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Abstract

A structured wavelet algorithm is developed to solve the Ornstein-Zernike integral
equation for simple liquids. The algorithm is based on the discrete wavelet transform
of radial distribution functions and different low-rank matrix approximations. The
fundamental properties of wavelet bases such as interpolation properties and orthogo-
nality are employed to improve the convergence and speed of the algorithm. In order
to solve the integral equation we have applied a combined scheme in which the coarse
part of the solution is calculated by the use of wavelets in a multilevel method, while
the fine part is solved by the direct iteration. Tests have indicated that the proposed
procedure is more effective than the conventional method based on hybrid algorithms.
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1 Introduction

Integral equation (IE) theory proved to be a successful tool for treating classical many-
body systems. With this radial distribution functions (RDF) are obtained by solving a
system of equations formed by the Ornstein-Zernike (OZ) integral equation and a closure
relation. The OZ equation is a nonlinear Fredholm integral equation of second-kind which
is frequently employed in the theories of various kinds of disordered matter, e.g. classical
liquids [22, 23, 32], electrolytes [7, 24, 34], polymers [29], electrons in liquids [36] and plasmas
[33, 37]. For most systems the OZ equation has no analytic solution and, therefore, has to
be solved numerically. In the case of multicomponent systems (e.g. solvated molecular
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complexes) this would lead to an essential computational cost. The aim of our paper is to
present a new approach for the numerical solution of the OZ equation which is based on
the wavelet transform [30] and on certain matrix compression techniques by means of a low-
rank approximation. We note that the so-called hierarchical (H) matrix format provides a
powerful tool for the data-sparse representation of a wide class of discrete nonlocal (integral)
operators [19, 20, 17]. In the multi-dimensional perspective, the H-matrix techniques can
be effectively combined with the Kronecker-product approximation [21].

For the purpose of clarity we will describe the procedure only for the simplest case of a
mono-atomic isotropic liquid with spherically symmetric Lennard-Jones interaction potential
between the particles,

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (1.1)

where σ and ε are the size and energy parameters, respectively. Our method can be in
principle extended to the case of molecular systems [4], with more complicated potentials,
without essential changes of the algorithm.

In the theory of liquids the principal structural quantity of interest is the pair correlation
function, g(r,Ω), which is proportional to the probability of observing a pair of particles at
a given distance r and mutual orientation Ω. For the case of a mono-atomic liquid with
spherical potential between particles we can omit the Ω–dependence of the pair correlation
function and consider it as a function g(r) only.

Let us denote the total correlation function h(r) := g(r) − 1. The OZ equation relates
this function with the direct correlation function c(r) for an isotropic liquid with density ρ
by

h(r) = c(r) + ρ

∫
R3

c(|r − r′|)h(|r′|)dr′. (1.2)

There are two unknowns in Eq. (1.2) and therefore it is still incomplete. A second equa-
tion, usually named ”closure” relation, is required which couples these quantities with the
interaction potential U(r). Formally the closure relation is written as

h(r) = exp[−βU(r) + h(r) − c(r) + b(r)] − 1, (1.3)

where β = (kBT )−1 is the inverse temperature, while kB is the Boltzmann constant. The
closure relation introduces the bridge function b(r) [32]. Given U(r), T , ρ, and b(r), the
IE method consists in finding a solution to Eqs. (1.2) and (1.3). By solving this system
of equations all the required correlation functions and, hence, all the thermodynamic and
structural properties of the fluid may be obtained. Since there is no exact expression for
b(r), the approximation of the bridge function is the key to contemporary IE theories. The
list of such approximating closures is still expanding and includes, for example, b(r) = 0
for the hypernetted chain (HNC) closure, or b(r) = ln(1 + h(r) − c(r)) − h(r) − c(r) in
the Percus-Yevick approximation, etc. These approximations have been studied extensively
for simple liquids, and their pros and cons are well documented in the literature [23, 32].
Correlation functions for a mono-atomic liquid with Lennard-Jones interaction potential are
given in Fig. 1.1.

There are only a few special cases where Eqs. (1.2) and (1.3) can be solved analytically
and, therefore, numerical solutions are necessary. For numerical calculations, the Fourier

2



0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14
−15

−10

−5

0

5

Figure 1.1: Radial parts of correlation functions h(r) (top) and c(r) (bottom) of a simple
mono-atomic liquid with density ρ = 0.7 and Lennard–Jones potential parameter ε = 0.7.

representation of the OZ equation,

ĥ(k) − ĉ(k) =
ρĉ2(k)

1 − ρĉ(k)
, (1.4)

is usually applied, where the hat means the three-dimensional (3D) Fourier transform (FT),
which reduces for a spherically symmetric function f(r) to the spherical Fourier-Bessel trans-
form of its radial part f(r),

f̂(k) =
4π

k

∫ ∞

0

r sin(kr)f(r)dr, (1.5)

where f̂(k) is the radial part of f̂(k). The inverse Fourier transform (FT) −1 can be obtained
in a similar manner:

f(r) =
4π

r

∫ ∞

0

k sin(kr)f̂(k)dk. (1.6)

In numerical calculations, the function f(r) can be assumed to be of finite support, i.e.,
f(r) = 0 for r ≥ R. For simplicity, we approximate f(r) on a regular grid with NJ = 2J

points, where J is an integer which determines the step size dJ of the grid as dJ = 2−JR.
Therefore, we can regard J as the resolution level. On a regular grid, the discrete versions
of the transformations (1.5) and (1.6) can be calculated with O(NJ logNJ) operations using
the Fast Fourier Transform (FFT).
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Recently, an alternative approach was proposed by several authors [5, 4, 12] based on the
use of wavelet basis functions. The multi-level wavelet basis is able to treat local peculiarities
of the radial distribution functions and therefore one obtains a more flexible and robust
scheme for solving the arising system of integral equations. The main idea of this algorithm
is to use the wavelet decomposition of the correlation functions h and c on level J , and then
find the initial approximation on the “coarse resolution level” J0 < J . In this case we use
only NJ0 of the wavelet coefficients which is about 2J−J0 times less than the original number
of grid points NJ .

