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Abstract

We discuss best N -term approximation spaces for one-electron wavefunctions φi and reduced den-
sity matrices ρ emerging from Hartree-Fock and density functional theory. The approximation spaces
Aα

q (H1) for anisotropic wavelet tensor product bases have been recently characterized by Nitsche in
terms of tensor product Besov spaces. We have used the norm equivalence of these spaces to weighted
�q spaces of wavelet coefficients to proof that both φi and ρ are in Aα

q (H1) for all α > 0 with α = 1
q − 1

2 .
Our proof is based on the assumption that the φi possess an asymptotic smoothness property at the
electron-nuclear cusps.
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1 Introduction

The nonrelativistic Schrödinger equation within the Born-Oppenheimer approximation provides a firm
basis for most applications in quantum chemistry. For a time independent problem, the stationary solutions
correspond to the eigenvalue problem

HΨi = EiΨi, with Ψ (x1,x2, . . . ,xN ) ∈ H1(R3N ). (1.1)

The Hamiltonian in atomic units

H = −1
2

N∑
i=1

∆i −
K∑
a=1

N∑
i=1

Za
|xi − Ra| +

∑
i<j

1
|xi − xj| +

∑
a<b

ZaZb
|Ra − Rb| ,

includes Coulomb interactions between electrons and nuclei, where xi ∈ R
3 are the electron coordinates

and Za, Ra are charges and positions of the nuclei, respectively. Due to the presence of singular Coulomb
potentials in the Hamiltonian, certain types of inter-particle cusps have to be considered for exact or
approximate solutions of the Schrödinger equation (1.1). These cusps correspond to coalescence points
of electrons and nuclei. The asymptotic behaviour of wavefunctions near cusps has been studied in
Refs. [18, 19, 20]. From a computational point of view, the regularity properties of wavefunctions at
cusps determine the approximation error with respect to a given basis set. Despite their computational
significance rather few rigorous results exist concerning approximation errors for certain types of basis

1



functions. Even for the most popular Gaussian type orbitals (GTO) basis functions rigorous results for
electron-nuclear and electron-electron cusps exist only in the case of atoms, see Refs. [1, 21] and [16, 22],
respectively. Recently, hierarchical tensor product bases, so called sparse grids [2] and hyperbolic wavelets
[6] have emerged as an alternative to GTO basis sets in electronic structure calculations [7, 8, 12, 24].
Interesting results for tensor product approximations of exact solutions of the Schrödinger equation (1.1)
have been recently otained by Yserentant [29, 30]. We pursue are more restricted approach by studying
approximation errors of hyperbolic wavelet bases for certain classes of approximate wavefunctions. Within
the present work, we focus on effective independent-particle models like density functional theory (DFT)
and the Hartree-Fock (HF) method. The latter provides a starting point for many-particle methods that
enable the description of electron correlations [15]. Because of the absence of many-electron cusps in
these models, we can restrict ourself to the electron-nuclear cusp, where a single electron approaches a
nucleus. Electron-nuclear cusps are the only cusps that have a direct counterpart in the electron density
and therefore some significance in the framework of DFT. This has been recently demonstrated in a series
of papers [10, 11, 17], where it was proven that the exact electron density is smooth and even analytic
away from the nuclei.

1.1 Brief outline of best N-term approximation for tensor product bases

The concept of best N -term approximation belongs to the realm of nonlinear approximation theory. For
a detailed exposition of this subject we refer to Ref. [4]. Its basic idea is to characterize function spaces
which possess certain approximation properties with respect to a given basis {ζi : i ∈ Λ} in a separable
Hilbert space V . To be more explicit, we define nonlinear submanifolds

ΣN :=

{∑
i∈∆

ci ζi : ∆ ⊂ Λ,#∆ ≤ N

}
,

which consists of all possible linear combinations of basis functions with at most N terms. The corre-
sponding approximation error for an arbitrary function f ∈ H

σN (f) := inf
fN∈ΣN

‖f − fN‖H ,

characterizes the approximation spaces of best N -term approximations

Aαq (H) := {f ∈ H : |f |Aα
q (H) <∞}, (1.2)

with

|f |Aα
q (H) :=

(∑
N∈N

(NασN (f))qN−1

) 1
q

.

