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Abstract

The numerical solution of nonlinear problems is usually connected with Newton’s
method. Due to its computational cost, variants (so-called quasi-Newton methods)
have been developed in which the arising inverse of the Jacobian is replaced by an
approximation. In this article we present a new approach which is based on Broyden
updates. Instead of updating the inverse we introduce a method which constructs
updates of the LU decomposition. Since an approximate LU decomposition of
finite element stiffness matrices can be efficiently computed in the set of hierarchical
matrices, the complexity of the proposed method scales almost linearly. Numerical
examples demonstrate the effectiveness of this new approach.
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1 Introduction

The main purpose of this paper is the efficient numerical solution of second-order nonlinear
elliptic Dirichlet problems

−∇ · [α(u)∇u − β(u)u] + γ(u)u = f in Ω, (1a)

u = g on ∂Ω, (1b)

where Ω is a bounded Lipschitz domain in R
n, n = 2 or 3, the coefficient functions α, β, γ

are sufficiently smooth and f and g are given. For the coefficient α appearing in the
principal part we assume that there is a real number α0 > 0 such that α(u) ≥ α0.

∗This work was supported by the DFG priority program SPP 1146 “Modellierung inkrementeller
Umformverfahren”
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Nonlinear elliptic problems arise from many applications in physics and other fields,
for instance in elastoplasticity, magnetic potential problems, viscous fluid flow problems,
chemical reactions and pattern formation in biology. During the past three decades,
many numerical approaches have been developed for solving nonlinear problems (see,
e.g., [1, 9, 20]). Undoubtedly, Newton’s method

uk+1 = uk − (F ′(uk))
−1F (uk), k = 0, 1, 2, . . . , (2)

for the solution of the nonlinear problem F (u) = 0 is one of the most popular methods,
which receives attention from applications due to its quadratic convergence. Newton’s
method can be used to treat nonlinear elliptic equations discretized not only by the finite
element method, see [14], but also by the finite volume method, cf. [9]. Avoiding the
computation of the Jacobian and its inverse in each Newton step, most of the attention
in tackling the nonlinearity has been paid to quasi-Newton methods

uk+1 = uk − BkF (uk), k = 0, 1, 2, . . . ,

which are based on Newton’s method while approximating the inverse (F ′(uk))
−1 of the

Jacobian by a matrix Bk. A general description of quasi-Newton methods can be found
in [2, 10, 13] and its applications to nonlinear elliptic problems in [1, 19].

In this article, we are concerned with a special quasi-Newton method. Broyden’s
method, cf. [8], is based on Broyden’s update formula

Bk+1 = Bk +
(δk − Bkyk)δ

T
k Bk

δT
k Bkyk

,

where yk = F (uk+1) − F (uk), δk = uk+1 − uk and B0 = (F (u0))
−1. Hence, if Bk is

known, then Bk+1 can be computed by a rank-1 update. It is known, cf. [13], that in
Broyden’s method Bk is an approximation of the inverse (F ′(uk))

−1 of the Jacobian.
The disadvantage of quasi-Newton methods is that the quadratic convergence is lost.
Broyden’s method can be shown to converge superlinearly, cf. [13]. Hence, usually more
steps will be required to obtain the same accuracy as Newton’s method. Despite this fact,
Broyden’s method is significantly cheaper than Newton’s method, since the inverse of the
Jacobian has to be computed only in the initial step of the iteration. Up to now, this
interesting method could not be exploited for large-scale problems since the inverse in the
initial step is required explicitly.

