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ON THE SCALING OF THE TWO WELL PROBLEM

ANDREW LORENT

Abstract. Let H =
` σ 0

0 σ−1
´

for σ > 0. And let K := SO (2) ∪ SO (2) H. We establish a
sharp relation between the following two minimisation problems.

Firstly the two well problem with surface energy. Let q ≥ 1. Let

Iq
ε (u) =

Z
Ω

d (Du (z) , K) + ε
˛̨
D2u (z)

˛̨q
dL2z

and let AF denote the subspace of functions in W 2,q (Ω) with det (Du (z)) ≥ 0 for a.e. z ∈ Ω

and supz∈Ω ‖ [Du (z)]−1 ‖ ≤ C satisfying the affine boundary condition u (z) = F (z) for
z ∈ ∂Ω, where F �∈ K. We consider the scaling (with respect to ε) of

mq
ε := inf

u∈AF

Iq
ε (u) .

Secondly the finite element approximation to the two well problem without surface energy.

Let δ > 0 be any small number. Let Fh (u) =
R
Ω

d
“
Du (z) , N

h
δ
84

(K)
”

dL2z. Let Bh
F

denote the space of functions that are piecewise affine on a triangular grid {τi} of grid size
h satisfying the affine boundary condition u (z) = F (z) for z ∈ ∂Ω. We consider the scaling
of

αh := inf
u∈Bh

F

Fh (u) .

Let q ≥ 1. We will show that for any small h, for ε := hq we have

αh ≥ ch
1
3 =⇒ mq

ε ≥ c′ε
1
3q

+δ
.

Simple examples show αh ≤ Ch
1
3 and mq

ε ≤ C′ε
1
3q so our theorem states that optimal

(scaling) lower bounds on αh imply optimal (scaling) lower bounds on mq
ε for any q ≥ 1.

The main tool we will use to establish this reduction will be an Lq version of the sub-
optimal two well Liouville Theorem proved in [22]. We will give a simple proof of this result
using the case of equality of the isoperimetric inequality.

In addition for the case q = 1 we show optimal (scaling) lower bounds on I1
ε follow from

optimal (scaling) lower bounds on F0 by applying the optimal two well Liouville Theorem
of Conti, Schweizer [6].

1. Introduction

Let H be a diagonal matrix with det (H) = 1. Let K := SO (2)∪SO (2)H . We are concerned
with minimising the functional

I (u) =
∫

Ω

d (Du (z) , K)dL2z (1)

over the space LF of functions with affine boundary condition F �∈ K. This functional is a
special case of the functional proposed by Ball and James [2], [3] and Chipot, Kinderlehrer [5]
in their well known model of solid solid phrase transitions.

Surprisingly, for F ∈ int (Kqc) (see [28] for background and precise definitions) there exists
an exact minimiser of I, this follows from work of Müller and Šverák [24], [25], see Sychev
[29], [30] and Kirchheim [16], [17] for latter developments and Dacorogna Marcellini [8] for a
different approach to some related problems. The approach of Müller and Šverák uses the
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2 ANDREW LORENT

theory of “convex integration” (denoted by CI from this point) developed by Gromov, it is one
of the simplest results of the theory.

If we add a small cost to the oscillation of the functional, we have a functional of the form

Iq
ε (u) =

∫
Ω

d (Du (z) , K) + ε
∣∣D2u (z)

∣∣q dL2z. (2)

Nothing is known about the minimiser of the functional (however there does now exist a Γ
convergence result for the functional I2

ε√
ε

[6]). In particular it is completely unknown if for very
small ε the minimiser is something like the absolute minimiser of I provided by CI1.

This question is best expressed by considering the scaling of

mq
ε := inf

u∈W 2,q(Ω)∩AF

Iq
ε (u) . (3)

An upper bound of mq
ε ≤ cε

1
3q is provided by the standard double laminate. This follows

from the characterisation of the quasiconvex hull Kqc provided by [31].
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Figure 1

If mq
ε ∼ ε

1
3q +α for α > 0 then the minimiser will have to take a very different form than the

double laminate. On the other hand if α = 0 then energetically the minimiser does no better
than the double laminate.

This question is important because CI solutions are important, many counter examples to
natural conjectures in PDE have been achieved via CI, [26], [16], [27]. Minimising functional
Iq
ε is the simplest problem that constrains oscillation is some slight way where we can hope to

see the effect of the existence of exact minimisers of (1).
Following the partial results of [22] we reduce this question to the question of the scaling

of a functional similar to I over the subspace Bh
F of functions that are piecewise affine on a

triangular grid (with grid size h, where none of the edges of the triangles are in the set of rank-1

1We know it can not be a function u with I (u) = 0 because the result of Dolzmann Müller [9], that any u
with this property and with the property that Du is a BV has to be laminate
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directions of K). Our reduction is sharp in the sense that we will show optimal lower bounds
for the finite element approximation implies optimal lower bounds for mq

ε , for any q ≥ 1.
Our main tool to achieve this is an Lq version of the sub-optimal two well Liouville theorem

established in [21], this result may be of independent interest. See [6] for the (scaling) optimal
version of the L1 theorem.

1.1. Two well Liouville Theorem.

Theorem 1. Let H =
(

σ 0
0 σ−1

)
for σ > 0. Let p ≥ 1, q ≥ 1. Let K = SO (2) ∪ SO (2)H.

Let u ∈ W 2,q (B1 (0))∩W 1,p (B1 (0)) be a function with the property that det (Du (x)) ≥ 0 and
‖ [Du (x)]−1 ‖ ≤ C for a.e. x ∈ B1 (0) where C > 0 is any large constant.

There exists positive constants C1 << 1, C2 >> 1 depending only on σ, p, q such that if
ε ∈ (0, C1) and u satisfies the following inequalities∫

B1(0)

dp (Du (z) , K) dL2z ≤ C1ε (4)∫
B1(0)

∣∣D2u (z)
∣∣q dL2z ≤ C1ε

1−q, (5)

then there exist J ∈ {Id, H} and R ∈ SO (2) such that∫
BC1 (0)

|Du (z) − RJ |p dL2z ≤ C2ε
1

pkp , (6)

where kp = 4 when p > 1 and kp = 5 when p = 1.

We will give a simple proof of this via the case of equality of the isoperimetric inequality.
More specifically, it is well known that amongst all bodies B of volume 1 in IRn, the ball
minimises Hn−1 (∂B), i.e. the ball gives the case of equality of the isoperimetric inequality.
A quantitative statement of this kind is given by the following Lemma of Hall, Haymann,
Weitsman [14].

Lemma 1 (Hall et al.). Let E be a set of finite perimeter 2 in IR2, R :=
(

L2(E)
π

) 1
2

and let the
Fraenkel asymmetry λ (E) be defined by

λ (E) = inf
a∈IR2

L2 (E\BR (a))
πR2

. (7)

Then

(Per (E))2 ≥ 4π

(
1 +

(λ (E))2

4

)
L2 (E) .

Theorem 1 generalises Theorem 1 of [21] in that hypothesis (5) is an Lq bound on D2u
instead of an L1 bound as in [21], [6]. Simple examples show that 1− q is the optimal power in
ε. Additionally the control of Du in (6) is (at least) ε

1
5p which improves the ε

1
800 bound of [21]

but is much weaker than the optimal ε
1
p bound of [6]. The main reason for the improvement

comes from the application the quantitative Liouville Theorem of Friesecke et al. (see Theorem
3 of Section 2) in a efficient way, and this we learned from the work of Conti, Schweizer [6].

The isoperimetric inequality method is the fastest, “calculation free” way to see why the sub
optimal theorem is true, it helps to show why this initially surprising result is actually quite
natural.

2Hall et al. state their Lemma for sets with smooth boundaries. By Theorem 3.41 [1] we can approximate
any set A of finite perimeter with a sequence of sets (An) that converge in measure to A which have smooth
boundaries and for which Per (An) → Per (A) as n → ∞, hence its easy to see the lemma holds for sets of finite
perimeter.
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The conditions that function u is sense preserving (i.e. det (Du (x)) > 0 a.e. ) and satisfies
supx∈B1(0) ‖ [Du (x)]−1 ‖ ≤ C are technical conditions that we use for convenience, in words,
they say that u can not compress small balls into shapes of arbitrary small diameter or reverse
their orientation, as such they are not such unnatural conditions for functions describing elastic
deformations.

Conjecture 1. Let H, K be as in Theorem 1. Let u ∈ W 2,q (B1 (0)) ∩ W 1,p (B1 (0)). There
exists positive constants C1 << 1, C2 >> 1 depending on σ, p, q such that if u satisfies (4) and
(5) then for some J ∈ {Id, H}, R ∈ SO (2) we have∫

BC1 (0)

|Du (z) − RJ |p dL2z ≤ C2ε
1
p .

For the case q = 1 this has been proved in [6].

1.2. Finite element approximations. In order to explain our main application of this result
we will need to give a bit more background.

A triangulation (denoted 	h) of Ω of size h is a collection of pairwise disjoint triangles {τi}
all of diameter h such that Ω ⊂ ⋃τi∈�h

τi.
We can approximate any continuous function u uniformly by a function ũ that is piecewise

affine on the triangles of 	h by the following procedure. For each triangle τi ∈ 	h, define
ũ�τi

to be the affine map we get by interpolating u on the corners of τi. We will call ũ the
interpolant of u.

Let Bh
F denote the space of Lipschitz functions in LF that are piecewise affine on the tri-

angles of 	h. Our interest in this space of functions comes from the fact that minimisation of
functionals of the form (1) over Bh

F provides a convenient intermediary problem for the study
of surface energy problems: let 	h be a triangulation for which the edges of the triangles are
not parallel to the rank-1 connections of the wells K, if ũ ∈ Bh

F and τ1, τ2 ∈ 	h are such that
d
(
Dũ�τ1 , SO (2)

) ≈ 0 and d
(
Dũ�τ2 , SO (2)H

) ≈ 0 it is easy to see τ1 can not touch τ2, i.e.
there must be a triangle τ3 between τ1 and τ2 for which d

(
Du�τ3 , K

) ≥ o(1).
For example if we have an interpolant of a laminate, if triangle τ cuts through an interface

of the laminate the affine map we get from interpolating the laminate on the corners of τ will
have its linear part some distance from the wells. See figure 2.

So we can not lower the energy of I over Bh
F by simply making a laminate type function

with finer layers, there is a competition between the “surface energy” as given by the error
contributed from the interfaces and the “bulk energy” which in the case of the laminate is the
width of the interpolation layer.

Theorem 2. Let K = SO (2)∪SO (2)H, H =
(

σ 0
0 σ−1

)
. Let Ω be a bounded Lipschitz domain.

Let 	h be a triangulation of Ω of grid size h with the directions of the edges of the triangles
some uniform distance away from the set of rank-1 directions of K. Let F ∈ int (Kqc). Let
δ > 0 be some small number.

Denote by Bh
F the set of functions with affine boundary condition F that are piecewise affine

on the triangulation 	h. Define Fh (u) :=
∫
Ω

d
(
Du (z) , N

h
δ
84

(K)
)

dL2z.

