
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Instability of interface under forced

displacements

(revised version: November 2005)

by

Anna De Masi, Nicolas Dirr, and Errico Presutti

Preprint no.: 5 2005





Instability of interface under forced displacements

Anna DE MASI †, Nicolas DIRR ‡ and Errico PRESUTTI �

† Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila, 67100
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Abstract

By applying linear response theory and the Onsager principle, the power (per unit
area) needed to make a planar interface move with velocity V is found to be equal
to V 2/µ, µ a mobility coefficient. To verify such a law, we study a one dimensional
model where the interface is the stationary solution of a non local evolution equation,
called an instanton. We then assign a penalty functional to orbits which deviate
from solutions of the evolution equation and study the optimal way to displace the
instanton. We find that the minimal penalty has the expression V 2/µ only when V is
small enough. Past a critical speed, there appear nucleations of the other phase ahead
of the front, their number and location are identified in terms of the imposed speed.

1 Introduction

In a large variety of systems the power dissipated to force a motion with speed V is given
by the ratio V 2/µ, µ a mobility coefficient, just think of Ohm’s law in an electric circuit,
or of a mechanical body moving in a viscous fluid or of the motion of a planar interface
between two solid phases, the issue on which this paper is focused.

A general explanation of the law goes back to Onsager and linear response theory. Our
purpose was to verify the validity or we should better say now, the limits of validity of
the law in a model for interfaces. We restrict for technical reasons to one dimension (see
Section 3 on this issue) and consider the non local evolution equation

ut = f(u), u(·, 0) given, (1.1)

with ut the t-derivative of u and the “force field” f(u) given by

f(u) = J ∗ u−Aβ(u), Aβ(u) =
1
β

arctanh(u), J ∗ u(x) =
∫

R

J(x, y)u(y) dy
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We suppose β > 1 and that J(x, y), (x, y) ∈ R × R, is a smooth, symmetric, translational
invariant probability kernel supported in |y−x| ≤ 1. We also assume that J(0, x) is a non
increasing function whenever restricted to x ≥ 0.

The two constant functions m(±)(x) ≡ ±mβ, with mβ > 0 solving the mean field equa-
tion mβ = tanh{βmβ} (recall β > 1) are stationary solutions of (1.1) and are interpreted
as the two pure phases of the system, being the only “stable” stationary homogeneous
solutions of (1.1) (the only other homogeneous, stationary solution m(x) ≡ 0 becomes
unstable when β increases past 1).

Interfaces, which are the objects of this paper, are defined as those stationary solutions
of (1.1) which converge to ±mβ as x → ±∞. Such solutions indeed exist for any β > 1,
they are called instantons and denoted by m̄ξ(x), ξ a parameter called the center of the
instanton m̄ξ(x). They are obtained one from the other by a shift, so that calling m̄ = m̄0,

m̄ξ(x) = m̄(x− ξ) (1.2)

The instanton m̄ satisfies

m̄(x) = tanh {βJ ∗ m̄(x)} , x ∈ R (1.3)

It is an increasing, antisymmetric function which converges exponentially fast to ±mβ as
x→ ±∞, see e.g. [7], and there are α and a positive so that

lim
x→∞ eαxm̄′(x) = a, (1.4)

see [6], Theorem 3.1. Moreover, any other solution of (1.3) which is definitively strictly
positive [respectively negative] as x → ∞ [respectively x → −∞], is a translate of m̄(x),
see [8].

We next turn to the real issue of the paper. To impose a speed v to the interface, we
take r and t positive, r/t = v (how to choose r and t will be discussed later) and consider
the set

U [r, t] =
{
u ∈ C∞(

R × (0, t); (−1, 1)
)

: lim
s→0+

u(·, s) = m̄, lim
s→t−

u(·, s) = m̄r

}
(1.5)

Due to the stationarity of m̄, no element in U [r, t] satisfies (1.1) and therefore there are
other forces which must enter into play. Call b = b(x, s), x ∈ R, 0 ≤ s ≤ t, an “external
force”, and consider the evolution equation

us = f(u) + b (1.6)

Existence and uniqueness for [the Cauchy problem for] (1.6) are proved in Appendix A.
We are of course only interested in forces b able to produce orbits in U [r, t]. To select
among them we introduce the action functional

It(u) =
1
4

∫ t

0

∫
R

b(x, s)2 dx ds, (1.7)

where b, via (1.6), is a function of u and of its time derivative. When writing (1.7), we
have invoked the same general, linear response theory expression for dissipated power (with
µ = 4 for convenience) that we are putting under scrutiny. This should not be viewed
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however as a circular trap, because the principle is invoked at a “microscopic” (or better
mesoscopic) level, while we want to investigate it at the macroscopic one. Moreover, in
Section 4 we will discuss the question in a statistical mechanical context, where our model
appears as a mesoscopic limit of Ising systems with Kac potentials and an expression
structurally similar to (1.7) is rigorously proved by large deviation estimates. With such
motivation we postulate that (1.7) is “the penalty functional”. Then the cost of moving
the instanton to r in the time t is defined as

inf
u∈U [r,t]

It(u) (1.8)

Let us turn now to the choice of r and t, as the specification of v only fixes their ratio.
As we want to investigate macroscopic behaviors, we should consider a spatial scale where
the instanton m̄ looks like a sharp interface, namely like the step function mβ

(
1x≥0 −

1x<0

)
. Recalling that m̄(x) converges exponentially to ±mβ as x→ ±∞, we introduce a

parameter ε > 0 to scale distances x → ε−1x with the idea of eventually letting ε → 0.
Time should then be taken equal to ε−1r/v, and if “the law V 2/µ ” is satisfied,

energy dissipated =
v2

µ

ε−1r

v
=
ε−1v

µ
(1.9)

To have a finite dissipation of energy we must then take v of the order of ε, which also
agrees with the idea that the law V 2/µ should be investigated in the regime of small
velocities. Another way to arrive at the same conclusion goes as follows: the expression
(V 2/µ)T for the dissipated energy is invariant under parabolic scaling of space and time,
it is therefore natural to use a parabolic scaling to derive it. With this in mind, we fix
any pair R and T of positive numbers, and define the macroscopic work to displace the
interface by R in a time T (R the macroscopic space and T the macroscopic time) as

W−(R,T ) = lim inf
ε→0

inf
u∈U [ε−1R,ε−2T ]

Iε−2T (u), W+(R,T ) = lim sup
ε→0

inf
u∈U [ε−1R,ε−2T ]

Iε−2T (u)

(1.10)

We will prove that W−(R,T ) = W+(R,T ) and compute their common value, the results
are stated in the next section, together with an outline of their proofs. In Section 3 we
discuss application of the theory to tunnelling, in Section 4 a formulation of the whole
problem in a statistical mechanics setting. In the remaining sections we give the proofs.

2 Main results

Our first theorem is:

Theorem 2.1. There is a critical value (V 2T )c such that if R2/T ≤ (V 2T )c, then

W−(R,T ) = W+(R,T ) =
R2

µT
,

1
µ

=
‖m̄′‖2

2

4
(2.1)
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where m̄′ is the derivative of m̄ and ‖ · ‖2 denotes the L2 norm on (R, dx).

An upper bound for W+(R,T ) can be easily found by putting

uε(x, t) = m̄εV t(x), V =
R

T
(2.2)

so that uε ∈ U [ε−1R, ε−2T ]. Then Iε−2T (uε) is independent of ε and equal to

1
4
‖m̄′‖2

2V
2T (2.3)

thus getting the same answer as in (2.1). We can easily rule out other ways to move
continuously the instanton as more expensive. Indeed if, instead of (2.2), we choose

mε(x, t) = m̄ξε(t)(x),

such that, for vε(t) := ξ̇ε(t),∫ ε−2T

0
vε(t) dt = ε−1R (2.4)

then, with µ as in (2.1),

Iε−2T (mε) =
1
µ

∫ ε−2T

0
v2
ε (t) dt (2.5)

By computing the inf of Iε−2T in the class (2.4) we get that∫ ε−2T

0
v2
ε (t) dt ≥ V 2T, for all vε such that

∫ ε−2T

0
vε(t) dt = ε−1V T

which implies that (2.1) is optimal in the class (2.4). To prove the lower bound we thus
need to examine more general orbits than mere shifts of the instanton.

Here comes another important issue, not touched so far in our discussion, namely
“nucleations”. By this we mean the appearance of droplets of the other phase inside one
phase. We first define the free energy functional

F(m) =
∫

R

φβ(m)dx+
1
4

∫
R×R

J(x, y)[m(x) −m(y)]2dx dy, (2.6)

where φβ(m) is the “mean field excess free energy”

φβ(m) = φ̃β(m) − min
|s|≤1

φ̃β(s), φ̃β(m) = −m
2

2
− 1
β
S(m), β > 1,

and S(m) the entropy:

S(m) = −1 −m

2
log

1 −m

2
− 1 +m

2
log

1 +m

2
.

By direct inspection f(m) = −δF(m)
δm

, the functional derivative of F , so that (1.1) is the

gradient flow associated to F(m). The gradient structure of the evolution has a very
important role in the sequel, in particular the next theorem uses it in an essential way.
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Theorem 2.2. For any ϑ > 0 there is τ > 0 and a function m̃ε,τ (x, s), x ∈ R, s ∈
[0, τε−3/2], symmetric in x for each s and such that

m̃ε,τ (x, 0) = mβ, m̃ε,τ (x, τε−3/2) = m̄�ε/2(x), x ≥ 0 (2.7)

where e−α�ε = ε3/2, α > 0 as in (1.4), and

Iτε−3/2(m̃ε,τ ) ≤ 2F(m̄) + ϑ (2.8)

Theorem 2.2 follows from results proved in [2] and [3], as discussed briefly in Appendix
B. It is now clear that (2.1) cannot keep its validity for all V . The key point is that the
cost is quadratic in the velocity, so that, by creating more fronts, we can make them move
with smaller velocity with the gain in cost covering the penalty for the nucleations, see
figure 1.

T

R0

m

Figure 1. We depict for two possible trajectories the zero level sets in space time: Three fronts
(dashed lines) and a single front (dotted line). Note that the single front has to move much faster.
For the three front case we moreover show schematically the fronts initially, early after nucleation
of a droplet, and shortly before they reach the final state.

To make this more precise, consider an orbit m(x, t) with a nucleation at time 0 at posi-
tion ε−1(2/3)R. We then divide the space in two parts, x ≤ ε−1(1/3)R and its complement.
In the first one we set m(x, t) = m̄ε(V/3)t (the velocity being such that the front reaches
ε−1(1/3)R at the final time ε−2τ). For x > ε−1(1/3)R, m(x, t) = m̃ε,τ (x − ε−1(2/3)R, t)
for t ≤ τε−2/3 and for t > τε−3/2, m(x, t) = m̄x(t)(x), x ≥ ε−1(2/3)R and its symmetric
image for x < ε−1(2/3)R; where x(t) = ε−1(2/3)R + 	ε + ε(t− ε−3/2τ)V/3. Observe that
for t ∈ [ε−3/2τ, ε−2τ ] and to leading order in ε, f(m) is given by e−α(εV t+�ε/2) which implies

that
∫ ε−2τ

ε−3/2τ
f(m)2 vanishes in the limit ε→ 0.