The computational scheme described in Refs. [5, 4, 12] includes numerous iteration loops
which require extensive matrix operations. These operations have been performed in the full
matrix format resulting in the overall complexity O(N3

J0
logNJ0) in each internal iteration,

where NJ0 is the number of wavelet basis functions in usage. This complexity bound limits
the number of basis functions we can handle on a standard computer, hence it does not allow
an accurate representation of the radial distribution functions in terms of these bases. On
the other hand, a more detailed analysis of the full matrices involved in the different steps
of the computational scheme shows a high redundancy in the data. In fact, it is possible to
employ special structural properties of these matrices which lead to a dramatical reduction of
the computational cost while preserving the accuracy of the approximations. The main goal
of this paper is to demonstrate the potential efficiency of such an approach, first for isotropic
simple liquids. The compressed scheme requires an overall complexity O(N2

J0
logNJ0) and

at average hundred times less operations than the full matrix approximation with several
thousands of degrees of freedom NJ . The treatment of the general three-dimensional model
includes completely similar matrix operations which potentially allows to extend our method
to the case of three-dimensional models, where the full-matrix approximation seems to be
non-tractable.

The simplest method is based on the Picard scheme and proposes direct iterations. Un-
fortunately several hundred iterations may be needed even for a rather accurate initial ap-
proximation of γ(r). The Newton method [14, 27, 28] appears to be much more efficient, but
requires the calculation of the Jacobian matrix. Thus, the conventional numerical schemes
for solving IE suggest the solution to be divided into the “coarse” and “fine” parts and the
algorithm to be a hybrid of the Newton-Raphson (NR) and Picard schemes for the coarse
and fine parts, respectively. The former can be obtained as an expansion in the basis of roof
functions [14] or plane waves [27, 28]. Because this method does not guarantee the storage
problems to be completely solved, special efforts are required to approximate and store the
full Jacobian matrix. Another way in this direction is to use a combination of multi-grid
methods and matrix-free iterations [18]. Some matrix-free iterative procedures for solving
the OZ equation were demonstrated in [25], [26], however a discussion of this topic is beyond
the scope of our paper.

The current status of the implementation requires a routine for the additional Newton-
Raphson acceleration, hence, in this paper we will consider both the Picard algorithm and
the Newton-Raphson method and then discuss the choice of a basis set for the coarse solution,
namely wavelets.
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2 Wavelet based numerical scheme

2.1 Wavelet representation of the OZ equation

For simplicity we restrict our considerations only to orthonormal and compactly supported
wavelets. Details of wavelet applications to IE are described in [5, 4]. Some introduction to
the wavelet theory is given in the Appendix of this article.

We employ the fact that any square-integrable function f(r) can be expanded as a sum of
linear combinations of scaling functions {ϕJ0

s (r)} at the chosen resolution level J0 and wavelet
functions {ψj

s(r)} at all finer resolutions J ≥ j ≥ J0. For a discretized function given on a
finite interval the finest resolution is restricted by the resolution level J , which corresponds
to the step size dj = 2−jR of the mesh. The sequence of different translations on different
scales {j} is also limited by the number Nj � 2j . The coefficient of proportionality depends
on the length of the wavelet support and the boundary conditions used in the expansion

f(r) =

NJ0∑
s=0

asϕ
J0
s (r) +

J∑
j=J0

Nj∑
s=0

dj
sψ

j
s(r), (2.1)

where the coefficients {as} and {dj
s} are obtained by the scalar product with the correspond-

ing dual basis functions:
as = 〈f, ϕ̃J0

s 〉; dj
s = 〈f, ψ̃j

s〉. (2.2)

The calculation of the coefficients in (2.1) and (2.2) is known as the discrete wavelet transform
(DWT). In expansion (2.1) the first term gives a ”coarse” approximation of f(r) at the lowest
resolution level J0 and the second term gives a sequence of refinements (details) until the
finest resolution level J . In practice the details are cut off at an appropriate resolution level
J resulting in a finite number of decomposition levels J∆ ≡ J − J0.

Applying the fast wavelet transform (FWT) to calculate the coefficients [30], we can
avoid the direct calculations of (2.2). The elegant pyramidal procedure has a linear cost. To
apply the wavelet technique to IE, we employ the wavelet representation of the OZ equation,
which is given in [5]. Here, we only briefly outline the key steps of the method.