Let Aζ
F denote the space of ζ-Lipschitz functions in W 2,q (Ω) with det (Du (z)) ≥ 0 for a.e.

and supx∈Ω ‖ [Du (x)]−1 ‖ ≤ C with affine boundary condition F .
Let q > 1. Let A > 0. There exists h0 = h0 (σ, q, δ,A, ζ) such that if h ∈ (0, h0) then

inf
v∈Bh

F

Fh (v) ≥ Ah
1
3 ⇒ inf

u∈Aζ
F

Iq
ε (u) ≥ ε

1
3q +δ for ε = hq. (8)

For q = 1. We have for h ∈ (0, h0)

inf
v∈Bh

F

F0 (v) ≥ Ah
1
3 ⇒ inf

u∈Aζ
F

I1
ε (u) ≥ ε

1
3q +δ, for ε = h. (9)



THE SCALING OF THE TWO WELL PROBLEM 5

Figure 2

We will show in fact that Conjecture 1 implies a cleaner formulation of (8), namely that for
any δ > 0 there exists h0 = h0 (σ, q, δ,A, ζ) such that h ∈ (0, h0)

inf
v∈Bh

F

F0 (v) ≥ Ah
1
3 ⇒ inf

u∈Aζ
F

Iq
ε (u) ≥ ε

1
3q +δ for ε = hq. (10)

Recall Conjecture 1 is proved in [6] for the case q = 1 and so for this case we can establish (9).
Let B1 := diag (1, 0), B2 := diag (−1, 1), B3 := diag (−1, 1). See figure 1 (b). Define F̃ (u) :=∫

Ω
d (Du (z) , {B1, B2, B3}) dL2z. F.E. approximations of F̃ over Ah

F0
(where F0 := diag (0, 0))

have been studied by Chipot [4] and the author [19]. It has been shown infu∈Ah
F
F̃ (u) ∼

h
1
3 . From Šverák’s characterisation [31] we know the exact arrangement of rank-1 connections

between the matrices in the set SO (2)∪SO (2)H and a matrix in the interior of the quasiconvex
hull, see figure 1 (a). As we can see from figures 1 (a) and (b), the finite well functional F̃
precisely mimics these rank-1 connections.

Conjecture 2. Let K, H be defined as in Theorem 2. Given F ∈ int (Kqc). Let δ > 0. Take
Bh

F be as in Theorem 2.

Define Fh (u) :=
∫
Ω d
(
Du (z) , N

h
δ
84

(K)
)

dL2z. Then there exists constant c depending on
σ such that

inf
u∈Bh

F

Fh (u) ≥ ch
1
3 .

Informally Theorem 2 says that the optimal scaling for Iq
ε would follow from Conjecture 2.

This is not simply a matter of replacing ε with h. There is no reason to think the existence of
an absolute minimiser to I will cause Fh to scale to zero faster that at rate h

1
3 . In their most

constructive form [24], CI solutions are made as a limit of “laminate within laminate” type
functions, and for complicated functions of this type we expect the interpolant to have many
triangles with the derivative not close to the wells. For example Chipot ([4] , Theorem 4.3)

proved the upper bound of e−c|Inh| 12 for the a functional B of the form of F whose wells are
the Tartar square; A1 = −A3 = diag (−1,−3) and A2 = −A4 = diag (−3, 1) and F belong to
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the rank-1 convex hull of A1, A2, A3, A4. The point being that functions that lower the energy
of B have to be n-th order laminate within laminate type functions and for these functions B
can only be made to scale to zero at a very slow rate.

Acknowledgements I’d like to thank Sergio Conti for many helpful discussions during a
visit to the MPI Leipzig in June 2004, in particular helping me to understand [6]. Also for
reading a preliminary version of the paper and pointing out some errors. The general strategy
and particularly the methods in Section 4.4 and Step 2 of Lemma 6 of this paper use many
ideas from [6]. Many thanks to Georg Dolzmann for pointing out to me the connection between
the minimisation of the two well problem with surface energy and finite element approxima-
tions. Thanks also to Laszlo Szekelyhidi for many clarifying discussions, to Stefan Müller for
suggesting the use of Theorem 4 and Daniel Faraco for providing reference [14].

2. Sketch of proof of the two well Liouville theorem

The strategy of the proof is to find a radius r ∈ ( 12 , 1
)

such that L2 (u (Br (0))) ≈ πr2 and
H1 (∂u (Br (0))) ≈ 2πr. Theorem 1 then implies u (Br (0)) is close to a ball in the sense of
smallness of λ (u (Br (0))). In some sense this is not very far from saying u is close to a rotation
on Br (0), elementary arguments involving (4) and (5) allows us to show this is actually the
case.

Now we will go through the steps in detail. For simplicity assume u is an invertible C1

function which satisfies the following hypotheses,
∫

B1(0)
d (Du, K)dx ≤ ε and

∫
B1(0)

∣∣D2u
∣∣ dx ≤

C1.
Provided C1 is small enough our estimate on

∣∣D2u
∣∣ means that for most r > 0, Du on

∂Br (0) can not jump from being close to well SO (2) to being close to well SO (2)H . Formally,
if there exists a, b ∈ ∂Br (0) with Du (a) close to SO (2) and Du (b) close to SO (2)H then
by the fundamental theorem of Calculus C1 ≥ ∫

∂Br(0)

∣∣D2u (x)
∣∣ dH1x ≥ |Du (a) − Du (b)| �

dist (SO (2) , SO (2)H), contradiction.
Thus we must have that for some J ∈ {Id, H}, d (Du (z) , K) = d (Du (z) , SO (2)J) for all

z ∈ ∂Br (0). By a change of variables we can assume J = Id. So

H1 (∂u (Br (0))) =
∫

∂Br(0)

|Du (z) tz |dH1z

≈ 2πr.

And as det (M) = 1 for any M ∈ K we have that L2 (u (Br (0))) =
∫

Br(0) det (Du (z)) dL2z ≈
L2 (Br (0)) = πr2. So applying Theorem 1 we know that u (Br (0)) is quantitatively close to
being a ball of radius r, i.e. the Fraenkel asymmetry λ (u (Br (0))) is small.

Next we will follow the strategy of Conti, Schweizer [6] which is to find a ball Bc (y) ⊂ B1 (0)
such that ∫

Bc(y)

d (Du, SO (2)) ≈ 0 (11)

and then apply the the following theorem of Friesecke James and Müller. 3

Theorem 3 (Friesecke, James, Müller). Let U be a bounded Lipschitz domain in IRn, n ≥ 2. Let
q > 1. There exists a constant C (U, q) with the following property. For each v ∈ W 1,q (U, IRn)
there exists an associated rotation R ∈ SO (n) such that

‖Dv − R‖Lq(U) ≤ C (U, q) ‖dist (Dv, SO (n)) ‖Lq(U). (12)

3Friesecke, James, Müller Theorem was first stated for L2 but the same result holds for Lq for q > 1 with
small modifications of the proof
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From Theorem 3 and (11) we can conclude there exists R ∈ SO (2) such that ‖Du −
R‖Lq(Bc(y)) ≈ 0, and this (possibly after changing variables) gives conclusion (6).

Let B := {x : Du (x) is close to SO (2)H}. Given hypothesis (4), in order to carry out the
argument we just need to find a ball Bc (y) ⊂ B1 (0) such that L2 (Bc (y) ∩ B) ≈ 0. This follows
from smallness of λ (u (BR (0))) by the following two steps.

Step 1. We say two points on a circle are antipodal if the line segment joining them goes
through the centre of the circle. We know4 ∂u (Br (0)) is roughly a circle and using the fact
that

∫
∂Br(0)

d (Du (z) , SO (2)) dH1z ≈ 0, we will show any two antipodal points on ∂Br (0),
say a, b will be mapped to antipodal points u (a), u (b) on the “circle” ∂u (Br (0)), and hence
|u (a) − u (b)| � r.

Step 2. We will use the fact there exists a large set of directions Θ ⊂ S1 such that for
any v ∈ Θ we have |Hv| < 1 to show that along a line [av, bv] := Br (0) ∩ 〈v〉 we have,
H1 ([av, bv] ∩ B) ≈ 0. Then we use a co-area argument to integrate χB over X :=

⋃
v∈Θ [av, bv],

trivially there then exists Bc (y) ⊂ X with property (11).

Proof of Step 1. Suppose we let Γ1 and Γ2 be the connected components of ∂Br (0) \ {a, b}.
Since Du (z) is close to SO (2) for most of the points z ∈ ∂Br (0) it is easy to see that
H1 (u (Γi)) � πr for i = 1, 2 which together with the fact that each u (Γi) must go around
the outside of the “ball” u (Br (0)) to connect u (a) to u (b) this implies that u (a) and u (b)
must be antipodal.

Proof of Step 2. Let v ∈ Θ, let av, bv be antipodal points on ∂Br (0) defined by av−bv

|av−bv| = v.
By definition of Θ there exists sσ ∈ (0, 1) such that |Hv| < sσ. And by Step 1 we know
|u (a) − u (b)| � r, so using the formula H1 (u ([av, bv])) =

∫ bv

av
|Du (z) v| dx, we have

H1 (u ([av, bv])) = H1 (u ([av, bv] \B)) + H1 (u (B ∩ [av, bv]))

� H1 ([av, bv] \B) +
∣∣∣∣H av − bv

|av − bv|
∣∣∣∣H1 (B ∩ [av, bv]) +

∫ bv

av

d (Du, K)dx

� r − (1 − sσ)H1 (B ∩ [av, bv]) ,

and since H1 (u ([av, bv])) ≥ |u (av) − u (bv)| � r. So we must have H1 (B ∩ [av, bv]) ≈ 0. Now
by the co-area formula we∫

X

1
|z|χB (z)dL2z =

∫
Θ

(
L1 (B ∩ [av, bv]) +

∫ bv

av

d (Du, K)dx

)
dH1v ≈ 0

which gives L2 (B ∩ X) ≈ 0.

3. Fine properties of Sobolev functions and functions of integrable dilation

We will need the following well known lemma.

Lemma 2. Let Ω be a Lipschitz domain. Let u ∈ W 1,p (Ω). There exists a Borel Gu ⊂ Ω with
H1 (int (Ω) \Gu) = 0 such that for every x ∈ Gu the limit limr→0 π−1r−2

∫
Br(x)

u (z)dL2z =:
û (x) exists and we even have

lim
r→0

r−2

∫
Br(x)

|u (z) − û (x)|p∗
dL2z = 0

where p∗ is the Hölder conjugate, i.e. 1
p∗ + 1

p = 1.

This follows from Theorem 1 of Section 4.8 and Theorem 3 of Section 5.6.3 of [10].

4By smallness of λ (u (Br (y))), see Lemma 4
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Definition 1. Given u ∈ W 1,p (Ω) we define the precise representative û of u by

û (x) :=

{
limr→0

(
πr2
)−1 ∫

Br(x)
u (z) dL2z if x ∈ Gu

0 if x ∈ Ω\Gu

The following lemma is also well known, see for example [12],[10] for convenience of the
reader we give some details.