Thus to leading order in ε, m has three fronts, the first from the left is the original one
but moving with speed V/3 (which is one third of the original one), the second and third
fronts are those produced by the nucleation. They move respectively to the left and to
the right with same speed V/3. With such a choice the first two “collide with each other”
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at time ε−2T , while the third one reaches the final location ε−1R. In this way, at the final
time we have just one front at ε−1R. A proof along these lines requires a “suitable slight
modification” of the orbit described above (we need to adjust the velocities and to modify
the orbit when the first two fronts become close to each other, in the sense of Theorem
2.2). With such a maquillage, it can be proved that the total cost in the limit ε → 0
converges to

2F(m̄) + 3

{
1
µ

(
V

3

)2

T

}
(2.9)

By comparing (2.9) with the cost V 2T/µ of the motion without nucleations, we find (2.9)
evidently winning for V large. More precisely, we find equality if V 2T = 3µF(m̄) which is
indeed the critical value (V 2T )c in Theorem 2.1. The above argument can be made rigorous
(for brevity details are omitted) proving that besides V 2T/µ also (2.9) is an upper bound
for W+(R,T ). The argument can also be extended (again we omit the details) to prove
upper bounds with any finite number n of nucleations, the cost being

wn(R,T ) := n2F(m̄) + (2n + 1)

{
1
µ

(
V

2n+ 1

)2

T

}
(2.10)

We thus get the upper bound W+(R,T ) ≤ inf
n≥0

wn(R,T ). The whole heart of the problem

is to prove that this is also a lower bound, namely that there are no other strategies which
give a smaller cost. The lower bound will be proved in the rest of the paper, here we just
summarize the discussion by stating:

Theorem 2.3. For all R and T , W+(R,T ) = W−(R,T ) =: W (R,T ) and, calling V =
R/T ,

W (R,T ) = wn(R,T ), if F(m̄)[(2n)2 − 1] ≤ V 2T

µ
≤ F(m̄)

([
2(n+ 1)

]2 − 1
)

(2.11)

3 Tunnelling

The motivation for this research comes from tunnelling, in particular from questions raised
by Stephan Luckhaus about multiple nucleations in stochastic evolutions where the order
parameter is conserved. Shifting to one dimensions and to non conserved dynamics was
(we hope) only a preliminary step. The next step will be to connect the present analysis to
the tunnelling studied in [2] for the same one dimensional model we are considering here,
but restricted to a finite interval [−L,L] with Neumann boundary conditions. Tunnelling
concerns orbits u(x, t) which start from, say, the minus phase and end up at a final time
τ in the plus phase, u(x, 0) = m(−)(x) = −mβ, and u(x, τ) = m(+)(x) = mβ. The penalty
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in [2] is given by the same functional we are using here (but, of course, restricted to orbits
in [−L,L]) and the cost of the tunnelling is defined as the inf over all τ of the inf over all
orbits which tunnel in a time τ .

The result found in [2] fits with many other results in the field, as the cost is equal
to the finite volume free energy FL(m̂L) of an “instanton-like saddle point” m̂L. Indeed
m̂L converges as L → ∞ exponentially fast to m̄. Moreover, the optimal strategy for
minimizing the cost is to follow backwards in time the orbit which connects m̂L to m(−)

and, once past m̂L, to go along the orbit which connects m̂L to m(+). Here comes the
relation with the present paper, because for large L these orbits are close to moving
instantons, with the speed of their motion proportional, to leading orders, to e−2αL, α a
positive parameter.

The familiar statement that the cost of tunnelling is equal to the energy of the saddle
point depends critically on leaving unrestricted the time for tunnelling, but the result
remains valid in the limit of large L if we allow for exponentially growing times τ . In
experiments or simulations, infinite or exponentially growing times are clearly unrealistic
and one forces in one way or the other the tunnelling to occur on faster times so that the
event can be actually observed. But then the statistics over the systems where tunnelling
has occurred will reflect the conditioning that they have occurred in the time span of the
observation. The problem then involves the computation of the additional cost necessary
for the interface to move fast enough. If our results can be extended, as we expect, to the
model in [2], we would then have again a critical dependence on the time and only if it
scales slowly on the scale L2, the tunnelling will be described by a moving front, otherwise
it will be characterized by many nucleations.

The applications of our results to realistic systems may only be valid of course when
the front has really a planar structure. But on the other hand, tunnelling in a rectangular
domain (say in d = 2 dimensions with Neumann boundary conditions) we believe occurs
just as in one dimension. We expect in fact that the stationary solution which is spatially
non homogeneous and has minimal energy is f(x, y) = m̂L(x), supposing x the direction
of the longest side, L, of the rectangle. If this was actually true, then the arguments used
in [2] would prove that the tunnelling event is just a planar front moving as in the d = 1
case.

The same questions can of course be framed in different contexts, maybe the most
usual one is the Allen-Cahn equation and the Ginzburg-Landau functional. The cost of
tunnelling under a time constraint has been recently investigated by Reznikoff, [10], for
the functional

∫
(ut − {∆u− V ′(u)})2

where V (u) is a double well potential and ut = ∆u − V ′(u) the Allen-Cahn equation.
The analysis in [10] gives clear evidence that multiple nucleations are the most favorable
strategy for tunnelling if times are sufficiently short, in total agreement with the picture
we derive here.
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4 A d + 1 statistical mechanics setting

The model we are studying here has a clear statistical mechanics origin. Consider in fact
the Ising model in d = 1 dimensions with a Kac potential, where the energy per spin is

−s(x)
2

∑
y �=x

Jγ(x, y)s(y) =: −s(x)
2
Vx(s) (4.1)

s(z), z ∈ Z
d, being ±1 valued spins and Jγ(x, y) = γdJ(γx, γy), J as in Section 1; Vx(s)/2

has then the interpretation of the “molecular magnetic field” at x produced by the spins
sy, y 	= x. A first relation with our model comes from the fact that the free energy
functional F(m) is the rate function for Gibbsian large deviations in the limit γ → 0, see
for instance [4].

Glauber dynamics is defined as the Markov process whose generator is determined by
assigning flip rates cx(s) to the spins in such a way that the Gibbs measure is invariant (and
a detailed balance condition, equivalent to self-adjointness of the generator, is satisfied).
There is not a single choice for the rates, in the sequel it is convenient to assume

cx(s) :=
e−s(x)Vx(s)

e−Vx(s) + e+Vx(s)
(4.2)

The d+1 setting in the title of this section refers to an interpretation of the Markov process
in terms of a two dimensional Gibbs measure, one dimension referring to Z, the space of
sites of the spins, the other one, R, to times. To implement it, consider for instance a
“reference measure” which is the process where spins flip with rate 1/2 independently of
each other, which corresponds to (4.2) with J = 0. We can then use Girsanov formula
(after restricting to “finite boxes”) for the Radon-Nykodim derivative of the interacting
process with respect to the free one, thus obtaining a d = 2 hamiltonian.

Just like in equilibrium statistical mechanics, to have a hamiltonian just defines the
problem, the solution being still all the way ahead. A technique conceptually very pow-
erful, but unfortunately only seldom really implementable, is renormalization group. The
idea behind it, in the present context, is that, after coarse graining, the original system
becomes a new system with low effective temperature. Its behavior is then ruled by the
ground states of its effective hamiltonian. The assumption that the interaction is a Kac
potential is just what needed for implementing such a step of the renormalization group.
Here it is convenient to coarse grain in space only, with blocks which scale to ∞, but
having size smaller than γ−1. At γ > 0 small enough, the effective hamiltonian is then
approximated by its limit value at γ = 0, which is the rate function for large deviations.
This has been computed long ago by Comets, [5], the result is a quite complicated ex-
pression, that we have simplified here by assuming it given by the quadratic expression
(1.7)-(1.6). We believe however that an analysis using the Comets functional could work
as well and that it can be used to derive, by a perturbative analysis, also the behavior of
the spins when γ is small, but fixed. We hope to show all that in a forthcoming paper.

The d+ 1 Gibbsian interpretation of the problem stated in Section 1 has the following
nice expression. We have a box Z × [0, ε−2T ] and we are giving boundary conditions on
bottom and top. On the bottom we put in fact an interface at 0, on the top the interface is
shifted by ε−1R. In elasticity this would be viewed as a shear problem. If R and thus the
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shear is small, then the deformation is a well defined straight line joining bottom and top,
but if we increase R then there are “fractures” which strongly resemble those appearing
in totally different physical contexts.

5 Scheme of proofs

We have sketched in Section 2 the proof of the upper bound; as it is relatively easy to fill
in the gaps, for brevity we omit the details, giving the upper bound for proved and thus,
the proof of Theorem 2.3 will be completed once we prove:

Proposition 5.1 (Lower bound). Let P > inf
n≥0

wn(R,T ), and γ > 0. Then for any se-

quence uε ∈ U [ε−1R, ε−2T ] such that

Iε−2T (uε) ≤ P (5.1)

it holds that

lim inf
ε→0

Iε−2T (uε) ≥ inf
n≥0

wn(R,T ) − γ (5.2)

Of course γ is redundant in (5.2) and (5.1) is not actually a restriction because we have
already proved that there are sequences u ∈ U [ε−1R, ε−2T ] whose limsup is bounded by
inf
n≥0

wn(R,T ). Since

lim inf
ε→0

inf
u∈U [ε−1R,ε−2T ]

Iε−2T (u) ≥ lim inf
ε→0

inf
u∈U<[ε−1R,ε−2T ]

Iε−2T (u)

where

U<[ε−1R, ε−2T ] =
{
u ∈ C∞(R; (−1, 1)) : u(·, 0) = m̄, u(·, ε−2T ) ≤ m̄ε−1R

}
(5.3)

it will suffice to prove that for any γ > 0,

lim inf
ε→0

inf
u∈U<[ε−1R,ε−2T ]

Iε−2T (u) ≥ inf
n≥0

wn(R,T ) − cγ (5.4)

where c is an absolute constant (determined only by the parameters entering in (1.1)).
Our strategy distinguishes two regimes: one is when the function u(x, t) is everywhere

“locally close” to an instanton (or to a reflected instanton); the other one, when instead
u(x, t) deviates from such a local equilibrium. In the first regime we study (1.6) regarding
b as a “small perturbation” and use spectral gap properties of the evolution linearized
around an instanton. In such a linear approximation, we then obtain estimates for the
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penalty in agreement with the law “V 2T/µ”. The corrections to the linear approximation
will also be proved to be under control. It thus remain to study the times when u(·, t)
deviates from local equilibrium. Evidently these cannot be neglected because in such
times there may occur the nucleations responsible for reaching the minimal cost. But,
in any case, we need estimates which tell us that the intervals of time when the system
is not in local equilibrium are bounded. We will start in the next sections from such
an issue: we will first recall from the literature the Peierls estimates, which are a priori
bounds on the spatial location of deviations from equilibrium in terms of the energy F . By
reversibility, we will bound F(u(·, t)) ≤ P , P as in (5.1) and using the Peierls estimates, we
will then bound the volume where the deviations from local equilibrium occur (contours)
in terms of F(u(·, t)) and hence of P . We will then turn to another key point, namely
upper bounds on the times of permanence outside local equilibrium. This is done in two
steps. We first derive lower bounds on the energy gradients away from local equilibrium
and in F(u(·, t)) ≤ P . These are lower bounds on the force which tries to restore local
equilibrium, so that permanence of u away from local equilibrium can only be achieved
by applying a counter-force b. But since the total integral of b2 is bounded by P , we then
obtain an upper bound on the permanence outside local equilibrium.

We begin by defining local equilibrium, introducing the notion of contours and the
Peierls estimates. We then define the “multi-instantons manifold”, made by patching
together several instantons. After that, we derive lower bounds on the energy gradients
away from the multi-instantons manifold and finally estimates on permanence away from
local equilibrium. At that point we will have all the ingredients necessary for proving
Proposition 5.1.

6 Contours

In this section we recall from the literature notion and results which are extensively used in
the sequel. Given 	 > 0, we denote by D(�) the partition of R into the intervals [n	, (n+1)	),
n ∈ Z, and by Q(�)

x , x ∈ R the interval containing x. (Note that x need not be the center
of Q(�)

x ). We say that Q(�)
x , Q

(�)
x′ are connected, if the closures have nonempty intersection,

i.e. Q(�)
x ∩ Q

(�)
x′ 	= ∅. Now we define

m(�)(x) :=
∫
−
Q

(�)
x

m(y) dy,
∫
−
Λ

m(y) dy :=
1
|Λ|
∫

Λ
m(y) dy. (6.1)

Given an “accuracy parameter” ζ > 0, we then introduce

η(ζ,�)(m;x) =

{
±1 if |m(�)(x) ∓mβ| ≤ ζ,
0 otherwise.

(6.2)
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For any Λ ⊆ R which is D(�)-measurable we call

B(ζ,�,Λ)
0 (m) :=

{
x ∈ Λ : η(ζ,�)(m;x) = 0

}
B(ζ,�,Λ)
± (m) :=

{
x ∈ Λ : |η(ζ,�)(m;x′)| = ±1, there exists x′ ∈ Λ : Q(�)

x ∩ Q
(�)
x′ 	= ∅

η(ζ,�)(m;x′) = −η(ζ,�)(m;x)
}
,

B(ζ,�,Λ)(m) := B(ζ,�,Λ)
+ (m) ∪ B(ζ,�,Λ)

− (m) ∪ B(ζ,�,Λ)
0 (m).