Loosely speaking, if f ∈ Aαq (H) it is possible to achieve a convergence rate σN (f) ∼ N−α with respect to
the number of basis functions. Here and in the following a ∼ b means that the quantities can be uniformly
bounded by some constant multiple of each other. Similarly a � b means that a is uniformly bounded
by some constant multiple of b. For our envisaged applications in electronic structure calculations, we
consider L2(Ω) and the Sobolev space H1(Ω) on bounded domains Ω ⊂ R

d equipped with their natural
Hilbert space structure.

It is not our intention to give a systematic exposition of best N -term approximations. Instead we re-
strict ourselve to orthogonal wavelet bases and highlight on the role of dimension d. In the one-dimensional
case of a bounded interval I ⊂ R, wavelets ψj,a := 2j/2ψ(2jx − a) with j ≥ j0 and scaling functions
ϕj0,a := 2j0/2ϕ(2j0x − a) on the coarsest level j0 provide an orthogonal basis in L2(I). According to
DeVore, Jawerth and Popov [5], the approximation spaces (1.2) can be identified with Besov spaces

Aα−tq (H) = Bα
q (Lq(I)), if α = t+

1
q
− 1

2
, (1.3)
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where t = 0, 1 for H = L2(I), H1(I), respectively. The Besov spaces are norm equivalent to weighted �q
spaces of wavelet coefficients

‖f‖qBα
q (Lq(I)) ∼

∑
a

|〈ϕj0,a|f〉|q +
∑
j≥j0

2jq(α−
1
q
+ 1

2
)

(∑
b

|〈ψj,b|f〉|q
)
, for α, q > 0, (1.4)

if (i) ψ,ϕ ∈ Bβ
q (Lq(I)) for some β > α, (ii) ψ has p vanishing moments with p > α, (iii) p > 1/q − 1 if

q < 1.
There exist two different approaches in order to extend (1.3) to higher dimensions. Within the first

approach, multivariate isotropic wavelets

γ
(s)
j,a(x) = ψ

(s1)
j,a1

(x1)ψ
(s2)
j,a2

(x2) . . . ψ
(sd)
j,ad

(xd), with s := (s1, s2, . . . , sd), a := (a1, a2, . . . , ad), (1.5)

are obtained by taking mixed tensor products of univariate scaling functions ψ(0)
j,a(x) := ϕj,a(x) and

wavelets ψ(1)
j,a (x) := ψj,a(x) on the same level of refinement j. Pure scaling function tensor products

γ
(0)
j0,a

are included on the coarsest level j0. For such kind of wavelet bases it has been shown [3] that the
approximation spaces (1.2) correspond to Besov spaces

A(α−t)/d
q (H) = Bα

q (Lq(Ω)), if α = t+
d

q
− d

2
, (1.6)

where t = 0, 1 for H = L2(Ω), H1(Ω), respectively. These Besov spaces are again norm equivalent to
weighted �q spaces of wavelet coefficients

‖f‖qBα
q (Lq(Ω)) ∼

∑
j≥j0

∑
s

2jq(α−
d
q
+ d

2
)

(∑
a

∣∣∣〈γ(s)
j,a |f〉

∣∣∣q
)

for α, q > 0, (1.7)

provided that the underlying univariate wavelet basis satisfies requirements (i) to (iii).
Due to the dimensional dependence of Eq. (1.6), isotropic wavelet tensor products loose much of their

efficiency in higher dimensions. At present, the only practicable approach to high dimensional problems
are hyperbolic wavelets [6] where the multivariate anisotropic wavelet basis

χj,a(x) = ψ
(s1)
j1,a1

(x1)ψ
(s2)
j2,a2

(x2) . . . ψ
(sd)
jd,ad

(xd), with j := ((j1, s1), (j2, s2), . . . , (jd, sd)), (1.8)

consists of tensor products of wavelets on possibly different levels. Univariate scaling functions ψ(0)
j0,a

may
appear in these tensor products on the coarsest level j0 only. Such kind of hierarchical tensor product
bases are well known in finite element methods as sparse grids [2]. Recently, best N -term approximation
has been extended to anisotropic wavelet bases by Nitsche [25]. The corresponding approximation spaces
(1.2) were characterized by Nitsche in terms of suitably defined tensor product Besov spaces. We restrict
our discussion to the Hilbert space H1(Ω) on a cube Ω = I1 × I2 × . . . × Id ⊂ R

d and refer for L2(Ω) to
Nitsche’s paper. In this case it is necessary to consider tensor product Besov spaces