In this article we present a variant of Broyden’s method for the solution of nonlinear
elliptic problems (1). Instead of updating the inverse B0 of the initial Jacobian F ′(u0), we
will propose a method which is based on the LU decomposition of F ′(u0). Since in contrast
to the inverse the LU decomposition of sparse matrices can be computed efficiently at
least for moderate problem sizes, cf. [11], this new approach revitalizes Broyden’s idea.
Instead of keeping the triangular structure when updating the factors L and U of the LU
decomposition, we generate and store appropriately transformed rank-1 updates of L and
U from each rank-1 update applied to the coefficient matrix.
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If large-scale problems are to be treated, the bandwidth of the factors L and U of the
classical LU decomposition will lead to an uncompetitive number of operations. In this
case hierarchical matrices (H-matrices) originally introduced by Hackbusch et al., see [16,
17], can be used to accelerate the proposed methods. Hierarchical matrices can efficiently
treat fully populated matrices arising from integral operators with asymptotically smooth
kernels [3, 4]. In [5, 6] it has been proved that an H-matrix approximant of the inverse
FE matrix of general uniformly elliptic operators with L∞-coefficients exists because the
corresponding Green function can be approximated by a degenerate function. In addition
to the approximate inversion of large sparse matrices also low-rank matrices can be added
to H-matrices with almost 1 linear complexity. Since the updated matrix Bk+1 can be
looked at as an approximation of (F ′(uk+1))

−1, the complexity of Bk+1 can be expected
to be of the same order as Bk. Hence, H-matrices provide a setting in which Broyden’s
method even in its original form can be used to solve nonlinear problems with almost
linear complexity.

Recently [7], it was proved that also the factors of the LU decomposition of FE stiffness
matrices can be approximated by the H-matrix structure with almost linear complexity.
As for classical matrices, the variant of Broyden’s method which will be based on the
hierarchical LU decomposition instead of the hierarchical inverse will lead to a more
efficient method.

This paper is organized as follows. In the next section, we review concepts and proper-
ties of H-matrices. We quote the existence results for the H-matrix approximation of both
discrete inverses and LU decompositions of general elliptic linear second-order operators.
These results lay ground to the efficiency of the proposed methods, since each Jacobian
F ′(uk) is an elliptic linear second-order operator. In Section 3 H-matrix variants of New-
ton’s and Broyden’s method for solving nonlinear elliptic problems are proposed. We
introduce a method which updates the factors of an initially computed LU decomposition
of a discrete Jacobian each time a Broyden update is applied to it. Finally in Section 5,
we provide numerical examples to demonstrate the effectiveness of the presented meth-
ods. All methods from this article will be seen to have almost linear complexity while the
method which updates the factors of the LU decomposition is significantly faster than
the others.

2 Hierarchical matrices

In this section we briefly describe the structure of H-matrices which was introduced by
Hackbusch et al. [16, 17]. We will present the main principles such as the admissibility
condition, the hierarchical partitioning of the matrix into blocks and the blockwise restric-
tion to low-rank matrices on which the efficient approximation of matrices is constructed.

Let A ∈ R
N×N be a finite element stiffness matrix with entries

aij = a(ϕj , ϕi), i, j = 1, . . . , N,

1linear up to logarithmic factors
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where ϕi ∈ V , i ∈ I := {1, . . . , N}, are finite element basis functions with supports
Xi := supp ϕi, i ∈ I, and a : V × V → R is a bilinear form.

Assume that there is a partition P of the indices I × I of A such that each submatrix
At×s, t, s ⊂ I, can be approximated by a low-rank matrix, i.e.,

At×s ≈ UV T , U ∈ R
t×k, V ∈ R

s×k, (3)

where k is a positive integer which is small compared with |t| and |s|.

2.1 Cluster tree

Searching the set of possible partitions of I × I for a partition P which guarantees (3)
seems practically impossible since this set is considerably large. By restricting ourselves
to blocks t × s made up from rows t and columns s which are generated by recursive
subdivision, P can be found with almost linear complexity. The structure which describes
the way I is subdivided into smaller parts is the cluster tree. A tree TI is called a cluster
tree for an index set I if it satisfies the following conditions:

(i) I is the root of TI ;

(ii) If t ∈ TI is not a leaf, then it has two sons t1, t2 ∈ TI such that t = t1 ∪ t2 and
t1 ∩ t2 = ∅.