Proposition 1. Let w ∈ W 1,p (Ω). Suppose Bh (0) ⊂ Ω then for almost every h ∈ (0, r) the
function

wh (t) := û

(
h cos

t

h
, h sin

t

h

)
is absolutely continuous over [0, 2πh] and∫ r

h=0

∫ 2π

0

∣∣Dwh (z)
∣∣p dL1zdL1r ≤

∫
Br(0)

|Dw (z)|p dL2z

Proof. We define the standard convolution, wε := w ∗ ρε where ρε (x) := ρ
(

x
ε

)
ε−2 and ρ is

a smooth convolution kernel. So we known by the standard theorems wε
W 1,p→ w as ε → 0.

Let δ > 0. By the co-area formula, following arguments of the proof of Theorem 4.50 [12]
there must exist Kδ ⊂ (0, r) with L1 ((0, r) \Kδ) ≤ δ and a sequence εn → 0 such that for any
h ∈ K ∫

∂Bh(x0)

|ŵ (z) − wεn (z)|p + |Dw (z) − Dwεn (z)|p dH1z → 0 (13)

as n → ∞.
So let h ∈ K be one of the a.a. radii for such that Dw is defined on all but a set of H1 zero

measure on ∂Bh (0), and the function x → Dw (x) is Lp integrable on ∂Bh (0).
Let vh

εn
(t) := wεn (h cos t, h sin t) for t ∈ [0, 2π). Let Lh : [0, 2π) be the Lp integrable

function given by Lh (t) := −∂w
∂x1

(h cos t, h sin t)h sin t + ∂ŵ
∂x2

(h cos t, h sin t)h cos t. By (13) we

have that Dvh
εn

Lp([0,2π))→ Lh as n → ∞. So for any ε > 0 there exists Nε ∈ IN such that
‖Dvh

εn1
− Dvh

εn2
‖Lp([0,2π)) ≤ ε for all n1, n2 ≥ Nε.

From this by picking a Lebesgue point of w on ∂Bh (0) and using the fundamental theo-
rem of Calculus (as in the proof of Theorem 1, Section 4.9.1 [10]) we can show the sequence
vh

εn
converges uniformly to the limit vh (t) := ŵ (h cos t, h sin t) and vh ∈ W 1,p ((0, 2π]) with

Dvh (t) = Lh (t) for a.e. t ∈ (0, 2π].
Define wh (t) := vh

(
t
h

)
for t ∈ [0, 2πh]. Then∫

h∈Kδ

∫
[0,2πh]

∣∣Dwh (t)
∣∣p dL1tdL1h ≤

∫
h∈Kδ

∫
[0,2πh]

∣∣∣∣Dw

(
h cos

t

h
, h sin

t

h

)∣∣∣∣p dL1tdL1h

≤
∫

Br(0)

|Dw (z)|p dL2z

by the co-area formula. Since δ was arbitrary we have that the function wh is defined and
absolutely continuous on ∂Bh (0) for every h ∈ ⋃n Kn−1 and this completes the proof. �
Definition 2. Given an open set Ω ⊂ IRn. A function f : Ω → IRn is called sense preserving
if det (Df (z)) ≥ 0 for a.e. z ∈ Ω.

Definition 3. Given a connected open set Ω ⊂ IRn. A sense preserving function f : Ω → IRn

is said to be of finite dilation if and only if ‖Df (x) ‖n ≤ K (x) |det (Df (x))| a.e. where 1 ≤
K (x) < ∞. The function f is said to have integrable dilation if and only if

∫
Ω

K (x) dLnx <
∞.
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We will need the following theorem [15].

Theorem 4 (Iwaniec, Šverák). Let Ω ⊂ IR2 be a connected open set. Given function f : Ω →
IR2, f ∈ W 1,2 (Ω) which has integrable dilation then f is open and discrete.

It is also well known that functions of finite dilation are continuous [13].

Lemma 3. Let Ω be an open connected set in IR2. Let q ≥ 1. Let C > 0 be some arbitrary
large constant. Suppose u ∈ W 2,q (Ω) is a sense preserving function with the property that
supx∈Ω ‖ [Du (x)]−1 ‖ ≤ C In addition u satisfies∫

Ω

d (Du (z) , K)dL2z ≤ ∞ (14)

then u has integrable dilation and consequently for any z ∈ Ω and a.e. r > 0 such that Br (z) ⊂ Ω
we have that u (Br (z)) is an open set of finite perimeter and

∂u (Br (z)) ⊂ u (∂Br (z)) , which gives Per (u (Br (z))) ≤ H1 (u (∂Br (z))) . (15)

Proof. Now let R (x) ∈ SO (2), S (x) ∈ M2×2
sym be the polar decomposition of the matrix

Du (x), i.e. Du (x) = R (x) S (x). Let λ1 (x), λ2 (x) be the eigenvalues of S (x), by assumption
we have min {|λ1 (x)| , |λ2 (x)|} ≥ C−1 for a.e. x ∈ Ω.

Given x ∈ Ω for which Du (x) is defined, assume without loss of generality that |λ1 (x)| ≥
|λ2 (x)|. Now for any v ∈ S1,

|Du (x) v|2 ≤ |λ1 (x)|2
≤ C |λ1 (x)|2 |λ2 (x)|
≤ c (d (Du (x) , K) + 1)det (Du (x)) . (16)

And as (d (Du (x) , K) + 1) is integrable so by (16) we know u is a mapping of integrable
dilation. By Sobolev embedding theorem we know u ∈ W 1,2 (Ω) and thus by Theorem 4 we
have that u is open and discrete, we also know u is continuous.

Since u is open, it is well know (see exercise 9.12, [32]) that ∂u (Br (z)) ⊂ u (∂Br (z)). By
Proposition 1 for a.e. r > 0 such that Br (x) ⊂ Ω we know D̂u is absolutely continuous
on ∂Br (z) and so H1 (u (∂Br (z))) =

∫
∂Br(z)

∣∣∣D̂u (y) ty

∣∣∣ dH1y < ∞ where ty is the tangent to

∂Bt (z) at y, which of course implies H1 (∂u (Br (z))) < ∞. So by Proposition 3.61 [1] u (Br (z))
is a set of finite perimeter and Per (u (Br (z))) ≤ H1 (∂u (Br (z))) ≤ H1 (u (∂Br (z))). �

4. Details of proof of Theorem 1

4.1. Preproof. Following the notation of the introduction, let B be the set of points for which
Du is close to SO (2)H , we have to split the lemma into cases depending on the proportion of
B inside B1 (0).

If B is the majority, we will have to do a change of variables and define ũ = u ◦ H−1, then
ũ is defined on a thin ellipse in which we will need to look for circles for which Dũ stays close
to SO (2). In order to find such a circle we will need Dũ to be “mostly” close to SO (2) in the
ellipse. For this we require B to be the “large” majority in B1 (0).

On the other hand if L2 (B1 (0) \B) >
√C1 since we can use the hypotheses (4), (5) to show

that on all but a set of radii of measure ≈ C1 we have Du is uniformly close to either SO (2)
or SO (2)H on ∂Br (0), and so we must be able to find at least one for which Du is uniformly
close to SO (2).

Hence in our lemmas we will have to argue two cases depending on the sign of

Le (u) :=
∫

B1(0)

ed (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z. (17)
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4.2. Preliminary lemmas.

Lemma 4. Let E be a set of finite perimeter in IR2 with L2 (E) ≥ 1, let ε be a small number,
suppose E has the following properties

Per (E) ≤ 2π

(
L2 (E)

π

) 1
2

+ ε (18)

then there exists a ∈ IR2 such that for R :=
(

L2(E)
π

) 1
2

B
c1ε

1
4

(x) ∩ ∂E �= ∅ for each x ∈ ∂BR (a) . (19)

Proof. Let λ (E) be defined as in (7) Lemma 1. So there exists a ∈ IR2 such that
L2 (E\BR (a)) ≤ 2λ (E)πR2 and by Lemma 1 (Per (E))2 ≥ 4π2

(
1 + (λ(E))2

4

)
R2. So by (18)

πR2 (λ (E))2 ≤ 4πεR + ε2 ≤ 20εR

and so (λ (E))2 ≤ 10εR−1, thus λ (E) ≤ c0
2

√
ε for some constant c0 > 1 so

L2 (E ∩ BR (a)) ≥ (1 − c0

√
ε
)
πR2. (20)

Thus B
c0ε

1
4 R

(x) ∩ E ∩ BR (a) �= ∅ for any x ∈ ∂BR (a), since otherwise we contradict (20).
On the other hand if for some x ∈ ∂BR (a) we have B

c0ε
1
4 R

(x) \BR (a) ⊂ E then we have

L2 (E\BR (a)) ≥ πc2
0

2

√
εR2 and together with (20) this implies L2 (E) > πR2 which contradicts

the definition of R. So let c1 = c0R1 for every x ∈ ∂BR (a) we have B
c1ε

1
4

(x) ∩ Ec �= ∅ and
B

c1ε
1
4

(x) ∩ E �= ∅. Hence

B
c1ε

1
4

(x) ∩ ∂E �= ∅ for any x ∈ ∂BR (a) . � (21)

Lemma 5. Let p ≥ 1, q ≥ 1. Suppose u ∈ W 2,p (B1 (0)) ∩ W 1,q (B1 (0)) satisfies properties
(4), (5). Let Le (u) be defined by (17).

There exists a small positive constant e = e (σ) such that the following holds true:
If Le (u) ≥ 0 then for any b ∈ Bσ2

8
(0) we must be able to find a set Eb ⊂ (σ

4 , σ
2

)
such that

L1
((

σ
4 , σ

2

) \Eb

)
< C1σ−2√

e
and for any R ∈ Eb∫
H−1(∂BR(b))

dq
(
D̂u (z) , SO (2)H

)
dH1z ≤ cε. (22)

If Le (u) < 0 then for any b ∈ Be2 (0) we can find a set Eb ⊂ (2e2, 1 − e2
)

such that
L1
((

2e2, 1 − e2
) \Eb

)
< C1σ−2√

e
and for any R ∈ Eb∫

∂BR(b)

dq
(
D̂u (z) , SO (2)

)
dH1z ≤ cε. (23)

Proof. First we will deal with the case were Le (u) ≥ 0. Let b ∈ Bσ2
8

(0).
Let

Π =
{
r ∈
(
0,

σ

2

)
: D̂u is absolutely continuous on H−1 (∂Br (b))

}
.
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By a version of Proposition 1 5 we have L1
((

0, σ
2

) \Π) = 0. For any r ∈ Π let D̂u
′
denote

the derivative of D̂u along H−1 (∂Br (b)). Note D̂u
′ ∈ Lp

(
H−1 (∂Br (b))

)
and∫

H−1(BR(b))

∣∣D2u (z)
∣∣p dL2z ≥ σ

∫ R

0

∫
H−1(∂Br(b))

∣∣∣D̂u
′
(z)
∣∣∣p dH1zdL1r (24)

Since Le (u) ≥ 0∫
B1(0)

d (Du (z) , SO (2)H) dL2z ≤
∫

B1(0)

ed (Du (z) , SO (2)) dL2z

≤
∫

B1(0)

e
(
d (Du (z) , K) + σ−1

)
dL2z

≤ 7eσ−1. (25)

Let

G1 :=

{
r ∈
(σ

4
,
σ

2

)
:
∫

H−1(∂Br(b))

dq
(
D̂u (z) , K

)
dH1z ≤ √

eε

}
(26)

and

G2 :=

{
r ∈
(σ

4
,
σ

2

)
∩ Π :

∫
H−1(∂Br(b))

∣∣∣D̂u
′
(z)
∣∣∣p dH1z ≤ √

eε1−p

}
. (27)

Now we can define function Ψ : H−1
(
Bσ

2
(b)
)→ IR by

Ψ (z) := r if and only if z ∈ H−1 (∂Br (b)) .

