

Definition 2.1 (Cluster tree) Let I be an index set. Let T be a labeled tree. We
denote its root by root(T), the label of t ∈ T by t̂, and the set of sons by sons(t,T) (or
just sons(t) if this does not lead to ambiguity).

T is a cluster tree for I if it satisfies the following conditions:

• ̂root(T) = I.

• If sons(t) �= ∅ holds for t ∈ T , we have

t̂ =
⋃

s∈sons(t)

ŝ and

ŝ1 ∩ ŝ2 = ∅ for all s1, s2 ∈ sons(t) with s1 �= s2.

If T is a cluster tree for I, we will denote it by TI and call its nodes clusters. The set
of leaves of TI is denoted by

LI := {t ∈ TI : sons(t) = ∅}.

We note that the definition implies that t̂ ⊆ I holds for all clusters in TI and that LI
corresponds to the disjoint partition {t̂ : t ∈ LI} of I.

Using cluster trees, we can now define a partition of the matrix entries:

Definition 2.2 (Block partition) Let I and J be finite index sets, and let TI and TJ
be corresponding cluster trees. A set P ⊆ TI ×TJ is a block partition if {t̂× ŝ : (t, s) ∈
P} is a disjoint partition of I × J . We will call the elements of P blocks.

The admissible blocks, i.e., those that can be treated by a data-sparse approximation,
are picked from the elements of P :

Definition 2.3 (Admissibility) Let P be a block partition for TI and TJ . A set
Pnear ⊆ P is the nearfield of P if sons(t) = ∅ = sons(s) holds for all (t, s) ∈ Pnear.
Each nearfield corresponds to a farfield Pfar := P \ Pnear. The blocks in Pfar are called
admissible blocks, the blocks in Pnear are called inadmissible blocks.

This definition implies that inadmissible blocks correspond to leaves of the cluster
trees, i.e., to small subsets of I ×J which we can afford to store in the standard format.

In the following, we will treat Pfar and Pnear as implicitly given for each block partition
P .

3

Remark 2.4 (Admissibility condition) In practice, an admissibility condition is
used to identify those blocks which allow low-rank approximations. For discretized
elliptic problems, the condition

max{diam(Ωt),diam(Ωs)} ≤ dist(Ωt,Ωs) (1)

is frequently used, where Ωt and Ωs are suitable domains containing the supports of the
basis functions or functionals corresponding to t and s.

The condition (1) ensures that the blocks t and s are far from the diagonal of the
matrix, i.e., in a region where we can expect Green’s function to be smooth or at least
separable.

Remark 2.5 (Construction) If the indices in I and J correspond to locations in
space, it is possible to construct good cluster trees TI and TJ by binary space partitioning.

Given row and column cluster trees and an admissibility condition like (1), a block par-
tition can be constructed recursively: we start with the block (t, s) = (root(TI), root(TJ)).
For each block, we check whether it satisfies the admissibility condition. If it does, the
block is added to Pfar. Otherwise, we investigate the subblocks corresponding to sons of
t and of s. If t and s do not have any sons, the block (t, s) is added to Pnear.

Under moderate assumptions, it is possible to prove that TI, TJ and P = Pfar∪̇Pnear

can be constructed efficiently and that the number of blocks in P resulting from this
construction grows only linearly in the number of degrees of freedom [14].

2.2 Factorized representation

Typical hierarchical matrices are defined based on the block partition P : for all admis-
sible blocks b = (t, s) ∈ Pfar, the corresponding matrix block M |t̂×ŝ is required to be of
low rank and stored in an appropriate factorized form.

The H2-matrix format is a specialization of this representation: we require not only
that admissible blocks correspond to low-rank matrix blocks, but also that the range
and image of these blocks are contained in predefined spaces.

In order to simplify the presentation, we introduce a restriction operator χt : I → I
for each t ∈ TI by

(χt)ij =

{
1 if i = j ∈ t̂,

0 otherwise.

Restriction operators χs : J → J for s ∈ TJ are defined in a similar fashion. For
t ∈ TI , s ∈ TJ , the matrix χtMχs ∈ RI×J is equal to M in the subblock t̂× ŝ and zero
everywhere else.

Definition 2.6 (Cluster basis) Let TI be a cluster tree. A family k = (kt)t∈TI of
integers is called rank distribution. For a given rank distribution k, a family V =
(Vt)t∈TI satisfying Vt ∈ RI×kt and χtVt = Vt for all t ∈ TI is called cluster basis for TI
with rank distribution k.

4

We can see that this definition implies (Vt)iν = 0 for all t ∈ TI , i ∈ I \ t̂ and
ν ∈ {1, . . . , kt}, i.e., only matrix rows corresponding to indices in t̂ can differ from zero.

The definition does not require the matrices Vt to be of full rank, so their columns do
not really form a basis, although the name “cluster basis” suggests this (a more fitting
name might be “cluster frame”). This is only a practical consideration: in some applica-
tions, a system of vectors spanning the desired space can be constructed efficiently, but
ensuring their linear independence would lead to unnecessary technical complications.

Definition 2.7 (Nested cluster bases) Let TI be a cluster tree, and let V be a corre-
sponding cluster basis with rank distribution k. Let E = (Et)t∈TI be a family of matrices
satisfying Et ∈ Rkt×kt+ for each cluster t ∈ TI that has a father t+ ∈ TI. If the equation

Vt+ =
∑

t∈sons(t+)

VtEt (2)

holds for all t+ ∈ TI with sons(t+) �= ∅, the cluster basis V is called nested with transfer
matrices E.

The case t = root(TI) is only included in order to avoid the necessity of treating a
special case: we can see that the definition does not require the transfer matrix for the
root of TI to satisfy any conditions. In practice, this matrix can be ignored completely.

The nested structure is the key difference between general hierarchical matrices and
H2-matrices [19, 7, 8], since it allows us to construct very efficient algorithms by re-using
information across the entire cluster tree.

Definition 2.8 (H2-matrix) Let TI and TJ be cluster trees. Let P = Pfar∪̇Pnear be a
block partition. Let V and W be nested cluster bases for TI and TJ with rank distributions
k and l. Let M ∈ RI×J . If we can find a matrix Sb ∈ Rkt×ls for each b = (t, s) ∈ Pfar

satisfying
χtMχs = VtSb(Ws)�, (3)

the matrix M is called an H2-matrix with row cluster basis V and column cluster basis
W . The family S = (Sb)b∈Pfar

is called the family of coupling matrices.
The set of all H2-matrices with row cluster basis V , column cluster basis W and block

partition P is denoted by H2(P, V,W).

This definition implies that each H2-matrix can be written in the form

M =
∑

b=(t,s)∈Pfar

VtSb(Ws)� +
∑

b=(t,s)∈Pnear

χtMχs,

since P = Pfar∪̇Pnear defines a partition of I × J .
By replacing the low-rank representation χtAχs = XbY

�
b used in the context of general

hierarchical matrices by the specialized representation (3), we can prepare cluster-related
quantities before performing complicated operations. Due to the nested structure, the
preparation of these quantities can be organized efficiently.

5

Remark 2.9 (Complexity) In practice, H2-matrices are described by the coupling
matrices (Sb)b∈Pfar

for the admissible blocks and the inadmissible parts χtMχs for all
(t, s) ∈ Pnear.

For n := max{#I,#J }, we can use the results in [14] as in [7, 8] in order to show that
the amount of storage required for coupling and inadmissible matrices is in O(n(k∗+ l∗))
if kt ≤ k∗ holds for all t ∈ TI and ls ≤ l∗ holds for all s ∈ TJ .