For each t ∈ TI , by S(t) ⊂ TI we denote the set of its sons and L(TI) means the
set of leaves of the tree TI . Each level of TI contains a partition of the index set I. We
define the support of a cluster t ∈ TI as the union of the supports of the basis functions
corresponding to its indices in t, i.e.,

Xt :=
⋃
i∈t

Xi.

When generating a cluster tree by recursive subdivision of I, it is not advisable to subdi-
vide the clusters until only one index is left. In practice, the recursion should be stopped
if a certain cardinality nmin of the clusters is reached. In the case of quasi-uniform grids,
the cost of building a cluster tree is O(N log N), see [17].

2.2 Block-cluster tree

In order to be able to guarantee a sufficient approximation of each submatrix At×s, t×s ∈
P , of A by a matrix of low rank, the subblock t×s has to satisfy the so-called admissibility
condition

min{diam Xs, diamXt} ≤ η dist(Xs, Xt), (4)

where η > 0 is a given real number. Notice that in order to satisfy (4) the supports of
t and s have to be far enough away from each other. This condition is caused by the
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fact that the Schwartz kernel S(x, y) of elliptic operators possesses a singularity for x = y
only.

Based on a cluster tree TI and the admissibility condition (4), we are ready to construct
a block-cluster tree TI×I by the following procedure.

procedure Build BlockClusterTree(t× s)
if t × s does not satisfy (4) and |t| > nmin and |s| > nmin then

S(t × s) := {t′ × s′ : t′ ∈ S(t), s′ ∈ S(s)};
for t′ × s′ ∈ S(t × s) do

Build BlockClusterTree(t′ × s′);
else S(t × s) := ∅;

end.

Applying Build BlockClusterTree to I × I, we create a block-cluster tree with root
I × I. The set of leaves L(TI×I) of the block-cluster tree TI×I forms a partition P of I × I
such that (4) is satisfied for large enough blocks. In the case of quasi-uniform grids, the
cost of building a block-cluster tree is O(N), see [17].

For a given partition P of I × I and given rank r, we are now able to define the set
of H-matrices. A matrix A is called an H-matrix of blockwise rank r if each admissible
blocks At×s, t × s ∈ P has at most rank r, i.e.,

H(P, k) = {A ∈ R
I×I : rank At×s ≤ r for each t × s ∈ P}. (5)

The storage requirement for A ∈ H(P, r) is of the order rN log N . Multiplying A by
a vector can be done with O(rN log N) arithmetical operations. Two H-matrices A, B ∈
H(P, r) can be added with complexity O(r2N log N) if an arbitrarily small approximation
error can be tolerated. Since low-rank matrices are a subset of H-matrices, in particular
rank-1 updates can be efficiently added to H-matrices. The complexity of computing a
rounded product of two H-matrices is O(r2N log2 N), see [16, 17, 15].

2.3 Approximation of Galerkin FE inverses and of the factors
of LU decompositions

Since by Newton’s method (2) the nonlinear problem (1) or equivalently

F (u) := −∇ · [α(u)∇u − β(u)u] + γ(u)u − f = 0 (6)

is approximated by a sequence of linear problems

F ′(uk)(uk+1 − uk) = −F (uk), k = 0, 1, 2, . . . ,

we first consider the linear case. Note that since

F ′(u)v = −∇ · [α(u)∇v − {β(u) + β ′(u)u − α′(u)∇u}v] + {γ(u) + γ′(u)u}v
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the assumption α(u) ≥ α0 > 0 guarantees that each linear problem is in the class of
second-order elliptic Dirichlet boundary value problems

Lu = f in Ω, (7a)

u = g on ∂Ω (7b)

with
Lu = −∇ · [A∇u + bu] + c · ∇u + du,

where A(x) ∈ R
n×n is symmetric with entries aij ∈ L∞(Ω) and satisfies

0 < λ ≤ λ(x) ≤ Λ

for all eigenvalues λ(x) of A(x) and almost all x ∈ Ω, b, c ∈ (L∞(Ω))n and d ∈ L∞(Ω). For
simplicity we assume that g = 0. Then the variational formulation of the linear boundary
value problem (7) reads

find u ∈ V such that a(u, v) = l(v) for all v ∈ V,

where

a(u, v) =

∫
Ω

∇v · A∇u dx +

∫
Ω

∇v · b u dx +

∫
Ω

c · ∇u v dx +

∫
Ω

duv dx

and

l(v) =

∫
∂Ω

fv dx.