Bαq,i(Ω) =
d⊗
k=1

B
α+δi,k
q (Lq(Ik)),

which have a distinguished direction. These spaces are norm equivalent to weighted �q norms for anisotropic
wavelet coefficents

‖f‖qBα
q,i

∼
∑
j

2jiq
(∑

a

|〈χj,a|f〉|q
)
, if

1
q

= α+
1
2
.
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The appropriate Besov spaces for best N -term approximation can be obtained as intersections

Bαq (Ω) =
⋂
i

Bαq,i(Ω).

A function f belongs to Bαq if and only if it is bounded with respect to the norm

‖f‖qBα
q

=
∑
j

2max{ji}q
(∑

a

|〈χj,a|f〉|q
)
. (1.9)

This norm requires univariate wavelets with p > α + 1 vanishing moments. The correponding relation
between approximation and Besov spaces is given by

Aαq (H1(Ω)) = Bαq (Ω), if α =
1
q
− 1

2
.

2 Best N-term approximation for HF and DFT methods

In the present work, we want to study best N -term approximation for one-electron wavefunctions φi(x),
so called orbitals, and one-electron reduced density matrices ρ(x,y) which appear in HF or DFT methods.
The latter can be expressed in terms of orbitals

ρ(x,y) =
∑
i

ni φi(x)φ∗i (y),

where ni is the occupation number of the i’th orbital. In HF and DFT methods only a finite number of
ni are nonzero. Therefore, we can focus our discussion on orbitals, which in the case of HF orbitals are
known to be C∞(R3 \A) [23] where A ⊂ R

3 corresponds to a discrete subset of the positions of the nuclei.
We assume that in an appropriately chosen bounded neighbourhood Ω of a nucleus located at R, the

orbitals possess an asymptotic smoothness property

|∂βφi(x)| ≤ cβ |x − R|1−|β| , for all x 
= R and all |β| ≥ 1,

where we have introduced the usual short-hand notation

∂β :=
∂β1

∂xβ1
1

∂β2

∂xβ2
2

∂β3

∂xβ3
3

,

with absolute value of the multi-index |β| := β1 + β2 + β3. This is actually a rather weak requirement
that is satisfied e.g. by the eigenfunctions of the hydrogen atom or by Slater type orbitals (STO) [15]

φSTO
nlm (r, ϕ, θ) = CnlmYlm(ϕ, θ) rn−1e−ζr, for n ≥ 1 (2.1)

which are supposed to be the most efficient basis sets for atomic HF calculations. The STOs are expressed
in spherical coordinates with r = |x − R|, where the angular dependent part is represented by spherical
harmonics Ylm.

2.1 Besov regularity of orbitals near electron-nuclear cusps

Since electron-nuclear cusps are well separated it is sufficient to consider a single nucleus. For simplicity,
we assume the nucleus to be located at the origin. In order to determine best N -term approximation
spaces for orbitals we prove the following lemma.
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Lemma 1. Suppose φ ∈ C∞(R3 \ 0) is asymptotically smooth

|∂βφ(x)| ≤ cβ |x|1−|β|, for all x 
= 0 and all |β| ≥ 1 (2.2)

in a bounded neighbourhood Ω ⊂ R
3 of the origin. Then φ ∈ Bαq (Ω) for all q > 0 and α = 1

q − 1
2 .

Proof. The prove of this lemma requires some general estimates for wavelet coefficients in various dimen-
sions. For convenience of the reader, we present these estimates with a sketch of their proof. Further
details can be found e.g. in Ref. [26].

Proposition 1. If f ∈ Lip(R), then∣∣∣∣
∫

R

f(x)ψj,k(x)dx
∣∣∣∣ � 2−

3
2
j‖f ′‖L∞(suppψj,k).