Due to the nested structure, the cluster basis V = (Vt)t∈TI can be expressed by the
family E = (Et)t∈TI of transfer matrices and the family (Vt)t∈LI of cluster basis matrices
corresponding only to leaf clusters. The amount of storage required for this representation
is in O(nk∗).

We can combine these complexity estimates to conclude that the storage requirements
of an H2-matrix are in O(n(k∗ + l∗)).

Remark 2.10 (Rank distributions) The rank kt depends on the desired precision
ε ∈ R>0 of the matrix approximation, and the precision will usually depend on the
underlying discretization error, e.g., ε ∼ n−β for some β ∈ R>0.

2.3 Orthogonal cluster bases and best approximations

Since we intend to approximate results of arithmetic operations, we need an efficient way
of finding best approximations of arbitrary matrices in a given H2-matrix format. This
problem is especially simple if the columns of the cluster basis matrices Vt are pairwise
orthonormal.

Definition 2.11 (Orthogonal cluster basis) Let V be a cluster basis for the cluster
tree TI . It is called orthogonal if V �

t Vt = I holds for all t ∈ TI.

The orthogonality implies that VtV
�
t is an orthogonal projection onto the image of Vt,

since
〈VtV

�
t x, Vty〉 = 〈V �

t VtV
�
t x, y〉 = 〈V �

t x, y〉 = 〈x, Vty〉

holds for all x ∈ RI and y ∈ Rkt . Therefore VtV
�
t MWsW

�
s is the best approximation

of a matrix block χtMχs in the bases Vt and Ws, and

M̃ :=
∑

b∈Pfar

Vt(V �
t MWs)W�

s +
∑

b∈Pnear

χtMχs

is the best approximation (in the Frobenius norm) of an arbitrary matrix M ∈ RI×J in
the H2-matrix format defined by P , V and W .

If a non-nested cluster basis is given, an orthogonal counterpart can be constructed
by simple Gram-Schmidt orthonormalization. If a nested cluster basis is given, it is
possible to construct a nested orthogonal cluster basis by a modified orthonormalization
algorithm in linear complexity [3].

6

2.4 Fast matrix-vector multiplication

Let M be an H2-matrix with cluster bases V and W for the cluster trees TI and TJ and
the block partition P . Let E and F be the families of transfer matrices for V and W .

The matrix-vector multiplication y := Mx is split into four phases: First, we compute
the auxiliary vectors

xs := (Ws)�x

for all s ∈ TJ . This step is called the forward transformation. Then, we compute the
auxiliary vectors

yt :=
∑

b=(t,s)∈Pfar

Sbxs

for all t ∈ TI . This phase handles the interaction of all admissible blocks. In the third
step, the backward transformation, we accumulate the part of the result

y :=
∑
t∈TI

Vtyt

that corresponds to all admissible blocks of the matrix. In order to complete the multi-
plication, we add the inadmissible parts

y := y +
∑

b=(t,s)∈Pnear

χtMχsx.

Under standard assumptions, the second and last step can be performed in linear com-
plexity, since they only involve relatively small matrices. In order to treat the forward
transformation efficiently, we have to make use of the nested structure: sons(s) �= ∅
implies

xs = W�
s x =

∑
s′∈sons(s)

F�
s′ W

�
s′ x =

∑
s′∈sons(s)

F�
s′ xs′ ,

so we can compute xs = W�
s x using 2ks(

∑
s′∈sons(s) ks′) operations instead of the 2ks#ŝ

operations required by a naive approach, and we need to store Ws only for leaves of the
cluster tree and can use the transfer matrices Fs for all other clusters.

This leads to a complexity of O(nl∗) for the forward transformation. Treating the
backward transformation in a similar way leads to a total complexity of O(n(k∗ + l∗))
for the matrix-vector multiplication.

3 Existence of H2-matrix approximations

We have seen in the previous section that H2-matrices can provide us with data-sparse
representations for densely populated matrices. Now we will investigate which kinds of
matrices can be approximated efficiently by H2-matrices.

We fix index sets I and J , corresponding cluster trees TI and TJ and a block partition
P = Pfar∪̇Pnear.

7

3.1 Left and right semi-uniform matrices

The admissible blocks of an H2-matrix are expressed in the form VtSbW
�
s , i.e., they

depend both on the row and column cluster basis. In order to simplify our analysis, we
will restrict our attention to formats which depends only on one cluster basis.

Definition 3.1 (Left and right semi-uniform matrices) Let V and W be nested
cluster bases with rank distributions k and l. Let M ∈ RI×J .

If we can find a matrix Bb ∈ RJ×kt with χsBb = Bb for each b = (t, s) ∈ Pfar satisfying

χtMχs = VtB
�
b , (4)

the matrix M is called a left semi-uniform matrix.
If we can find a matrix Ab ∈ RI×ls with χtAb = Ab for each b = (t, s) ∈ Pfar satisfying

χtMχs = AbW
�
s , (5)

the matrix M is called a right semi-uniform matrix.
The sets of left and right semi-uniform matrices are denoted by H2(P, V, ∗) and

H2(P, ∗,W), respectively, where the symbol “∗” means that either column or row basis
are not required.

We can see that a matrix M ∈ RI×J is an H2-matrix if and only if M is both left
and right semi-uniform.

If V and W are orthogonal, the best approximations (in the Frobenius norm) of an
arbitrary matrix M ∈ RI×J can be expressed by orthogonal projections:

ΠP
V,∗ : RI×J → H2(P, V, ∗), M
→

∑
(t,s)∈Pfar

VtV
�
t Mχs +

∑
(t,s)∈Pnear

χtMχs,

ΠP
∗,W : RI×J → H2(P, ∗,W), M
→

∑
(t,s)∈Pfar

χtMWsW
�
s +

∑
(t,s)∈Pnear

χtMχs.

The projection ΠP
V,∗ maps an arbitrary matrix to H2(P, V, ∗), the projection ΠP

∗,W maps
it to H2(P, ∗,W). Both projections commute, and their product ΠP

V,W := ΠP
V,∗Π

P
∗,W =

Π∗,W ΠV,∗ maps an arbitrary matrix to its best approximation in H2(P, V,W).

Lemma 3.2 (Separation of cluster bases) Let V and W be orthogonal cluster bases.

‖M − ΠP
V,W M‖2

F ≤ ‖M − ΠP
V,∗M‖2

F + ‖M − ΠP
∗,W M‖2

F

holds for all M ∈ RI×J .

Proof. Let M ∈ RI×J . Since ΠP
V,∗ is an orthogonal projection, we have

‖M − ΠP
V,W M‖2

F = ‖M − ΠP
V,∗Π

P
∗,W M‖2

F

= ‖M − ΠP
V,∗M + ΠP

V,∗(M − ΠP
∗,W M)‖2

F

8

= ‖M − ΠP
V,∗M‖2

F + 2〈M − ΠP
V,∗M,ΠP

V,∗(M − ΠP
∗,W M)〉F

+ ‖ΠP
V,∗(M − ΠP

∗,W M)‖2
F

≤ ‖M − ΠP
V,∗M‖2

F + ‖M − ΠP
∗,W M‖2

F .

This implies that we do not have to investigate H2-matrices directly but can construct
row and column cluster bases independently.