Let εh denote the Galerkin finite element error. The following theorem, cf. [6], states
that the inverse of the arising finite element stiffness matrix A ∈ R

N×N can be approxi-
mated by an H-matrix with almost linear complexity.

Theorem 2.1 Let p be the depth of the cluster tree TI defined in Section 2.1. Then there
is a constant c > 0 defining r := cp2 logn+1(p/εh) and there is CH ∈ H(P, r) such that

‖A−1 − CH‖2 ≤ c εh,

where c = c(L, Ω, η) > 0 depends on the size of coefficients of L, the diameter of Ω and
η. If εh = O(hβ) for some β > 0, then r = O(logn+3 N) holds.

Although the constant c depends on the size of the coefficients of L, numerical experiments
have shown that this dependence can hardly be observed.

Based on the previous result, in [7] a similar result for the approximation of the factors
L and U of an LU decomposition of A has been proved. In the following theorem ρN

denotes the growth factor, cf. [18], which plays a central role for the stability of the LU
decomposition.
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Theorem 2.2 There are lower and upper triangular matrices LH, UH ∈ H(P, r) with

r ∼ (log N)2
[| log ε| + (log N)2 + (log N)(log ρNcond2A)

]n+1

such that
‖A − LHUH‖2 ≤ ε.

The asymptotic complexity of computing approximations of the inverse and of the
factors of an LU decomposition is inherited from the approximate matrix multiplica-
tion. Hence, computing these approximations in H(P, r) can be done with O(r2N log2 N)
arithmetical operations.

3 Quasi-Newton methods with Broyden updates

In each Newton step

F ′(uk)(uk+1 − uk) = −F (uk), k = 0, 1, ... (8)

we obtain a linear system
A(uk)δk = −F (uk) (9)

arising from the Galerkin method applied to (8) for the unknown vector δk := uk+1 − uk.
Here, uk ∈ R

N denotes the Galerkin approximation of uk. If (8) has been solved, then
starting from a given vector u0 ∈ R

N update uk+1 = uk + δk until some tolerance is
reached. For the sake of readability in the following we will not distinct between the
vector uk ∈ R

N and uk from (8).
Since the exact solution of (9) is expensive for large N , it is advisable to replace the

coefficient matrix A(uk) by an approximation which allows a more efficient solution of (9).
This class of variants of Newton’s method is usually called quasi-Newton methods. Due to
Theorem 2.1 it is possible to compute an approximate inverse of A(uk) with almost linear
complexity. Hence, we can easily accelerate Newton’s method by employing H-matrices.
In the following this obvious variant will be referred to as the H-Newton method.

A special quasi-Newton method is Broyden’s method, cf. [8], which starts from a
given approximation A0 ∈ R

N×N of A(u0) and computes approximations Ak of A(uk)
using rank-1 updates

Ak+1 = Ak +
(yk − Akδk)δ

T
k

δT
k δk

, (10)

where yk := F (uk+1)−F (uk). As for other quasi-Newton methods, the quadratic conver-
gence of Newton’s method is reduced to a superlinear one, cf. [13]. The matrix Ak+1 can
be seen to be the closest matrix B to Ak satisfying the secant equation Bδk = yk, i.e.,
with Q := {B ∈ R

N×N : Bδk = yk} it holds

‖Ak+1 − Ak‖2 = min
B∈Q

‖A − B‖2.
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Since one is interested in the solution of (9), it is crucial that the inverse A−1
k can

also be updated in a similar way as Ak is updated in (10). With the Sherman-Morrison-
Woodbury formula we have that