It is easy to see |DΨ| ≤ σ−1, so by the co-area formula∫
r∈(σ

4 , σ
2 )\G1

∫
H−1(∂Br(b))

dq
(
D̂u (z) , K

)
dH1zdL1r

≤
∫

H−1
“

B σ
2

(b)
” |DΨ (z)| dq (Du (z) , K) dL2z

(4)

≤ C1σ
−1ε.

So

L1
((σ

4
,
σ

2

)
\G1

)
≤ C1σ

−1

√
e

. (28)

In exactly the same way we have

L1
((σ

4
,
σ

2

)
\G2

)
≤ C1σ

−2

√
e

. (29)

Let p∗ be the Holder conjugate of p, i.e. 1
p∗ + 1

p = 1. Now for any r ∈ G1 ∩ G2 ∩ Π we have

∫
H−1(∂Br(b))

(
d

q
p∗
(
D̂u (z) , K

))p∗

p∗ + εp

∣∣∣D̂u
′
(z)
∣∣∣p

p
dH1z

(26),(27)

≤ 2
√

eε. (30)

By Young’s inequality this implies∫
H−1(∂Br(b))

d
q

p∗
(
D̂u (z) , K

) ∣∣∣D̂u
′
(z)
∣∣∣ dH1z ≤ 2

√
e. (31)

5This follows by almost exactly the same proof as Proposition 1, the only difference being we need to use the
co-area formula with respect to a function whose level sets are of the form H−1 (∂Br (b)) hence the Jacobean
of this function is equal to σ−1
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Since r ∈ G1, (see (26)) we must have a point x0 ∈ H−1 (∂Br (b)) such that

d
(
D̂u (x0) , SO (2)J1

)
≤ c
(√

eε
) 1

q for some J1 ∈ {Id, H} . (32)

Step 1. We will show that for any r ∈ G1 ∩ G2 ∩ Π we have J1 ∈ {Id, H} such that
d
(
D̂u (z) , SO (2)J1

)
≤ d
(
D̂u (z) , K

)
for all z ∈ H−1 (∂Br (b)).

Proof of Step 1. We know there exists x0 ∈ H−1 (∂Br (b)) such that (32) holds true. Let
J2 ∈ {Id, H} \J2. If Step 1 is false we have a point x1 ∈ H−1 (∂Br (b)) such that

d
(
D̂u (x1) , SO (2)J2

)
< d
(
D̂u (x1) , SO (2)J1

)
.

Recall we chose r > 0 so that D̂u is absolutely continuous on H−1 (∂Br (b)). Define g :
[0, 2π) → IR by g (θ) := d

(
D̂u
(
H−1

(
reiθ + b

))
, K
)
. Let W := {θ ∈ (0, 2π] : g (θ) > 0}, it is

easy to see g is absolutely continuous on W and |Dg (θ)| ≤ c
∣∣∣D̂u

′ (
H−1

(
reiθ + b

))∣∣∣ for any
θ ∈ W . Let d0 := d (SO (2) , SO (2)H).

Now supz∈[0,2π) g (z) ≥ d0
2 , infz∈[0,2π) g (z) ≤ 2

(√
eε
) 1

q , so there must be a subinterval I ⊂
(0, 2π] with the following properties;

• letting a, b be the end points of I, |g (a) − g (b)| = d0
4 .

• inf {g (x) : x ∈ I} > d0
8 , sup {g (x) : x ∈ I} < d0.

So
d0

4
= |g (a) − g (b)|

=
∣∣∣∣∫

I

Dg (x) dL1x

∣∣∣∣
≤ c

∫
H−1(∂Br(b))

∣∣∣D̂u
′
(z)
∣∣∣ dH1z. (33)

Let J :=
{
H−1

(
reiθ + b

)
: θ ∈ I

}
. We know d

q
p∗
(
D̂u (x) , K

)
>
(

d0
8

) q
p∗ for all x ∈ J , so∫

J

∣∣∣D̂u
′
(x)
∣∣∣ d q

p∗
(
D̂u (x) , K

)
dH1x ≥

(
d0

8

) q
p∗ ∫

J

∣∣∣D̂u
′
(x)
∣∣∣ dH1x

(33)

≥
(

d0

8

) q
p∗ d0

4c

by (31) assuming constant e is small enough we have a contradiction, thus Step 1 is proved.

Step 2. We will show there exists J1 ∈ {Id, H} such that for any r ∈ G1 ∩ G2 ∩ Π we have

d
(
D̂u (z) , SO (2)J1

)
≤ d
(
D̂u (z) , K

)
for all z ∈ H−1 (∂Br (b)) . (34)

Proof of Step 2. Suppose not, so we can find r1, r2 ∈ G1 ∩ G2 ∩ Π such that

d
(
D̂u (z) , SO (2)

)
≤ d
(
D̂u (z) , K

)
for all z ∈ H−1 (∂Br1 (b))

and
d
(
D̂u (z) , SO (2)H

)
≤ d
(
D̂u (z) , K

)
for all z ∈ H−1 (∂Br2 (b)) .

Assume without loss of generality that r1 ≤ r2. Let

W1 :=
{
z ∈ H−1 (∂Br1 (b)) : d

(
D̂u (z) , SO (2)

)
<

√
e
√

ε
}

(35)
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and let
W2 :=

{
z ∈ H−1 (∂Br2 (b)) : d

(
D̂u (z) , SO (2)H

)
<

√
e
√

ε
}

. (36)

Since r1, r2 ∈ G1 (see definition (26)) we have that

H1
(
H−1 (∂Br1 (b)) \W1

)√
e
√

ε ≤
∫

H−1(∂Br1 (b))
d
(
D̂u (z) , SO (2)

)
dH1z

≤ √
eε.

So
H1
(
H−1 (∂Br1 (b)) \W1

) ≤ √
ε (37)

and in the same way
H1
(
H−1 (∂Br2 (b)) \W2

) ≤ √
ε. (38)

Let

F1 =

⎧⎨⎩a ∈ [−σr1, σr1] :
∫

P−1
e⊥1

(a)∩B1(0)

dq
(
D̂u (z) , K

)
dH1z ≤ √

eε

⎫⎬⎭
F2 =

⎧⎨⎩a ∈ [−σr1, σr1] :
∫

P−1
e⊥1

(a)∩B1(0)

∣∣∣D̂u
′
(z)
∣∣∣p dH1z ≤ √

eε1−p

⎫⎬⎭ .

In exactly the same way as we established (28) and (29), by Fubini L1 ([−σr1, σr1] \F1) ≤ C1√
e

and L1 ([−σr1, σr1] \F2) ≤ C1√
e

and note that for any a ∈ F1 ∩ F2 we have∫
P−1

e⊥1
(a)∩B1(0)

εd
q

p∗
(
D̂u (z) , K

) ∣∣∣D̂u
′
(z)
∣∣∣ dL1z

≤
∫

P−1
e⊥1

(a)∩B1(0)

dq
(
D̂u (z) , K

)
+ εp

∣∣∣D̂u
′
(z)
∣∣∣p dL1z

≤ √
eε

where p∗ is the Holder exponent of p.
So by an identical argument to that of Step 1 we can show that for any x ∈ F1 ∩ F2

there exists J1 ∈ {Id, H} such that for J2 ∈ {Id, H} \ {J1} we have d
(
D̂u (z) , SO (2)J1

)
≤

d
(
D̂u (z) , SO (2)J2

)
for all z ∈ P−1

e⊥
1

∩ B1 (0). However by (37), (38) L1
(
Pe⊥

1
(W1 ∩ W2)

)
≥

σr1
2 so assuming C1 is chosen small enough we have Pe⊥

1
(W1 ∩ W2) ∩ F1 ∩ F2 �= ∅ which con-

tradicts the definition of W1, W2, see (36) and (35). This completes the proof Step 2.

Step 3. We complete the proof of Lemma 5 for the case Le (u) > 0.
Proof of Step 3. We need only show that in (34) we can take, J1 = H for any r ∈ G1 ∩G2 ∩Π.
Let A :=

⋃
r∈G1∩G2∩Π H−1 (∂Br (b)).

So suppose not, then∫
A

dq
(
D̂u (z) , SO (2)

)
dL2z =

∫
A

dq
(
D̂u (z) , K

)
dL2z

(4)

≤ cε

Note that by (28), (29) and the co-area formula we have

L2 (A) ≥ σL1 (G1 ∪ G2)

≥ σ2

16
.
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Now we can extract subset Ã ⊂ A such that sup
{
dq (Du (z) , SO (2)) : z ∈ Ã

}
≤ 2cε with the

property that L2
(
Ã

)
≥ L2(A)

2 , but as d0 >> ε
1
q we have inf

{
d (Du (z) , SO (2)H) : z ∈ Ã

}
≥

d0
2 and hence ∫

eA
d (Du (z) , SO (2)H) dL2z ≥ d0

2
σ2

32

and (assuming e is small enough) this contradicts (25). Now defining Eb := G1 ∩ G2 ∩ Π by
(28) and (29) this set satisfies all the properties of the statement. Hence the lemma is proved
for the case Le (u) ≤ 0.

Step 4. We complete the proof of the case where Le (u) < 0.
Proof of Step 4. Arguing identically to the case where Le (u) ≥ 0 we can show there exists a
set Eb ⊂

(
2e2, 1 − e2

)
, J1 ∈ {Id, H} such that L1

((
2e2, 1 − e2

) \Eb

) ≤ 2σ−2C1√
e

and∫
∂Br(b)

dq
(
D̂u (z) , SO (2)J1

)
dH1z ≤ cε for each r ∈ Eb.

