Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

On the scaling of the two well problem

by

Andrew Lorent

ON THE SCALING OF THE TWO WELL PROBLEM

ANDREW LORENT

Abstract. Let $H=\left(\begin{array}{cc}\sigma & 0 \\ 0 & \sigma^{-1}\end{array}\right)$ for $\sigma>0$. And let $K:=S O(2) \cup S O(2) H$. We establish a sharp relation between the following two minimisation problems.

Firstly the two well problem with surface energy. Let $q \geq 1$. Let

$$
I_{\epsilon}^{q}(u)=\int_{\Omega} d(D u(z), K)+\epsilon\left|D^{2} u(z)\right|^{q} d L^{2} z
$$

and let A_{F} denote the subspace of functions in $W^{2, q}(\Omega)$ with $\operatorname{det}(D u(z)) \geq 0$ for a.e. $z \in \Omega$ and $\sup _{z \in \Omega}\left\|[D u(z)]^{-1}\right\| \leq C$ satisfying the affine boundary condition $\bar{u}(z)=F(z)$ for $z \in \partial \Omega$, where $F \notin K$. We consider the scaling (with respect to ϵ) of

$$
m_{\epsilon}^{q}:=\inf _{u \in A_{F}} I_{\epsilon}^{q}(u)
$$

Secondly the finite element approximation to the two well problem without surface energy. Let $\delta>0$ be any small number. Let $\mathcal{F}_{h}(u)=\int_{\Omega} d\left(D u(z), N_{h \frac{\delta}{84}}(K)\right) d L^{2} z$. Let B_{F}^{h} denote the space of functions that are piecewise affine on a triangular grid $\left\{\tau_{i}\right\}$ of grid size h satisfying the affine boundary condition $u(z)=F(z)$ for $z \in \partial \Omega$. We consider the scaling of

$$
\alpha_{h}:=\inf _{u \in B_{F}^{h}} \mathcal{F}_{h}(u)
$$

Let $q \geq 1$. We will show that for any small h, for $\epsilon:=h^{q}$ we have

$$
\alpha_{h} \geq c h^{\frac{1}{3}} \Longrightarrow m_{\epsilon}^{q} \geq c^{\prime} \epsilon^{\frac{1}{3 q}+\delta}
$$

Simple examples show $\alpha_{h} \leq C h^{\frac{1}{3}}$ and $m_{\epsilon}^{q} \leq C^{\prime} \epsilon^{\frac{1}{3 q}}$ so our theorem states that optimal (scaling) lower bounds on α_{h} imply optimal (scaling) lower bounds on m_{ϵ}^{q} for any $q \geq 1$.

The main tool we will use to establish this reduction will be an L^{q} version of the suboptimal two well Liouville Theorem proved in [22]. We will give a simple proof of this result using the case of equality of the isoperimetric inequality.

In addition for the case $q=1$ we show optimal (scaling) lower bounds on I_{ϵ}^{1} follow from optimal (scaling) lower bounds on \mathcal{F}_{0} by applying the optimal two well Liouville Theorem of Conti, Schweizer [6].

1. Introduction

Let H be a diagonal matrix with $\operatorname{det}(H)=1$. Let $K:=S O(2) \cup S O(2) H$. We are concerned with minimising the functional

$$
\begin{equation*}
\mathcal{I}(u)=\int_{\Omega} d(D u(z), K) d L^{2} z \tag{1}
\end{equation*}
$$

over the space L_{F} of functions with affine boundary condition $F \notin K$. This functional is a special case of the functional proposed by Ball and James [2], [3] and Chipot, Kinderlehrer [5] in their well known model of solid solid phrase transitions.

Surprisingly, for $F \in \operatorname{int}\left(K^{q c}\right)$ (see [28] for background and precise definitions) there exists an exact minimiser of \mathcal{I}, this follows from work of Müller and Šverák [24], [25], see Sychev [29], [30] and Kirchheim [16], [17] for latter developments and Dacorogna Marcellini [8] for a different approach to some related problems. The approach of Müller and Šverák uses the

[^0]theory of "convex integration" (denoted by CI from this point) developed by Gromov, it is one of the simplest results of the theory.