For numerical purposes we use a different form of the OZ equation, namely,

γ(r) = ρ

∫
c(|r − r′|)γ(|r|′)dr′ + ρ

∫
c(|r − r′|)c(|r|′)dr′, (2.3)

where γ(r) is the so-called indirect correlation function γ(r) = h(r) − c(r). We then write
the closure relations for γ(r) in similar manner as (1.3):

c(r) = exp[−βU(r) + γ(r) + bγ(r)] − γ(r) − 1. (2.4)

As in the conventional IE method [14, 27, 28] we decompose the radial parts of the
correlation functions into the coarse and fine components:

c(r) = cc(r) + cf (r), γ(r) = γc(r) + γf(r). (2.5)
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Then, we express the radial parts of the coarse components of direct and indirect correlation
functions in terms of the chosen wavelet scaling functions on the appropriate resolution level
J0:

γc(r) =

NJ0∑
s=0

Γsϕ
J0
s (r), cc(r) =

NJ0∑
s′=0

Cs′ϕ
J0

s′ (r). (2.6)

In the following we omit the index J for NJ0 (i.e., N0 = NJ0) and J0 in the notation ϕJ0

because they do not change during the calculations. We denote the set of approximating
coefficients {Γs}, and {Cs′}, as the vector–columns Γ, and C respectively. In general the
relevant coefficients are found by the inner product of c(r) and γ(r) with the scaling functions
{ϕ} similarly to (4.8). Here, we use the FWT to compute them.

We define a 3D function ϕs(r) as a spherically symmetric function with the 1D scaling
function ϕs(r) as the radial part of it. Then, we introduce a 3D function Φss′(r) which is
the convolution product of two functions ϕs(r) and ϕs′(r):

Φss′(r) =

∫
R3

ϕs(|r − r′|)ϕs′(|r′|)dr′. (2.7)

As the ϕs(r) and ϕs′(r) are spherically symmetric with the same symmetry centre which
we assume to be zero for simplicity, the functions Φss′(r) are spherically symmetric as well.
We denote the radial parts of these functions as Φss′(r). This function can be calculated
with the help of the spherical Fourier-Bessel transform (1.5) of the corresponding wavelet
functions.

If we substitute (2.6) and (2.7) in the OZ equation (2.3) we obtain the following equation
for the wavelet representation of the radial parts of the correlation functions:

N0∑
s=0

Γsϕs(r) = ρ

N0∑
s,s′=0

ΓsCs′Φss′(r) + ρ

N0∑
s,s′=0

CsCs′Φss′(r). (2.8)

Taking the 1D scalar product of both parts of this equation with the scaling function ϕm(r)
we obtain (due to the orthogonality of the scaling functions)

Γm = ρ

N0∑
s,s′=0

ΓsCs′

∫
ϕm(r)Φss′(r)dr + ρ

N0∑
s,s′=0

CsCs′

∫
ϕm(r)Φss′(r)dr, (2.9)

for m = 0, 1, ..., N0. We introduce the scalar product convolution matrix W ∈
R

(N0+1)×(N0+1)×(N0+1) whose elements are given by

W (s, s′, m) =

∫
ϕm(r)Φss′(r)dr. (2.10)

For the sake of clarity in the following we introduce a new variable like N ′
0 = N0 + 1

which determines the number of wavelet coefficients used.
We can see that for each fixed s, s′ a vector W (s, s′, :) is the set of scaling function

coefficients of the wavelet transform (4.8) of the convolution product Φss′, which is, in fact,
a symmetric N ′

0 ×N ′
0 matrix.
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We introduce matrices AC,AΓ ∈ R
N ′

0×N ′
0 and a column-vector B ∈ R

N ′
0 whose elements

are defined as

AC(m, :) = CT ·W (:, :, m), AΓ(m, :) = ΓT ·W (:, :, m), B = AC · C, (2.11)

where the upper index T denotes the transposition, the symbol ” · ” denotes the matrix
product and ” : ” means a sub-matrix defined on an one-dimensional index set. In equation
(2.10) the convolution matrix W depends only on the choice of the wavelet basis and the
number of decomposition levels, hence it has to be evaluated only once before the calculation
of the correlation functions and can then be stored. By substitution of (2.11) to (2.9), we
obtain the wavelet representation of the OZ equation for the coarse parts of the chosen
number J0 of resolution levels:

Γ = ρ [I − ρ · AC]−1 · B, (2.12)

where I is the unity matrix, while [I − ρAC]−1 is the matrix inverse to [I − ρAC]. Using the
inverse FWT we can reconstruct γc(r) from the set of coefficients Γ. As the fine parts of the
correlation functions are assumed to be zero at the initial step we approximate (2.4) as:

cc(r) = exp[−βU(r) + γc(r) + b(γc)] − γc − 1. (2.13)

Using the FWT we perform the wavelet transform of cc(r) to obtain C and use it as a next
input for (2.12). Thus, our numerical scheme proposes the following cycle for obtaining the
coarse solution:

Γin (FWT )−1

−→ γc(r)
(2.13)−→ cc(r)

(FWT )−→ C
(2.12)−→ Γout. (2.14)

If the number of wavelet coefficients is not too large, the solution of (2.12) with the interpo-
lation process by direct and back FWT requires less computational cost than the direct and
the back FFT at each iteration.