Calling 	− and 	+ two values of the parameter 	, with 	+ an integer multiple of 	−, we
define a “phase indicator”

Θ(ζ,�−,�+)(m;x) =

{
±1 if η(ζ,�−)(m; ·) = ±1 in

(
Q

(�+)
x−�+

∪Q(�+)
x ∪Q(�+)

x+�+

)
,

0 otherwise,

and call contours of m the connected components of the set {x : Θ(ζ,�−,�+)(m;x) = 0}.
Γ = [x−, x+) is a plus contour if η(ζ,�−)(m;x±) = 1, a minus contour if η(ζ,�−)(m;x±) = −1,
otherwise it is called mixed.

Moreover we define for any measurable Λ ⊆ R and m ∈ L∞(R; [−1, 1]) a local notion
of energy by

F(mΛ|mΛc) :=
∫

Λ
φβ(x)dx +

1
4

∫
Λ×Λ

J(x, y)[m(x) −m(y)]2dydx

+
1
2

∫
Λ×Λc

J(x, y)[m(x) −m(y)]2dydx.

The parameters (ζ, 	−, 	+) are called compatible with (ζ0, c1, κ) ∈ R
3
+ if ζ ∈ (0, ζ0),

	− ≤ κζ, 	+ ≥ 1/	−, and if for any D(�−)-measurable set Λ and any m ∈ L∞(R; [−1, 1])

F(mΛ|mΛc) ≥ c1ζ
2|B(ζ,�−,Λ)(m)|

Theorem 6.1 ([2]). There are positive constants ζ0, c1, κ, c2, and α so that if (ζ, 	−, 	+)
is compatible with (ζ0, c1, κ), then for all m ∈ L∞([−L,L]; [−1, 1]),

F(m) ≥
∑

Γ contour of m

wζ,�−,�+(Γ) (6.3)

where

wζ,�−,�+(Γ) = c1ζ
2 	−
	+

|Γ| if Γ is a plus or a minus contour;

wζ,�−,�+(Γ) = max
{
c1ζ

2 �−
�+
|Γ| ; F(m̄) − c2e

−α�+
}

if Γ is a mixed contour.
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Let us conclude the section with some applications of Theorem 6.1. For any u ∈
U [ε−1R, ε−2T ],

sup
t≤ε−2T

(F(u(·, t)) −F(u(·, 0))) ≤ Iε−2T (u) (6.4)

The proof follows directly from reversibility, see before Theorem 2.2, and it can be found
in [1]. Combined with (5.1), (6.4) yields

sup
t≤ε−2T

(F(u(·, t)) −F(u(·, 0))) ≤ P (6.5)

Then, by Theorem 6.1, for ζ small enough,

∑
Γi contours of u(·, t)

|Γi| ≤ 	+
c1	−

ζ−2(P + F (m̄)) (6.6)

number of contours of u(·, t) ≤ 1
c1	−

ζ−2(P + F (m̄)) =: Nmax (6.7)

number of mixed of contours of u(·, t) ≤ P + F (m̄)
F(m̄) − c2e−α�+

=: Nmix
max (6.8)

7 Multi-instanton manifold

The instanton manifold is the set M(1) = {m̄ξ, ξ ∈ R}. We extend the notion to the case
of several coexisting instantons by defining the multi-instanton manifold M(k), k > 1, as
the set of all m̄ξ̄, ξ̄ = (ξ1, . . . , ξk) ∈ R

k, ξ1 < . . . < ξk, sufficiently apart from each other
such that, setting ξ0 := −∞, ξk+1 := ∞, the function

m̄ξ̄(x) :=

⎧⎨
⎩

m̄(x− ξj) if x ∈
[

ξj−1+ξj

2 ,
ξj+1+ξj

2

]
and j odd,

m̄(ξj − x) if x ∈
[

ξj−1+ξj

2 ,
ξj+1+ξj

2

]
and j even.

has exactly k mixed contours.
We denote

M =
⋃
k≥1

M(k) (7.1)

To study “neighborhoods” of M we introduce the notion of “center of m” that we use
here in a slightly different sense than usual:

Definition. ξ ∈ R is a center of m if ξ ∈ Γ, Γ a mixed contour of m, and if(
m− m̄ξ, m̄

′
ξ

)
= 0, or, equivalently,

(
m, m̄′

ξ

)
= 0 (7.2)
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where (·, ·) denotes the scalar product in L2(R, dx) and ‖ · ‖2 the corresponding L2 norm.
ξ is an odd, even, center if Γ is a (−,+), respectively (+,−) mixed contour.

Remarks. An odd center of m specifies an element m̄ξ ∈ M(1) such that the two direc-
tions, one pointing from m̄ξ tom and the other one along M(1) are mutually L2-orthogonal.
If ξ is even, same picture holds after a change of sign. Supposing Θ(ζ,�−,�+)(m;x) = −1
definitively as x→ −∞, there is a first mixed contour coming from the left which is (−,+),
the next one is a (+,−) and so on, this is the reason for naming the centers as odd and
even.

The following theorem holds, see [7],

Theorem 7.1. If ζ (in the definition of contours) is small enough the following holds.
• Each mixed contour Γ of m contains a center of m.
• There is δ > 0 so that if for some ξ in a (−,+) mixed contour Γ of m (analogous

statement holding in the (+,−) case), ‖1Γ(m− m̄ξ)‖2 ≤ δ, then there is a unique center
ξm in Γ and∫

R

(
{m− m̄ξ′}2 − {m− m̄ξm}2

)
> 0, for all ξ′ ∈ Γ, ξ′ 	= ξm (7.3)

and calling v = m− m̄ξ, Nv,ξ =
(v, m̄′

ξ)
(m̄′, m̄′)

,

∣∣ξm − (ξ −Nv,ξ)
∣∣ ≤ c‖v‖2

2, |Nv,ξ| ≤ c‖v‖2 (7.4)

• If also inf
ξ
‖1Γ(n− m̄ξn)‖2 ≤ δ, then

|ξm − ξn| ≤ c‖m− n‖2 (7.5)

By the first statement in Theorem 7.1 a function m with k mixed contours Γ1, ..,Γk

has (at least) one center in each one of the mixed contours; we denote by Ξ the collection
of all ξ̄ = (ξ1, .., ξk), ξi < ξi+1, ξi a center of m in Γi and define

dM(m) = inf
ξ̄∈Ξ

‖m− m̄ξ̄‖2 (7.6)

If m is close enough to M(k), then the choice of ξ̄ is unique. Note that this definition
differs slightly from the usual definition of a distance of a point from a manifold, but the
following lemma bounds this difference:

Lemma 7.1. For any k there are δ > 0 and c so that if m has k mixed contours Γ1, ..,Γk

and dM(m) ≤ δ, then

d2
M(m) ≥ inf

ξ̄∈Γ1×..×Γk

‖m− m̄ξ̄‖2
2 ≥ d2

M(m) − c

k−1∑
i=1

e−α dist(Γi+1,Γi)/2 (7.7)

where α > 0 is defined in (1.4).
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Proof. Call ξ̄∗ = (ξ∗1 , .., ξ
∗
k) the centers of m, which by Theorem 7.1 are uniquely

defined (supposing δ > 0 small enough). Let Ai, i = 1, .., k, be the decomposition of R

defined by the midpoints of ξ̄∗, then if ξ̄ ∈ Γ1× ..×Γk, and σi = ±1 if i is odd, respectively
even,

‖m− m̄ξ̄‖2
2 − dM(m)2 =

k∑
i=1

∫
Ai

(
{m− σim̄ξi

}2 − {m− σim̄ξ∗i }2
)

By (7.3)∫
Ai

(
{m− σim̄ξi

}2 − {m− σim̄ξ∗i }2
)
≥ −

∫
Ac

i

(
{m− σim̄ξi

}2 − {m− σim̄ξ∗i }2
)

hence (7.7) because of the exponential convergence of m̄(x) to ±mβ as x→ ±∞. �

8 Lower bounds on energy gradients

In this section we will investigate the structure of the energy levels of F(·). In particular
we will prove a lower bound on the energy gradient in terms of the distance from the
manifolds M(k):

Theorem 8.1. For any ϑ > 0 there is ρ > 0 so that the following holds. Let m ∈
L∞(R; (−1, 1)) have an odd number p of mixed contours, let F(m) ≤ P (P as in Proposi-
tion 5.1) and let dM(m)2 ≥ ϑ. Then∫

R

f(m)2 ≥ ρ (8.1)

The proof is given at the end of the section, after several preliminary estimates, but
before we state a corollary of Theorem 8.1 on the “permanence away from equilibrium”
which will be essential in the sequel.

Theorem 8.2. Let u satisfy (5.1), then for any ϑ > 0 there is ρ > 0 so that, if dM(u(·, t)) ≥
ϑ when t ∈ [t0, t1], 0 ≤ t0 < t1 ≤ ε−2T , then necessarily t1 − t0 ≤ 8

3
P

ρ
.

Proof. Let ρ be the parameter associated to ϑ by Theorem 8.1. Then∫ t1

t0

∫
R

|f(u)|2 ≥ [t1 − t0]ρ
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We estimate

F(u(t1)) −F(u(t0)) =
∫ t1

t0

d
dt

F(u(s))ds

=
∫ t1

t0

∫
R

(f(u(s)) + b(s))
δF
δu

(u(s))

≤ −
∫ t1

t0

‖f(u)‖2
2 +
∫ t1

t0

‖f(u)‖2‖b(s)‖2

≤
∫ t1

t0

(
−3

4
‖f(u)‖2

2 + ‖b(s)‖2
2

)
ds ≤ −3

4
[t1 − t0]ρ+ P

With the help of (6.5) we can estimate

F(u(t1)) −F(u(t0)) ≥ −
(

sup
s∈[0,ε−2T ]

[F(u(s))] −F(m̄)

)
≥ −P,

and we conclude the proof of Theorem 8.2.
�

We start the proof of Theorem 8.1 by a general outline of its strategy. By analogy
with the Allen-Cahn equation, it can be conjectured that the stationary, spatially non
homogeneous solutions of (1.1) are either the instanton m̄ (and its translates) or periodic
functions, which then have infinite energy. The assumption in the theorem excludes both
possibilities, thus leading to the conclusion that the functions m to consider are such
that f(m) is not identically 0. As we will see it is possible to reach the same conclusion
avoiding the above characterization of the stationary solutions of (1.1). It still remains,
however, to quantify the condition f(m) 	≡ 0 in the sense of the inequality (8.1). This will
be done using continuity and compactness, the argument being that once we know that∫
f(m)2 > 0 for each m in the set defined in Theorem 8.1, then also the inf (in the same

set) is non zero. Continuity and compactness require to work in weak L2 spaces, which,
on the other hand, do not fit well in our context, as for instance the function m→ f(m)2

is not weakly continuous.
Besides such “technical problems”, anyway the proof of (8.1) cannot go too smoothly.

Suppose m has 2k + 1, k ≥ 1, mixed contours. Then it is known that the orbit starting

from m converges to an instanton, as a consequence f(m) 	≡ 0 and
∫
f(m)2 > 0. However

the integral may be arbitrarily small if the mixed contours in m are very far apart from
each other and in each of them m looks like an instanton or its reverse. Such a possibility
however will be excluded by the condition dM(m)2 ≥ ϑ, showing that such an assumption
must complement the information that f(m) 	≡ 0. The analysis of the condition dM(m)2 ≥
ϑ will distinguish whether the deviations of m from m̄ξ̄ are localized in a neighborhood of
the contours of m or in the complement, and we will start by examining the former case.

We will denote space intervals and contours by the letter Q, in order to distinguish
them from time intervals, which will be denoted by the letter I.
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Let Q, Qj and B±
k,j be intervals of the form Q = [a, b), Qj = [a − j, b + j), B−

k,j =
[a− j − k, a− j), B+

k,j = [b+ j, b+ j + k) with a, b, j, k all in 	+N. Then, given ϑ > 0, we
set

UQ,j,ϑ =
{
m ∈ L∞(R, (−1, 1)) : Q is a mixed −,+ contour for m and

inf
ξ∈Q

∫
Qj

|m− m̄ξ|2 ≥ ϑ
}

(8.2)

Vk,j =
{
m ∈ L∞(R, (−1, 1)) : η(ζ,�−)(m;x) = ±1 for all x ∈ B±

k,j

}
(8.3)

Lemma 8.1. For any ϑ > 0, Q and Qj as above, there is k so that∫
Qk+j

|f(m)| > 0 for any m ∈ UQ,j,ϑ ∩ Vk,j (8.4)

Proof. Define

Kh = UQ,j,ϑ ∩ Vh,j ∩ {m :
∫

Qh+j

|f(m)| = 0} (8.5)

The proof of (8.4) is then equivalent to showing that for some h, Kh = ∅. We rewrite∫
Qh+j

|f(m)| = 0 as
∫

Qh+j

|m− tanh{βJ ∗m}| = 0 and, since m = tanh{βJ ∗m} in Qh+j,

Kh = U∗
Q,j,ϑ ∩ Vh,j ∩ {m :

∫
Qh+j

|f(m)| = 0}

where

U∗
Q,j,ϑ =

{
m ∈ L∞(R, (−1, 1)) : Q is a mixed −,+ contour for m and

inf
ξ∈Q

∫
Qj+h

| tanh{βJ ∗m} − m̄ξ|2 ≥ ϑ
}

The advantage of having U∗
Q,j,ϑ is that this set is closed (in the weak L2 topology) and,

more importantly, the same Kh is weakly closed in L2
loc. Since Kh is contained in the unit

ball of L∞, Kh is also weakly L2
loc compact. By compactness of such a space,

{
⋂
h

Kh = ∅} ⇔ { Kh = ∅ for some h }

We have thus reduced the proof of the lemma to showing that
⋂
h

Kh = ∅.