Remark 3.3 Let V and W be orthogonal cluster bases, and let M ∈ RI×J . We find

‖M − ΠP
V,∗M‖2

F = ‖M‖2
F − ‖ΠP

V,∗M‖2
F ≤ ‖M‖2

F − ‖ΠP
∗,W ΠP

V,∗M‖2
F

= ‖M‖2
F − ‖ΠP

V,W M‖2
F = ‖M − ΠP

V,W M‖2
F

and can prove
‖M − ΠP

∗,W M‖2
F ≤ ‖M − ΠP

V,W M‖2
F

by a similar argument. Therefore restricting our attention to left and right semi-uniform
matrices instead of dealing with H2-matrices directly will not lead to a significant loss of
precision in our error estimates.

The projections into the spaces of left and right semi-uniform matrices are closely
related:

Lemma 3.4 (Transposed matrices) Let V and W be orthogonal cluster bases. We
define the transposed block partition P� for J and I by

(s, t) ∈ P� ⇔ (t, s) ∈ P and

(s, t) ∈ P�
far ⇔ (t, s) ∈ Pfar

for all t ∈ TI and s ∈ TJ . We have

(ΠP
∗,W M)� = ΠP�

W,∗M
�

for all M ∈ RI×J .

Proof. For M ∈ RI×J , we find

(ΠP
∗,W M)� =

⎛⎝ ∑
(t,s)∈Pfar

χtMWsW
�
s +

∑
(t,s)∈Pnear

χtMχs

⎞⎠�

=
∑

(t,s)∈Pfar

WsW
�
s M�χt +

∑
(t,s)∈Pnear

χsM
�χt

=
∑

(s,t)∈Pfar

WsW
�
s M�χt +

∑
(s,t)∈Pnear

χsM
�χt

= ΠP�
W,∗M

�.

9

3.2 Total cluster bases

Due to Lemma 3.2, we can investigate row and column cluster bases independently.
Lemma 3.4 implies that it is sufficient to consider only row cluster bases, since we can
get results on column cluster bases by switching to the transposed matrix.

Our goal is to construct an intermediate row cluster basis, the total cluster basis,
that can be used to represent a matrix M ∈ RI×J as a left semi-uniform matrix, but
has, in general, a prohibitively high rank. Practically useful row cluster bases can be
constructed by approximating the total cluster basis, and their approximation properties
can be judged by how well they approximate it.

We require some preliminary definitions and results:

Definition 3.5 (Descendants and predecessors) For all t ∈ TI, we define the set
of descendants recursively by

sons∗(t) :=

{
{t} ∪

⋃
t′∈sons(t) sons∗(t′) if sons(t) �= ∅,

{t} otherwise.

The set of predecessors is defined by

pred(t) = {t+ ∈ TI : t ∈ sons∗(t+)}.

Lemma 3.6 (Block rows) For all t ∈ TI, let

row(t) := {s ∈ TJ : (t, s) ∈ Pfar},
row∗(t) := {s ∈ TJ : there is a t+ ∈ pred(t) with (t+, s) ∈ Pfar}.

For t ∈ TI and s1, s2 ∈ row∗(t) with s1 �= s2, we have ŝ1 ∩ ŝ2 = ∅, i.e., the index sets
corresponding to the clusters in row∗(t) ⊇ row(t) are pairwise disjoint.

For t ∈ TI and t+ ∈ pred(t), we have row∗(t+) ⊆ row∗(t).

Proof. We will prove the first statement by contraposition. Let t ∈ TI and s1, s2 ∈
row∗(t) with ŝ1∩ ŝ2 �= ∅. By definition, there are t+1 , t+2 ∈ pred(t) such that s1 ∈ row(t+1)
and s2 ∈ row(t+2) hold. Since both t+1 and t+2 are predecessors of t, we can assume
t+2 ∈ sons∗(t+1) without loss of generality, which implies t̂+2 ⊆ t̂+1 . Let j ∈ ŝ1 ∩ ŝ2 and
i ∈ t̂+2 ⊆ t̂+1 . Then we have (j, i) ∈ (t̂+1 × ŝ1) ∩ (t̂+2 × ŝ2), and since (t+1 , s1) and (t+2 , s2)
are both elements of the block partition P , Definition 2.2 implies (t+1 , s1) = (t+2 , s2), and
therefore s1 = s2.

The second statement is a simple consequence of the fact that pred(t) ⊆ pred(t′) holds
for all t′ ∈ sons(t).

We define the matrices

M0
t :=

∑
r∈row(t)

χtMχr for all t ∈ TI .

10

Figure 1: Matrices M0
t (top) and Mt (bottom) for several clusters t appearing in a simple

one-dimensional model problem

According to Lemma 3.6, all clusters s on the right-hand side of this definition correspond
to disjoint index sets, and we find

M0
t χs =

⎛⎝ ∑
r∈row(t)

χtMχr

⎞⎠χs =
∑

r∈row(t)

χtMχrχs = χtMχs for all (t, s) ∈ Pfar, (6)

i.e., the family (M0
t)t∈TI satisfies condition (4) for all b = (t, s) ∈ Pfar with Bb = χs.

In order to ensure that the family is also nested, i.e., satisfies (2), we simply include all
predecessors t+ of a cluster t in the definition:

Definition 3.7 (Total cluster basis) Let M ∈ RI×J . The family (Mt)t∈TI given by

Mt :=
∑

t+∈pred(t)

∑
r∈row(t+)

χtMχr =
∑

r∈row∗(t)

χtMχr for all t ∈ TI

is called the total cluster basis corresponding to M .

Applying Lemma 3.6 to Mt instead of M0
t , we can prove Mtχs = χtMχs by the same

arguments as in equation (6). Neglecting the technical detail of numbering J , we can
treat (Mt)t∈TI as a nested cluster basis and conclude that M is a left semi-uniform
matrix with respect to its total cluster basis.

11

Figure 2: Geometric interpretation of total cluster bases in 2D

Ωc
t

Ωt

In case of the simple one-dimensional model problem introduced, e.g., in [6, Chapter
1], Figure 1 illustrates the subblocks contributing to the matrices (M0

t)t∈TI and (Mt)t∈TI .

Remark 3.8 (Two-dimensional example) Let us now consider a more interesting
example: we assume that the clusters t ∈ TI correspond to a suitable hierarchy of sub-
domains Ωt of a domain Ω ⊆ R2, and that the admissibility condition (1) is used to
determine the block partition P and the farfield Pfar.

Let t ∈ TI, t+ ∈ pred(t) and r ∈ row(t+). Due to Ωt ⊆ Ωt+ and (1), we have

dist(Ωt,Ωr) ≥ dist(Ωt+ ,Ωr) ≥ diam(Ωt+) ≥ diam(Ωt).

This means Ωr ⊆ Ωc
t for

Ωc
t := {x ∈ Ω : dist(Ωt, x) ≥ diam(Ωt)},

i.e. all clusters in row∗(t) correspond to subdomains contained in the geometric farfield
Ωc

t . Geometrically speaking, the total cluster basis matrix Mt describes the flow of infor-
mation from the geometric farfield Ωc

t (depicted in Figure 2) into Ωt.

The total cluster basis is in general not useful for practical applications, since the
number of columns of each of the matrices Mt is too large. The following result provides
a hint on how to reduce the complexity:

Lemma 3.9 (Restrictions) Let V be a nested cluster basis. For all t ∈ TI and all
t∗ ∈ sons∗(t), we define

Et∗,t :=

{
Et∗,t′Et′ if there is a t′ ∈ sons(t) with t∗ ∈ sons(t′),
I otherwise, i.e., if sons(t) = ∅

and find
χt∗Vt = Vt∗Et∗,t. (7)

12

Proof. By induction over # sons∗(t) ∈ N. Let t ∈ TI and t∗ ∈ sons∗(t). If # sons∗(t) = 1
holds, we have sons(t) = ∅ and therefore t = t∗. The definition of the cluster basis
implies χt∗Vt = χtVt = Vt = VtEt,t.