So the set U :=
⋃

r∈Eb
∂Br (b) has the property∫

U

dq
(
D̂u (z) , SO (2)J1

)
dH1z ≤ C1ε. (39)

We claim J1 = Id. Suppose not, assuming C1 is small enough L2 (B1 (0) \U) ≤ 5e2. By Hölder’s
inequality ∫

U

d (Du (z) , SO (2)H) dL2z ≤ c

(∫
U

dq (Du (z) , SO (2)H) dL2z

) 1
q

(39)

≤ cε
1
q . (40)

Thus ∫
B1(0)

d (Du (z) , SO (2)H) dL2z

≤
∫

U

d (Du (z) , SO (2)H) dL2z +
∫

B1(0)\U

d (Du (z) , K) + σ−1dL2z

(40),(4)

≤ cε
1
q + σ−1L2 (B1 (0) \U)

≤ ce2. (41)

However since Le (u) < 0 this implies∫
B1(0)

d (Du (z) , SO (2)) dL2z < ce. (42)

Let
D :=

{
z ∈ B1 (0) : d (Du (z) , SO (2)H) ≤ √

e, and d (Du (z) , SO (2)) ≤ √
e
}

,

so by (42), (41) L2 (D) ≤ π − c
√

e however as d (SO (2) , SO (2)H) = d0, D should be empty,
so this a contradiction. �
Lemma 6. Let p ≥ 1, q ≥ 1. Suppose u ∈ W 2,p (B1 (0)) ∩ W 1,q (B1 (0)) is a sense preserving
function for which supx∈B1(0) ‖ [Du (x)]−1 ‖ ≤ C and u satisfies properties (4), (5). Let Le be
defined by (17) and let constant e = e (σ) be as in Lemma 5.
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If Le (u) ≥ 0 then for any b ∈ Bσ2
8

(0) there exists a set Yb ⊂ (σ
4 , σ

2

)
with L1

((
σ
4 , σ

2

) \Yb

) ≤
σ

100 and for any r ∈ Yb we have

L2
(
u
(
H−1 (Br (b))

)) ≥ πr2 − cε
1
q . (43)

If Lε (u) < 0 then for any b ∈ Be2 (0) there exists a set Yb ⊂ (2e2, 1
2

)
with L1

((
2e2, 1

2

) \Yb

) ≤
1

100 and any r ∈ Yb is such that

L2 (u (Br (b))) ≥ πr2 − cε
1
q .

Proof. We will only argue the case Le (u) ≥ 0, the argument for the case Le (u) < 0 is
identical.

Step 1. We will show that for any b ∈ Bσ2
8

(0) there exists a set Yb ⊂ (σ
4 , σ

2

)
with

L1
((

σ
4 , σ

2

) \Yb

) ≤ σ
100 such that for some A ∈ SO (2)H there exists an affine function lA

with derivative A such that

‖u − lA‖L∞(H−1(∂Br(b))) ≤ c

√
C1e

− 1
2 . (44)

Proof of Step 1. Let Eb ⊂
(

σ
4 , σ

2

)
be the set defined in Lemma 5. Let

D :=
⋃

r∈Eb∩(σ
4 , σ

2 )
H−1 (∂Br (b)) .

Now by definition of Eb, see (22) we have∫
D

dq (Du (z) , SO (2)H) dL2z ≤ σ−1

∫
Eb

∫
H−1(∂Br(b))

dq (Du (z) , SO (2)H) dH1zdL1r

≤ cε (45)

And let T :=
⋃

r∈(σ
4 , σ

2 ) H−1 (∂Br (b)), we know

L2 (T \D) ≤ 5σ−1L1
((σ

4
,
σ

2

)
\Eb

)
≤ 5C1σ

−3

√
e

. (46)

Now by Proposition A1 [11] there exists a constant U = U (T ) and a function v : T → IR2 such
that ‖Dv‖L∞(T ) ≤ U100σ−1 and

‖Dv − Du‖Lq(T ) ≤ c

∫
{x∈T :|Du(x)|>100σ−1}

|Du (x)|q dL2x. (47)

Now∫
{x∈T :|Du(x)|>100σ−1}

|Du (x)|q dL2x ≤ 2q

∫
{x∈T :|Du(x)|>100σ−1}

dq (Du (x) , K) dL2x

(4)

≤ 2qε. (48)

And∫
T

dq (Dv (z) , SO (2)H) dL2z ≤ cL2 (T \D) +
∫

D

dq (Dv (z) , SO (2)H) dL2z

(46),(47),(48)

≤
∫

D

dq (Du (z) , SO (2)H) dL2z +
cC1√

e
+ cε

(45)

≤ cC1√
e
.
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For the case q > 1 we can (after change of variables) apply Theorem 3 to conclude there
exists A ∈ SO (2)H such that ∫

T

|Dv (z) − A|q dL2z ≤ cC1√
e
. (49)

For the case q = 1 note∫
T

d2 (Dv (z) , SO (2)H) ≤ c

∫
T

d (Dv (z) , SO (2)H)

≤ cC1√
e

and again we apply Theorem 3, so there exists A ∈ SO (2)H such that∫
T

|Dv (z) − A| dL2z ≤ c

(∫
T

|Dv (z) − A|2 dL2z

) 1
2

≤ c

√
C1e

− 1
2 . (50)

Now by applying (47), (48) to (49), (50), for any q ≥ 1 we have∫
T

|Du (z) − A|q dL2z ≤ c

√
C1e−

1
2 .

By Poincaré’s inequality there exists and affine map lA with DlA = A such that∫
T

|u (z) − lA (z)|q dL2z ≤ c

√
C1e

− 1
2 .

So by the co-area formula there exists a set Yb ⊂ (σ
4 , σ

2

)
such that L1

((
σ
4 , σ

2

) \Yb

) ≤ σ
100 such

that for each r ∈ Yb we have∫
H−1(∂Br(b))

|u (z) − lA (z)|q + |Du (z) − A (z)|q dH1z ≤ c

√
C1e

− 1
2 (51)

By the fundamental theorem of Calculus any r ∈ Yb satisfies (44) so this completes the proof
of Step 1.

Step 2. We will show we can find r1 ∈ (σ
4 , 3σ

8

) ∩ Yb such that∫
H−1(Br1 (b))

det (Du (z)) dL2z = L2
(
u
(
H−1 (Br1 (b))

))
.

Proof of Step 2. Following ideas of [6] (Step 1 of the proof Proposition 2.2) we will use some
elements of degree theory.

Let r0 ∈ Yb∩
(

22σ
50 , σ

2

)
. We consider the homotopy defined by H (x, t) = tu (x)+(1 − t) lA (x)

for t ∈ [0, 1], x ∈ H−1 (Br0 (b)). Note that for every t ∈ [0, 1], x → H (x, t) is C0. Also note
that for C1 small enough by (44) we have

lA

(
H−1

(
B 3σ

8
(b)
))

∩ H
(
∂H−1 (Br0 (b)) , t

)
= ∅

for all t ∈ [0, 1]. So by Theorem 2.3 [12] we have that for any p ∈ lA

(
H−1

(
B 3σ

8
(b)
))

,

d
(
H (t, ·) , H−1 (Br0 (b)) , p

)
is independent of t. As det (A) = 1 and we know

d
(
lA (x) , H−1 (Br0 (b)) , p

)
= 1

this implies d
(
u, H−1 (Br0 (b)) , p

)
= 1 for any p ∈ lA

(
H−1

(
B 3σ

8
(b)
))

.
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Now since by Sobolev embedding u ∈ W 1,2 (B1 (0)) and det (Du (x)) ≥ C−2 for a.e. x ∈
B1 (0) by Theorem 5.32 [12] we know u satisfies the hypotheses to apply Remark 5.26 [12] and
so we know that for a.e. p ∈ lA

(
H−1

(
B 3σ

8
(b)
))

we have

d
(
u, H−1 (Br0 (b)) , p

)
=

∑
z∈{y∈H−1(Br0 (b)):u(y)=p}

sgn (det (Du (z))) (52)

and as det (Du (z)) = 1 this gives us that #
{
y ∈ H−1 (Br0 (b)) : u (y) = p

}
= 1 for a.e. p ∈

lA

(
H−1

(
B 3σ

8
(b)
))

.

Now take r1 ∈ (σ
4 , 5σ

16

) ∩ Yb, so again assuming C1 is small enough from (44) we have

u
(
∂H−1 (Br1 (b))

) ⊂ lA

(
H−1

(
B 3σ

8
(b)
))

hence H
(
∂H−1 (Br1 (b)) , t

) ⊂ lA

(
H−1

(
B 3σ

8
(b)
))

for all t ∈ [0, 1]. So for p �∈ lA

(
H−1

(
B 3σ

8
(b)
))

we know by Theorem 2.3 [12] the degree

d
(
H (t, ·) , H−1 (Br1 (b)) , p

)
is independent of t and so we know d

(
u, H−1 (Br1 (b)) , p

)
= 0, by

(52) this implies that L2
(
u
(
H−1 (Br1 (b))

) \lA (H−1
(
B 3σ

8
(b)
)))

= 0.

Hence for a.e. p ∈ u
(
H−1 (Br1 (b))

)
, since r1 < r0 we have

1 ≤ #
{
y ∈ H−1 (Br1 (b)) : u (y) = p

}
≤ #

{
y ∈ H−1 (Br0 (b)) : u (y) = p

}
= 1.

So by Remark 5.26 [12] we know d
(
u, H−1 (Br1 (b)) , y

)
= 1 for a.e. y ∈ u

(
H−1 (Br1 (b))

)
. Now

we can apply Theorem 5.35 [12], so∫
H−1(Br1(b))

det (Du (z)) dL2z =
∫

u(H−1(Br1 (b)))
d
(
u, H−1 (Br1 (b)) , y

)
dL2y

= L2
(
u
(
H−1 (Br1 (b))

))
. (53)

This completes the proof of Step 2.

Let G :=
{
z ∈ H−1 (Br1 (b)) : d (Du (z) , K) ≤ 1

}
so by (4) we have L2

(
H−1 (Br1 (b)) \G) ≤

cε. So for each z ∈ G let A (z) ∈ SO (2)∪ SO (2)H such that d (Du (z) , K) = |Du (z) − A (z)|.∫
G

det (Du (z)) dL2z =
∫
G

det (A (z) + (Du (z) − A (z))) dL2z

=
∫
G

det (A (z)) + cof (A (z)) : (Du (z) − A (z)) + det (Du (z) − A (z)) dL2z

(4)

≥ L2 (G) − cε
1
q

≥ πr2
1 − cε

1
q .

And since det (Du (z)) > 0 for a.e. z ∈ B1 (0), this together with (53) clearly implies (43). �
4.3. Main Proposition.

Proposition 2. Let p, q ≥ 1. Suppose u ∈ W 2,p (B1 (0)) ∩ W 1,q (B1 (0)) is a sense preserving
function with supx∈B1(0) ‖ [Du (x)]−1 ‖ ≤ C which satisfies inequalities (4), (5).