Proof. Using the identity

f(x) = f(x0) + (x− x0)
∫ 1

0
f ′(x0 + t(x− x0))dt,

together with the vanishing moments property of wavelets we obtain the desired estimate.

Proposition 2. Suppose the function f(x) with x ∈ R
d is smooth on the support of a pure wavelet tensor

product χj,a i.e. j := ((j1, 1), (j2, 1), . . . , (jd, 1)). Then the following estimate holds

∣∣∣∣
∫

Rd

f(x)χj,a(x)dx
∣∣∣∣ � 2−(p+1/2)|j|‖∂px1

. . . ∂pxd
f‖L∞(suppχj,a), with |j| :=

d∑
i=1

ji.

Proof. We proceed in a recursive manner by first considering the case d = 1. In the integrand, we replace
f by its Taylor series expansion at x0 ∈ suppψj,a. Due to the vanishing moments property, contributions
of derivatives ∂nf(x0) with n < p vanish. The remainder of the Taylor series can be represented by the
integral

(x− x0)p

(p− 1)!

∫ 1

0
(1 − t)p−1∂pf (x0 + t(x− x0)) dt,

from which the estimate for d = 1 follows. Through successive application of the d = 1 estimate to each
of the variables separately, the corresponding estimates for d > 1 follow.

Due to the strongly anisotropic character of the tensor products (1.8) it is necessary to subdivide the
parameter set Λj := {a ∈ Z

3 : (2−j1a1, 2−j2a2, 2−j3a3) ∈ Ω}.
Definition 1. For each combination of wavelet levels j1 ≥ j2 ≥ j3 ≥ j0, the discrete set Λj of translation
parameters a = (a1, a2, a3) is subdivided with respect to the parameter δ := 2L into the domains

(i) Aj := {a ∈ Λj : |a1|, |a2|, |a3| ≤ δ}
(ii) Bj := {a ∈ Λj : δ < |a1| ≤ 2j1−j2δ; |a2|, |a3| ≤ δ}
(iii) Cj = Ca ∪ Cb

Ca := {a ∈ Λj : 2j1−j2δ < |a1| ≤ 2j1−j3δ; |a2|, |a3| ≤ δ}
Cb := {a ∈ Λj : |a1| ≤ 2j1−j3δ; δ < |a2| ≤ 2j2−j3δ; |a3| ≤ δ}

(iv) Dj := Λj \ (Aj ∪Bj ∪Cj)

The parameter L is chosen in such a way that suppψ(s) ⊂ [−L/2, L/2].
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|a |1

|a  |2

|a  |3

δ δ δ22j1j

B

3

CA

j1j2

Figure 1: Subdivision of the set of translation parameters Λj.

In order to demonstrate the finiteness of the norm (1.9) it is sufficient to consider the case j1 ≥ j2 ≥
j3 ≥ j0. With the Definition 1 at hand, we decompose the norm (1.9) into four parts

∑
j1≥j2≥j3≥j0

2j1q
(∑

a

|〈χj,a|φ〉|q
)

= IA + IB + IC + ID,

with

IA =
∑

j1≥j2≥j3≥j0
2j1q

⎛
⎝∑

a∈Aj

|〈χj,a|φ〉|q
⎞
⎠ , etc.

where the coarsest level j0 is chosen in such a way that 2−j0 ≈ diam Ω.

Domain A
First we observe that #Aj = O(1) with respect to the wavelet levels j. Therefore it is sufficient to
estimate a single wavelet coefficient 〈χj,a|φ〉 in this case. In order to apply the asymptotic smoothness
property (2.2), we decompose the cuboid Ωj,a with centre at b := (2−j1a1, 2−j2a2, 2−j3a3) and edge-
lengths 2−j1L × 2−j2L× 2−j3L into subcubes �i (i ∈ ∆) with edge length 2−j1L. According to Def. (1),
we have supp χj,a ⊂ Ωj,a. The subcubes �i (i ∈ ∆0 := {i ∈ ∆, : dist(�i,0) < 2−j1L}) close to the origin
are considered separately. Their number #∆0 = O(1) is independent of the wavelet levels j. For the
remaining subcubes �i (i ∈ ∆ \ ∆0) it becomes necessary to controle their contributions with respect to
the distance from the origin, because #(∆ \ ∆0) = O(2j1−j2 2j1−j3) depends on the wavelet levels.