Suppose that m ∈
⋂
h

Kh. Then m = tanh{βJ ∗m} almost everywhere, while, simul-

taneously, η(ζ,�−)(m;x) = ±1, eventually as x → ±∞. Then m = mξ for some ξ ∈ R

and since Q is a mixed contour for m, ξ ∈ Q, which contradicts m ∈ U∗
Q,j,ϑ, hence⋂

h

Kh = ∅. �
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Proposition 8.1. For any ϑ > 0, Q and Qj let k be as in Lemma 8.1. Then there is
ρ > 0 so that

inf
m∈UQ,j,ϑ∩Vk,j

∫
Qk+j

f(m)2 ≥ ρ. (8.6)

Proof. Suppose by contradiction that the inf is 0. Then there is a sequence mn ∈
UQ,j,ϑ ∩ Vk,j such that

lim
n→∞

∫
Qk+j

f(mn)2 = 0 (8.7)

and which converges weakly in L2
loc, say mn ⇀ m̂. As J(0, ·) is smooth and has support

in the unit ball, this implies that J ∗mn → J ∗ m̂ strongly in L2
loc and pointwise. From

(8.7) we derive
Aβ(mn) → J ∗ m̂ in L2(Qk+j).

Since the function tanh is uniformly Lipschitz continuous, we get mn → tanh(βJ ∗ m̂) in
L2(Qk+j). Therefore

lim
n→∞ m̂ = tanh(βJ ∗ m̂) in Qk+j, (8.8)

and f(m̂)(x) = 0 for all x ∈ Qk+j. By (8.8), m̂ ∈ UQ,j,ϑ; moreover m̂ ∈ Vk,j because the
latter is weak L2 closed, hence m̂ ∈ UQ,j,ϑ ∩ Vk,j. We have already seen that f(m̂)(x) = 0
for all x ∈ Qk+j and this, by Lemma 8.1, leads to a contradiction. Thus ρ > 0. �

The analogues of UQ,j,ϑ and Vk,j when the external conditions are in the plus or in the
minus phase are

U±
Q,j,ϑ =

{
m ∈ L∞(R, (−1, 1)) : Q is a ± contour for m and

∫
Qj

|m∓mβ|2 ≥ ϑ
}
(8.9)

V ±
k,j =

{
m ∈ L∞(R, (−1, 1)) : η(ζ,�−)(m;x) = ±1 for all x ∈ B−

k,j ∪B+
k,j

}
(8.10)

The previous arguments can be adapted to prove (details are omitted):

Proposition 8.2. For any ϑ > 0, Q and Qj there are k and ρ > 0 so that

inf
m∈U±

Q,j,ϑ∩V ±
k,j

∫
Qk+j

f(m)2 ≥ ρ. (8.11)

Given an interval Q and a function m̂ ∈ L∞(R, (−1, 1)), we denote by L̂ the operator
on L2(Q; dx) defined by

L̂ψ(x) =
∫

Q
J(x, y)ψ(y) +

1
β(1 − m̂(x)2)

ψ(x), x ∈ Q. (8.12)
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L̂ is obtained by linearizing around m̂ the “partial dynamics” ut = f(u) in Q, u = m̂
outside Q. In [2] it is proved that:

Proposition 8.3. There are c, α and ω all positive so that the following holds. Let Q =
[a, b), a, b ∈ 	+N, b possibly equal to +∞, and m ∈ L∞(R, (−1, 1), Θ(ζ,�−,�+)(m;x) = 1 for
all x ∈ Q. Then:

• There is a unique solution m̂ of

m̂(x) = tanh{βJ ∗ m̂(x)}, Θ(ζ,�−,�+)(m̂;x) = 1, for all x ∈ Q

m̂(x) = m(x), for all x /∈ Q (8.13)

• m̂ is a smooth function on Q and

|m̂(x) −mβ| ≤ ce−αdist(x,Qc) (8.14)

• L̂ is self-adjoint in L2(Q) and its spectrum lies in (−∞,−ω], ω > 0.

Lemma 8.2. There is c∗ > 0 so that for any Q, m and m̂ as in Proposition 8.3,∫
Q
f(m)2 ≥ c∗

∫
Q
|m− m̂|2 (8.15)

Proof. Let a ∈ (mβ, 1), Aβ(a) ≥ 4,

ca := inf
x �=y∈[0,a]

|Aβ(x) −Aβ(y)|
|x− y| , ca < 1

the last inequality because A′
β(0) < 1 for β > 1. Suppose also ζ so small that m̂(x) < a

for all x ∈ Q and

16ζ < ca
ω2

2
>

16ζ
ca

;
16ζ
ca

< κ

where κ ∈ (0, [1 + a]/2) is such that

c2κ2 ≤ ω2

2
, c := A′

β([1 + a]/2) (8.16)

We then call

Qκ := {x ∈ Q : |m(x) − m̂(x)| > κ}. (8.17)

Since Θ(ζ,�−,�+)(m;x) = 1 for all x ∈ Q, if ζ is small enough, |J ∗ (m− m̂)| ≤ 4ζ on Q, i.e.
including Qκ as well.

We are going to prove that

f(m)2 ≥ |J ∗ (m− m̂)|2 +
c2a
4
|m− m̂|2 on Qκ (8.18)
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We distinguish two cases. Case 1: x ∈ Qκ and |m(x)| ≤ a. Then, since f(m̂) = 0 on Qκ,

|f(m)| = |{Aβ(m) −Aβ(m̂)} − J ∗ (m− m̂)| ≥ |Aβ(m) −Aβ(m̂)| − |J ∗ (m− m̂)|
≥ ca|m− m̂| + |J ∗ (m− m̂)| − 8ζ ≥ ca

2
|m− m̂| + |J ∗ (m− m̂)|

Case 2: x ∈ Qκ and |m(x)| > a. Then, recalling that Aβ(a) ≥ 4, Aβ(a) ≥ |m− m̂|+ 8ζ
and

|f(m)| ≥ Aβ(a) + |J ∗ (m− m̂)| − 8ζ ≥ |J ∗ (m− m̂)| + |m− m̂|

which concludes the proof of (8.18) because ca ≤ 1.
We write∫

Q
f(m)2 ≥

∫
Qκ

f(m)2 + ε

∫
Q\Qκ

f(m)2

≥
∫

Qκ

c2a
4

(m− m̂)2 + [J ∗ (m− m̂)]2 + ε

∫
Q\Qκ

f(m)2 (8.19)

with ε > 0 to be specified later. In Q\Qκ we linearize around m̂ and recalling that m̂ ≤ a,
maxA′

β(m̂) ≤ A′
β(a) ≤ c, c as in (8.16), we obtain∫

Q\Qκ

f(m)2 =
∫

Q\Qκ

|f(m) − f(m̂)|2

≥
∫

Q\Qκ

(
L̂(m− m̂)

)2 − c2|m− m̂|4

≥
∫

Q

(
L̂(m− m̂)

)2 −
∫

Qκ

(
L̂(m− m̂)

)2 − c2κ2

∫
Q\Qκ

|m− m̂|2

Using again that m̂ ≤ a, maxA′
β(m̂) ≤ A′

β(a) ≤ c,∫
Qκ

(
L̂(m− m̂)

)2 ≤ 2
∫

Qκ

|J ∗ (m− m̂)|2 + c2 (m− m̂)2

We now choose ε > 0 so that 2ε < 1 and 2c2ε ≤ c2a/4, then getting from (8.19) and (8.16)∫
Q
f(m)2 ≥ ε

∫
Q

(
L̂(m− m̂)

)2 − ε
ω2

2

∫
Q\Qκ

|m− m̂|2 (8.20)

By Proposition 8.3∫
Q
[L̂ψ(x)]2 ≥ ω2

∫
Q
ψ2, for any ψ ∈ L2(Q) (8.21)

hence (8.15) because m− m̂ = 0 on R \Q. �

Proof of Theorem 8.1. Without loss of generality, we may suppose ϑ > 0 as small
as required by the arguments below. By Theorem 6.1, m has at most Nmax contours, with
at most Nmix

max among them which are mixed contours.
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We start from the case when there is a (+,+) contour Q. Calling Q− := {x ∈ Q :
η(ζ,�−)(m;x) < 1}, since Q− 	= ∅ because η(ζ,�−)(m;x) < 1 somewhere in Q, by definition
of contours,

|
∫
−

Q−
[m(x) −mβ]| ≥ ζ

and, by Cauchy-Schwartz,∫
Q
|m(x) − m̄β|2 ≥ 	−(

ζ

2
)2 ≥ ϑ (8.22)

for ϑ small enough.
We take j = 0, Qj = Q and call k1 the smallest value of k for which Proposition 8.2

applies with Q, ϑ and j = 0. If in Qk1 there are no contours Proposition 8.2 yields (8.1).
If on the contrary, there are contours, according to cases, we will apply either Proposition
8.2 or Proposition 8.1, as it will be explained after (8.23) below. To this end, we call m̄ξ̄

the element of M with ξ̄ centers of m. Observe that |m̄ξ̄(x) −mβ| ≤ ce−α�+ for x ∈ Q,
by definition of contours and because of the decay properties of m̄. Then

|
∫
−

Q−
[m(x) − m̄ξ̄]| ≥ |

∫
−

Q−
[m(x) −mβ]| − |

∫
−

Q−
[m̄ξ̄ −mβ]| ≥ ζ − ce−α�+ ≥ ζ

2

and, analogously to (8.22),∫
Q
|m(x) − m̄ξ̄|2 ≥ 	−(

ζ

2
)2 ≥ ϑ (8.23)

We now continue the previous argument. If in Qk1 there are contours besides Q, we take
j = k1 and call k2 the smallest k for which either Proposition 8.2 or Proposition 8.1 can
be applied with Q, ϑ and j = k1. Again, if in B±

k2
there are contours, we call j = k2 and

repeat the procedure. As there are at most Nmax contours, the iteration is finite and the
final j and k are bounded in terms of P and ϑ only. Let ρ be the value corresponding to
such parameters, hence (8.1) holds for such m with the above value of ρ.

Same argument applies when there is a −− contour, and we are left with the case with
only mixed contours, say there are p ≤ Nmin

max mixed contours. Fix j∗ so that

ce−α�+j∗ ≤ ϑ2 (8.24)

We distinguish two cases. Case 1 is when there is a mixed contour Q such that∫
Qj∗

|m− m̄ξ̄|2 ≥ ϑ

2p
(8.25)

In this case using Proposition 8.1 we can proceed as before, getting again (8.1) with the
new value of ρ.

We are then reduced to case 2, where calling Λ the complement of the union of Q(i)
j∗ ,

Q(i) the i-th contour,∫
Λ
|m− m̄ξ̄|2 ≥ ϑ

2
(8.26)
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Λ is a union of intervals, let Q0 be one such that∫
Q0

|m− m̄ξ̄|2 ≥ ϑ

2(p + 1)
(8.27)

Call Q the interval containing Q0 between two consecutive contours. By applying Lemma
8.2, we get, using (8.24),∫

Q
|f(m)|2 ≥ c

∫
Q0

|m− m̂|2 ≥ c

∫
Q0

|m− m̄ξ̄|2 − c′ϑ2 ≥ c′′ϑ (8.28)

Theorem 8.1 is proved. �

9 Good and bad time intervals

In this section we introduce an analogue for times of the notion of contours. To this end
we partition the time axis R+ into intervals {S[j, j + 1), j ∈ N} of length S > 0. The
analogue of the function η(ζ,�−)(m;x), here denoted by φ(δ,S)(u; t), δ > 0, is defined as

φ(δ,S)(u; t) =

⎧⎪⎨
⎪⎩

1 if
∫ (j+1)S

jS
‖b(s)‖2

2 < δ

0 otherwise
for t ∈ S[j, j + 1). (9.1)

The role of Θ(ζ,�−,�+)(m;x) is played by Φ(δ,S)(u; t), defined equal to 1 if φ(δ,S)(u; s) = 1
for all s ∈ S[j−1, j+1) and = 0 otherwise. We define Gtot = {t ≤ ε−2T : Φ(δ,S)(u; t) = 1}
and call t a “good time” and S[j, j + 1) a good interval if they are contained in Gtot. Bad
times and bad intervals are defined complementary.