If we add a small cost to the oscillation of the functional, we have a functional of the form

$$
\begin{equation*}
I_{\epsilon}^{q}(u)=\int_{\Omega} d(D u(z), K)+\epsilon\left|D^{2} u(z)\right|^{q} d L^{2} z \tag{2}
\end{equation*}
$$

Nothing is known about the minimiser of the functional (however there does now exist a Γ convergence result for the functional $\left.\frac{I_{\epsilon}^{2}}{\sqrt{\epsilon}}[6]\right)$. In particular it is completely unknown if for very small ϵ the minimiser is something like the absolute minimiser of \mathcal{I} provided by CI^{1}.

This question is best expressed by considering the scaling of

$$
\begin{equation*}
m_{\epsilon}^{q}:=\inf _{u \in W^{2, q}(\Omega) \cap A_{F}} I_{\epsilon}^{q}(u) \tag{3}
\end{equation*}
$$

An upper bound of $m_{\epsilon}^{q} \leq c \epsilon^{\frac{1}{3 q}}$ is provided by the standard double laminate. This follows from the characterisation of the quasiconvex hull $K^{q c}$ provided by [31].

Figure (b)

Figure 1
If $m_{\epsilon}^{q} \sim \epsilon^{\frac{1}{3 q}+\alpha}$ for $\alpha>0$ then the minimiser will have to take a very different form than the double laminate. On the other hand if $\alpha=0$ then energetically the minimiser does no better than the double laminate.

This question is important because CI solutions are important, many counter examples to natural conjectures in PDE have been achieved via CI, [26], [16], [27]. Minimising functional I_{ϵ}^{q} is the simplest problem that constrains oscillation is some slight way where we can hope to see the effect of the existence of exact minimisers of (1).

Following the partial results of [22] we reduce this question to the question of the scaling of a functional similar to \mathcal{I} over the subspace B_{F}^{h} of functions that are piecewise affine on a triangular grid (with grid size h, where none of the edges of the triangles are in the set of rank-1

[^1]directions of K). Our reduction is sharp in the sense that we will show optimal lower bounds for the finite element approximation implies optimal lower bounds for m_{ϵ}^{q}, for any $q \geq 1$.

Our main tool to achieve this is an L^{q} version of the sub-optimal two well Liouville theorem established in [21], this result may be of independent interest. See [6] for the (scaling) optimal version of the L^{1} theorem.

1.1. Two well Liouville Theorem.

Theorem 1. Let $H=\left(\begin{array}{cc}\sigma & 0 \\ 0 & \sigma^{-1}\end{array}\right)$ for $\sigma>0$. Let $p \geq 1, q \geq 1$. Let $K=S O(2) \cup S O(2) H$. Let $u \in W^{2, q}\left(B_{1}(0)\right) \cap W^{1, p}\left(B_{1}(0)\right)$ be a function with the property that $\operatorname{det}(D u(x)) \geq 0$ and $\left\|[D u(x)]^{-1}\right\| \leq C$ for a.e. $x \in B_{1}(0)$ where $C>0$ is any large constant.

There exists positive constants $\mathcal{C}_{1} \ll 1, \mathcal{C}_{2} \gg 1$ depending only on σ, p, q such that if $\epsilon \in\left(0, \mathcal{C}_{1}\right)$ and u satisfies the following inequalities

$$
\begin{align*}
& \int_{B_{1}(0)} d^{p}(D u(z), K) d L^{2} z \leq \mathcal{C}_{1} \epsilon \tag{4}\\
& \int_{B_{1}(0)}\left|D^{2} u(z)\right|^{q} d L^{2} z \leq \mathcal{C}_{1} \epsilon^{1-q} \tag{5}
\end{align*}
$$

then there exist $J \in\{I d, H\}$ and $R \in S O$ (2) such that

$$
\begin{equation*}
\int_{B_{\mathcal{C}_{1}}(0)}|D u(z)-R J|^{p} d L^{2} z \leq \mathcal{C}_{2} \epsilon^{\frac{1}{p k_{p}}} \tag{6}
\end{equation*}
$$

where $k_{p}=4$ when $p>1$ and $k_{p}=5$ when $p=1$.
We will give a simple proof of this via the case of equality of the isoperimetric inequality. More specifically, it is well known that amongst all bodies B of volume $1 \mathrm{in} \mathbb{R}^{n}$, the ball minimises $H^{n-1}(\partial B)$, i.e. the ball gives the case of equality of the isoperimetric inequality. A quantitative statement of this kind is given by the following Lemma of Hall, Haymann, Weitsman [14].
Lemma 1 (Hall et al.). Let E be a set of finite perimeter ${ }^{2}$ in $\mathbb{R}^{2}, R:=\left(\frac{L^{2}(E)}{\pi}\right)^{\frac{1}{2}}$ and let the Fraenkel asymmetry $\lambda(E)$ be defined by

$$
\begin{equation*}
\lambda(E)=\inf _{a \in \mathbb{R}^{2}} \frac{L^{2}\left(E \backslash B_{R}(a)\right)}{\pi R^{2}} \tag{7}
\end{equation*}
$$