A−1
k+1 = A−1

k +
(δk − A−1

k yk)δ
T
k A−1

k

δT
k A−1

k δk

. (11)

Hence, if B0 = A−1
0 has been computed, Bk+1 can be computed from Bk by

Bk+1 = Bk +
(δk − Bkyk)δ

T
k Bk

δT
k Bkyk

,

which involves matrix-vector multiplications and a rank-1 update only. Since the last
both operations can be performed in the set of H-matrices with almost linear complexity,
we obtain another obvious but efficient variant of Newton’s method which will be referred
to as the H-Broyden method. Compared with the H-Newton method only one H-matrix
inversion has to be computed when the initial matrix B0 is generated. Matrix-vector mul-
tiplies and rank-1 updates can be expected to be done with much less time consumption
than computing an approximate inverse in each step.

Recently [7], the existence of H-matrix approximations of the factors L and U of the
LU decomposition of finite element stiffness matrices was proved. The computation of the
hierarchical LU decomposition was found to require much less time than the computation
of the hierarchical inverse while the same robustness with respect to varying coefficients of
the operator was observed. Hence, it seems desirable to replace the role of the inverse in
(11) by the LU decomposition. However, no update formula like the Sherman-Morrison-
Woodbury formula is known for the factors of the LU decomposition. In the following
section we present a method which can be used for updating the factors L and U of an
LU decomposition of A whenever A is updated by a rank-1 matrix.

4 An update method for the LU decomposition

Assume we want to update the matrix A with a given rank-1 matrix uvT such that A+uvT

is still non-singular. Let A be decomposed using the LU decomposition A = LU . Then
the factors

L̂ := L + αuwT , w := U−T v, and

Û := U + βzvT , z := L−1u,

with ξ := wTz,

α :=

{
−1

2
, ξ < 0

1
2
, ξ ≥ 0

and β :=
1 − α

1 + αξ

satisfy

L̂Û = LU + αuwTU + βLzvT + αβξuvT

= LU + (α + β + αβξ)uvT = A + uvT
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since α + β + αβξ = 1. Note that the matrices L̂ and Û are rank-1 updates of L and
U , respectively, and they are not triangular in general. But they still can be used for an
efficient computation. From L̂ = L(I + αzwT ) and Û = (I + βzwT )U it follows that L̂
and Û are non-singular since

det L̂ = (1 + αξ) detL ≥ det L and det Û = (1 + βξ) detU =
1 + ξ

1 + αξ
det U

and 1 + ξ �= 0 due to the assumption that A + uvT is non-singular.
Assume that A has been updated k times and let wk+1 = U−T

k vk+1 and zk+1 = L−1
k uk+1,

k = 0, 1, 2, . . . , where Lk and Uk denote the matrices that have been constructed from L
and U as above, i.e.,

LkUk = Ak := A +
k∑

�=1

u�v
T
� .

When computing the inverses of Lk and Uk, we make the following observation:

L−1
k+1 = (Lk(I + αkzkw

T
k ))−1 = (I + αkzkw

T
k )−1L−1

k =
(
I + α′

kzkw
T
k

)
L−1

k ,

where α′
k := −αk/(1 + αkξk). Analogously, we obtain

U−1
k+1 = U−1

k

(
I − β ′

kzkw
T
k

)
,

where β ′
k := −βk/(1 + βkξk) = (αk − 1)/(1 + ξk) and ξk := wT

k zk. As a consequence we
have

L−1
k =

1∏
�=k

(
I + α′

�z�w
T
�

)
L−1 and U−1

k = U−1

k∏
�=1

(
I + β ′

�z�w
T
�

)
.

Hence the solution x of Lkx = b can be computed by the following algorithm:

(1a) compute x from Lx = b,

(1b) for � = 1, . . . , k set x := x + α′
�(w

T
� x)z�.

Analogously, one can solve Ukx = b for x by the following procedure

(2a) set y := b,

(2b) for � = k, . . . , 1 set y := y + β ′
�(w

T
� y)z�,

(2c) compute x from Ux = y.