Choice of parameters.
Given R and T , i.e. the macroscopic displacement of the interface and the time interval
when it occurs, we call

n∗ = 1 +
2P

F(m̄)
(9.2)

n∗ is an upper bound for the total number of fronts, considering that each nucleation
produces two fronts, it costs more than > F(m̄), as we will see and P is an upper bound
for the cost of the orbit, see Proposition 5.1. By the same Proposition 5.1, the proof of
Theorem 2.3 follows from showing that (5.4) holds, we thus fix arbitrarily γ > 0 and then
determine 	∗ > 0 so that∣∣F(m̄(−�∗,�∗)

)− 2F(m̄)
∣∣ ≤ γ

103(n∗)3
, m̄(−�∗,�∗) = 1x≥0m̄�∗ − 1x<0m̄−�∗ (9.3)

By the L2-continuity of F(·), there is ϑ so that for all m such that dM(m) ≤ ϑ and with
centers (ξ1, .., ξn), n ≤ n∗, ξi+1 − ξi ≥ 2	∗,∣∣F(m) − kF(m̄)

∣∣ ≤ γ

103(n∗)2
(9.4)
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It remains to fix δ and S in (9.1): δ will be “small” and S “large” but their exact choice
is rather intricate. The problem here comes from “incomplete nucleations”, we need in fact
to “discard” those where the distance 	 between the centers of the nucleating instantons
is smaller than 2	∗

Proposition 9.1. There is τ > 0 so that for any positive 	 ≤ 	∗, the solution v(x, s) of
(1.1) starting from m̄(−�,�) verifies

sup
x∈R

|v(x, τ) −mβ| ≤ ϑ

The proof is “essentially contained” in [3], for brevity we omit the details. By a barrier
lemma and the comparison theorem, see Appendix A in [1], we also have (again details
are omitted):

Proposition 9.2. There is L > 0 for which the following holds. Let 	 and τ as in Propo-
sition 9.1 and ξ̄ = (ξ1, ..., ξn), n ≤ n∗. Call I the set of all even i such that ξi+1 − ξi ≤ 	.
Suppose I non void and that for j /∈ I, ξj+1 − ξj ≥ L. Then the solution w(x, t) of (1.1)
which starts from m̄ξ̄ is such that

sup
x∈R

|w(x, τ) − m̄ξ̄∗(x)| ≤ ϑ (9.5)

where ξ̄∗ is obtained from ξ̄ by dropping all pairs ξi, ξi+1, i ∈ I.

By a continuity argument, see Theorem C.1, (again details are omitted):

Proposition 9.3. Let 	, τ , L, ξ̄ and ξ̄∗ as in Proposition 9.2. Then there is α > 0 such
that if

‖m− m̄ξ̄‖2 ≤ ϑ,

∫ τ

0
‖b‖2

2 ≤ α (9.6)

then the solution w(b,m)(x, t) of (1.6) with force b and which starts from m is such that

‖w(b,m)(x, τ) − m̄ξ̄∗(x)‖2 ≤ 4ϑ (9.7)

Choice of S and δ.
Let ρ be the parameter associated to ϑ by Theorem 8.2, then

S > 103 max
{
τ,

8
3
Pρ−1, s′, s′′,

4
ω

}
(9.8)

with s′ and s′′ as in Appendix C, ω as in Appendix D. We finally choose δ so that

δ = 10−3 min
{
α,

ϑ

c11.1S

}
, α and c11.1 as in Proposition 9.3 and Proposition 11.1

(9.9)
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Theorem 9.1. Let u satisfy (5.1) and let δ and S as above. Then:

number of bad time intervals ≤ P

2δ
(9.10)

If S[j, j+1) is a good time interval, there is t1 ∈ S[j − 1
2
, j − 1

4
) such that dM(u(·, t1)) ≤ ϑ.

Proof. Suppose I is a bad interval, call I− the previous time interval. By definition,
the inequality (9.1) cannot hold for both I and I−, otherwise I would be good, hence
(9.10), recalling that P ≥ Iε−2T (u). The second statement follows from Theorem 8.2 and
(9.8).

�

10 Subsolutions

Having fixed an orbit u as in Proposition 5.1, we define once for all b := ut − f(u) and
consider an orbit m(x, t), such that m(·, 0) = m̄(·), obtained by patching together solutions
of (1.6) with forcing term b as above. We decompose the time axis into intervals Ii and
define m(x, t), t ∈ Ii, as the solution of (1.6) starting from m(·, s+), s the left end point
in Ii. m(·, s+) may be either equal to m(·, s−) or m(·, s) < m(·, s−), according to cases.
As proved in Appendix A there is an existence and uniqueness theorem for these Cauchy
problems so that the definition is well posed and, by the validity of a comparison theorem,

m(x, t) ≤ u(x, t), x ∈ R, t ∈ [0, ε−2T ] (10.1)

The new orbit m is not necessarily in U [ε−2T, ε−1R], but it is in U<[ε−2T, ε−1R], see
(5.4)-(5.3).

Inequalities play an important role and we will often use the following notion. We
define a partial order by setting

(ξ1, ..., ξk) ≥ (ξ′1, ..., ξ
′
k′) ⇔ m̄(ξ1,...,ξk) ≥ m̄(ξ′1,...,ξ′

k′)
(10.2)

In particular, if k = k′,

(ξ1, ..., ξk) ≥ (ξ′1, ..., ξ
′
k) ⇔ ξi ≤ ξ′i, i odd, ξi ≥ ξ′i, i even (10.3)

We will use different strategies in the bad and the good time intervals. We start from
the latter, calling jS the left end point of a maximal connected component G of Gtot.
We will choose a time tin ∈ [(j − 1/2)S, jS] which depends on the orbit m and it is such
that m(·, tin) is “very nice” and we will then study m(·, t), t ≥ tin, via the evolution
equation (1.6) which it satisfies, taking advantage of the fact that when times are good,
the “external force” b is small. The choice of m(x, tin) is aimed at a perturbative analysis,
based on the linearization of (1.6) around the manifold M and the choice of tin is critical.
Let t1 be the smallest time ≥ (j − 1/2)S when dM(m(·, t)) ≤ ϑ. Then t1 ≤ (j − 1/4)S by
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Theorem 9.1. For ϑ small enough, m has only mixed contours, their number, denoted by
k, being odd. Call ξ̄ = (ξ1, .., ξk) its centers, ordered increasingly. We distinguish three
cases, with Case 1) when ξj+1 − ξj > 2| log ε−1|2 for all j: we do not need in Case 1) to
modify m, so that tin = t1 and m(·, t+in) = m(·, t−in), in the remaining cases, instead, (10.1)
will hold as a strict inequality.

In Cases 2) and 3) we erase from ξ̄ all pairs ξi, ξi+1 with i odd, such that ξi+1 − ξi ≤
2| log ε|2, calling ξ̄1 the new configuration. Since we are erasing pairs ξi, ξi+1 with i odd,
then m̄ξ̄1 ≤ m̄ξ̄. With 	∗ as in the paragraph “Choice of parameters” in Section 9, we
then look at all even j in ξ̄1 such that 2	∗ ≤ ξj+1 − ξj ≤ 2| log ε|2 and move each ξj, ξj+1

to ξ′j, ξ
′
j+1 where

ξ′j + ξ′j+1 = ξj + ξj+1, ξ′j+1 − ξ′j = 2| log ε|2

We call ξ̄2 the configuration obtained in this way and ξ̄3 the one obtained from ξ̄2 by the
same procedure used to define ξ̄1 starting from ξ̄. In ξ̄3 the pairs ξi, ξi+1 with i even either
verify ξi+1 − ξi ≥ 2| log ε|2 or ξi+1 − ξi ≤ 2	∗. Case 2) is when ξi+1 − ξi ≥ 2| log ε|2 for all
i, while Case 3) covers the remaining possibilities. We define

m̃(x, t1) = min
{
m(x, t1), m̄ξ̄3

(x)
}

In Case 2) tin = t1 and m(·, t+in) = m̃(·, t1), while in Case 3) tin = t1 + τ , τ as in
Proposition 9.1, and m(·, t+in) is the solution at time t1 + τ of (1.6) starting from m̃(·, t1)
at time t1.

Proposition 10.1. For all ε > 0 small enough, the centers of m(·, t+in) have mutual dis-
tance ≥ | log ε|2 and

dM
(
m(·, t+in)

) ≤ 6ϑ

Proof. By definition of t1, dM(m(·, t1)) ≤ ϑ. In Case 1) the centers of m(·, tin) have
mutual distance ≥ 2| log ε−1|2, hence the statements in the proposition. In Case 2), by
construction the elements of ξ̄3 have distance ≥ 2| log ε−1|2 and m̄ξ̄3 ≤ m̄ξ̄. We have

‖m̃− m̄ξ̄3‖2 ≤ ‖m− m̄ξ̄‖2 (10.4)

In fact, m̃(x) = m̄ξ̄3(x) unless m̃(x) = m(x) < m̄ξ̄3(x), and (10.4) follows recalling that
m̄ξ̄3 ≤ m̄ξ̄. Recalling that ‖m(·, t1) − m̄ξ̄‖2 ≤ ϑ, by definition of t1, ‖m̃− m̄ξ̄3‖2 ≤ θ and,
denoting by h the number of elements in ξ̄3 and by Γi the mixed contours of m, by (7.7),

dM
(
m(·, tin)

) ≤ ‖m̃− m̄ξ̄3‖2 + c

h−1∑
i=1

e−α dist(Γi+1,Γi)/2

≤ ϑ+ cn∗e−α| log ε−1|2/2 ≤ 2ϑ

for ε small enough. In Case 3), by (10.4) and Proposition 9.3,

dM
(
m(·, t+in)

) ≤ 4ϑ + cn∗e−α| log ε−1|2/2 ≤ 6ϑ

Moreover the centers of m(·, t+in) differ from the corresponding ones in m(·, t1) at most by
2ϑ, as it follows from Proposition 9.2 and Theorem 7.1. Proposition 10.1 is proved. �



Interface instability 25

11 Estimates by linearisation

In this section we will study the solutions of (1.6) in a maximal connected component G
of the good times set, Gtot,

G = [j, j∗]S ⊂ Gtot (11.1)

see Section 9 and Section 10 for the relevant definitions. We will start from the first good
time interval [j, j + 1]S contained in G and then iterate the argument to the successive
ones.

Setup. As explained at the beginning of Section 10, we actually study an orbit m(x, t)
solution of (1.6) for t ≥ t+in, t

+
in ∈ [j − 1/2, j − 1/4]S, which starts from m(·, t+in). After

a careful choice of tin and after using inequalities, we have seen that we may suppose
m(·, tin) as having an odd number k of mixed contours at mutual distance ≥ | log ε−1|2;
moreover dM(m(·, t+in)) ≤ 6ϑ. Finally, by definition of good intervals, the force b(x, t) is
such that∫ (h+1)S

hS
‖b(·, s)‖2

2 ≤ δ, h ∈ {j − 1, j} (11.2)

Choice of parameters. In the sequel ω > 0 is the “spectral gap parameter” defined in
Appendix D; s′, α′ and M are as in Theorem C.2 of Appendix C; C(M) = sup

m∈[0,M ]
A′′

β(m);

α′′ and s′′ of Theorem C.3 of Appendix D are such that ε = ε1 with ε1 <
ω

8C(M)c1
;

α∗ := min{α′, α′′}. Recall also that S ≥ max{s′, s′′}, see (9.8).