Then

$$
(\operatorname{Per}(E))^{2} \geq 4 \pi\left(1+\frac{(\lambda(E))^{2}}{4}\right) L^{2}(E)
$$

Theorem 1 generalises Theorem 1 of [21] in that hypothesis (5) is an L^{q} bound on $D^{2} u$ instead of an L^{1} bound as in [21], [6]. Simple examples show that $1-q$ is the optimal power in ϵ. Additionally the control of $D u$ in (6) is (at least) $\epsilon^{\frac{1}{5 p}}$ which improves the $\epsilon^{\frac{1}{800}}$ bound of [21] but is much weaker than the optimal $\epsilon^{\frac{1}{p}}$ bound of [6]. The main reason for the improvement comes from the application the quantitative Liouville Theorem of Friesecke et al. (see Theorem 3 of Section 2) in a efficient way, and this we learned from the work of Conti, Schweizer [6].

The isoperimetric inequality method is the fastest, "calculation free" way to see why the sub optimal theorem is true, it helps to show why this initially surprising result is actually quite natural.

[^2]The conditions that function u is sense preserving (i.e. $\operatorname{det}(D u(x))>0$ a.e.) and satisfies $\sup _{x \in B_{1}(0)}\left\|[D u(x)]^{-1}\right\| \leq C$ are technical conditions that we use for convenience, in words, they say that u can not compress small balls into shapes of arbitrary small diameter or reverse their orientation, as such they are not such unnatural conditions for functions describing elastic deformations.
Conjecture 1. Let H, K be as in Theorem 1. Let $u \in W^{2, q}\left(B_{1}(0)\right) \cap W^{1, p}\left(B_{1}(0)\right)$. There exists positive constants $\mathcal{C}_{1} \ll 1, \mathcal{C}_{2} \gg 1$ depending on σ, p, q such that if u satisfies (4) and (5) then for some $J \in\{I d, H\}, R \in S O$ (2) we have

$$
\int_{B_{\mathcal{C}_{1}}(0)}|D u(z)-R J|^{p} d L^{2} z \leq \mathcal{C}_{2} \epsilon^{\frac{1}{p}}
$$

For the case $q=1$ this has been proved in [6].
1.2. Finite element approximations. In order to explain our main application of this result we will need to give a bit more background.

A triangulation (denoted \triangle_{h}) of Ω of size h is a collection of pairwise disjoint triangles $\left\{\tau_{i}\right\}$ all of diameter h such that $\Omega \subset \bigcup_{\tau_{i} \in \triangle_{h}} \tau_{i}$.

We can approximate any continuous function u uniformly by a function \tilde{u} that is piecewise affine on the triangles of \triangle_{h} by the following procedure. For each triangle $\tau_{i} \in \triangle_{h}$, define $\tilde{u}_{L \tau_{i}}$ to be the affine map we get by interpolating u on the corners of τ_{i}. We will call \tilde{u} the interpolant of u.

Let B_{F}^{h} denote the space of Lipschitz functions in L_{F} that are piecewise affine on the triangles of \triangle_{h}. Our interest in this space of functions comes from the fact that minimisation of functionals of the form (1) over B_{F}^{h} provides a convenient intermediary problem for the study of surface energy problems: let \triangle_{h} be a triangulation for which the edges of the triangles are not parallel to the rank- 1 connections of the wells K, if $\tilde{u} \in B_{F}^{h}$ and $\tau_{1}, \tau_{2} \in \triangle_{h}$ are such that $d\left(D \tilde{u}_{L \tau_{1}}, S O(2)\right) \approx 0$ and $d\left(D \tilde{u}_{\left\lfloor\tau_{2}\right.}, S O(2) H\right) \approx 0$ it is easy to see τ_{1} can not touch τ_{2}, i.e. there must be a triangle τ_{3} between τ_{1} and τ_{2} for which $d\left(D u_{\left\lfloor\tau_{3}\right.}, K\right) \geq o(1)$.