There exists small positive constant e = e (σ) such that if we define Le (u) by (27) and define
Θu by

Θu :=
{

H if Le (u) ≥ 0
Id if Le (u) < 0

Then the function ũ := u ◦ Θ−1
u satisfies the following property.
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There exists constant c1 = c1 (σ) > 0 such that for any b ∈ Bc1 (0) we can find R1 ≥ 2c1
with the property that for every β ∈ (0, 2π], {aβ , bβ} =

{
λeiβ + b : λ > 0

} ∩ ∂BR1 (b), then

|ũ (aβ) − ũ (bβ)| ≥ 2
(
1 − cε

1
4q

)
R1. (54)

Proof.
We will argue the case Le (u) ≥ 0, the case Le (u) < 0 can be dealt with in an identical

manner.
Now by Lemmas 5, 6 there exists A ∈ SO (2)H and sets Yb, Eb ⊂ (σ

4 , σ
2

)
with

L1
((σ

4
,
σ

2

)
\Yb ∩ Eb

)
≤ σ

50
such that for any r ∈ Yb ∩Eb, (22) implies that Du is close to A in the dH1

�∂H−1(∂BR(b)) norm,
and from (43) we have

L2
(
u
(
H−1 (Br (b))

)) ≥ πr2 − cε
1
q . (55)

Let ũ := u ◦ H−1. Let R1 ∈ Yb ∩ Eb. So using Hölder for the last inequality∫
∂BR1 (b)

d
(
D̂ũ (z) , SO(2)

)
dH1z ≤ c

∫
H−1(∂BR1 (b))

d
(
D̂u (y) ◦ H−1, SO(2)

)
dH1y

(22)

≤ cε
1
q . (56)

Let K̃ = KH−1, it is easy to see that by Hölder’s inequality, from (4)∫
Bσ(0)

d
(
Dũ (z) , K̃

)
dL2z ≤ cε

1
q . (57)

Claim. We will show ũ (BR1 (b)) satisfies condition (18) of Lemma 2.
Proof of Claim. From (55) we know

L2 (ũ (BR1 (b))) = L2
(
u
(
H−1 (BR1 (b))

))
≥ πR2

1 − cε
1
q . (58)

So √
L2 (ũ (BR1 (b)))

π
≥ R1 − cε

1
q . (59)

Now we know H1 (ũ (∂BR1 (b))) =
∫

∂BR1(b)

∣∣∣D̂ũ (z) tz

∣∣∣ dH1z. So

∣∣H1 (ũ (∂BR1 (b))) − 2πR1

∣∣ ≤
∣∣∣∣∣
∫

∂BR1 (b)

∣∣∣D̂ũ (z) tz

∣∣∣− 1dH1z

∣∣∣∣∣
≤

∫
∂BR1(b)

d
(
D̂ũ (z) , SO (2)

)
dH1z

(56)

≤ cε
1
q . (60)

Now we can assume R1 was chosen to be one of the radii for which we can apply Lemma 3,
so we know u (BR1 (b)) is a set of finite perimeter and so Per (u (BR1 (b))) ≤ H1 (u (∂BR1 (b))).
So putting this together with (59) we have√

L2 (ũ (BR1 (b)))
π

≥ Per (u (BR1 (b)))
2π

− cε
1
q . (61)

Hence the set ũ (BR1 (b)) has property (18) for ε = cε
1
q , which proves the claim.
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Let aβ, bβ be two antipodal points on ∂BR1 (a), i.e. {aβ, bβ} = ∂BR1 (a) ∩ {〈eiβ〉 + a
}
. Let

Γ1, Γ2 be the connected components of ∂BR1 (a) \ {aβ , bβ}. Note ũ (Γ1) and ũ (Γ2) are the
connected components of ũ (∂BR1 (a)) \ {ũ (aβ) , ũ (bβ)}.

Let R2 :=
√

L2(ũ(BR1 (b)))
π + cε

1
q , i.e. R2 ≥ R1 (see (59)). Now by Lemma 4 for ε = cε

1
q

there exists a ∈ IR2, such that ∂BR2 (a) has property (21). Let x1, x2, . . . x2m be evenly spaced
points on ∂BR2 (a) where |xk − xk+1| ∈

(
1000c1ε

1
4 , 2000c1ε

1
4

)
, see figure 3.

Recall that by Lemma 3 we know that ∂ũ (BR1 (a)) ⊂ ũ (∂BR1 (a)). We start with x1, by
Lemma 2 we can pick z1 ∈ B

c1ε
1
4

(x1) ∩ ũ (∂BR1 (a)), suppose without loss of generality that
z1 ∈ ũ (Γ1). It will be clear in the forth coming argument that we must have

B
c1ε

1
4

(xk) ∩ ũ (Γ1) = ∅ for some k ∈ {2, 3, . . .2m} (62)

we will assume this is the case for the time being and come back to it later.
Let

ϕ1 = min
{
k ∈ {2, 3, . . .2m} : B

c1ε
1
4

(xk) ∩ ũ (Γ1) = ∅
}

and let
ϕ2 = max

{
k ∈ {2, 3, . . . 2m} : B

c1ε
1
4

(xk) ∩ ũ (Γ1) = ∅
}

.

Now any k ∈ {ϕ1 + 1, . . . ϕ2 − 1} has to be such that B
c1ε

1
4

(xk)∩ ũ (Γ1) = ∅ since otherwise
ũ (Γ1) would be dis-connected. Now let {z̃1, z̃2, . . . z̃2m} be a reordering of {z1, . . . z2m} where
z̃k+1 is the clockwise nearest neighbour to z̃k for each k ∈ {1, 2, . . .2m − 1} and z̃1, z̃2, . . . z̃p1 ∈
ũ (Γ1), z̃p1+1, z̃2, . . . z̃2m ∈ ũ (Γ2).

Let θk denote the angle between z̃k and z̃k+1 for k = 1, 2, . . .2m − 1 and θ2m be the angle
between z2m and z1. It is easy to see |z̃k − z̃k+1| ≥ 2

(
R2 − cε

1
4q

)
sin θk

2 . Hence

H1 (ũ (Γ1)) ≥
p1−1∑
k=1

|z̃k − z̃k+1|

≥ 2
(
R2 − cε

1
4q

) p1−1∑
k=1

sin
θk

2

≥ R2

(
p1−1∑
k=1

θk

)
− cε

1
4q . (63)

And we know from (56) H1 (ũ (Γ1)) =
∫
Γ1

|Dũ (x) tx| dH1x ≤ πR1 + cε
1
q , which implies

πR1 + cε
1
4q

(63)

≥ R2

(
p1−1∑
k=1

θk

)

and hence as R2 ≥ R1 we have
∑p1−1

k=1 θk ≤ π + cε
1
4q .

Via exactly the same arguments it is clear (62) must be true, i.e. if (62) was false then
H1 (ũ (Γ1)) would be too long. Also by the same argument we can show

∑2m−1
k=p1

θk ≤ π + cε
1
4q .

Since obviously
∑2m

k=1 θk = 2π so we have∣∣∣∣∣
p1−1∑
k=1

θk − π

∣∣∣∣∣ ≤ cε
1
4q . (64)

Now z̃1, z̃p1 ∈ N
cε

1
4q

(ũ (∂Γ1)), without loss of generality we can assume z̃1 ∈ N
cε

1
4q

(ũ (aβ))
and z̃p1 ∈ N

cε
1
4

(ũ (bβ)). So as ũ (aβ) , ũ (bβ) ∈ N
cε

1
4q

(∂BR2 (a)) and as by (64) the angle
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x 1

x 2

x 3

x 4

z4

z1

z2

z3

R 2

Figure 3

between them is within cε
1
4q of π, thus |ũ (aβ) − ũ (bβ)| ≥ 2R2− cε

1
4q . This completes the proof

of Proposition 2 in the case where Le (u) ≥ 0.
In the case where Le (u) < 0 we know there exists R > 2c1 satisfying (23). We can then

argue in exactly the same way to show
√

L2(u(BR(b)))
π ≥ H1(∂u(BR(b)))

2π − cε
1
q then we can use

Lemma 4 to show antipodal points on ∂BR (b) are mapped to points distance R − cε
1
4q apart.�

4.4. Proof of Theorem 1 continued. As in the proof of Proposition 2, we will concentrate
on the case where Le (u) ≥ 0.

By Proposition 2, ũ := u ◦ H−1 has the property that for every b ∈ Bc1 (0) there exists
R1 > 2c1 and a ∈ IR2 such that (54) holds true. As stated before, it is easy to see∫

Bσ(0)

d
(
Dũ (z) , K̃

)
dL2z ≤ cε

1
q . (65)

It is a calculation to see that for

φ1 :=
( σ√

1+σ2
1√

1+σ2

)
and φ2 :=

( σ√
1+σ2
−1√
1+σ2

)
we have

∣∣H−1φi

∣∣ = 1. Let

Ξ1 :=
{

θ ∈ (0, 2π] : eiθ =
( a√

1+a2
1√

1+a2

)
for some a ∈

(−σ√
2
,

σ√
2

)}
.
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And lzθ :=
(〈eiθ〉 + z

) ∩ BR1 (z). Let Vr (x) := {lxθ ∩ Br (x) : θ ∈ Ξ1} \B r
2

(x).
Using the Fubini argument from Section 2.3 [6] we will show we can find b ∈ Vc1 (0) such

that ∫
B σ

2
(b)

d
(
Dũ (z) , K̃

)
|z − b|−1

dL2z ≤ cε, (66)

we argue as follows, by Fubini Theorem we have∫
Vc1 (0)

∫
B σ

2
(b)

d
(
Dũ (x) , K̃

)
|x − y|−1 dL2xdL2y

≤
∫

Vc1 (0)

∫
Bσ(0)

d
(
Dũ (x) , K̃

)
|x − y|−1

dL2xdL2y

=
∫

Bσ(0)

d
(
Dũ (x) , K̃

)∫
Vc1 (0)

|x − y|−1
dL2ydL2x

≤ c

∫
Bσ(0)

d
(
Dũ (x) , K̃

)
dL2x

≤ cε.

Thus there must exists y ∈ Vc1 (0) such that (66) holds true. Note that for some constant
c2 = c2 (σ) > 0 we have Bc2 (0) ⊂ Vc1 (b)

By Proposition 4 there exists R1 > 2c1 such that for any β ∈ (0, 2π], letting {aβ, bβ} =(〈eiβ〉 + b
) ∩ ∂BR1 (b) we have

|ũ (aβ) − ũ (bβ)| ≥ 2
(
1 − cε

1
4q

)
R1. (67)

Let

B :=
{
x ∈ BR1 (b) : d

(
Dũ (x) , SO (2)H−1

) ≤ d (Dũ (x) , SO (2))
}

. (68)

Now it is an exercise to see that there exists sσ ∈ (0, 1) such that for any θ ∈ Ξ1 we have∣∣H−1eiθ
∣∣ ≤ sσ. We estimate that

|ũ (aθ) − ũ (bθ)| ≤
∫

lbθ

∣∣Dũ (z) eiθ
∣∣ dH1z

≤ sσH1
(
lbθ ∩ B

)
+ H1

(
lbθ\B

)
+
∫

lbθ

d
(
Dũ (z) , K̃

)
dH1z

= H1
(
lbθ
)− (1 − sσ)H1

(
lbθ ∩ B

)
+
∫

lbθ

d
(
Dũ (z) , K̃

)
dH1z. (69)

Now H1
(
lbθ
)

= |aθ − bθ| = 2R1 so putting (67), with (69) we have

2
(
1 − cε

1
4q

)
R1 ≤ 2R1 − (1 − sσ)H1

(
lbθ ∩ B

)
+
∫

lbθ

d
(
Dũ (z) , K̃

)
dH1z.