Let n ∈ N be such that (7) holds for all t ∈ TI with # sons∗(t) = n. Let t ∈ TI with
sons∗(t) = n + 1. Let t∗ ∈ sons∗(t). If t∗ = t, we can proceed as before. If t∗ �= t,
there is a t′ ∈ sons(t) with t∗ ∈ sons∗(t′), and we find

χt∗Vt = χt∗
∑

t′∈sons(t)

Vt′Et′ = χt∗Vt′Et′ .

Due to # sons(t′) ≤ # sons(t) − 1 = n, we can apply the induction assumption to find
χt∗Vt′ = Vt∗Et∗,t′ , which implies

χt∗Vt = χt∗Vt′Et′ = Vt∗Et∗,t′Et′ = Vt∗Et∗,t,

and concludes the induction.

Let us assume that M ∈ H2(P, V, ∗) is a left semi-uniform matrix. Let t ∈ TI , and
let t+ ∈ pred(t) and r ∈ row(t+). Since M is left semi-uniform and b := (t+, r) ∈ Pfar

holds, there is a matrix Bb ∈ RJ×kt+ satisfying χt+Mχr = Vt+B�
b . Due to t ∈ sons∗(t+),

Lemma 3.9 implies

χtMχr = χtχt+Mχr = χtVt+B�
b = VtEt,t+B�

b ,

i.e., not only admissible blocks, but also their restrictions can be expressed in terms of
appropriate cluster bases. According to Definition 3.7, this means

Mt =
∑

t+∈pred(t)

∑
r∈row(t+)

χtMχr = Vt

⎛⎝ ∑
t+∈pred(t)

∑
r∈row(t+)

E
t,t+

B�
(t+,r)

⎞⎠ ,

i.e., the range of Mt is contained in the range of Vt, therefore the rank of Mt is bounded
by the rank of Vt, i.e., by kt.

3.3 Approximability by left semi-uniform matrices

We have seen that the ranks of all total cluster basis matrices Mt are bounded if M is
a left semi-uniform matrix M .

Now we will prove the converse, i.e., that M is left semi-uniform if the ranks of the
total cluster basis matrices Mt are bounded. Theorem 3.13 even shows that M can be
approximated efficiently by a left semi-uniform matrix if the total cluster basis matrices
can be approximated by low-rank matrices.

Since we are interested in approximations, we reformulate the problem: instead of
requiring that the rank of Mt is bounded, we only require that there is a matrix Wt ∈
RI×kt with χtWt = Wt such that

sup
x∈RJ

inf
y∈Rkt

‖Mtx − Wty‖2

‖x‖2
≤ εt (8)

13

holds for a suitable tolerance εt ∈ R≥0.
For εt = 0, this inequality implies rank(Mt) ≤ rank(Wt) = kt. For larger values of εt,

the “numerical rank” takes the place of the exact one.
In order to simplify the notation, we replace (8) by the equivalent condition

inf
Z∈RJ×kt

‖Mt − WtZ
�‖2 ≤ εt. (9)

Before we can prove the main result of this section, we require an alternative represen-
tation of the error: since a block (t, s) ∈ Pfar is not only represented by Mt, but, at
least in part, also by Mt∗ for any descendant t∗ ∈ sons∗(t), replacing the total cluster
basis by an approximation does not only introduce an error in the cluster t, but also
additional errors for all t∗ ∈ sons∗(t). If the total cluster basis is approximated by a
nested orthogonal cluster basis, it is possible to express the error as an orthogonal sum
of individual errors introduced in each cluster. In order to formulate the corresponding
Theorem 3.11, we require the following notations for nested orthogonal cluster bases:

Definition 3.10 Let V = (Vt)t∈TI be a nested orthogonal cluster basis. We define the
families Q = (Qt)t∈TI and V̂ = (V̂t)t∈TI as follows: if sons(t) = ∅, we let Qt = χt and
V̂t = Vt. If sons(t) �= ∅, we let σ := # sons(t), {t1, . . . , tσ} := sons(t), and

Qt =
(
Vt1 . . . Vtσ

)
and V̂t =

⎛⎜⎝Et1
...

Etσ

⎞⎟⎠ .

Note that the nested structure of V implies Vt = QtV̂t for all t ∈ TI . Now we can
construct a decomposition of the approximation error into “local” contributions: for
each cluster t ∈ TI , we compare the approximation of Mt by the cluster basis Vt with
the approximation by Qt, i.e., by the cluster bases corresponding to the sons of t.

Since Vt and Qt are orthogonal, the best approximations of Mt are given by VtV
�
t Mt

and QtQ
�
t Mt, respectively, and the error added by a cluster t is given by the expression

QtQ
�
t Mt − VtV

�
t Mt. These expression characterize the total approximation error.

Theorem 3.11 (Approximation error) Let M ∈ RI×J . Let V = (Vt)t∈TI be a
nested orthogonal cluster basis, let Q = (Qt)t∈TI be as in Definition 3.10. We define

Dt := QtQ
�
t Mt − VtV

�
t Mt for all t ∈ TI .

Then we have

‖(M − ΠP
V,∗M)x‖2

2 =
∑
t∈TI

‖Dtx‖2
2 for all x ∈ RJ .

Proof. We start by proving

(Mt − VtV
�
t Mt)χs =

∑
t∗∈sons∗(t)

Dt∗χs (10)

14

for all t ∈ TI , t+ ∈ pred(t) and s ∈ row(t+) by induction over # sons∗(t). For
sons∗(t) = 1, we have sons(t) = ∅ and (10) follows by definition.

Let now n ∈ N be such that (10) holds for all t ∈ TI with # sons∗(t) ≤ n. Let t ∈ TI
with # sons∗(t) = n + 1. We have sons(t) �= ∅, and

QtQ
�
t =

∑
t′∈sons(t)

Vt′V
�
t′ (11)

implies

Mt − VtV
�
t Mt = Mt − QtQ

�
t Mt + QtQ

�
t Mt − VtV

�
t Mt

=
∑

t′∈sons(t)

χt′Mt −
∑

t′∈sons(t)

Vt′V
�
t′ Mt + Dt.

Let t+ ∈ pred(t) and s ∈ row(t+). Due to the definition of Mt, we have

Mtχs − VtV
�
t Mtχs =

∑
t′∈sons(t)

(χt′Mtχs − Vt′V
�
t′ Mtχs) + Dtχs

=
∑

t′∈sons(t)

(Mt′ − Vt′V
�
t′ Mt′)χs + Dtχs.

Since # sons∗(t′) ≤ # sons∗(t)− 1 = n, we can apply the induction assumption to prove

Mtχs − VtV
�
t Mtχs =

∑
t′∈sons(t)

∑
t∗∈sons∗(t′)

Dt∗χs + Dtχs =
∑

t∗∈sons∗(t)

Dt∗χs (12)

and conclude the induction.
The approximation error is given by

M − ΠP
V,∗M =

∑
(t,s)∈Pfar

χtMχs − VtV
�
t Mχs =

∑
t∈TI

∑
s∈row(t)

(Mt − VtV
�
t Mt)χs

(12)
=

∑
t∈TI

∑
s∈row(t)

∑
t∗∈sons∗(t)

Dt∗χs =
∑

t∗∈TI

∑
t∈pred(t∗)

∑
s∈row(t)

Dt∗χs

=
∑

t∗∈TI

Dt∗ =
∑
t∈TI

Dt. (13)

We will now investigate the properties of the matrices Dt appearing in this representation
of the error.