For example if we have an interpolant of a laminate, if triangle τ cuts through an interface of the laminate the affine map we get from interpolating the laminate on the corners of τ will have its linear part some distance from the wells. See figure 2.

So we can not lower the energy of \mathcal{I} over B_{F}^{h} by simply making a laminate type function with finer layers, there is a competition between the "surface energy" as given by the error contributed from the interfaces and the "bulk energy" which in the case of the laminate is the width of the interpolation layer.
Theorem 2. Let $K=S O(2) \cup S O(2) H, H=\left(\begin{array}{cc}\sigma & 0 \\ 0 & \sigma^{-1}\end{array}\right)$. Let Ω be a bounded Lipschitz domain. Let \triangle_{h} be a triangulation of Ω of grid size h with the directions of the edges of the triangles some uniform distance away from the set of rank-1 directions of K. Let $F \in \operatorname{int}\left(K^{q c}\right)$. Let $\delta>0$ be some small number.

Denote by B_{F}^{h} the set of functions with affine boundary condition F that are piecewise affine on the triangulation \triangle_{h}. Define $\mathcal{F}_{h}(u):=\int_{\Omega} d\left(D u(z), N_{h \frac{\delta}{84}}(K)\right) d L^{2} z$.

Let A_{F}^{ζ} denote the space of ζ-Lipschitz functions in $W^{2, q}(\Omega)$ with $\operatorname{det}(D u(z)) \geq 0$ for a.e. and $\sup _{x \in \Omega}\left\|[D u(x)]^{-1}\right\| \leq C$ with affine boundary condition F.

Let $q>1$. Let $\mathcal{A}>0$. There exists $h_{0}=h_{0}(\sigma, q, \delta, \mathcal{A}, \zeta)$ such that if $h \in\left(0, h_{0}\right)$ then

$$
\begin{equation*}
\inf _{v \in B_{F}^{h}} \mathcal{F}_{h}(v) \geq \mathcal{A} h^{\frac{1}{3}} \Rightarrow \inf _{u \in A_{F}^{\zeta}} I_{\epsilon}^{q}(u) \geq \epsilon^{\frac{1}{3 q}+\delta} \text { for } \epsilon=h^{q} \tag{8}
\end{equation*}
$$

For $q=1$. We have for $h \in\left(0, h_{0}\right)$

$$
\begin{equation*}
\inf _{v \in B_{F}^{h}} \mathcal{F}_{0}(v) \geq \mathcal{A} h^{\frac{1}{3}} \Rightarrow \inf _{u \in A_{F}^{\zeta}} I_{\epsilon}^{1}(u) \geq \epsilon^{\frac{1}{3 q}+\delta}, \text { for } \epsilon=h . \tag{9}
\end{equation*}
$$

Figure 2

We will show in fact that Conjecture 1 implies a cleaner formulation of (8), namely that for any $\delta>0$ there exists $h_{0}=h_{0}(\sigma, q, \delta, \mathcal{A}, \zeta)$ such that $h \in\left(0, h_{0}\right)$

$$
\begin{equation*}
\inf _{v \in B_{F}^{h}} \mathcal{F}_{0}(v) \geq \mathcal{A} h^{\frac{1}{3}} \Rightarrow \inf _{u \in A_{F}^{\zeta}} I_{\epsilon}^{q}(u) \geq \epsilon^{\frac{1}{3 q}+\delta} \text { for } \epsilon=h^{q} \tag{10}
\end{equation*}
$$