This implies

(1 − sσ)
∫

lbθ

χB (z) dH1z ≤
∫

lbθ

d
(
Dũ (z) , K̃

)
dH1z + cε

1
4q . (70)
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Since R1 ≤ σ
2 by the co-area argument of Section 2.3, Case 1 [6].∫

VR2(b)

(1 − sσ)χB (z) |z − b|−1 dL2z =
∫

Ξ1

∫
lbθ

(1 − sσ)χB (z)dH1zdL1θ

(70)

≤
∫

Ξ1

∫
lbθ

d
(
Dũ (z) , K̃

)
dH1zdL1θ + cε

1
4q

≤
∫

BR2(b)

d
(
Dũ (z) , K̃

)
|z − b|−1 dL2z + cε

1
4q

(66)

≤ cε + cε
1
4q .

As |z − b|−1 ≥ 1 for any z ∈ BR2 (b), and since Bc2 (0) ⊂ VR1 (b), this gives

L2 (B ∩ Bc2 (0)) ≤ cε
1
4q . (71)

So (recall definition (68))∫
Bc2 (0)

d (Dũ (z) , SO (2)) dL2z

≤
∫

Bc2 (0)\B

d
(
Dũ (z) , K̃

)
dL2z +

∫
Bc2 (0)∩B

d
(
Dũ (z) , K̃

)
+ σ−1dL2z

(65)

≤ cε
1
q + σ−1L2 (Bc2 (0) ∩ B)

(71)

≤ cε
1
4q . (72)

Since dq (Dũ (z) , SO (2)) ≤ c
(
d (Dũ (z) , SO (2)) + dq

(
Dũ (z) , K̃

))
we have∫

Bc2 (0)

dq (Dũ (z) , SO (2)) dL2z
(65),(72)

≤ cε
1
4q

Now in the case q > 1 we can apply Theorem 3 so we have that there exists A ∈ K such that∫
Bc2 (0)

|Dũ (z) − A|q dL2z ≤ cε
1
4q ,

which implies ∫
Bσc2 (0)

|Du (z) − AH |q dL2z ≤ cε
1
4q . (73)

In the case q = 1 we have to apply Proposition A1 of [11] which gives us a c-Lipschitz function
v such that

‖Dũ − Dv‖L1(B1(0)) ≤ cε. (74)
So using Lipschitzness∫

Bc2 (0)

d
5
4 (Dv (z) , SO (2)) dL2z ≤ c

∫
Bc2 (0)

d (Dv (z) , SO (2)) dL2z

(74)

≤ c

∫
Bc2 (0)

d (Dũ (z) , SO (2)) dL2z + cε

(72)

≤ cε
1
4 .

So applying Theorem 3 we have there exists R ∈ SO (2) such that∫
Bc2 (0)

|Dv (z) − R| 54 dL2z ≤ cε
1
4 . (75)
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Thus using Hölder’s inequality∫
Bc2 (0)

|Dũ (z) − R|dL2z
(74)

≤
∫

Bc2 (0)

|Dv (z) − R| dL2z + cε

≤ c

(∫
Bc2 (0)

|Dv (z) − R| 54 dL2z

) 4
5

+ cε

(75)

≤ cε
1
5 .

And this implies ∫
Bσc2 (0)

|Du (z) − RH |dL2z ≤ cε
1
5 .

In the case where Le (u) < 0 the argument is identical. �
5. Proof of Theorem 2

With a view to later developments we will prove the following results in more generality than
is needed.

Definition 4. For p > 1, q ≥ 1, e ≥ 1. We will say we have an (p, q, e) Liouville Theorem
for a function class in W 1,p (B1 (0)) ∩ W 2,q (B1 (0)) if there exists positive constants C1 << 1
and C2 >> 1 depending on p, q, σ such that the inequalities∫

B1(0)

dp (Du (z) , K)dL2z ≤ C1ε,

∫
B1(0)

∣∣D2u (z)
∣∣q dL2z ≤ C1ε

1−q

imply that there exists J ∈ {Id, H}, R ∈ SO (2) such that∫
BC1 (0)

|Du (z) − RJ |p dL2z ≤ C2ε
1

ep .

So in Theorem 1 we established a (p, q, 4) Liouville Theorem for orientation preserving func-
tions in W 1,p (B1 (0)) ∩ W 2,q (B1 (0)) with the property supx∈B1(0) ‖ [Du (x)]−1 ‖ ≤ C. In
Conjecture 1 we conjectured that an (optimal) (p, q, 1) Liouville Theorem holds for functions
in W 1,p (B1 (0)) ∩ W 2,q (B1 (0)) and recall in [6] a (p, 1, 1) Liouville Theorem has been proved.

We have the following proposition.

Proposition 3. Let H =
(

σ 0
0 σ−1

)
, K = SO (2) ∪ SO (2)H. Let p ∈ [1, 2], q ≥ 1, e ∈ [1, 4].

Let Bh
F be as defined in Theorem 2. Let A denote the space of sense preserving functions in

W 1,p (Q1 (0))∩W 2,q (Q1 (0)) for which supx∈Q1(0) ‖ [Du (x)]−1 ‖ ≤ C. Define Fh as in Theorem
2.

Suppose we have a (p, q, e) Liouville Theorem for A. Let Aζ
F denote the subset of functions

in A with affine boundary condition F that are ζ-Lipschitz. Let δ > 0 be a small number. Let
α ∈ [1, 2], if u ∈ Aζ

F is such that

Iq
ε (u) ≤ ε

α
3q (76)

then there exists a constant C3 = C3 (δ, q, σ, ζ) such that for h = ε
1
q , letting ũ ∈ Bh

F denote the
piecewise affine interpolant of u we have

Fh (ũ) ≤ C3h
α
3 −δ.

If e = 1 we have the stronger result F0 (ũ) ≤ C3h
α
3 −δ.
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Proof. Let p ∈ (1, 2] be such that 2(p−1)α
q = δ we assume δ is sufficiently small so that such

a p can be found. Let w1, w2 ∈ S1 be two (non-equal) vectors such that w1, w2 and w1−w2 are
not in the set of rank-1 connections. We assume the triangulation 	h is composed of triangles
which (in pairs, see figure 4) form the parallelepipeds of the set

Q1 (0) \
({

kε
1
q w2 + 〈w1〉 : k ∈ Z

}
∪
{
kε

1
q w1 + 〈w2〉 : k ∈ Z

})
.

Let ϕ > 1 be some constant we will decided on later. Let {ci : i = 1, 2, . . .N0} be an ordering
of the points {

k1w1ε
1
q + k2w2ε

1
q : k1, k2 ∈ Z, k1w1ε

1
q + k2w2ε

1
q ∈ Q

1−ϕε
1
q

(0)
}

.

For each i ∈ {1, 2, . . .N0} let vi : Qϕ (0) → IR2 be defined by vi (z) := u
(
ci + zε

1
q

)
ε−

1
q . Let

αi := C−1
1

∫
Qϕ(0)

dp (Dvi (z) , K)dL2z

= ε−
2
q C−1

1

∫
Q

ϕε
1
q

(ci)

dp (Du (z) , K) dL2z. (77)

So note
N0∑
i=1

ε
2
q αi = C−1

1

N0∑
i=1

∫
Q

ϕε
1
q

(ci)

dp (Du (z) , K)dL2z

(76)

≤ cε
α
3q . (78)

Let

B1 :=

{
i :
∫

Qϕ(0)

∣∣D2vi (z)
∣∣q dL2z ≥ C1α

1−q
i

}
.

Let M = Card (B1). Now there must exist subset B̃1 ⊂ B1 such that Card
(
B̃1

)
≥ M

2 with

the property that for every i ∈ B̃1 we have αi ≤ c′ε
α
3q − 2

q M−1 since otherwise we have that the
set E1 :=

{
i ∈ B1 : αiM > c′ε

α
3q − 2

q

}
is such that Card (E1) ≥ M

2 .
So ∑

i∈E1

αi ≥ Card (E1)
c′

M
ε

α
3q − 2

q

≥ c′

2
ε

α
3q − 2

q

which contradicts (78) for constant c′ large enough.
So ∑

i∈fB1

∫
Qϕ(0)

∣∣D2vi (z)
∣∣q dL2z ≥

∑
i∈fB1

C1α
1−q
i

≥ C1Card
(
B̃1

)(
c′ε

α
3q − 2

q M−1
)1−q

≥ cε(
α
3q − 2

q )(1−q)Card
(
B̃1

)
M q−1

≥ cM qε(
α
3q − 2

q )(1−q).
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Then ∑
i∈fB1

∫
Q

ϕε
1
q

(ci)

∣∣D2u (y)
∣∣q ε1−

2
q dL2y ≥ cM qε(

α
3q − 2

q )(1−q).

This implies ε
α
3q −1 ≥ cM qε(

α
3q − 2

q )(1−q)−1+ 2
q so ε

α
3q −1 ≥ cM qε

α
3q −α

3 +1 and thus

cε
α
3q − 2

q ≥ M = Card (B1) . (79)

So if i �∈ B1 then by the fact we have an (p, q, e) Liouville Theorem (see Definition 4) there
exists Ai ∈ K such that (recall (77))∫

QC1ϕ(0)

|Dvi (z) − Ai|p dL2z ≤ C2α
1

ep

i . (80)

Let τ > 0 be some small number we decide on later. We will show that if A ≥ ε
τep

ep−1 then
A

1
ep ≤ ε−τA. To see this note that

A
1

ep = A
1

ep−1A =
A

A
ep−1

ep

since A ≥ ε
τep

ep−1 we know A
ep−1

ep ≥ ετ so A
1

ep ≤ ε−τA.
Let Λ = ε

τep
ep−1 . Now if αi ∈ (0, Λ) then∫

QC1ϕ(0)

|Dvi (z) − Ai|p dL2z ≤ C2α
1

ep

i

≤ C2Λ
1

ep

= C2ε
τ

ep−1 . (81)

Let B2 := {i : αi ∈ (0, Λ)}. Let G := {1, 2, . . .N0} \ (B1 ∪ B2). So for each i ∈ G by (80)
there exists Ai ∈ K such that∫

QC1ϕ(0)

|Dvi (z) − Ai|p dL2z ≤ C2α
1

ep

i

≤ ε−τC2αi. (82)

We assume ϕ has been chosen big enough so that diam (Pi) ≤ C1ϕε
1
q

4 for any i ∈ {1, 2, . . .N0}.
So if Pi ∩ Q C1ϕ

2 ε
1
q

(cj) �= ∅ then Pi ⊂ Q
C1ϕε

1
q

(cj).

Let Z1 :=
⋃

i∈G Q C1ϕ
2 ε

1
q

(ci). Let

F1 (x) :=
∑
i∈G

χQ
C1ϕε

1
q

(ci) (x) |Du (x) − Ai|p .