Notation. We denote by χ the characteristic function of Aα∗ , where α∗ is defined
above and

Aα∗ :=
{
x ∈ R :

∫ (j+1)S

(j−1)S
b2(x, s)ds ≤ α∗

}
(11.3)

noting that

|Ac
α∗ | ≤ 1

α∗

∫ (j+1)S

(j−1)S
‖b(s)‖2

2 . (11.4)

Calling ξ̄(t) = (ξ1(t), .., ξk(t)) the centers of m(·, t), t ≥ tin, we define the approximate
centers ξ̃(t) = (ξ̃1(t), .., ξ̃k(t)) and the deviation u(·, t), in the usual way except for inserting
the characteristic function χ:(

χm̄′
ξ̃i(t)

, [m(·, t) − σim̄ξ̃i(t)
]
)

= 0, u(·, t) = m(·, t) − m̄ξ̃(t) (11.5)

with σi = 1 [σi = −1] if i is odd, [even], and ξ̃i(t) in the i-th mixed contour of m(·, t) (as
we will see m(·, t) has only mixed contours).

Finally we call Λi(t), i = 1, .., k, the open intervals
1
2
(
ξ̃i−1(t) + ξ̃i(t), ξ̃i+1(t) + ξ̃i(t)

)
,

ξ̃0(t) = −∞ and ξ̃k+1(t) = +∞.
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Remarks. We have

|ξ̃i(t) − ξi(t)| + ‖u(·, t) − {m(·, t) − m̄ξ̄(t)}‖2 ≤ c

α∗

∫ (j+1)S

(j−1)S
‖b(s)‖2

2. (11.6)

We sketch the proof for the case of one contour only. The extension to the general case is
straightforward, as the centers have distance ≥ | log ε|2.

Denote by ξ(χm) and ξ(m) the centers of χm and respectively m. We estimate by (7.5)
|ξ(χm) − ξ(m)| ≤ c|Ac

α∗ |. According to its definition, ξ̃(t) may be different from ξ(χm),
but for d2

M(χm) small enough the function

ξ → (m̄′
ξ, χm− m̄ξ)

has nonzero derivative at its unique zero ξ(χm). As (m̄′
ξ̃
, χm− m̄ξ̃) ≤ c′|Ac

α∗ |, we get with
a possibly different constant (11.6).

The variational inequality (5.4) requires lower bounds on ξ̃(t) in the sense of (10.2).
We will thus prove in the sequel upper bounds for displacements of centers with i odd and
lower bounds for those with i even.

Proposition 11.1. There is a constant c11.1 > 0, so that for ϑ and δ small enough and
for all t ∈ [tin, (j + 1)S],

‖u(·, t)‖2
2 ≤ e−(t−tin)ω/2‖u(·, tin)‖2

2 + c11.1SU
2
j (11.7)

σi[ξi(t) − ξi(tin)] ≤ − 1
‖m̄′‖2

2

∫ t

tin

(b, m̄′
ξi(t)

) + c11.1

[‖u(·, tin)‖2
2 + SU2

j

]
(11.8)

where i = 1, .., k and

U2
j =

∫ (j+1)S

(j−1)S
‖b(·, s)‖2

2 +Rmax, Rmax = c11.1e
−α| log ε|2/2 (11.9)

Note that Rmax → 0 as ε→ 0.

Proof. Let

L : L2(R) → L2(R), (Lu)(x) := (J ∗ u)(x) −A′
β

(
m̄ξ̃(t)(x)

)
u(x).

Note that the coefficient of the local part depends on t. For x ∈ Λi, (see the paragraph
“Notation” above)

du(x, t)
dt

= σi
˙̃ξi(t)m̄

′
ξ̃i(t)

+ Lu(x, t) + u2(x, t)
∫ 1

0
A′′

β

(
m̄ξ̃(t) + λu(x, t)

)
dλ+ b(x, t)

(11.10)
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Multiply (11.10) by u(·, t)χ and integrate over space. Note that χ depends on the time
interval we are considering, but since such interval is here fixed, χ does no longer depend
on time. Since χ2 = χ, we obtain

d
dt

(
1
2
‖uχ‖2

2

)
= (uχ,Lu) +

(
χu , u2

∫ 1

0
A′′

β

(
m̄ξ̃(t) + λu(·, t))dλ )+ (χu, b) +R

R = R(t) =
k∑

i=1

σi
˙̃
ξi(t)

(
1Λi(t)m̄

′
ξ̃i(t)

, χu
)

(11.11)

By (11.4),

|(uχ,Lu) − (uχ,L(uχ))| ≤
∫

Ac
α∗×R

J(x− y)|u(x)||u(y)| ≤ 4|Ac
α∗ | ≤ 4

α∗

∫ (j+1)S

(j−1)S
‖b(s)‖2

2

On the other hand (uχ,L(uχ)) ≤ −ω‖uχ‖2
2 by the spectral gap property of the operator

L proved in Appendix D. We use Theorem C.3 to bound the cubic term in (11.11) and
recalling the “Choice of parameters” in the beginning of this section, we get

d
dt

(
1
2
‖uχ‖2

2

)
≤ −ω‖uχ‖2

2 +C(M)(ε1 + c1‖u‖2/3
2 )‖χu‖2

2 + (χu, b) + c

∫ (j+1)S

(j−1)S
‖b(s)‖2

2 +R

Let

τ := inf
{
t : ‖u(·, t)‖2/3

2 >
ω

8C(M)c1

}
(11.12)

Bounding |(χu, b)| ≤ 2‖b‖2
2

ω
+
ω‖χu‖2

2

4
, for all times t ∈ [tin, (j + 1)S] such that t < τ

d
dt

(
1
2
‖uχ‖2

2

)
≤ −ω

2
‖uχ‖2

2 +
2
ω
‖b‖2 + c

∫ (j+1)S

(j−1)S
‖b(s)‖2

2 +R

i.e. for t∗ = min{τ, (j + 1)S} we obtain

‖χu(·, t∗)‖2
2 ≤ e−(t∗−tin)ω/2‖u(·, tin)‖2

2 + c′S
(∫ (j+1)S

(j−1)S
‖b(s)‖2

2 +Rmax

)

with Rmax defined in (11.9). The bound comes from (11.5) after estimating ξ̃i+1(t)−ξ̃i(t) >
| log ε|2/2. The latter holds for ε > 0 small enough using Theorem C.1 and because the
time interval we are considering and the force are uniformly bounded in ε, (a posteriori,
see (11.8), we will see that displacements are of the order of ϑ).

Since |u2| ≤ 4,

‖u‖2
2 ≤ ‖χu‖2

2 + 4|Ac
α∗ | ≤ ‖χu‖2

2 +
4
α∗

∫ (j+1)S

(j−1)S
‖b(s)‖2

2

‖u(·, t∗)‖2
2 ≤ e−(t∗−tin)ω/2‖u(·, tin)‖2

2 + c′′SU2
j
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The last term is bounded by c′′S(2δ +Rmax), Sδ ≤ 10−3ϑ by (9.9), so that for δ, ϑ and ε
small enough, the r.h.s. in the last equation is < (

ω

8C(M)c1
)3, thus τ ≥ t∗, τ as in (11.12)

and t∗ = (j + 1)S. The proof of (11.7) is complete.
To prove (11.8), we multiply (11.10) by χm̄′

ξ̃i(t)
and estimate (ut, χm̄

′
ξ̃i(t)

) by first writing
(11.5) as(

χm̄′
ξ̃i(t)

, u
)

=
(
χm̄′

ξ̃i(t)
, [σim̄ξ̃i(t)

− m̄ξ̃(t)]
)

(11.13)

and then differentiating it on time. We then get
(
χm̄′

ξ̃i(t)
, ut

)
= ˙̃
ξi(t)

{(
χm̄′′

ξ̃i(t)
, u
)

+
(
χm̄′′

ξ̃i(t)
, [m̄ξ̃(t) − σim̄ξ̃i(t)

]
)}

−
∑
j �=i

(
χ1Λj(t)m̄

′
ξ̃i(t)

, [σi
˙̃
ξi(t)m̄

′
ξ̃i(t)

− σj
˙̃
ξj(t)m̄

′
ξ̃j(t)

]
)

(11.14)

The second term on the r.h.s. of (11.10) gives

(Lu, χm̄′
eξi(t)

) = (u,Lm̄′
eξi(t)

) − (Lu, (1 − χ)m̄′
eξi(t)

). (11.15)

Note that the kernel of the operator obtained by linearizing around m̄ is spanned by m̄′.
As the centers have distance ≥ | log ε|2, the exponential convergence of both m̄ and m̄′

implies that c11.1 > 0 can be chosen in such a way that |Lm̄′
eξi(t)

| ≤ Rmax. As the second

term in (11.15) is bounded by c|Ac
α∗ |, c a positive constant, we then obtain from (11.10),

σi
˙̃ξi

{
‖m̄′

ξ̃i(t)
χ‖2

2 − σi(u, χm̄′′
ξ̃
) − σi

(
χm̄′′

ξ̃i(t)
, [m̄ξ̃(t) − σim̄ξ̃i(t)

]
)}

+
∑
j �=i

(
χ1Λj(t)m̄

′
ξ̃i(t)

, [σi
˙̃
ξi(t)m̄

′
ξ̃i(t)

− σj
˙̃
ξj(t)m̄

′
ξ̃j(t)

]
)

≤ −(b, χm̄′
ξ̃i(t)

) + c|Ac
α| + c′ · C(M)‖uχ‖2

2 +Rmax (11.16)

which has the form

σi‖m̄′‖2
2

˙̃ξi ≤ βi +
k∑

j=1

ai,j| ˙̃ξj | (11.17)

with βi and ai,j > 0 identified by (11.16). We will prove that

a :=
1

‖m̄′‖2
2

max
1≤i≤k

k∑
h=1

ai,h < 1 (11.18)

so that

σi‖m̄′‖2
2

˙̃
ξi ≤ βi +

a

(1 − a)
max

i=1,..,k
| βi| (11.19)

Using (11.7) we have

|βi +
(
b, m̄′

ξ̃i(t)

)| ≤ c
{
SU2

j + ‖1 − χ‖2‖b‖2 + e−(t−tin)ω/2‖u(·, tin)‖2
2

}
(11.20)



Interface instability 29

To bound a, we bound |(u, χm̄′′
ξ̃
)| ≤ c‖u‖2 and, after some computations which are omitted,

a ≤
(
e−(t−tin)ω/2‖u(·, tin)‖2

2 + SU2
j

)1/2
and

σi‖m̄′‖2
2

˙̃ξi ≤ βi + c‖b‖2

(
e−(t−tin)ω/2‖u(·, tin)‖2

2 + SU2
j

)1/2
(11.21)

We bound the last term as 1/2 the sum of the squares, then integrating over time we
finally get (11.8), after using (11.6) to relate ξ̃ to ξ̄. �

By (9.9), c11.1SU
2
j ≤ ϑ; by (9.8), e−ωS/2 ≤ 1/2, then by (11.7) we get, supposing ε

small enough,

‖u(·, (j + 1)S)‖2
2 ≤ e−ωS/2 ‖u(tin)‖2

2 + c11.1SU
2
j ≤ 4ϑ (11.22)

Since ξ̃i+1((j + 1)S) − ξ̃i((j + 1)S) ≥ | log ε|2/2, as we have seen in the course of the
proof of Proposition 11.1, it then follows from (7.7) that for ε small enough,

dM(m(·, (j + 1)S)) ≤ 5ϑ (11.23)

We set

v0
i (t) = σi

1
‖m̄′‖2

2

∣∣∣ ∫ t

tin

(b, m̄′
ξi(t)

)
∣∣∣ (11.24)

vi(t) = v0
i (t) + σic11.1

(
U2

j + ‖u(·, tin)‖2
2

)
(11.25)

ri(t) = ξi(tin) +
∫ t

tin

vi(s), r̄(t) =
(
r1(t), .., rk(t)

)
(11.26)

observing that ξ̄(t) ≥ r̄(t), for t ∈ [tin, (j + 1)S]. We then define r̄
(
[(j + 1)S]+

)
by erasing

in r̄
(
(j+1)S

)
all pairs ri+1

(
(j+1)S

)−ri((j+1)S
) ≤ | log ε|2. We will recall this by saying

that particles i and i + 1 have collided and, due to the collision, they have disappeared,
(in the next section we will then write ri(t) = ri+1(t) = ∅ for t > (j + 1)S, but here we
will not use such notation).