We improve the convergence of the scheme by using the Newton algorithm. We can
regard the system of equations (2.9) as the vector equation F(Γ) = 0 defined by a multi-
variate function F(Γ) = {Fm(Γ)}, m = 0, 1, ..., N0. The components of this function are
given by

Fm(Γ) = ρ

N0∑
s,s′=0

ΓsCs′

∫
ϕm(r)Φss′(r)dr + ρ

N0∑
s,s′=0

CsCs′

∫
ϕm(r)Φss′(r) − Γm. (2.15)

In the matrix form we have to solve the nonlinear equation (since B = AC · C)

F(Γ) = ρAΓ · C + ρB − Γ = 0, (2.16)

where C = C(Γ) depends on Γ according to (2.13). In order to perform the Newton
algorithm we need to determine the elements of the Jacobian matrix G = {Gk

m}N0
k,m=0 by

differentiating this equation with respect to Γk,

Gk
m =

∂Fm

∂Γk

= ρ

N0∑
s′=0

Cs′ W (k, s′, m) + ρ

N0∑
s,s′=0

Ck
s W (k, s′, m) (Γs′ + 2Cs′) − δm,k, (2.17)

where Ck
s = dCs

dΓk
. We can rewrite this equation in the matrix form as:

G = ρAC + ρ(AΓ + 2AC) · C∗ − I, (2.18)

where C∗ = {Ck
s }N0

k,m=0 ∈ R
N ′

0×N ′
0.
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2.2 Global iteration

When the required accuracy for the coarse part is achieved we start the second loop for
calculating the fine part γf(r). For this purpose we consider the coarse part γc(r) as an
initial approximation for γ(r) at the second iteration loop. Starting from this approximation
we perform the calculations by the fixed-point (Picard) direct iterations:

γin(r)
(2.4)−→ c(r)

(FFT )−→ ĉ(k)
(2.3)−→ γ̂(k)

(FFT )−1

−→ γout(r). (2.19)

If the coarse solution is close enough to the true one the number of fixed-point iterations
for the fine discretisation is not so large (it does not exceed several dozens).

The efficiency of the method depends on the number of coefficients. Due to the special
choice of the wavelet basis this number can be rather small, providing a rapid convergence
of iterations.

As it was shown in [5, 4] this method allows us to solve integral equations for simple and
molecular liquids with less computational effort than the conventional methods of integral
equation theory. But as we will show in the next chapter the speed and the convergence of
this method can be dramatically improved using the fundamental properties of wavelets and
radial correlation functions.

2.3 Fast solver for the coarse solution

Although the scheme described above is significantly faster than conventional methods, we
still have to pay for the direct and back FWT which costs about O(N) for each cycle, where
N is the size of the finest grid. Fortunately, we have a possibility to avoid these operations.
Note that in most cases of practical interest (i.e., non hard sphere potentials) the functions
γ(r) and c(r) are quite smooth. Thus, these functions are at least twice differentiable in the
segment (0,∞]. In this case we can employ the fact that for several wavelet families such as
Coifman wavelets [8] (see also the hyperbolic wavelets [10] for the multi-dimensional case)
the coefficients of the wavelet expansion of a function f(x) can be approximately evaluated
directly from the values of the function itself [9]. The approximation error depends mainly
on the basis set and number of derivatives [2, 8, 31]. In fact, we can also obtain the values
of the reconstructed function at the nodes directly from the wavelet coefficients. In our case
this means that we can approximate the values of C using the relationship (2.13) as

Cs ≈ exp[−βU(sdJ0) +KΓs + b(KΓs)]/K − Γs − 1/K, (2.20)

where dJ0 denotes the distance between the nodes at level J0 andK is a normalizing constant.
These values depend only on the particular implementation of the FWT algorithm. In our
case dJ0 = dJ2J∆ , where dJ is the size of the grid on the finest level J . The constant K is
equal to 2−J∆/2 with J∆ = J − J0. Thereby we can avoid the direct and back FWT in the
cycle (2.14) and simplify our scheme to

Γin (2.20)−→ C
(2.12)−→ Γout. (2.21)

We also employ the relation (2.20) for the analytical calculation of the Jacobian matrix.
Taking into account the approximate relation (2.20) we can the find elements of C∗ in (2.18)
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as

Ck
s ≈

(
exp[−βU(sdJ0) +KΓs + b(KΓs)](1 +

∂b(sdJ0)

∂Γs
) − 1

)
δs,k, (2.22)

where δs,k is the Kronecker symbol.
Therefore, in this approximation the matrix C∗ is strongly diagonal dominant and we

can avoid the expensive numerical calculation of the Jacobian G using this analytical rela-
tionship. We also use this approach for the calculation of the matrix W.

2.4 ACA algorithm applied to AC and AΓ

In this section we explain in detail how one can compress matrices like A = AC or A = AΓ

efficiently without assembling the whole matrix. This method is then applied to AC and
AΓ, respectively.

In order to assemble the matrix A efficiently, we exploit the fact that A can be approxi-
mated up to some small error by a matrix Ã of considerably lower rank, i.e.,

K := rank(Ã) 
 N ′
0.

We can exploit this theoretical feature by writing the N ′
0×N ′

0 matrix Ã ≈ A in the factorized
form

Ã = UV T , U, V ∈ R
N ′

0×K . (2.23)

Obviously, we have to store and compute only the 2N ′
0K entries for U and V instead of the

(N ′
0)

2 entries for A. The matrix Ã can be used in the computation of the inverse [I− ρA]−1

by use of the Sherman-Morrison-Woodbury formula that we will explain in the next Section
2.5. The same holds for the inversion of the Jacobian G.