If Akx = b with Ak = LkUk is to be solved for x, this can be done as usual by the two-step
procedure

1. solve Lky = b for y,

2. solve Ukx = y for x.
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With these ideas, a variant of Broyden’s method which is based on the LU decomposi-
tion can be constructed. In the following this method will be referred to as the H-Broyden-
LU method. In the kth step of the resulting quasi-Newton method Akδk = −F (uk) has
to be solved and the vectors wk+1 and zk+1 have to be computed and stored. Both can
be done by applying the modified forward/backward substitutions from above. Hence,
the number of operations in the kth step is determined by the complexity of the for-
ward/backward substitutions (1a) and (2c) in H(P, r) and the updates (1b) and (2b).
The first requires O(rN log N) operations while the latter can be done with O(kN) op-
erations. Hence, the number of operations for k steps of this variant of Newton’s method
is of order krN log N + k2N . The initial hierarchical LU decomposition of A0 requires
r2N log2 N operations.

If a symmetric positive definite matrix A is to be updated with a rank-1 matrix uuT ,
then the factor

L̂ := L + αuwT with w := L−1u and α :=
1

1 +
√

1 + ‖w‖2
2

satisfies

L̂L̂T = LLT + αu(Lw)T + αLwuT + α2‖w‖2
2uuT

= LLT + α(2 + α‖w‖2
2)uuT = A + uuT

since α(2 + α‖w‖2
2) = 1. Note that the ideas of this section are not restricted to the

hierarchical LU decomposition. For small N recent exact decomposition algorithms such
as SuperLU, cf. [11], can be expected to improve the efficiency of the presented method.

5 Numerical experiments

In this section, we report results of numerical experiments which confirm the efficiency
of H-Newton and H-Broyden method when solving nonlinear elliptic problems. It will
be seen that the complexity of both methods scales almost linearly with respect to the
number of degrees of freedom N . Furthermore, the dominance of a variant of Broyden’s
method which is based on the LU decomposition will be seen. In the following we list
four examples of the model problem (6).

Example 5.1 Let a(u) = 1, b(u) = 0, c(u) = λeu and

f =
(
[9π2 + λe(x2−x3) sin(3πy)](x2 − x3) + 6x − 2

)
sin(3πy)

such that (1) has the exact solution

u = (x2 − x3) sin(3πy).
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Example 5.2 Let a(u) = 1, b(u) = 1
2
u, c(u) = 0 and

f = 200 cos(2πx +
π

2
)
(
(y2 − y3)[2π2 + 25 cos(2πx +

π

2
)(2y − 3y2)

−50π sin(2πx +
π

2
)(y2 − y3)] + 3y − 1

)
such that the exact solution of (1) is

u = 50 cos(2πx +
π

2
)(y2 − y3).

Example 5.3 Let a(u) = u + 1, b(u) = 0, c(u) = 1 and

f = [(x − x2) sin(3πy) + 1][2 + 9π2(x − x2)] sin(3πy)

− (1 − 2x)2 sin2(3πy)− 9π2(x − x2)2 cos2(3πy) + (x − x2) sin(3πy)

such that (1) has the solution

u = (x − x2) sin(3πy).

Example 5.4 Let a(u) = u + 1, b(u) = 0, c(u) = u and

f = 2[(x − x2)(y − y2) + 1](x − x2 + y − y2) − (1 − 2x)2(y − y2)2

− (x − x2)2(1 − 2y)2 + (x − x2)2(y − y2)2

with the exact solution
u = (x − x2)(y − y2).

The purpose of these numerical experiments is to compare the performance of H-
Broyden and H-Broyden-LU with Newton’s method, the H-Newton method and Broy-
den’s method. For all of these methods we use piecewise linear basis functions (ϕi)

N
i=1 on

the unit square Ω = (0, 1) × (0, 1).
Numerical results are listed in the following tables. “�it” denotes the number of iter-

ations. “time(s.)” consists of two parts. For H-Broyden-LU , H-Broyden and Broyden’s
method the first value is the time required for computing the LU decomposition and the
inverse, respectively, and the second one is for Broyden’s iteration. The iteration stops if
the stopping criterion ‖uk+1 − uk‖2 < 10−6 is satisfied.