Since V is nested, we have Vt = QtV̂t with V̂t as in Definition 3.10. This implies
Vt = QtV̂t = QtQ

�
t QtV̂t = QtQ

�
t Vt and we find

V �
t Dt = V �

t QtQ
�
t Mt − V �

t VtV
�
t Mt = V �

t Mt − V �
t Mt = 0,

i.e., the range of Dt is perpendicular on that of Vt.

15

Let now t ∈ TI with sons(t) �= ∅, and let t′ ∈ sons(t). Due to (11) and (2), we have

χt′Dt = χt′QtQ
�
t Mt − χt′VtV

�
t Mt = Vt′V

�
t′ Mt − Vt′Et′V

�
t Mt = Vt′(V �

t′ Mt − Et′V
�
t Mt),

and Lemma 3.9 implies

χt∗Dt = Vt∗Et∗,t′(V �
t′ Mt − Et′V

�
t Mt) (14)

for all t∗ ∈ sons∗(t) \ {t}, i.e., the restriction of the range of Dt to proper descendants
t∗ �= t of t is contained in the range of Vt∗ .

Let now t, s ∈ TI with t �= s, and let x, y ∈ RJ . If s ∈ sons∗(t), we can find t′ ∈ sons(t)
with s ∈ sons∗(t′) and get

D�
s Dt = D�

s χsDt
(14)
= D�

s VsEs,t′(V �
t′ Mt − Et′V

�
t Mt) = 0. (15)

Due to symmetry, the same holds if t ∈ sons∗(s). If s �∈ sons∗(t) and t �∈ sons∗(s), the
definition of the cluster tree implies t̂× ŝ = ∅, and since the support of Dtx is contained
in t̂ and that of Dsy in ŝ, we can conclude D�

s Dt = 0 for all t, s ∈ TI with t �= s, i.e.,
the ranges of the matrices (Dt)t∈TI are pairwise perpendicular.

This implies

‖(M − ΠP
V,∗M)x‖2

2
(13)
=

∥∥∥∥∥∥
∑
t∈TI

Dtx

∥∥∥∥∥∥
2

2

(15)
=

∑
t∈TI

‖Dtx‖2
2

and concludes the proof.

With the precise expression for the approximation error provided by Theorem 3.11,
we can now use the matrices (Wt)t∈TI from condition (9) in order to construct a suitable
nested orthogonal cluster basis.

Construction 3.12 Let k = (kt)t∈TI be a rank distribution. Let W = (Wt)t∈TI be a
family of matrices satisfying χtWt = Wt ∈ RI×kt for all t ∈ TI.

Let t ∈ TI . If sons(t) = ∅, we compute the Householder factorization VtR = Wt in
order to find an orthogonal matrix Vt ∈ RI×kt with χtVt = Vt and range(Wt) ⊆ range(Vt).

If sons(t) �= ∅, we assume that the matrices Vt′ corresponding to t′ ∈ sons(t) have
already been constructed, form Qt as in Definition 3.10 and define

Ŵt := Q�
t Wt.

We compute the Householder factorization V̂tR = Ŵt in order to find an orthogonal
matrix V̂t with range(Ŵt) ⊆ range(V̂t). Setting Vt := QtV̂t concludes the construction.

The transfer matrices (Et)t∈TI of the nested cluster basis V can be reconstructed from
the matrices V̂t by applying Definition 3.10.

We can now prove that a matrix can be approximated by a left semi-uniform matrix
if all cluster basis matrices (Mt)t∈TI can be approximated by low-rank matrices:

16

Theorem 3.13 (Error bound) Let M ∈ RI×J . Let W = (Wt)t∈TI be a family of
matrices satisfying χtWt = Wt ∈ RI×kt for all t ∈ TI. Let V = (Vt)t∈TI be the nested
orthogonal cluster basis with rank distribution k = (kt)t∈TI from Construction 3.12.
Then we have

‖M − ΠP
V,∗M‖2

2 ≤
∑
t∈TI

inf
Z∈RJ×kt

‖Mt − WtZ
�‖2

2 and

‖M − ΠP
V,∗M‖2

F ≤
∑
t∈TI

inf
Z∈RJ×kt

‖Mt − WtZ
�‖2

F .

Proof. Due to Theorem 3.11, we can restrict our attention to the error operators Dt.
Let t ∈ TI and x ∈ RJ . If sons(t) = ∅, we have

‖Dtx‖2
2 = ‖Mtx − VtV

�
t Mtx‖2

2 = inf
y∈Rkt

‖Mtx − Vty‖2
2 ≤ inf

Z∈RJ×kt

‖(Mt − WtZ
�)x‖2

2,

since range(Wt) ⊆ range(Vt).
If sons(t) �= ∅, we find

‖Dtx‖2
2 = ‖QtQ

�
t Mtx − VtV

�
t Mtx‖2

2 = inf
y∈Rkt

‖QtQ
�
t Mtx − Vty‖2

2

= inf
y∈Rkt

‖QtQ
�
t Mtx − QtV̂ty‖2

2 ≤ inf
Z∈RJ×kt

‖QtQ
�
t (Mt − QtŴtZ

�)x‖2
2

= inf
Z∈RJ×kt

‖QtQ
�
t (Mt − QtQ

�
t WtZ

�)x‖2
2 = inf

Z∈RJ×kt

‖QtQ
�
t (Mt − WtZ

�)x‖2
2

≤ inf
Z∈RJ×kt

‖(Mt − WtZ
�)x‖2

2,

due to range(Ŵt) ⊆ range(V̂t) and the orthogonality of Qt.
In order to prove the error estimate for the operator norm, we combine our estimates

with Theorem 3.11 and get

‖(M −ΠP
V,∗M)x‖2

2 ≤
∑
t∈TI

inf
Z∈RJ×kt

‖(Mt −WtZ
�)x‖2

2 ≤
∑
t∈TI

inf
Z∈RJ×kt

‖Mt −WtZ
�‖2

2‖x‖2
2,

so taking the supremum over all x ∈ RJ yields our claim. For the error estimate in the
Frobenius norm, we observe that

‖X‖2
F =

∑
j∈J

‖Xej‖2
2

holds for an arbitrary matrix X ∈ RI×J , where ej ∈ RJ is the j-th unit vector. This
implies

‖M − ΠP
V,∗M‖2

F =
∑
j∈J

‖(M − ΠP
V,∗M)ej‖2

2 ≤
∑
j∈J

∑
t∈TI

inf
Z∈RJ×kt

‖(Mt − WtZ
�)ej‖2

2

=
∑
t∈TI

inf
Z∈RJ×kt

‖Mt − WtZ
�‖2

F

and concludes the proof.

17

Corollary 3.14 Let M ∈ RI×J with rank(Mt) ≤ kt for all t ∈ TI . Then there is a
nested orthogonal cluster basis V = (Vt)t∈TI with rank distribution k = (kt)t∈TI satisfying
M = ΠP

V,∗M , i.e., if the total cluster basis matrices of M have bounded rank, M is a left
semi-uniform matrix.

Proof. Due to rank(Mt) ≤ kt, we can find Wt ∈ RI×kt and Zt ∈ RJ×kt with χtWt = Wt

and WtZ
�
t = Mt. Theorem 3.13 concludes the proof.

We will now apply Theorem 3.13 to prove that integral and differential operators can
be approximated by H2-matrices.