Recall Conjecture 1 is proved in [6] for the case $q=1$ and so for this case we can establish (9).
Let $B_{1}:=\operatorname{diag}(1,0), B_{2}:=\operatorname{diag}(-1,1), B_{3}:=\operatorname{diag}(-1,1)$. See figure $1(\mathrm{~b})$. Define $\widetilde{\mathcal{F}}(u):=$ $\int_{\Omega} d\left(D u(z),\left\{B_{1}, B_{2}, B_{3}\right\}\right) d L^{2} z$. F.E. approximations of $\widetilde{\mathcal{F}}$ over $A_{F_{0}}^{h}\left(\right.$ where $\left.F_{0}:=\operatorname{diag}(0,0)\right)$ have been studied by Chipot [4] and the author [19]. It has been shown $\inf _{u \in A_{F}^{h}} \widetilde{\mathcal{F}}(u) \sim$ $h^{\frac{1}{3}}$. From Šverák's characterisation [31] we know the exact arrangement of rank-1 connections between the matrices in the set $S O(2) \cup S O(2) H$ and a matrix in the interior of the quasiconvex hull, see figure 1 (a). As we can see from figures 1 (a) and (b), the finite well functional $\widetilde{\mathcal{F}}$ precisely mimics these rank-1 connections.
Conjecture 2. Let K, H be defined as in Theorem 2. Given $F \in \operatorname{int}\left(K^{q c}\right)$. Let $\delta>0$. Take B_{F}^{h} be as in Theorem 2.

Define $\mathcal{F}_{h}(u):=\int_{\Omega} d\left(D u(z), N_{h^{\frac{\delta}{84}}}(K)\right) d L^{2} z$. Then there exists constant c depending on σ such that

$$
\inf _{u \in B_{F}^{h}} \mathcal{F}_{h}(u) \geq c h^{\frac{1}{3}}
$$

Informally Theorem 2 says that the optimal scaling for I_{ϵ}^{q} would follow from Conjecture 2. This is not simply a matter of replacing ϵ with h. There is no reason to think the existence of an absolute minimiser to \mathcal{I} will cause \mathcal{F}_{h} to scale to zero faster that at rate $h^{\frac{1}{3}}$. In their most constructive form [24], CI solutions are made as a limit of "laminate within laminate" type functions, and for complicated functions of this type we expect the interpolant to have many triangles with the derivative not close to the wells. For example Chipot ([4], Theorem 4.3) proved the upper bound of $e^{-c|\operatorname{In} h|^{\frac{1}{2}}}$ for the a functional \mathcal{B} of the form of \mathcal{F} whose wells are the Tartar square; $A_{1}=-A_{3}=\operatorname{diag}(-1,-3)$ and $A_{2}=-A_{4}=\operatorname{diag}(-3,1)$ and F belong to
the rank- 1 convex hull of $A_{1}, A_{2}, A_{3}, A_{4}$. The point being that functions that lower the energy of \mathcal{B} have to be n-th order laminate within laminate type functions and for these functions \mathcal{B} can only be made to scale to zero at a very slow rate.

Acknowledgements I'd like to thank Sergio Conti for many helpful discussions during a visit to the MPI Leipzig in June 2004, in particular helping me to understand [6]. Also for reading a preliminary version of the paper and pointing out some errors. The general strategy and particularly the methods in Section 4.4 and Step 2 of Lemma 6 of this paper use many ideas from [6]. Many thanks to Georg Dolzmann for pointing out to me the connection between the minimisation of the two well problem with surface energy and finite element approximations. Thanks also to Laszlo Szekelyhidi for many clarifying discussions, to Stefan Müller for suggesting the use of Theorem 4 and Daniel Faraco for providing reference [14].

2. Sketch of proof of the two well Liouville theorem

The strategy of the proof is to find a radius $r \in\left(\frac{1}{2}, 1\right)$ such that $L^{2}\left(u\left(B_{r}(0)\right)\right) \approx \pi r^{2}$ and $H^{1}\left(\partial u\left(B_{r}(0)\right)\right) \approx 2 \pi r$. Theorem 1 then implies $u\left(B_{r}(0)\right)$ is close to a ball in the sense of smallness of $\lambda\left(u\left(B_{r}(0)\right)\right)$. In some sense this is not very far from saying u is close to a rotation on $B_{r}(0)$, elementary arguments involving (4) and (5) allows us to show this is actually the case.

Now we will go through the steps in detail. For simplicity assume u is an invertible C^{1} function which satisfies the following hypotheses, $\int_{B_{1}(0)} d(D u, K) d x \leq \epsilon$ and $\int_{B_{1}(0)}\left|D^{2} u\right| d x \leq$ \mathcal{C}_{1}.