In the first step, we decompose the integral

∣∣∣∣
∫
φ(x)χj,a(x)dx

∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈∆0

∫
�i

φ(x)χj,a(x)dx +
∑

i∈∆\∆0

∫
�i

φ(x)χj,a(x)dx

∣∣∣∣∣∣
≤

∑
i∈∆0

∣∣∣∣
∫

�i

φ(x)χj,a(x)dx
∣∣∣∣ + ∑

i∈∆\∆0

∣∣∣∣
∫

�i

φ(b + ci + y)χj,0(ci + y)dy
∣∣∣∣ , (2.3)

where we have introduced local coordinates y for those subcubes, which are subject to the asymptotic
smoothness condition (2.2). Local coordinates y are defined via x = b + ci + y, where b denotes the
centre of the cuboid Ωj,a and ci = 2−(j1+1)L(0, e(i)2 , e

(i)
3 ), with e

(i)
2 , e

(i)
3 ∈ Z, points from the centre of the

cuboid to the centre of the subcube �i. This construction is shown schematically in Fig. 2.
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We can now apply Proposition 2 for the case d = 1 and the asymptotic smoothness condition (2.2) to
subcubes �i (i ∈ ∆ \ ∆0)∣∣∣∣

∫
�i

φ(b + ci + y)χj,0(ci + y)dy
∣∣∣∣ � 2−(p+ 5

2
)j1 2

1
2
(j2+j3)‖∂px1

φ‖L∞(�i)

� 2−(p+ 5
2
)j1 2

1
2
(j2+j3)|b + ci|1−p, (2.4)

where the sum can be estimated by

∑
i∈∆\∆0

|b + ci|1−p � 22j1

∫ 2−j3L

2−j1L
r2−p dr

�

⎧⎨
⎩

22j12−j3 , if p = 2
(j1 − j3 + 1)22j1 , if p = 3

2(p−1)j1 , if p > 3
. (2.5)

Combining both estimates (2.4) and (2.5), we get bounds for the second sum in the decomposition (2.3)

∑
i∈∆\∆0

∣∣∣∣
∫

�i

φ(x)χj,a(x)dx
∣∣∣∣ �

⎧⎪⎨
⎪⎩

2−
5
2
j12

1
2
j22−

1
2
j3 , if p = 2

(j1 − j3 + 1)2−
7
2
j12

1
2
(j2+j3), if p = 3

2−
7
2
j12

1
2
(j2+j3), if p > 3

.

It remains to estimate the first sum in the decomposition (2.3)

∑
i∈∆0

∣∣∣∣
∫

�i

φ(x)χj,a(x)dx
∣∣∣∣ �

∑
i∈∆0

2−
7
2
j1 2

1
2
(j2+j3)‖Dx1φ‖L∞(�i)

� 2−
7
2
j1 2

1
2
(j2+j3),

where we have used #∆0 = O(1), Proposition 1 and the Lipschitz continuity of φ.
Putting things together, we obtain for domain A the final estimate

IA =
∑

j1≥j2≥j3≥j0
2j1q

⎛
⎝∑

a∈Aj

|〈χj,a|φ〉|q
⎞
⎠

�
∑

j1≥j2≥j3≥j0

⎧⎪⎨
⎪⎩

2−
3
2
qj1 2

1
2
qj2 2−

1
2
qj3, if p = 2

(j1 − j3 + 1)q 2−
5
2
qj12

1
2
q(j2+j3), if p = 3

2−
5
2
qj1 2

1
2
q(j2+j3), if p > 3

< ∞
which proves the finiteness of the first part of the norm (1.9).