Remark 3.15 (Integral operators) Let Ω ⊂ Rd be a subdomain or submanifold, and
let (ϕi)i∈I be a finite element basis of a suitable function space on Ω. If the matrix
M ∈ RI×I has the form

Mij =
∫

Ω
ϕj(x)

∫
Ω

ϕi(y)g(x, y) dy dx

for a suitable kernel function g : Ω×Ω → R, we can apply [5, Corollary 4.7] to an m-th
order interpolant of g in order to find a matrix Wt with rank kt = md which satisfies

inf
Z∈RI×kt

‖Mt − WtZ
�‖2 � |Ωt|1/2 exp(−αm),

where α ∈ R>0 and Ωt =
⋃

i∈t̂ supp(ϕi) is the support of all basis functions corresponding
to indices in t̂.

Theorem 3.13 requires us to sum over all t, and since the overlap of the supports of
basis functions is limited, we find∑

t∈TI

inf
Z∈RJ×kt

‖Mt − WtZ
�‖2

2 � depth(TI)|Ω| exp(−2αm).

Replacing polynomial interpolation by an expansion in spherical harmonics leads to a
similar estimate with kt = md−1. Using variable-order expansions [23, 22, 10, 9], we
can eliminate the depth of the cluster tree TI from the error estimate and, applying
Theorem 3.11 in a more sophisticated manner, even ensure that the approximation error
stays proportional to the discretization error without sacrificing the linear relationship
between the computational complexity and the number of degrees of freedom.

Remark 3.16 (Solution operators) Let Ω ⊆ Rd be a subdomain with Lipschitz
boundary, and let (ϕi)i∈I be a finite element basis of H1

0 (Ω). If the matrix M ∈ RI×I is
the discrete solution operator corresponding to the Galerkin discretization of the elliptic
partial differential operator

L := − div C(x) grad,

where C : Ω → Rd×d maps each point x ∈ Ω to a coefficient matrix satisfying 0 < αI ≤
C(x) ≤ βI, we can use [1, Theorem 2.8] to construct rank-kt-approximations of Mt,
where kt ∼ | log(ε)|d+1 and ε ∈ R>0 is the desired precision.

We can proceed as in the case of integral operators to conclude that we can find an
H2-matrix approximation of M .

18

4 Construction of H2-matrix approximations

Let M ∈ RI×J . Using Theorem 3.13, we can ensure that M can be approximated by a
left semi-uniform matrix, but we have yet to find an algorithm which computes a suitable
cluster basis efficiently.

4.1 Approximation algorithm

We use a slightly modified version of the algorithm presented in [7]: the original algorithm
uses Gram matrices and eigenvectors to compute the left singular vectors required for the
construction of the matrices Vt. Since the computation of the Gram matrices can lead
to numerical instabilities, the modified algorithm presented here relies on singular value
decompositions of the total cluster basis matrices Mt and their orthogonal projections,
thus reaching a higher accuracy and better compression.

The approximation algorithm is motivated by Theorem 3.11: for leaf cluster t, we
have to find an orthogonal matrix Vt ∈ RI×kt such that Vt = χtVt holds and the error
‖Mt−VtV

�
t Mt‖2 or ‖Mt−VtV

�
t Mt‖F is as small as possible. This minimization problem

can be solved by using the singular value decomposition of Mt: due to [12, Theorem
2.5.2], we can find orthogonal matrices P1 and P2 with

Mt = P1 diag(σ1, . . . , σl)P�
2 ,

where σ1 ≥ σ2 ≥ . . . ≥ σl ≥ 0 are the singular values of Mt.
For a given rank kt ∈ {1, . . . , l}, we can construct a rank-kt-approximation by setting

M̃t := P1 diag(σ1, . . . , σkt , 0, . . . , 0)P
�
2 ,

and since P1 and P2 are orthogonal matrices, the approximation error is given by

‖Mt − M̃t‖2 = ε2,t :=

{
σkt+1 if kt < l,

0 otherwise,
(16a)

‖Mt − M̃t‖F = εF,t :=

⎛⎝ l∑
i=kt+1

σ2
i

⎞⎠1/2

. (16b)

This means that we can control the approximation error by adapting the rank kt.
We construct the matrix Vt by copying the first kt columns of the matrix P1 and

VtV
�
t Mt = VtV

�
t P1 diag(σ1, . . . , σl)P�

2 = P1 diag(σ1, . . . , σkt , 0, . . . , 0)P
�
2 = M̃t, (17)

yields that the corresponding orthogonal projection will indeed give us M̃t.
Now let us consider the case of non-leaf clusters t. Since we are looking for a nested

cluster basis, we have to ensure Vt = QtV̂t (cf. Definition 3.10). Proceeding by recursion,
we can compute the orthogonal cluster basis matrices Vt′ , and since these matrices define
Qt, we only have to construct the remaining matrix V̂t.

19

Since Vt is orthogonal,

I = V �
t Vt = V̂ �

t Q�
t QtV̂t = V̂ �

t V̂t

implies that V̂t also has to be orthogonal.
According to Theorem 3.11, the error of the matrix approximation will be small if

we can ensure that the local errors Dt are small. In our case, we have Vt = QtV̂t and
observe

Dt = QtQ
�
t Mt − VtV

�
t Mt = QtQ

�
t Mt − QtV̂tV̂

�
t Q�

t Mt = Qt(Q�
t Mt − V̂tV̂

�
t Q�

t Mt).

We introduce the auxiliary matrix

M̂t := Q�
t Mt

and conclude
Dt = Qt(M̂t − V̂tV̂

�
t M̂t).

We are only interested in minimizing the norm

‖Dtx‖2 = ‖Qt(M̂t − V̂tV̂
�
t M̂t)x‖2 = ‖(M̂t − V̂tV̂

�
t M̂t)x‖2

for vectors x ∈ RJ , and since this norm does not depend on Qt, we can base the
computation of V̂t entirely on the auxiliary matrix M̂t: as in the case of the leaf clusters,
we have to find an orthogonal matrix V̂t with kt columns that minimizes the error
‖M̂t−V̂tV̂

�
t M̂t‖2 or ‖M̂t−V̂tV̂

�
t M̂t‖F , and this problem can again be solved by computing

the singular value decomposition of M̂t. Since this matrix has only

mt :=

{∑
t′∈sons(t) kt′ if sons(t) �= ∅,

#t̂ otherwise,

rows and #J columns, it can be handled very efficiently. Once V̂t has been computed,
the transfer matrices Et′ can be recovered using Definition 3.10.

In order to reach a useful algorithm, we need an efficient method for computing M̂t.
Using M̂t = Q�

t Mt directly leads to a complexity of O(#t̂#J), which is acceptable for
small clusters, but not for large ones. In the case sons(t) = ∅, we have M̂t = Mt and can
safely assume that the number of rows of Mt is small enough. In the case sons(t) �= ∅,
we note that

χt′Mt = Mt′χ
c
t

holds, where
χc

t :=
∑

t+∈pred(t)

∑
r∈row(t+)

χr,

corresponds to the restriction of Mt′ to the clusters in row∗(t). This means that we can
recover the total cluster basis of t from the total cluster bases of its sons.

20

Algorithm 1 Construction of an adaptive cluster basis
procedure RowClusterBasis(t);
if sons(t) = ∅ then

M̂t := χtMχc
t

else
for t′ ∈ sons(t) do

RowClusterBasis(t′)
end for;

M̂t :=

⎛⎜⎝M̄t1χ
c
t

...
M̄tσχc

t

⎞⎟⎠
end if ;
Construct V̂t from the singular value decomposition of M̂t;
M̄t := V̂ �

t M̂t

We set σ := # sons(t) and {t1, . . . , tσ} := sons(t), and rewriting M̂t in the form

M̂t = Q�
t Mt =

⎛⎜⎝V �
t1 Mt
...