So ∫
F1 (x) dL2x := c

∑
i∈G

∫
Q

C1ϕε
1
q

(ci)

|Du (x) − Ai|p dL2x

= c
∑
i∈G

ε
2
q

∫
QC1ϕ(0)

|Dvi (x) − Ai|p dL2x

(82)

≤ cε
2
q

∑
i∈G

ε−ταi

(78)

≤ cε
α
3q −τ .
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Let Z2 :=
⋃

i∈B2
Q C1ϕ

2 ε
1
q

(ci). Recall for each i ∈ B2 there exists Ai ∈ K such that inequality

(81) holds true.
Let

Y 1
t :=

{
kε

1
q w2 + 〈w1〉 : k ∈ Z

}
+ tw2, Y 2

t :=
{
kε

1
q w1 + 〈w2〉 : k ∈ Z

}
+ tw1.

Let t0 be the smallest positive number such that Y 1
0 = Y 1

t0 and let t1 be the smallest positive
number such that Y 2

0 = Y 2
t1 . Let L1 : Q1 (0) → [0, t0] be such that L−1

1 (s) = Y 1
s ∩ Q1 (0) and

let L2 : Q1 (0) → [0, t1] be such that L−1
2 (s) = Y 2

s ∩ Q1 (0). It is easy to see that |DL1| ≤ c
and |DL2| ≤ c so by the co-area formula we must be able to find σ1, σ2 such that∫

L−1
1 (σ1)

F1 (z) dH1z ≤ cε−
1
q ε

α
3q −τ (83)

and ∫
L−1

1 (σ2)

F1 (z)dH1z ≤ cε−
1
q ε

α
3q −τ . (84)

Let {Pi : i = 1, 2, . . .N1} be an ordering of the set of (complete) parallelograms formed by
Q1 (0) \ (Y 1

σ1
∪ Y 2

σ1

)
. Let

V1 = {i ∈ {1, 2, . . .N1} : Pi ∩ Z1 �= ∅} , V2 = {i ∈ {1, 2, . . .N1} : Pi ∩ Z2 �= ∅} , (85)

note that V1 ∩ V2 �= ∅. Now by (83) and (84) we know∑
i∈V1

∫
∂Pi

F1 (z) dH1z ≤ cε−
1
q ε

α
3q −τ . (86)

Now each parallelogram Pi is composed of two triangles, denote them τ1
i , τ2

i . See figure 4.

b3
i

b 2
i i

i

2
i

1

1

w2

1w Pi

3

b

τ

τ

a1
i

ia2

ai

Figure 4

Let
{
ai
1, a

i
2, a

i
3

}
denote the corners of the τ1

i where
[
ai
1, a

i
2

] ⊂ ∂Pi and
[
ai
1, a

i
3

] ⊂ ∂Pi and
let
{
bi
1, b

i
2, b

i
3

}
denote the corners of τ2

i where
[
bi
1, b

i
2

] ⊂ ∂Pi and
[
bi
1, b

i
3

] ⊂ ∂Pi. Now if i ∈ V1

then Pi ⊂ QC1ϕε
1
q

(
cp(i)

)
for some p (i) �∈ B1 ∪B2 and F1 (x) ≥ ∣∣Du (x) − Ap(i)

∣∣p for all x ∈ Pi.

See figure 5.
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ϕ 1/qε1c
i

p(i)

c

c

Figure 5

Now∣∣(u (ai
1

)− u
(
ai
2

))− Ap(i)

(
ai
1 − ai

2

)∣∣ ≤
∫

n
[ai

1,ai
2]:|Du(z)−Ap(i)|≤ε

α
3q

o
∣∣Du (z) − Ap(i)

∣∣ dL1z

+
∫

n
[ai

1,ai
2]:|Du(z)−Ap(i)|>ε

α
3q

o
∣∣Du (z) − Ap(i)

∣∣ dL1z

≤ ∣∣ai
1 − ai

2

∣∣ ε α
3q + ε

(1−p)α
3q

∫ ai
2

ai
1

∣∣Du (z) − Ap(i)

∣∣p dL1z

≤ ∣∣ai
1 − ai

2

∣∣ ε α
3q + ε

(1−p)α
3q

∫ ai
2

ai
1

F1 (z)dH1z.

And in exactly the same way

∣∣(u (ai
1

)− u
(
ai
3

))− Ap(i)

(
ai
1 − ai

3

)∣∣ ≤ ∣∣ai
1 − ai

3

∣∣ ε α
3q + ε

(1−p)α
3q

∫ ai
3

ai
1

F1 (z) dH1z. (87)

Which implies ∣∣∣Dũ�τ i
1
− Ap(i)

∣∣∣ ≤ cε
α
3q + cε−

1
q ε

(1−p)α
3q

∫
∂Pi

F1 (z)dH1z,

exactly the same inequality holds for τ i
2.

So∑
i∈V1

2∑
q=1

∣∣∣Dũ�τ i
q
− Ap(i)

∣∣∣ ε 2
q ≤ 2Card (V1) ε

2
q ε

α
3q +

∑
i∈V1

cε
1
q ε

(1−p)α
3q

∫
∂Pi

F1 (z) dH1z

(86)

≤ cε
(1−p)α

3q ε
α
3q −τ . (88)

Now for i ∈ V2 we know Pi ⊂ QC1ε
1
q

(
cp(i)

)
for some p (i) ∈ B2 so (see (81))∫

QC1ϕ(0)

∣∣Dvi (z) − Ap(i)

∣∣p dL2z ≤ C2ε
τ

ep−1 .



28 ANDREW LORENT

Now let τ = α(p−1)
q so ε

τ
ep−1 = ε

α(p−1)
q(ep−1) , so since vi is Lipschitz(∫

QC1ϕ(0)

∣∣Dvi (z) − Ap(i)

∣∣3 dL2z

) 1
3

≤ cε
α(p−1)

3q(ep−1) .

Let lAp(i) be the affine function with lAp(i) (0) = vi (0), and DlAp(i) = Ap(i). Let g := vi − lAp(i) ,
so g (0) = 0 and so by Morrey’s inequality ([10] Section 4.5.3, Theorem 3) we have

sup
x∈QC1ϕ(0)

|g (x)| ≤ c

(∫
QC1ϕ(0)

|Dg (z)|3 dL2z

) 1
3

≤ cε
α(p−1)

3q(ep−1) .

Now recall u (x) = vi

(
x−cp(i)

ε
1
q

)
ε

1
q for x ∈ P1, so

sup
{∣∣∣u(ε 1

q z + cp(i)

)
− lAp(i)

(
ε

1
q z
)∣∣∣ : z ∈ QC1ϕ (0)

}
≤ cε

1
q ε

α(p−1)
3q(ep−1) . (89)

Now take triangle τ1
i , note that∣∣∣Dũ�τ1

i

(
ai
2 − ai

1

)− Ap(i)

(
ai
2 − ai

1

)∣∣∣ =
∣∣(u (ai

2

)− u
(
ai
1

))− (lAp(i)

(
ai
2

)− lAp(i)

(
ai
1

))∣∣
≤ cε

1
q ε

α(p−1)
3q(ep−1) .

Thus ∣∣∣∣∣Dũ�τ1
i

(
ai
2 − ai

1∣∣ai
2 − ai

1

∣∣
)

− Ap(i)

(
ai
2 − ai

1∣∣ai
2 − ai

1

∣∣
)∣∣∣∣∣ ≤ cε

α(p−1)
3q(ep−1) .

In exactly the same way∣∣∣∣∣Dũ�τ1
i

(
ai
3 − ai

1∣∣ai
3 − ai

1

∣∣
)

− Ap(i)

(
ai
3 − ai

1∣∣ai
3 − ai

1

∣∣
)∣∣∣∣∣ ≤ cε

α(p−1)
3q(ep−1) .

Thus
∣∣∣Dũ�τ1

i
− Ap(i)

∣∣∣ ≤ cε
α(p−1)

3q(ep−1) . Let Kε := N
cε

α(p−1)
3q(ep−1)

(K). So we have shown

Dũ�τw
i
∈ Kε for every i ∈ V2, w = 1, 2. (90)

Now note that Q1 (0) \ (Z1 ∪ Z2) = Q1 (0) \
(⋃

i∈G∪B2
Q C1ϕ

2 ε
1
q

(ci)
)

and note

L2

(
Q1 (0) \

( ⋃
i∈G∪B2

Q C1ϕ
2 ε

1
q

(ci)

))
≤ cCard (B1) ε

2
q

(79)

≤ cε
α
3q .

So as ⋃
i∈{1,2,...N1}\(V1∪V2)

Pi

(85)⊂ Q1 (0) \
( ⋃

i∈G∪B2

Q C1ϕ

2 ε
1
q

(ci)

)
so ∑

i∈{1,2,...N1}\(V1∪V2)

L2 (Pi) ≤ cε
α
3q . (91)
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Hence∫
Q1(0)

d (Dũ (z) , Kε) dL2z ≤ c

N1∑
i=1

2∑
w=1

d
(
Dũ�τw

i
, Kε

)
ε

2
q + cε

1
q

≤ c
∑
i∈V1

2∑
w=1

d
(
Dũ�τw

i
, Kε

)
ε

2
q + c

∑
i∈V2

2∑
w=1

d
(
Dũ�τw

i
, Kε

)
ε

2
q

+
∑

i∈{1,2,...N1}\(V1∪V2)

cL2 (Pi) + cε
1
q

(88),(90),(91)

≤ cε
(1−p)α

3q −τ ε
α
3q

= cε
4(1−p)α

3q ε
α
3q

≤ cε−δε
α
3q .

Now in the case where e = 1, Kε = N
cε

α
3q

(K). So∫
Q1(0)

d (Dũ (z) , K)dL2z ≤
∫

Q1(0)

d (Dũ (z) , Kε) dL2z + cε
α
3q

≤ cε−δε
α
3q .

Now for e > 1, since e ≤ 4 and p ≤ 2, and recall p−1
q = δ

2α so

ε
p−1

3q(ep−1) = ε
δ

6α(ep−1)

≤ ε
δ
84

≤ ε
δ

84q .

Hence Kε ⊂ N
ε

δ
84q

(K). So∫
Q1(0)

d
(
Dũ (z) , N

ε
δ

84q
(K)
)

dL2z ≤ C3ε
−δε

α
3q . �

Proof of Theorem 2.
To simplify details we will take Ω = Q1 (0). It will be clear that the proof works for any

bounded Lipschitz domain. Suppose

inf
v∈Bh

F

Fh (v) ≥ Ah
1
3 . (92)

Let q ≥ 1. If for some ε, there exists u ∈ Aζ
F such that

Iq
ε (u) ≤ ε

1
3q +δ

= ε
1+3qδ

3q

let α = 1 + 3qδ. Now for q > 1 by Theorem 1 we have an (p, q, 4) Liouville theorem, so h = ε
1
q

by Proposition 3 we have

Fh (ũ) ≤ C3h
1
3+qδ− δ

2

≤ C3h
1
3+ δ

2

which contradicts (92) for small enough h (depending on δ, A, q, σ and ζ). So we have
established (8).

For the case q = 1, suppose
∫

v∈Bh
F
F0 (v) ≥ Ah

1
3 . Since from [6] we have an (p, 1, 1) Liouville

theorem. So let h = ε, by Proposition 3 for h = ε we have F0 (ũ) ≤ C3h
1
3+ δ

2 , contradiction for
small enough h. So we have shown (9). �
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