Domain B
This case can be treated along the same line as the previous one. The cuboids Ωj,a are again decomposed
into subcubes with edge length 2−j1L. According to Definition 1, each subcube satisfies dist(�i,0) >
2−j1L. For a single wavelet coefficient, we obtain the estimate∣∣∣∣

∫
φ(x)χj,a(x)dx

∣∣∣∣ ≤
∑
i∈∆

∣∣∣∣
∫

�i

φ(x)χj,a(x)dx
∣∣∣∣

� 2−(p+ 5
2
)j1 2

1
2
(j2+j3)

∑
i∈∆

|b + ci|1−p

� 2−(p+ 1
2
)j1 2−

1
2
(j2+j3) |b1|1−p, (2.6)
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Domains A, B Domain C Domain D

y
b

b

O

c
b

cy

y

Figure 2: Domain decomposition of cuboids Ωj,a.

from the previous estimate (2.4), where #∆ = O(2j1−j2 2j1−j3) has been used in the third line. Summing
up the whole domain, we get the bounds∑

a∈Bj

|b1|−q(p−1) � 2q(p−1)j1
∑

δ≤a1≤2j1−j2δ

|a1|−q(p−1)

� 2q(p−1)j1

∫ 2j1−j2δ

δ
|a1|−q(p−1) da1

�

⎧⎨
⎩

2j12−(1−q(p−1))j2 , if 1 − q
2 < q(p− 1) < 1

(j1 − j2 + 1)2j1 , if q(p− 1) = 1
2q(p−1)j1 , if q(p− 1) > 1

, (2.7)

depending on the parameters p, q. Combining estimates (2.6) and (2.7), yields the estimate

IB =
∑

j1≥j2≥j3≥j0
2j1q

⎛
⎝∑

a∈Bj

|〈χj,a|φ〉|q
⎞
⎠

�
∑

j1≥j2≥j3≥j0

⎧⎪⎨
⎪⎩

2−(pq−1− q
2
)j12−

q
2
(j2+j3), if 1 − q

2 < q(p− 1) < 1
(j1 − j2 + 1)2−

q
2
j12−

q
2
(j2+j3), if q(p− 1) = 1

2−
q
2
j12−

q
2
(j2+j3), if q(p− 1) > 1

< ∞

which demonstrates the finiteness of the contribution from wavelet coefficients in domain B to the norm
(1.9).

Domain C
Cuboids Ωj,a that belong to domain C are decomposed into subcuboids �i (i ∈ ∆) with edge lengths
2−j1L × 2−j2L× 2−j2L. The decomposition is shown schematically in Fig. 2. According to Definition 1,
each subcube satisfies dist(�i,0) > 2−j2L. The proof follows essentially the same line of arguments as in
the previous cases. We can benefit, however, in this case from vanishing moments in two directions.
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Using Proposition 2 with d = 2, we can estimate the wavelet coefficients

∣∣∣∣
∫
φ(x)χj,a(x)dx

∣∣∣∣ =

∣∣∣∣∣
∑
i∈∆

∫
�i

φ(b + ci + y)χj,0(ci + y)dy

∣∣∣∣∣
� 2−(p+ 1

2
)j12−(p+ 3

2
)j2 2

1
2
j3
∑
i∈∆

‖∂px1
∂px2

φ‖L∞(�i)

� 2−(p+ 1
2
)j1 2−(p+ 3

2
)j2 2

1
2
j3
∑
i∈∆

|b + ci|1−2p

� 2−(p+ 1
2
)(j1+j2) 2−

1
2
j3 (b21 + b22)

1
2
−p, (2.8)

where #∆ = O(2j2−j3) has been used in the fourth line. The sum over domain C can be majorized by an
integral

∑
a∈Cj

(b21 + b22)
−q(p− 1

2
) =

∑
a∈Cj

∣∣2−2j1a2
1 + 2−2j2a2

2

∣∣−q(p− 1
2
)

� 2j1+j2

∫
|ã|≥2−j2δ

|ã|−q(2p−1) dã

= 2j1 2((2p−1)q−1)j2 , (2.9)

because of the inequality (2p − 1)q − 1 > 1. Putting things together, we obtain from estimates (2.8) and
(2.9) an upper bound for the contributions of wavelet coefficients from domain C

IC =
∑

j1≥j2≥j3≥j0
2j1q

⎛
⎝∑

a∈Cj

|〈χj,a|φ〉|q
⎞
⎠

�
∑

j1≥j2≥j3≥j0
2−εj1 2−(pq−1− q

2
−ε)(j1−j2) 2−(q−ε)j2 2−

q
2
j3

�
∑

j1≥j2≥j3≥j0
2−εj1 2−(q−ε)j2 2−

q
2
j3

< ∞,

where an arbitrary parameter 0 < ε < min{pq − 1 − q
2 , q} has been introduced in order to demonstrate

convergence in the norm (1.9).