V �
tσ Mt

⎞⎟⎠ =

⎛⎜⎝V �
t1 Mt1χ

c
t

...
V �

tσ Mtσχc
t

⎞⎟⎠
suggests the solution: after finding a new cluster basis matrix Vt, we compute

M̄t := V �
t Mt = V̂ �

t Q�
t Mt = V̂ �

t M̂t

and then use

M̂t =

⎛⎜⎝M̄t1χ
c
t

...
M̄tσχc

t

⎞⎟⎠
to compute M̂t in O(mt#J) operations. The resulting recursive procedure is given in
Algorithm 1.

Remark 4.1 (Complexity) We assume that there is an upper bound k∗ for the rank
and the size of leaf clusters, i.e., that kt ≤ k∗ holds for all t ∈ TI and #t̂ ≤ k∗ holds
for all leaves t ∈ LI. We also assume that there is an upper bound σ∗ for the number of
sons, i.e., that # sons(t) ≤ σ∗ holds for all t ∈ TI.

For leaf clusters t ∈ TI, the construction of M̂t requires not more than O(#t̂#J)
operations, computing the singular value decomposition of this matrix can be accom-
plished in O((#t̂)2#J) ⊆ O(k∗#t̂#J) operations, and the matrix M̄t can be formed
in O(kt#t̂#J) operations. Summing over all leaf clusters, we get a complexity of
O(k∗#I#J).

For non-leaf clusters t ∈ TI, the construction of M̂t requires O(mt#J) operations, the
singular value decomposition can be computed in O(m2

t #J) ⊆ O(σ2
∗k

2
∗#J) operations,

21

and the construction of M̄t requires O(ktmt#J) ⊆ O(σ∗k2
∗#J) operations. Summing

over all clusters, we get a complexity of O(σ2
∗k

2
∗#TI#J).

We can conclude that Algorithm 1 has a complexity of O(k∗(#I + σ2
∗k∗#TI)#J) for

a general matrix. Assuming #TI ∈ O(#I/k∗), we can bound this by O(k∗#I#J).
If the matrix M is not given in standard notation, but in a data-sparse format, the

complexity of Algorithm 1 can be reduced significantly: the techniques of [7, Section 6]
can be used to reach almost linear complexity if M is represented as a hierarchical matrix,
and the approach of [3, Section 4] can be used to reach “true” linear complexity if M is
represented as an H2-matrix.

4.2 Error control

Since our algorithm is closely related to Construction 3.12 and the techniques used in
Theorem 3.11, it is relatively simple to derive error bounds.

Theorem 4.2 (Precision) Let V = (Vt)t∈TI be the orthogonal nested cluster basis con-
structed by Algorithm 1. We have

‖M − ΠP
V,∗M‖2

2 ≤
∑
t∈TI

ε2
2,t and ‖M − ΠP

V,∗M‖2
F =

∑
t∈TI

ε2
F,t.

Proof. The matrices Dt from Theorem 3.11 are given by

Dt = QtQ
�
t Mt − VtV

�
t Mt = QtQ

�
t Mt − QtV̂tV̂

�
t Q�

t Mt

= Qt(I − V̂tV̂
�
t)M̂t

(17)
= Qt(M̂t − M̃t),

so we have
‖Dt‖2 = ε2,t and ‖Dt‖F = εF,t

due to (16) and can proceed as in the proof of Theorem 3.13.

We can also demonstrate that the error estimate for the approximation constructed
by Algorithm 1 is at least as good as the error estimate of Theorem 3.13:

Remark 4.3 Let V = (Vt)t∈TI be as before and let W = (Wt)t∈TI be as in Theorem 3.13.
We find

ε2,t = ‖M̂t − M̃t‖2 = ‖M̂t − V̂tV̂
�
t M̂t‖2 = ‖Q�

t Mt − V̂tV̂
�
t Q�

t Mt‖2

= ‖QtQ
�
t Mt − QtV̂tV̂

�
t Q�

t Mt‖2 = ‖QtQ
�
t (Mt − VtV

�
t Mt)‖2 ≤ ‖Mt − VtV

�
t Mt‖2.

Due to [12, Theorem 2.5.3], we get

ε2,t ≤ ‖Mt − VtV
�
t Mt‖2 ≤ inf

Z∈RJ×kt

‖Mt − WtZ
�‖2

and conclude that the cluster basis constructed by our algorithm is at least as good as the
one from Theorem 3.13. A similar estimate holds for the Frobenius norm.

22

Table 1: Recompression of cluster bases on the sphere ΓS with cubic interpolation and
recompression tolerance ε = 10−3

n Build Bld/n Mem Mem/n MVM Error
2048 11 5.4 7.5 3.7 0.01 5.9−4

8192 46 5.6 34.9 4.3 0.11 6.5−4

32768 186 5.7 147.4 4.5 0.47 6.9−4

131072 760 5.8 607.9 4.6 2.15 7.0−4

524288 3245 6.2 2685.9 5.2 9.46 7.4−4

Table 2: Recompression of cluster bases on the cube ΓC with quartic interpolation and
recompression tolerance ε = 10−3

n Build Bld/n Mem Mem/n MVM Error
3072 27 9.1 12.8 4.3 0.03 2.9−4

12288 113 9.2 46.6 3.9 0.14 4.3−4

49152 452 9.2 168.0 3.5 0.51 5.6−4

196608 1791 9.1 609.4 3.2 1.91 6.4−4

786432 7097 9.0 2245.3 2.9 6.96 7.0−4

5 Numerical experiments

We will now apply Algorithm 1 to two typical classes of densely populated matrices:
discretized integral operators and the solution operators of discretized elliptic partial
differential equations.

5.1 Integral operators

Our first example is the classical double layer potential operator

K[u](x) :=
∫

Γ

〈x − y, n(y)〉
4π‖x − y‖3

u(y) dy,

where Γ is a Lipschitz surface. We approximate Γ by n ∈ N planar patches {Γ1, . . . ,Γn}
and discretize it by a Galerkin method with piecewise constant basis functions. The
resulting matrix K ∈ Rn×n is given by

Kij :=
∫

Γi

∫
Γj

〈x − y, n(y)〉
4π‖x − y‖3

dy dx

for all i, j ∈ {1, . . . , n}. We approximate K in two steps: first, we use local polynomial
expansions [8] to construct a non-optimal approximation of K, then we apply an adapted
variant [3] of Algorithm 1 to construct an H2-matrix K̃.

23

The Tables 1 and 2 contain the results for the matrix K, where Γ is the three-
dimensional unit sphere or the surface of the cube [−1, 1]3, respectively. The columns of
the tables are interpreted as follows:

• The column “n” gives the number of degrees of freedom.

• The columns “Build” and “Build/n” give the time in seconds for the construction
of the H2-matrix and the time per degree of freedom in milliseconds.

• The columns “Mem” and “Mem/n” give the storage requirements in MB for the
H2-matrix and the storage requirements per degree of freedom in KB.

• The column “MVM” gives the time in seconds for the computation of the matrix-
vector product.

• The column “Error” gives the relative spectral error ‖K − K̃‖2/‖K‖2 estimated
by a power iteration.

We can see that the approximation error is bounded and that computing time and
storage requirements grow proportionally to the number n of degrees of freedom.

5.2 Solution operators of elliptic partial differential equations

In the second example, we consider elliptic partial differential operators

L[u](x) := − div σ(x) grad u(x)

in a Lipschitz domain Ω ⊆ R2, where σ : Ω → R2×2 maps each x ∈ Ω to a symmetric
positive definite coefficient matrix σ(x).