By (11.8) the centers ξ̄ of m(·, (j + 1)S) are ≥ r̄
(
[(j + 1)S]+

)
, in the sense of (10.2)

and we set

m
(
x, [(j + 1)S]+

)
= min

{
m(x, (j + 1)S), m̄[r̄((j+1)S)]+(x)

}
(11.27)

For ε small enough,

dM
(
m
(·, [(j + 1)S]+

)) ≤ 6ϑ (11.28)

Moreover the centers of m
(
x, [(j + 1)S]+

)
have mutual distance ≥ | log ε|2. We are thus

in the same setup as in Proposition 11.1, which can then be iterated to all the intervals of
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G. Hence for h ∈ N such that (j + 1) < h ≤ j∗, see (11.1),

‖u(·, hS)‖2
2 ≤ e−ωS/2‖u(·, (h − 1)S)‖2

2 + c11.1S
(∫ hS

(h−1)S
‖b‖2 +Rmax

)

≤ c11.1Se
ωS/2

( ∫ hS

(j−1)S
e−ω(hS−s)/2‖b(s)‖2 +Rmax

)
(11.29)

+e−ω(h−(j−1))S/2‖u(·, tin)‖2
2

and for t ∈ [h, h+ 1)S, (11.25) yields

vi(t) = v0
i (t) + σic11.1e

−ω(h−(j−1))S/2‖u(·, tin)‖2
2

+σic11.1Se
ωS/2

(∫ t

(j−1)S
e−ω(t−s)/2{‖b‖2 +Rmax}

)
(11.30)

hence ∣∣∣ri(t) − {ξi(tin) +
∫ t

0
v0
i (s)}

∣∣∣ ≤ c‖u(·, tin)‖2
2

+cSeωS/2
(∫ t

(j−1)S
{‖b‖2 +Rmax}

)
(11.31)

We summarize what proved so far, by saying that we have introduced auxiliary particles
orbits r̄(t) =

(
r1(t), .., rk(t)

)
which starts from ξ̄(tin). The particles move with velocity

vi(t) and collide disappearing once they are at mutual distance ≤ | log ε|2, after such time
we write ri(t) = ∅ for the disappeared particle. We recall the relation between r̄(t) and
the function m(x, t) in the following proposition:

Proposition 11.2. The centers ξ̄ of m(x, [hS]+), h ∈ {j+ 1, ..., j∗}, satisfy ξ̄ ≥ r̄([hS]+)
(see (10.2)), and dM(m(·, [hS]+)) ≤ 6ϑ.

12 Displacements in the bad intervals and total cost

We have defined the auxiliary process r̄(t) for t ∈ G, with G as in (11.1), and we want to
extend the definition to all times t ∈ [0, ε−2T ].

We use the following notation: t0 = j∗S is the right end point in G; j′S the left end
point of the next good time period G′; t1 ∈ [j′ − 1/2, j′ − 1/4]S is the time associated
to G′ as defined in Section 10; we write r̄(t0) =

(
r1(t0), . . . , rk(t0)

)
and ξ̄ = (ξ1, . . . , ξh)

the centers of m(·, t1). We recall that ri+1(t0) − ri(t0) ≥ | log ε|2, i = 1, . . . , k and that
dM(m(·, t0)) ≤ 6ϑ and dM(m(·, t1) ≤ ϑ.

We then define r̄(t) = r̄(t0) for t ∈ [t0, t1) and will use Theorem 12.1 below to extend
the definition to t ≥ t1.

Both the maximal length of the bad interval and the field b applied there are bounded
by the total cost. Therefore the displacement of the already existing contours during the
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bad interval is bounded, and the newly nucleated fronts are close to each other. This is
formalised in the next theorem.

Theorem 12.1. The number h of centers of m(·, t1) is odd and h ≥ k. There is K and
an increasing sequence i1, .., ik in {1, .., h} so that |ξij − rj(t0)| ≤ K. Let p = h − k and
{	1, . . . , 	p} = {1, . . . , h} \ {i1, .., ik}, then ξ�i+1

− ξ�i
≤ K for all i odd in {1, . . . , p}.

Proof. Call m0(x, t), t ≥ t0, the solution of (1.1) which starts from m0 = m(·, t+0 ) at
time t0. By regarding (1.1) as (1.6) with b = 0, we can apply the analysis of Section 11
so that, for ε small enough, m0(x, t1) has k centers ξ̄0 = (ξ01 , .., ξ

0
k), |ξ0i − ri(t0)| ≤ 1 and

dM(m0(·, t1)) ≤ 6ϑ.
By Theorem C.4 in Appendix C,

‖m(·, t1) −m0(·, t1)‖2
2 ≤ e3|t1−t0|

∫ t0

t1

‖b(t)‖2
2, (12.1)

so that

‖m̄ξ̄ − m̄ξ̄0‖2 ≤ P e3|t1−t0| + 12ϑ. (12.2)

There is a > 0 so that m̄ξ̄0(x) < −mβ

2
for x < ξ01−a; m̄ξ̄0(x) >

mβ

2
for x ∈ (ξ01+a, ξ02−a)

and so on. The same property evidently holds for m̄ξ̄ so that the upper bound (12.2)
induces an upper bound on the volume where m̄ξ̄ and m̄ξ̄0 have a mismatch in the above

sense, hence the statements in the theorem observing that by Theorem 9.1, t1 − t0 ≤ P

2δ
S.

In particular, the sequence i1, . . . , ik can be defined as follows. For j odd call ij the odd
label such that

min
i odd

|ξi − ξ0j | = |ξij − ξ0j |

ij , j even, being defined analogously. The elements i1, . . . , ik are mutually distinct for ε
small enough because ξ0i+1 − ξ0i ≥ | log ε|2 − 2. �

We identify the labels 1, .., k of the particles in r̄(t0) with the sequence i1, .., ik defined
in Theorem 12.1. We now refer to Cases 1) to 3) listed in Section 10. In Case 1), where
tin = t1, we define rj(tin) = ξij and add particles at positions ξ�i

, i = 1, . . . , p according to
Theorem 12.1. In this way r̄(t) has a discontinuity at time t1, as the positions of the old
particles may have been displaced by ≤ K and moreover because new particles may have
been added. In Case 2) tin = t1 and a new configuration ξ′ has been defined in terms of
ξ by first shifting apart till distance | log ε−1|2 all pairs in ξ at distance ∈ [	∗, | log ε−1|2]
and then by erasing all colliding particles. We define r̄(tin) by setting rj(tin) = ξ′ij if the
particle ij has not collided, and otherwise rj(tin) = ∅. We complete the definition by
adding particles at positions ξ′�i

, i = 1, . . . , p, provided they have not collided. In Case 3)
we let first run (1.6) for a time τ and then repeat the above procedure, we refer to Section
10 for details.
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It is convenient to say that at all times there are n∗ particles present so that r̄(t) =(
r1(t), ..., rn∗(t)

)
but the existing ones are only those such that ri(t) 	= ∅. We use a labeling

of the particles so that whenever existent, ri(t) < rj(t) if i < j.
By iteration the above rules define r̄(t) at all times t ∈ [0, ε−2T ]. ri(t) 	= ∅ has velocity

vi(t) = 0 in the intervals (t0, t1) and otherwise vi(t) is given by (11.25).
ri(t) may have discontinuities at the beginning of the new good periods, the jumps

being bounded by a constant K. When a pair of particles is created the two have distance
| log ε|2. Two particles collide, disappearing, when they are at mutual distance | log ε|2.
These types of discontinuous motion are not counted by vi(t), which can be interpreted
as absolutely continuous part of the velocity.

The constraint (5.3) implies that the total displacement of the centers is at least ε−1R.
In order to derive from this information a constraint for the v0

i (t) defined in (11.24),
we have to take into account the error made when replacing vi by vi

0 (see (11.30), the
displacement during bad intervals, and finally the displacement due to nucleation and
collision of droplets. Therefore we obtain

n∗∑
i=1

∫
{t:ri(t)�=∅}

|v0
i (t)| ≥ ε−1R−

⎛
⎜⎝cn∗

ε−2T∫
0

{‖b(s)‖2
2 +Rmax} +

P

2δ
K + n∗4| log ε|2

⎞
⎟⎠
(12.3)

We next compute the total cost. We have

‖b(t)‖2
2 ≥

∑
i:ri(t)�=∅

{ 1
‖m̄′‖2

2

(b, m̄′
ri(t)

)2 − ce−α| log ε|2/2} (12.4)

so that

‖b(t)‖2
2 ≥

∑
i:ri(t)�=∅

‖m̄′‖2
2 v

0
i (t)

2 − ce−α| log ε|2/2 (12.5)

and, recalling that the mobility µ = 4‖m̄′‖−2
2 ,

1
4

∫
Gtot

‖b(t)‖2
2 ≥

∫
Gtot

∑
i:ri(t)�=∅

v0
i (t)

2

µ
− ce−α| log ε|2/2ε−2T (12.6)

The cost of the bad times between two successive good periods is completely neglected if
no nucleation occurs otherwise, with the same notation as in Theorem 12.1, we estimate
by reversibility

1
4

∫ t1

t0

‖b(t)‖2
2 ≥ F(m(·, t1)) −F(m(·, t0)) (12.7)

and by (9.4),

F(m(·, t1)) −F(m(·, t0)) ≥ (h− k)F(m̄) − 2γ
103(n∗)2

(12.8)
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Thus

1
4

∫ ε−2T

0
‖b(t)‖2

2 ≥
∫

Gtot

∑
i:ri(t)�=∅

v0
i (t)

2

µ
+ nF(m̄) − ce−α| log ε|2/2ε−2T − 2γ

103n∗

(12.9)

where n/2 is the total number of nucleations and because h − k ≤ n∗ and there are at
most n∗ of such times. We now observe that the inf over {v0

i (·)} of the right hand side of

(12.9) under the constraint (12.3), converges in the limit ε → 0 to inf
h
wh(R,T ) − 2γ

103n∗
which proves (5.4) thus concluding the proof of the lower bound.

We now consider the auxiliary variational problem of finding the inf over {v0
i (·)} of

the right hand side of (12.9) under the constraint (12.3). Keep the number of particles
n fixed, n ≤ n∗, and let ti be the lifetime of the i − th particle, i.e. ti ≤ Tε−2. If we
keep (ti)i=1,... ,n fixed, then we see immediately that the velocity of each particle must
be constant throughout its lifetime. Let vi be this constant velocity. For the auxiliary
problem we get that a minimizer must fulfill the constraint as equality, hence we have

to minimize
n∑

i=1

v2
i ti under

n∑
i=1

viti = Rε−1, which leads to vi = λ, i = 1, . . . , n. As λ

satisfies λ = ε−1R(
n∑

i=1

ti)−1, we get ti = Tε−2 for a minimizer, so that the minimum of the

auxiliary problem for n fixed converges in the limit ε → 0 to wn(R,T ). Optimizing over
the number of particles proves (5.4), thus concluding the proof of the lower bound.

A Existence and uniqueness theorems

We will study here the Cauchy problem

du

dt
= J ∗ u−Aβ(u) + b, u(x, 0) = u0(x) (A.1)

In Theorem A.1 below we will prove existence and uniqueness in C(R; (−1, 1)) for b ∈
C(R × R+; R). Observe that since J(x, y) ≥ 0, a comparison theorem holds for (A.1).

Theorem A.1. There exists one and only one solution u ∈ C(R×R+; (−1, 1)) of (A.1).

Proof. Let u±n (x, t), n > 1, be the functions equal respectively to ±1 on [−n, n]c which
solve

du±n
dt

= J ∗ u±n −Aβ(u±n ) + b, u±n (x, 0) = u0(x), x ∈ [−n, n] (A.2)

Existence and uniqueness of u±n (x, t) follow from standard methods, moreover using the
comparison theorem,

−1 < u−n (x, t) ≤ u+
n (x, t) < 1, x ∈ [−n, n] (A.3)
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Call

ψn(x, t) = u+
n (x, t) − u−n (x, t) (A.4)

then, in [−n, n]

1
2
dψ2

n

dt
= ψnJ ∗ ψn − ψn{Aβ(u+

n ) −Aβ(u−n )} ≤ 1
2
{ψ2

n + J ∗ ψ2
n}

Let Lnf(x) = 1|x|≤n[J ∗ f − f ], then

ψ2
n(x, t)

2
≤
∫

[−n,n]c
e(3/2 +Ln)t(x, y)ψ2

n(y, 0) + 4
∫ t

0

∫
[−n,n]c

e(3/2 +Ln)(t−s)(x, y) (A.5)

which shows that for any x and t, ψn(x, t) → 0 as n → ∞. Since, by the comparison
theorem, any u ∈ C(R × R+; (−1, 1)) solution of (A.1) is such that u−n (x, t) ≤ u(x, t) ≤
u+

n (x, t), the theorem is proved. �

B Nucleation and collapse of droplets

In this appendix we sketch the proof of Theorem 2.2, which, as mentioned in the text,
uses heavily reversibility. We shorthand by m̄R

ξ the function equal to m̄ξ(x) for x ≥ 0 and
to m̄ξ(−x) for x ≤ 0 and call Tt(m) the solution of (1.1) which at time 0 is equal to m.
Let α be as in (1.4).