Domain D
In the last case, the vanishing moments property applies to all three directions. All cuboids Ωj,a in domain
D with edge lengths 2−j1L× 2−j2L× 2−j3L satisfy the distance criteria dist(Ωj,a,0) > 2−j3L according to
Definition 1. The wavelet coefficients can be estimated by∣∣∣∣∣

∫
Ωj,a

φ(x)χj,a(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωj,a

φ(b + y)χj,0(y)dy

∣∣∣∣∣
� 2−(p+ 1

2
)(j1+j2+j3)‖∂px1

∂px2
∂px3

φ‖L∞(Ωj,a)

� 2−(p+ 1
2
)(j1+j2+j3) |b|1−3p,

using Proposition 2 with d = 3. Like in the previous cases, we can majorize the sum over domain D by
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an integral

∑
a∈Dj

|b|−q(3p−1) =
∑
a∈Dj

∣∣2−2j1a2
1 + 2−2j2a2

2 + 2−2j3a2
3

∣∣− 1
2
q(3p−1)

� 2j1+j2+j3
∫
|ã|≥2−j3δ

|ã|−q(3p−1) dã

= 2j1+j2 2((3p−1)q−2)j3 .

In the second line, we have used 2− q(3p− 1) < −1, which is a simple consequence of p > 1
q + 1

2 . Putting
things together for domain D, we obtain the bound

ID =
∑

j1≥j2≥j3≥j0
2j1q

⎛
⎝∑

a∈Dj

|〈χj,a|φ〉|q
⎞
⎠

�
∑

j1≥j2≥j3≥j0
2j1q 2−q(p+

1
2
)(j1+j2+j3) 2j1+j2 2((3p−1)q−2)j3

=
∑

j1≥j2≥j3≥j0
2−qj2 2−

q
2
j3 2−(qp− q

2
−1)(j1−j3) 2−(qp− q

2
−1)(j2−j3)

=
∑

j1≥j2≥j3≥j0
2−εj1 2−(q+ε)j2 2−( q

2
−2ε)j3 2−(qp− q

2
−1−ε)(j1−j3) 2−(qp− q

2
−1−ε)(j2−j3)

�
∑

j1≥j2≥j3≥j0
2−εj1 2−(q+ε)j2 2−( q

2
−2ε)j3

< ∞,

where an arbitrary parameter 0 < ε < min{pq − 1 − q
2 ,

q
4} has been introduced in order to demonstrate

convergence in the norm (1.9). The definition of ε is justified by pq − 1 − q
2 > 0.

Remark 1. In our proof we have only assumed the minimal number of vanishing moments p > α+ 1 for
the univariate wavelet basis that are required by the norm equivalence (1.4). This is however not necessary,
instead it is possible to assume a larger number of vanishing moments, which would slightly simplify parts
of the proof.

The method used for the proof of Lemma 1 can be applied in a straightforward manner to best N-term
approximation spaces for isotropic wavelets (1.5).

Corollary 1. Suppose φ satisfies the assumptions of Lemma 1. Then φ ∈ Bα
q (Lq(Ω)) for all q > 0 and

α = 3
q − 1

2 .

Proof. Due to the norm equivalence (1.7) for isotropic wavelets, the corollary is equivalent to

∑
j≥j0

∑
s

2jq
(∑

a

∣∣∣〈γ(s)
j,a |φ〉

∣∣∣q
)
<∞.