The factorized form (2.23) of the matrix Ã ≈ A can be obtained without computation
of the whole matrix A. Instead, we need to compute only a few rows and columns of
A. Consequently, we need to compute only a few layers of the three-dimensional tensor W.
The setup of the factorized form (2.23) is done by the Adaptive Cross Approximation (ACA)
algorithm [1] that is given in Algorithm 1.

The total complexity of Algorithm 1 is O(N ′
0K

2), but only 2N ′
0K entries of A have to

be computed, namely the rows Irow := {i1, . . . , iK} and the columns Jcol := {j1, . . . , jK} of
A. This means, we need only the entries W (:, i, :) and W (:, :, j) of the tensor W for i ∈ Irow
and j ∈ Jcol. Instead of the N ′3

0 entries of W we have to setup only 2N ′2
0 K entries. This is

further reduced to N ′
0K if W is sparse. We will comment on the choice of the parameter K

in Section 3.

Remark 2.1 (On the choice of the pivots i∗k, j
∗
k) The general choice of the pivots in Al-

gorithm 1 can be changed in the following three ways.

1. The initial pivot index i∗1 can be chosen based on knowledge about the underlying phys-
ical or chemical application. Basically, we are only interested in a good initial guess
for a row i∗1 with a large norm.

2. If all pivot indices i∗k, j
∗
k are given, e.g., by some a priori knowledge or due to the

fact that we have already computed a low rank “cross approximation” for a “similar”
matrix, then the whole choice of pivot indices can be skipped.
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Algorithm 1 ACA with partial pivoting

procedure ACA(A, var U , V , K)
Choose an initial pivot index i∗1 ∈ {1, . . . , N ′

0}
k := 0
repeat
k := k + 1
Compute the entries of the vector V (:, k) ∈ R

N ′
0 by

V (j, k) := A(i∗k, j) −
k−1∑
µ=1

U(i∗k, µ)V (j, µ).

Determine an index j∗k that maximises δ := |V (j∗k , k)|
Compute the entries of the vector U(:, k) ∈ R

N ′
0 by

U(i, k) :=
1

δ

(
A(i, j∗k) −

k−1∑
µ=1

U(i, µ)V (j∗k , µ)

)

Determine the next pivot index i∗k+1 �= i∗k that maximises |U(i∗k+1, k)|
until k = K

3. If we want to compute a cross approximation not only for a single matrix but a set
of quite “similar” matrices, then we can determine the pivot indices just once and
use these for all matrices. Since the pivot indices are determined only once, we can
enhance the search for the pivots in the following way: given an initial guess (i∗k, j

∗
k)

and corresponding vectors

V (:, k) = A(i∗k, :) −
k−1∑
µ=1

U(i∗k, µ)V (:, µ), U(:, k) = A(:, j∗k) −
k−1∑
µ=1

U(:, µ)V (j∗k , µ)

we alternately update one of the two by exchanging the pivot index i∗k (or j∗k) by the
maximiser of |U(:, k)| (or |V (:, k)|, respectively). We call this the p times enhanced
pivot search if we update both i∗k and j∗k in this way p times.

2.5 Sherman-Morrison-Woodbury formula for the matrix inverse

The computation of the inverse [I − ρAC]−1 and the vector Γ in formula (2.12) can be
simplified if the matrix AC is replaced by the low-rank approximation ÃC = UV T ≈ AC

due to the so-called Sherman-Morrison-Woodbury formula [16]:

Γ = ρ[I − ρAC]−1B

≈ ρ[I − ρUV T ]−1B

= ρ[I + ρU [I − ρV TU ]−1V T ]B

= ρB + ρU [I − ρV TU ]−1
(
V TρB

)
.
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By this means, we first compute the matrix-vector product Y := V TρB for the K × N ′
0

matrix V T , solve the K×K system [I−ρV TU ]Z = Y and multiply Z to the N ′
0×K matrix

ρU . The total complexity for the computation of Γ reduces from O(N ′3
0 ) to O(N ′

0K
2).

The computation of the inverse to the Jacobian G works in the same way: let both AC

and AΓ be given in the factorized form

AC ≈ UV T , AΓ ≈ UΓV
T
Γ , U, V, UΓ, VΓ ∈ R

N ′
0×K .

We define the N ′
0 × 2K matrices

UG := [U | UΓ] , VG :=
[
(I + 2(C∗)T )V | (C∗)TVΓ

] ∈ R
N ′

0×2K (2.24)

and observe

G = ρAC + ρ (AΓ + 2AC)C∗ − I

= ρ (AΓC
∗ + AC(I + 2C∗)) − I

≈ ρ
(
UV T (I + 2C∗) + UΓV

T
Γ C∗)− I

= ρUGV
T
G − I.

As above we can derive a formula for the evaluation Γi+1 := Γi −G−1F (Γi) of the inverse in
order to obtain

Γi+1 ≈ Γi +
[
I − ρUGV

T
G

]−1
F (Γi)

= Γi + F (Γi) + ρUG(I − ρV T
G UG)−1

(
V T

G F (Γi)
)
.