We discretize L by a finite element method using standard nodal basis functions (ϕi)ni=1

on a triangulation of Ω and get a sparse matrix L ∈ Rn×n given by

Lij =
∫

Ω
〈grad ϕi(x), σ(x) grad ϕj(x)〉 dx

for all i, j ∈ {1, . . . , n}. Since L is sparse, it can be treated efficiently by standard
techniques.

The corresponding inverse matrix L−1 is not sparse, but we can apply our algorithm to
approximate it by an H2-matrix S ≈ L−1. Since computing L−1 directly for interesting
problem dimensions would take too much time, we use an H-matrix approximation
instead, which can be computed using H-matrix arithmetics [17, 14]. We then apply
an efficient variant [7] of Algorithm 1 to convert the H-matrix approximation into an
H2-matrix.

Table 3 contains the results of a numerical experiment for the simple case of Poisson’s
equation in [−1, 1]2 with σ ≡ 1. The columns of this Table and Table 4 are interpreted
as follows:

• “n”, “Mem”, “Mem/n”, “MVM” are the same as in the case of the integral oper-
ators.

24

Table 3: Approximation of the solution operator of the elliptic partial differential equa-
tion with σ ≡ 1

n HInv HMem Conv Mem Mem/n MVM InvErr
1024 < 1 2.1 < 1 1.6 1.6 < 0.01 4.3−4

4096 5 13.5 5 8.4 2.0 < 0.01 8.6−4

16384 45 84.9 35 40.5 2.5 0.07 9.5−4

65536 387 516.6 207 183.0 2.8 0.34 7.4−4

262144 2922 2970.6 1205 785.1 3.0 1.51 9.4−4

1048576 20272 16457.3 6906 3253.5 3.1 6.64 9.8−4

• “HInv” gives the time in seconds required by the H-matrix inversion algorithm.

• “HMem” gives the storage requirements in MB for the H-matrix.

• “Conv” gives the time in seconds for the conversion of the H-matrix into an H2-
matrix approximation.

• “InvErr” gives the inversion error ‖I − SL‖2 estimated by a power iteration.

We can see that the approximation error is bounded and that the storage requirements
for the H2-matrix approximation and the time for the matrix-vector multiplication seem
to be proportional to O(n log n), where n is the number of degrees of freedom. The
logarithmic factor can be explained by the fact that the approximation tolerance has to
be proportional to n−1 in order to compensate for the growth of the condition number
of the matrix, which is proportional to n.

We also observe that H2-matrices require significantly less storage than H-matrices
and that this advantage becomes more and more pronounced as the problem size in-
creases.

Next, we investigate three problems with variable coefficients σ: in the first problem,
we separate the square [−1, 1]2 into four quarters and switch the coefficients between 1
and 100:

σ1(x) :=

{
100 if x ∈ [−1, 0) × [−1, 0) or x ∈ [0, 1] × [0, 1],
1 otherwise.

In the second problem, we separate the lower and upper half of the square by a strip
with high conductivity:

σ2(x) :=

{
100 if x2 ∈ [0, 1/16),
1 otherwise.

In the third problem, we introduce anisotropic coefficients in the lower half of the square:

σ3(x) :=

{
I if x2 ∈ [−1, 0),
diag(100, 1) otherwise.

25

Table 4: Approximation of the solution operator of the elliptic partial differential equa-
tion with variable σ

Quartered, σ1 Strip, σ2 Anisotropy, σ3

n Mem/n MVM Mem/n MVM Mem/n MVM
1024 1.56 < 0.01 1.55 < 0.01 1.55 < 0.01
4096 2.09 0.01 2.10 0.01 2.11 0.01

16384 2.58 0.07 2.62 0.08 2.69 0.07
65536 2.98 0.36 3.05 0.37 3.24 0.39

262144 3.29 1.64 3.43 1.67 3.68 1.80
1048576 3.56 7.25 3.65 7.38 4.08 8.12

Table 4 only gives the storage requirements and times per matrix-vector-multiplica-
tion, since the run times and inversion errors are similar to those reported in Table 3. We
again observe a log-linear growth of the storage requirements and the time for the matrix-
vector multiplication, which again seems to be caused by the growth of the condition
number.

Although the equations with varying coefficients are more complicated than the simple
Poisson equation, the storage requirements and algorithmic complexity are only slightly
higher, which fits the theoretical framework we have presented: the higher condition
number of the former can be compensated easily, since the approximation error decreases
exponentially if the rank is increased.

References

[1] M. Bebendorf and W. Hackbusch, Existence of H-matrix approximants to the
inverse FE-matrix of elliptic operators with L∞-coefficients, Numerische Mathe-
matik, 95 (2003), pp. 1–28.

[2] S. Börm, H2-matrices — multilevel methods for the approximation of integral op-
erators, Comput. Visual. Sci., 7 (2004), pp. 173–181.

[3] S. Börm, Approximation of integral operators by H2-matrices with adaptive bases,
Computing, 74 (2005), pp. 249–271.

[4] , H2-matrix arithmetics in linear complexity, Computing, 77 (2006), pp. 1–28.

[5] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators,
Numerische Mathematik, 101 (2005), pp. 221–249.

[6] S. Börm, L. Grasedyck, and W. Hackbusch, Hierarchical Matrices. Lecture
Note 21 of the Max Planck Institute for Mathematics in the Sciences, 2003.

[7] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-
matrices, Computing, 69 (2002), pp. 1–35.

26

[8] , H2-matrix approximation of integral operators by interpolation, Applied Nu-
merical Mathematics, 43 (2002), pp. 129–143.

[9] S. Börm, M. Löhndorf, and J. M. Melenk, Approximation of integral operators
by variable-order interpolation, Numerische Mathematik, 99 (2005), pp. 605–643.

[10] S. Börm and S. A. Sauter, BEM with linear complexity for the classical boundary
integral operators, Mathematics of Computation, 74 (2005), pp. 1139–1177.

[11] K. Giebermann, Multilevel approximation of boundary integral operators, Com-
puting, 67 (2001), pp. 183–207.

[12] G. H. Golub and C. F. V. Loan, Matrix Computations, Wiley-Interscience, New
York, 1984.

[13] L. Grasedyck, Theorie und Anwendungen Hierarchischer Matrizen, PhD thesis,
Universität Kiel, 2001.

[14] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices,
Computing, 70 (2003), pp. 295–334.

[15] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Jour-
nal of Computational Physics, 73 (1987), pp. 325–348.

[16] , A new version of the fast multipole method for the Laplace in three dimensions,
in Acta Numerica 1997, Cambridge University Press, 1997, pp. 229–269.

[17] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Intro-
duction to H-matrices, Computing, 62 (1999), pp. 89–108.

[18] W. Hackbusch and B. Khoromskij, A sparse matrix arithmetic based on
H-matrices. Part II: Application to multi-dimensional problems, Computing, 64
(2000), pp. 21–47.

[19] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures
on Applied Mathematics, H. Bungartz, R. Hoppe, and C. Zenger, eds., Springer-
Verlag, Berlin, 2000, pp. 9–29.

[20] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the
boundary element method by panel clustering, Numerische Mathematik, 54 (1989),
pp. 463–491.

[21] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Jour-
nal of Computational Physics, 60 (1985), pp. 187–207.

[22] S. Sauter, Variable order panel clustering (extended version), Preprint 52/1999,
Max-Planck-Institut für Mathematik, Leipzig, Germany, 1999.

[23] , Variable order panel clustering, Computing, 64 (2000), pp. 223–261.

27