The proof of this statement resembles to our discussion of domain A in Lemma 1. A parameter L is chosen
in such a way that suppψ(s) ⊂ [−L/2, L/2]. We decompose the sum into two parts and estimate them
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separately. In the first case with dist(supp γ(s)
j,a ,0) > 2−jL, we get

∑
j≥j0

∑
s

2jq
∑

|a|>2L

∣∣∣〈γ(s)
j,a |φ〉

∣∣∣q �
∑
j≥j0

2−
3
2
qj
∑

|a|>2L

|a|q(1−p)

�
∑
j≥j0

2−
3
2
qj

∫ 2j diam(Ω)

2L
|a|q(1−p) da

�
∑
j≥j0

⎧⎪⎨
⎪⎩

2−(qp+ 1
2
q−3)j , if − 1 < q(1 − p) + 2 < −1 + 3

2q

(j + 1)2−
3
2
qj, if q(1 − p) + 2 = −1

2−
3
2
qj, if q(1 − p) + 2 < −1

< ∞,

where we have used p > α = 3
q − 1

2 vanishing moments of the univariate wavelet in one direction only.
The remainder can be directly estimated

∑
j≥j0

∑
s

2jq
∑

|a|≤2L

∣∣∣〈γ(s)
j,a |φ〉

∣∣∣q �
∑
j≥j0

2−
3
2
qj <∞.

2.2 Optimal convergence rates for wavelet approximations

Under the rather mild assumption of asymptotic smoothness near electron-nuclear cusps, Lemma 1 shows
that for a univariate wavelet basis ψ(s)

j,a with p > α + 1 vanishing moments and ψj,a ∈ Bβ
q (Lq(I)) for

some β > α + 1, the orbitals φi belong to the approximation spaces Aαq (H1(Ω)) for the corresponding
anisotropic wavelet basis χj,a. This means that it is possible to achieve convergence rates σN (φ) ∼ N−α

for the approximation error in H1(Ω). For comparison, the corresponding isotropic wavelet basis γ(s)
j,a can

only achieve convergence rates σN (φ) ∼ N−α/3 because of the dimensional dependence in Eq. (1.6).
In order to extend our discussion to one-electron reduced density matrices ρ(x,y), we state the following

corollary which is an immediate consequence of the proof of Lemma 1.

Corollary 2. Suppose that ρ ∈ C∞ ((R3 \ Ra) × (R3 \Rb)
)

is asymptotically smooth

|∂βx∂γyρ(x,y)| ≤ cβ,γ |x− Ra|1−|β| |y − Rb|1−|γ|, x 
= Ra,y 
= Rb and |β|, |γ| ≥ 1

in a bounded neighbourhood ΩRa × ΩRb
⊂ R

3 × R
3 of two, possibly identical, points Ra, Rb. Then

ρ ∈ Bαq (ΩRa × ΩRb
) for all q > 0 and α = 1

q − 1
2 .

It is obvious that this assumption is fulfilled for HF and DFT density matrices if the orbitals itself
are asymptotically smooth. Therefore, we can achieve the same convergence rates σN (ρ) ∼ N−α as for
orbitals irrespective of the increase of dimension.

We want to conclude this section with a brief discussion of related results for GTO basis sets

φGTO
lm (r, ϕ, θ) = ClmYlm(ϕ, θ) rle−ζr

2
,

which are by far the most popular basis sets in quantum chemistry [15]. Despite their tremendous success
in applications, not much rigorous results concerning their approximation properties have been reported
in the literature [1, 21]. This work focuses on the approximation of single STO basis functions (2.1) by
linear combinations of GTOs, where almost exponential convergence rates σN (φSTO

nlm ) ∼ e−µ
√
N can be

achieved. Whether this result remains valid for molecules seems to be an open issue, although there exists
some numerical evidence in favour of it [13]. We want to mention, that our assumption of asymptotic
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smoothness was motivated by STO basis sets but is more general and does not rely on spherical symmetry.
Our results, therefore, apply to systems with several nuclei as well. Furthermore GTO basis sets are not
stable in a sense that there is no norm equivalence of an appropriate Hilbert space to a weighted �2 space of
coefficients. The question remains open, whether wavelets provide a serious alternative to GTOs in realistic
HF and DFT calculations. Despite some remarkable successes concerning efficient implementations for
these methods [14, 27, 28], it is hard to compete for wavelets with GTO based programs which have been
developed and optimized over the last three decades [15]. Finally we want mention that there exists a
variety of applications for HF and DFT methods where GTO basis sets are not really appropriate due
to geometrical constraints, like for quasi two-dimensional many-particle systems which appear e.g. in
semiconductor heterostructures. For such kind of systems wavelets seem to be an interesting alternative
[9].
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