The computation of Γi+1 involves the inversion of the 2K × 2K matrix I − ρV T
G UG and

two matrix-vector products for the N ′
0 × 2K matrices VG, UG. The total complexity to

approximate Γi+1 is O(N ′
0K

2). One can even omit setting up UG, VG explicitly and instead
insert formula (2.24) in the above approximation for Γi+1. An efficient procedure for this is
given in Algorithm 2.

2.6 Details of calculations

To illustrate our scheme we have investigated a uniform Lennard-Jones fluid with interacting
potential U(r) given by U(r) = 4ε[(σ/r)12 − (σ/r)6], where σ and ε are the size and energy
parameters, respectively. The precision parameter η for the numerical solution was equal to
10−4.

We solved the OZ equation (see Introduction) of the isotropic Lennard-Jones liquid with
ρ = 0.7, σ = 3, and ε = 0.7. For the finest grid we used NJ = 4096 and a stepwidth
dJ = 1/80.

For the wavelet algorithm we have used N ′
0 = 256 of the scaling function coefficients. The

Picard iteration loops were running until the mean square norm of the difference between
the solutions of the adjacent loops was less than the threshold parameter 10−4.

First of all we have solved the coarse approximation to the OZ equation by use of the
full-format Picard algorithm to obtain the matrix AC ∈ R

256×256. Then, starting from the
obtained coarse solution, we performed several dozens of direct Picard iterations on the finest
grid (using the FFT-based algorithm) to refine the final solution of the OZ equation.

11



Algorithm 2 Efficient computation of Γi+1

procedure NewtonStep(U , V , UΓ, VΓ, C∗, ρ, Γi, F (Γi), var Γi+1)
Initialize Γi + 1 := Γi + F (Γi)
Compute the three vectors

Y0 := C∗F (Γi) ∈ R
N ′

0, Y1 := V T (F (Γi) + 2Y0) ∈ R
K , Y2 := V T

Γ Y0 ∈ R
K .

Setup the 2K × 2K matrix

M =

[
M11 M12

M21 M22

]
, M11,M12,M21,M22 ∈ R

K×K

by using a temporary matrix UC ∈ R
N ′

0×K :
UC := C∗U , M21 := −ρV T

Γ UC , UC := 2UC + U , M11 := I − ρV TUC

UC := C∗UΓ, M22 := I − ρV T
Γ UC , UC := 2UC + UΓ, M12 := −ρV TUC

Solve the linear system [
Z1

Z2

]
:=

[
M11 M12

M21 M22

]−1 [
Y1

Y2

]
Compute the vector

Γi+1 := Γi + F (Γi) + ρUZ1 + ρUΓZ2

The same procedure was repeated for the Newton scheme.
The evaluation of the convolution product (2.7) can be easily performed in the case of

spherically symmetric functions. In this case it reduces to a one-dimensional integration of
the Fourier transform (1.4) of the relative scaling functions. Moreover, most of the coefficients
(2.10) are nullified due to the symmetry of the convolution and compression properties of
the FWT for integral operators. According to [2], we can ignore all the coefficients which
are less than a constant µ. We choose µ = 10−5, which provides an accurate calculation of
correlation functions. For all our calculations we start from the zero initial vector Γin

1 .
In addition we should mention that W depends only on the basis set and the resolution

level. Therefore, we do not need to calculate W in each cycle (and in the each run of the
program as well) but evaluate the matrix W only once and then save it as a file in an
operating memory. In general, it is possible to create a date-base of these matrices. That is
why we suppose to regard them as table data and do not take into account its calculation
expenses.

All calculations were performed on a single CPU of a SUN UltraSPARC running on
900 MHz clock rate. We used the Matlab 7.1 program [6] for all our calculations.
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3 Numerical results and discussion

3.1 Comparative analysis of the compressed matrix representa-
tion

In Figure 3.1 we have depicted the structure of the matrices AC and AΓ for the final solution
of the coarse parts of the correlation functions, and G+ I in the first and 10th NR iteration.

Figure 3.1: Structure of the matrices AC - a), AΓ - b) for the final solution of the coarse
parts of the correlation functions and G + I in the first - c) and 10th NR iteration - d).

We have compared the efficiency of the ACA-compression of the matrices AC and AΓ

with the compression rate of a Singular Value Decomposition (SVD). As a criterion we

have chosen the parameter ∆ :=
‖AC−Acomp

C ‖
2

‖AC‖2
, where ‖. . .‖2 denotes the spectral norm of a

matrix and Acomp
C denotes the compressed version of the matrix AC. The same parameter

was calculated for the matrix AΓ, respectively. The results are presented in Table 3.1, where
we have shown the dependence of ∆ from the rank of the compressed matrices.

We can see from Table 3.1 that we can roughly approximate the full matrices AC,AΓ ∈
R

256×256 up to an error of 10 percents by the low-rank ACA approximation with a rank in
the range 10−15. Since in this part of the algorithm we are seeking only the coarse solution,
we consider this accuracy sufficient for our purposes.
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∆ SVD, AC ACA, AC SVD, AΓ ACA, AΓ

10% 8 10 12 15
5% 10 20 18 20
1% 18 35 22 32

0.1% 36 60 35 58

Table 3.1: Comparison of the square norm discrepancy ∆ between the full-format matrices
AC, AΓ and the compressed counterparts Acomp

C , Acomp
Γ with a suitable rank for both the

SVD and ACA compression scheme.