In the case of Example 5.1, the numerical results are listed in Table 1–3 for λ = 10, 100,
respectively. The number of iterations is slightly higher when λ becomes larger. The re-
sults show that the H-Newton method converges faster than the H-Broyden method but
requires much more computational work. H-Broyden-LU requires significantly less time
than H-Broyden since the computation of the hierarchical LU decomposition is approxi-
mately 10 times faster than the computation of the hierarchical inverse. Additionally, in
each step of the iteration of H-Broyden-LU the update is not added to the H-matrices
like it is done in the H-Broyden method. From these results we also confirm that the
complexity of the H-matrix accelerated versions of Newton’s and Broyden’s method are
almost linear. Moreover, the number of iterations in all these methods does only slightly
depend on the number of degrees of freedom N .

Similar trends can be observed for Example 5.2, 5.3 and 5.4 in Table 4–9.

11



λ = 10 λ = 100
Newton Broyden Newton Broyden

N � it time(s.) � it time(s.) � it time(s.) � it time(s.)
3969 6 41.0 8 6.6 2.3 10 66.9 19 6.7 7.1
9025 6 385.7 8 69.9 14.8 11 721.8 19 65.4 35.6

16129 6 1828.3 8 292.6 39.7 11 3294.1 19 283.0 102.8
65025 - - - - - - - - - -

Table 1: iterations and time for Example 5.1 with λ = 10 and λ = 100.

H-Newton H-Broyden H-Broyden-LU
N � it time(s.) � it time(s.) � it time(s.)
3969 6 8.5 9 1.3 1.4 8 0.2 0.4
9025 7 36.9 9 4.7 3.6 8 0.5 1.0

16129 7 82.8 9 10.7 7.1 9 1.0 2.0
65025 8 667.1 10 77.9 42.2 9 6.3 8.4

130321 8 1984.2 10 226.8 96.1 10 15.8 21.0
261121 9 5001.5 10 523.1 214.5 11 37.1 42.0
522729 - - - - - 14 96.9 113.2

Table 2: iterations and time for Example 5.1 with λ = 10.
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H-Newton H-Broyden H-Broyden-LU
N � it time(s.) � it time(s.) � it time(s.)
3969 10 13.8 10 1.3 1.4 9 0.2 0.4
9025 10 49.9 10 5.1 4.3 9 0.7 0.8

16129 11 130.6 10 11.4 7.7 9 1.4 1.5
65025 11 900.4 10 82.1 42.5 9 8.3 6.4

130321 12 2940.8 10 241.6 99.9 9 20.3 15.6
261121 12 6568.8 11 548.1 238.2 10 49.8 33.7
522729 - - - - - 13 125.6 89.9

Table 7: iterations and time for Example 5.3.

Newton Broyden
N � it time(s.) � it time(s.)
3969 5 35.3 5 7.0 1.5
9025 5 336.4 5 62.7 7.3

16129 5 1422.5 5 300.7 26.8
65025 - - - - -

Table 8: iterations and time for Example 5.4.

H-Newton H-Broyden H-Broyden-LU
N � it time(s.) � it time(s.) � it time(s.)
3969 5 6.9 5 1.3 0.6 4 0.2 0.1
9025 5 25.9 5 5.1 1.7 4 0.7 0.3

16129 5 58.6 5 11.5 3.4 4 1.4 0.6
65025 5 411.4 5 82.4 18.8 5 8.4 3.1

130321 5 1232.1 6 247.0 55.5 7 20.4 10.1
261121 6 3305.4 6 549.8 114.0 8 49.4 22.8
522729 - - - - - 13 123.6 71.8

Table 9: iterations and time for Example 5.4.
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