Theorem B.1. There is V > 0 and, for any ζ > 0 there is Lζ > 0 so that for all 	 ≥ Lζ,

‖Tt(m̄R
� ) −mβ‖2 ≤ ζ, for all t ≥ t∗ := 10

e2α�

2αV
(B.1)

We will discuss briefly the proof of Theorem B.1, after showing how it can be used to
prove Theorem 2.2.

The force field f(m) defined by the r.h.s. of (1.1) is continuous in L2 ∩ {‖m‖∞ ≤ mβ}
(by the comparison theorem ‖Tt(m̄R

� )‖∞ ≤ mβ for all t ≥ 0), so that

‖f(Tt∗(m̄R
� )
)‖2 + ‖f(Tt∗(m̄R

� )
)‖∞ ≤ o1(ζ) (B.2)

where o1(ζ) vanishes when ζ → 0. The linear interpolation

u(x, t) = t Tt∗(m̄R
� )(x) + (1 − t) mβ, 0 ≤ t ≤ 1 (B.3)

has then a cost

1
4

∫ 1

0

(
ut − f(u)

)2 ≤ o2(ζ) (B.4)
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and defining u(·, t+1) = Tt∗−t(m̄R), for t ∈ [0, t∗], we then get by reversibility and because
F(Tt∗(m̄R

� )) ≥ 0,

1
4

∫ t∗+1

0

(
ut − f(u)

)2
≤ o2(ζ) + F(m̄R

�

)
(B.5)

and, by (1.4),

F(m̄R
�

) ≤ 2F(m̄)+ ce−α�/2 (B.6)

After a C∞ regularization of the orbit u (which can be such that the additional cost is
bounded by ζ), we then obtain an upper bound for the cost of connecting mβ to m̄R

� in a
time t∗ + 1, which is given by

2F(m̄)+ ce−α�/2 + o2(ζ) + ζ (B.7)

To prove Theorem 2.2 we fix ζ so that o2(ζ) + ζ ≤ ϑ/2. With 	ε as in the statement of
Theorem 2.2, for ε small enough, ce−α�ε/4 < ϑ/2 and 	ε/2 ≥ Lζ . By taking 	 = 	ε/2 we
thus complete the proof of Theorem 2.2, pending the validity of Theorem B.1.

In [2] Theorem B.1 is proved for the semigroup St(m) which solves the analogue of
(1.1)

ut = −u+ tanh{J ∗ u} =: g(u) (B.8)

restricted to a finite interval with Neumann boundary conditions.
The two evolutions, (B.8) and (1.1), share many properties, in particular they have same

stationary solutions, time monotonicity of F and the comparison theorem. Nonetheless
the proof of Theorem B.1 does not follow from its analogue for (B.8) and requires a proof,
which however is nothing but a lengthy yet uneventful extension of the one in [2]. For
brevity we omit it here, also because it will be contained in a paper in preparation by
Bellettini, De Masi and Presutti where the minimizing sequences of the tunnelling event
are characterized. By reversibility this problem is related to an accurate description of
the orbits where two instantons collapse converging to the plus state, an analysis which
includes a proof of Theorem B.1.

C A priori estimates

We write

Aα,t1,t2 =
{
x ∈ R :

∫ t2

t1

b2(x, t) ≤ α
}
, α > 0, 0 ≤ t1 < t2 (C.1)

and denote by m(x, t) ∈ L∞(R × R
+; (−1, 1)) a solution of (1.6).
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Theorem C.1. For any α > 0 and any t > t1 ≥ 0,

sup
x∈Aα,t1,t

|m(x, t) −m0(x, t)| ≤ ce‖J‖∞(t−t1)
(√

α(t− t1) + (t− t1)|Ac|
)1/2

(C.2)

where c = 8‖J‖∞ + 1 and m0(x, s), s ≥ t1, is the solution of (1.1) such that m0(x, t1) =
m(x, t1).

Proof. The proof is a simple adaptation of a proof in [3] for finite volumes. Shorthand
A = Aα′′,t1,t and call φ(x, s) = m(x, s) −m0(x, s), w(s) := sup

x∈A
|φ(x, s)|. Then,

1
2
d

ds
φ(x, s)2 ≤ |φ(x, s)| ‖J‖∞

(
w(s) + 2|Ac|

)
+ 2|b(x, s)| (C.3)

having used that |φ| ≤ 2 and that φ(x, t)[Aβ(m(x, t)) −Aβ(m0(x, t))] ≥ 0.
For any x ∈ A, we integrate (C.3) over time, getting

w(s)2 ≤ 2‖J‖∞
∫ s

t1

w(s′)2 + 8(s− t1)‖J‖∞|Ac| + 4[(s − t1)α]1/2 (C.4)

hence (C.2). �

Theorem C.2. There are M ∈ (0, 1), α′ > 0 and s′ > 0 so that for any t1 ≥ 0 and any
t2 > t1 + s′,

|m(x, t)| ≤M, for all x ∈ Aα′,t1,t2 and t ∈ [t1 + s′, t2] (C.5)

Proof. We will first prove that m(x, t) ≤M and since the proof that m(x, t) ≥ −M is
completely analogous, we will then have proved (C.5). Call b+(x, t) = max{b(x, t), 0} and
v(x, t), t ≥ t1, the solution of

vt = 1 −Aβ(v) + b+, v(x, t1) = 1 (C.6)

Then, m(x, t) ≤ v(x, t). Let now v0(t), t ≥ t1 solve

v0
t = 1 −Aβ(v0), v0(t1) = 1 (C.7)

and let w(x, t) := v0(t) +
∫ t

t1

b+(x, s). Then v(x, t) ≤ w(x, t). Indeed, since w ≥ v0,

dw

dt
= 1 −Aβ(v0) + b+ ≥ 1 −Aβ(w) + b+

We have thus proved that w is a super-solution of (C.6) and hence m(x, t) ≤ w(x, t).
Since lim

t→∞ v0(t) < 1, there are s′ and M0 < 1 so that v0(t1 + s′) = M0. We choose α′

so that
√
α′s′ +M0 = M1 < 1, and Theorem C.2 is proved. �
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Theorem C.3. There are c1 and c2 positive so that the following holds. For any ε > 0,
there are α′′ > 0 and s′′ > 0 so that for any t1 ≥ 0, t2 > t1 + s′′ and ξ(t),

|m(x, t) − m̄ξ(t)(x)| ≤ ε+ c1‖m(·, t) − m̄ξ(t)‖2/3
2 + c2|Ac|1/2 (C.8)

for all x ∈ Aα′′,t1,t2 and t ∈ [t1 + s′′, t2].

Proof. The function

u(x, t) = [m(x, t) − m̄ξ(t)(x)]1x∈A + [m0(x, t) − m̄ξ(t)(x)]1x∈Ac , t ∈ [t1 + s′′, t2]
(C.9)

verifies the condition

|u(x, t) − u(y, t)| ≤ ρ+ c3|x− y| (C.10)

where, calling C = 2ce‖J‖∞s′′ [
(
α′′s′′

)1/4
+ |Ac|1/2] an upper bound of the r.h.s. of (C.2),

ρ = 2C + 2e−s′′/β ; c3 = ‖m̄′‖∞ + β‖J ′‖∞ (C.11)

since

|m0(x, T ) −m0(y, T )| ≤ 2e−s′′/β + β‖J ′‖∞ |x− y| (C.12)

as proved in [3]. In [3] it is also proved that:

Lemma C.1. Let f ∈ L2(R, [−1, 1]) be such that there are ρ ≥ 0 and c3 > 0 so that

|f(x) − f(y)| ≤ ρ+ c3 |x− y| (C.13)

then

‖f‖∞ ≤ ρ+
3c1/3

3√
8

‖f‖2/3
2 (C.14)

Given ε > 0 we choose s′′ so that 2e−s′′/β ≤ ε

2
and α′′ so that

4ce‖J‖∞s′′
(
α′′s′′

)1/4
≤ ε

2
(C.15)

(C.14) yields (C.8) with c2 = 4ce‖J‖∞s′′ +
6c1/3

3√
8

and c1 =
3c1/3

3√
8

and c3 as in (C.11). �

Theorem C.4. Let m solve (1.6) with forcing b ∈ L2 and let m0 solve (1.1); suppose
m(·, t0) = m0(·, t0) and that m0(x, t0) converges exponentially fast to ±mβ as x → ±∞.
Then for any t1 > t0

‖m(·, t1) −m0(·, t1)‖2
2 ≤ e3|t1−t0|

∫ t0

t1

‖b(t)‖2
2 (C.16)
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Proof. Let u := m−m0. We multiply the difference of (1.1) and (1.6) by u and obtain

d

dt
‖u(·, t)‖2

2 = 2‖u2(·, t)‖2
2 −
∫ ∫

J(x− y)(u(x, t) − u(y, t))2dxdy

+2(b, u) − 2([Aβ(m) −Aβ(m0)], [m−m0]).

Noting that Aβ is monotone and that |2(b, u)| ≤ ‖b‖2
2 + ‖u‖2

2, we get

d

dt
t‖m(·, t) −m0(·, t)‖2

2 ≤ 3‖m(·, t) −m0(·, t)‖2
2 + ‖b(t)‖2

2.

which, by the Gronwall’s inequality, yields (C.16).

D Spectral gap estimates

Given ξ̄ = (ξ1, ..ξn), ξi < ξi+1, i = 1, .., n−1, call Λj = 1
2 [ξj +ξj−1, ξj+1+ξj], with ξ0 = −∞

and ξn+1 = ∞ and denote by 1j the characteristic function of Λj. We then define

V ⊥̄
ξ :=

{
u ∈ L2(R) : (u1j , m̄

′
ξj

) = 0, j = 1, .., n
}

(D.1)

Let L ≡ Lξ̄ be the linear operator on L2(R) defined as

Lψ(x) = J ∗ ψ(x) −A′
β

(
mξ̄(x)

)
ψ(x) (D.2)

Due to the symmetry of J(x, y), L is self-afjoint. We set

−ωξ̄ := sup
u∈V ⊥̄

ξ
:‖u‖2=1

(u,Lu) (D.3)

When n = 1, ξ̄ = ξ, ωξ = ω1 > 0 is independent of ξ and equal to the spectral gap of L,
hence the title of this appendix (but notice that ωξ̄ is not the spectral gap when n > 1, the
spectral gap vanishing as the mutual distance of the element of ξ diverges). Call finally

Dξ̄ := min
j=1,..,n−1

{
ξj+1 − ξj

}
(D.4)

Theorem D.1. There are ω and c positive so that

ωξ̄ ≥ ω − cn√
Dξ̄

(D.5)

Proof. Let kj , j = 1, .., n − 1 be integers such that

|kj − ξj + ξj+1

2
| ≤
√
Dξ̄, ‖u1[kj−1,kj+1]‖2 ≤ 10√

Dξ̄

(D.6)
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whose existence follows from the condition ‖u‖2 = 1. Calling k0 = −∞, kn = +∞ and
uj = 1[kj−1,kj ]u, we have

(u,Lu) =
n−1∑
j=1

(uj, Luj) +
n−1∑
j=1

(uj , J ∗ uj+1) (D.7)

Since the L2 norm of the operator J is ≤ 1, by (D.6) the last term is bounded by 100nD−1
ξ̄

.
For j odd,

(uj , Luj) ≤ −ω1‖uj −
(m̄′

ξj
, uj)

(m̄′
ξj
, m̄′

ξj
)
m̄′

ξj
‖2
2 ≤ −ω1‖uj‖2

2 + ω1‖
(m̄′

ξj
, [u− uj ])

(m̄′
ξj
, m̄′

ξj
)

m̄′
ξj
‖2
2

≤ −ω1‖uj‖2
2 + ce−α

√
Dξ̄ (D.8)

because (m̄′
ξj
, u) = 0 and m̄′(x) ≤ c′e−α|x|. An analogous argument holds for j even and

the theorem is proved. �
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