3.2 Comparative analysis of the speed of different algorithms

In Figure 3.2 we have depicted the matrices AC, AΓ together with their compressed coun-
terparts Acomp

C (rank 10) and Acomp
Γ (rank 15). Obviously, the compressed versions of the

matrices are quite similar to the original ones.

Figure 3.2: Structure of the original matrices AC - a), AΓ - c) for the final solution of the
coarse parts of the correlation functions and theirs compressed counterparts: Acomp

C (rank
10)- b) and Acomp

Γ (rank 15) - d).
The OZ parameters are ρ = 0.8, σ = 3, and ε = 0.7.

In order to illustrate the advantage of our scheme for the matrix multiplication and
inversion compared to the standard full-format operations, we have measured the CPU time
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needed to find a solution of the OZ equation for the full-format algorithm and the ACA-based
one with rank(Acomp

C ) = 10 and rank(Acomp
Γ ) = 15.

In the ACA Picard algorithm we have used the full ACA decomposition only for the first
10 iterations. Then we fixed the ACA cross for all following iterations. It means that after
10th iteration we do not recalculate the pivots i∗k, j

∗
k of ACA decomposition for any following

iterations (see Remark 2.1).
The results are presented in Table 3.2. From that table we can see that the operation

time needed for the ACA-based algorithms is one order of magnitude less than the time
needed for the full format operations.

The results for the Newton scheme are shown in the Table 3.2. We can see that the
Newton algorithm is up to ten times faster than the Picard iteration.

FF, P ACA, P FF, N ACA, N
Number of coarse iterations 198 179 5 5
Coarse iteration’s CPU time [sec.] 68.0 10.5 6.4 3.4
∆c 6 · 10−3 5 · 10−2 6 · 10−3 5 · 10−2

Number of refining iterations 21 50 21 50
Refining iteration’s CPU time [sec.] 1.5 2.0 1.5 2.0
Complete CPU time [sec.] 61.5 9.5 7.6 5.1

Table 3.2: Comparison of the CPU time needed to perform the full-format (FF) Picard (P)
and Newton (N) method and the ACA-based counterparts. The symbol ∆c denotes the mean
square norm of the difference between the obtained coarse solution and the final solution
after the refining iterations on the finest grid.

We use the Matlab program without caring about the detailed efficient management of
the allocated memory. Therefore, we pay some extra cost for the loading operations which
can be avoided, in principle.

In order to illustrute the real calculational cost we plotted in Figures 3.3 and 3.4 the
loading time (dotted line) and calculation time for the different algorithms. We can see
from these pictures that the ACA-based Newton scheme is much more efficient than the
full-format Newton scheme.

4 Appendix A: Wavelet Theory

The fundamental theory behind wavelets is known as the Multi–Resolution Analysis (MRA).
Most of the rigorous results and definitions from MRA are not usually required for practical
applications. The only equations which are needed for the work described herein will be intro-
duced in this section. We shall introduce the wavelet bases in a general way as biorthogonal
wavelets. Moreover, we shall use the Discrete Wavelet Transform (DWT) technique [8, 30] to
parameterize the RDFs. There is a good introduction to the wavelet techniques in Ref. [15].
We will also follow the style of that book henceforth. The multiresolution approach is based
on the idea that the wavelet functions generate a hierarchical sequence of subspaces in the
space of square–integrable functions over the real axis L2(R), which forms the MRA.
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Figure 3.3: Comparison of loading CPU time (dotted line), calculational CPU time for the
full-format Picard scheme (solid line) and ACA-based Picard scheme (dash-dotted line) with
respect to the number of iterations. The arrows depict the time when the demanded accuracy
is achieved.

The scaling functions ϕ(r) and ϕ̃(r) produce a biorthogonal MRA if they satisfy the
following conditions.

(i) Translates of these functions with integers ϕs = ϕ(r − s), ϕ̃s = ϕ̃(r − s), s ∈ Z,
are linearly independent and produce bases of the subspace V0 ⊂ L2(R) and their dual
counterpart Ṽ0 ⊂ L2(R) correspondingly. Dyadic dilates of these functions ϕjs = ϕ(2jr− s),
ϕ̃js = ϕ̃(2jr − s), j ∈ Z, generate hierarchical sets of subspaces {Vj} and {Ṽj}. Specifically,
Vj contains all scaling functions on level j. This means that if a function f(r) is contained
in the space Vj , its integer translates have to be contained in the same space,

f(r) ∈ Vj ⇔ f(r − s) ∈ Vj, f(r) ∈ Ṽj ⇔ f(r − s) ∈ Ṽj, s ∈ Z.

Moreover, if a function f(r) is contained in the space Vj , the dilated function f(2r) has to
be contained in the higher resolution space Vj+1

f(r) ∈ Vj ⇔ f(2r) ∈ Vj+1, f(r) ∈ Ṽj ⇔ f(2r) ∈ Ṽj+1, j ∈ Z.
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(ii) The scaling function spaces and their dual counterpart satisfy

Vj ⊂ Vj+1,
∞⋃

j=−∞
Vj is dense in L2(R),

∞⋂
j=−∞

Vj = 0, (4.3)

Ṽj ⊂ Ṽj+1,

∞⋃
j=−∞

Ṽj is dense in L2(R),

∞⋂
j=−∞

Ṽj = 0.

(iii) The sets of functions ϕjs(r) and ϕ̃js(r) are biorthogonal to each other. It means that
for any s, s′ ∈ Z: ∫

ϕjs(r)ϕ̃js′(r) dr = δss′.

(iv) There is a wavelet function ψ(r) and its dual wavelet function ψ̃(r) such that their
integer translates ψs(r) = ψ(r − s), ψ̃s(r) = ψ̃(r − s), and dyadic dilates ψjs = ψ(2jr − s),
ψ̃js = ψ̃(2jr−s), form subspaces Wj and W̃j which are complementary to Vj and Ṽj so that:

Vj+1 = Vj ⊕Wj , Ṽj+1 = Ṽj ⊕ W̃j , W̃j⊥Vj , Ṽj⊥Wj . (4.5)
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(v) From the above relations it follows that L2(R) can be decomposed into the approxi-
mation space Vj0

and the sum of the detail spaces Wj of higher resolutions j � j0:

L2(R) = Vj0

∞⊕
j≥j0

Wj , (4.6)

where j0 ∈ Z is a chosen level of resolution. This means that any square–integrable function
f(r) can be represented as a sum of linear combinations of the scaling functions {ϕj0} at a
chosen resolution j = j0 and the wavelet functions {ψj} at all finer resolutions j ≥ j0. This
can be written as

f(r) =

∞∑
s=−∞

aj0sϕj0s(r) +

∞∑
j≥j0

∞∑
s=−∞

djsψjs(r), (4.7)

where the coefficients {aj0s} and {djs} are obtained as the scalar products with the appro-
priate dual basis functions,

ajs =

∫
f(r)ϕ̃js(r) dr, djs =

∫
f(r)ψ̃js(r) dr. (4.8)

The later equation defines the Discrete Wavelet Transform (DWT).
As ϕ(r) ∈ V0 and V0 ⊂ V1, ϕ̃(r) ∈ Ṽ0 and Ṽ0 ⊂ Ṽ1, we can express ϕ(r) (as well as ϕ̃(r))

as a linear combination of the basis functions in V1 (Ṽ1):

ϕ(r) =
∑

s

hsϕ(2r − s), ϕ̃(r) =
∑

s

h̃sϕ̃(2r − s). (4.9)

This equation is called the dilation equation. Similarly, ψ(r) and ψ̃(r) must satisfy a wavelet
dilation equation:

ψ(r) =
∑

s

wsϕ(2r − s), ψ̃(r) =
∑

s

w̃sϕ̃(2r − s). (4.10)

The above sets of coefficients are usually called ”filters” and they are completely sufficient
in order to describe a chosen wavelet basis because there are several procedures on how to
build up numerical values of the wavelet functions from the set of filters [30, 8, 15]. We
should emphasize here that there are no analytic expressions for biorthogonal (orthogonal)
wavelets with a finite support1. However, these basis functions are determined in terms of
their filter coefficients only.

The scaling functions and the wavelets have a finite support only in the case of a finite
number of the coefficients hs and ws. Due to their biorthogonal nature these functions satisfy

1This is true except of the simplest basis, Haar basis, which is constructed from piecewise constant
functions [8].
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the relations: ∫
ϕja(r)ϕ̃jb(r) dr = δab,∫

ϕja(r)ψ̃lb(r) dr = 0, (l ≥ j), (4.11)∫
ϕ̃ja(r)ψlb(r) dr = 0, (l ≥ j),∫

ψja(r)ψ̃lb(r) dr = δjlδab,

for any integer j, l, a, b such that l ≥ j. If the pairs of the decomposition functions {ϕ̃, ψ̃} and
the reconstruction functions {ϕ, ψ} are identical, the transform is called ‘orthogonal wavelet
transform’. Otherwise we shall talk about a more general ‘biorthogonal wavelet transform’.

In the expansion (4.7) the first term gives a ‘coarse’ approximation for f(r) at the res-
olution j0 and the second term gives a sequence of successive ’details’ (see also (2.1)). In
practice, we actually do not need to use the infinite number of resolutions. Therefore, the
sequence of details is cut–off at an appropriate resolution jmax. Since all functions used in
numerical work are given in a finite interval, the sequence of translates {s} has also a finite
number of terms Sj, which is reduced dyadically from level to level.

Importantly, the explicit form of the basis functions is not required if we are using
(bi)orthogonal wavelets with a finite support and a dyadic set of scales j. Then the coeffi-
cients in Eq. (4.8) (see also (2.2)) can be calculated by the Fast Wavelet Transform (FWT)
algorithm [30, 31, 15]. The main idea of this algorithm is that a set of (bi)orthogonal discrete
filters at consequently dilated scales is used for the multi–resolution analysis of a signal. As
a result, to calculate the approximating coefficients, the convolution of the signal and the
relevant filter is only required for each scale, and the latter can be easily obtained.

By choosing relevant basis functions and scales we can nullify most of the coefficients
{a} and {d}, however controlling the L2-error since DWT satisfies the Parseval’s identity
[8]. Therefore, the function of interest can be reconstructed with the use of only a few
nonzero coefficients without any significant loss of accuracy, making the total number of
the approximating coefficients rather small. This feature of the of wavelet approximation is
widely used in processing of signals and images, the data for which should be compressed
with minimal losses [11]. In statistical mechanics of disordered media the wavelets are used
for the approximations of different kinds of the correlation functions [3, 13, 35].
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