Provided \mathcal{C}_{1} is small enough our estimate on $\left|D^{2} u\right|$ means that for most $r>0, D u$ on $\partial B_{r}(0)$ can not jump from being close to well $S O(2)$ to being close to well $S O(2) H$. Formally, if there exists $a, b \in \partial B_{r}(0)$ with $D u(a)$ close to $S O(2)$ and $D u(b)$ close to $S O(2) H$ then by the fundamental theorem of Calculus $\mathcal{C}_{1} \geq \int_{\partial B_{r}(0)}\left|D^{2} u(x)\right| d H^{1} x \geq|D u(a)-D u(b)| \gtrsim$ dist ($S O(2), S O(2) H$), contradiction.

Thus we must have that for some $J \in\{I d, H\}, d(D u(z), K)=d(D u(z), S O(2) J)$ for all $z \in \partial B_{r}(0)$. By a change of variables we can assume $J=I d$. So

$$
\begin{aligned}
H^{1}\left(\partial u\left(B_{r}(0)\right)\right) & =\int_{\partial B_{r}(0)}\left|D u(z) t_{z}\right| d H^{1} z \\
& \approx 2 \pi r
\end{aligned}
$$

And as $\operatorname{det}(M)=1$ for any $M \in K$ we have that $L^{2}\left(u\left(B_{r}(0)\right)\right)=\int_{B_{r}(0)} \operatorname{det}(D u(z)) d L^{2} z \approx$ $L^{2}\left(B_{r}(0)\right)=\pi r^{2}$. So applying Theorem 1 we know that $u\left(B_{r}(0)\right)$ is quantitatively close to being a ball of radius r, i.e. the Fraenkel asymmetry $\lambda\left(u\left(B_{r}(0)\right)\right)$ is small.

Next we will follow the strategy of Conti, Schweizer [6] which is to find a ball $B_{c}(y) \subset B_{1}(0)$ such that

$$
\begin{equation*}
\int_{B_{c}(y)} d(D u, S O(2)) \approx 0 \tag{11}
\end{equation*}
$$

and then apply the the following theorem of Friesecke James and Müller. ${ }^{3}$
Theorem 3 (Friesecke, James, Müller). Let U be a bounded Lipschitz domain in \mathbb{R}^{n}, $n \geq 2$. Let $q>1$. There exists a constant $C(U, q)$ with the following property. For each $v \in W^{1, q}\left(U, \mathbb{R}^{n}\right)$ there exists an associated rotation $R \in S O(n)$ such that

$$
\begin{equation*}
\|D v-R\|_{L^{q}(U)} \leq C(U, q)\|\operatorname{dist}(D v, S O(n))\|_{L^{q}(U)} \tag{12}
\end{equation*}
$$

[^3]From Theorem 3 and (11) we can conclude there exists $R \in S O(2)$ such that $\| D u-$ $R \|_{L^{q}\left(B_{c}(y)\right)} \approx 0$, and this (possibly after changing variables) gives conclusion (6).

Let $B:=\{x: D u(x)$ is close to $S O(2) H\}$. Given hypothesis (4), in order to carry out the argument we just need to find a ball $B_{c}(y) \subset B_{1}(0)$ such that $L^{2}\left(B_{c}(y) \cap B\right) \approx 0$. This follows from smallness of $\lambda\left(u\left(B_{R}(0)\right)\right)$ by the following two steps.

Step 1. We say two points on a circle are antipodal if the line segment joining them goes through the centre of the circle. We know ${ }^{4} \partial u\left(B_{r}(0)\right)$ is roughly a circle and using the fact that $\int_{\partial B_{r}(0)} d(D u(z), S O(2)) d H^{1} z \approx 0$, we will show any two antipodal points on $\partial B_{r}(0)$, say a, b will be mapped to antipodal points $u(a), u(b)$ on the "circle" $\partial u\left(B_{r}(0)\right)$, and hence $|u(a)-u(b)| \gtrsim r$.

Step 2. We will use the fact there exists a large set of directions $\Theta \subset S^{1}$ such that for any $v \in \Theta$ we have $|H v|<1$ to show that along a line $\left[a_{v}, b_{v}\right]:=B_{r}(0) \cap\langle v\rangle$ we have, $H^{1}\left(\left[a_{v}, b_{v}\right] \cap B\right) \approx 0$. Then we use a co-area argument to integrate χ_{B} over $X:=\bigcup_{v \in \Theta}\left[a_{v}, b_{v}\right]$, trivially there then exists $B_{c}(y) \subset X$ with property (11).

Proof of Step 1. Suppose we let Γ_{1} and Γ_{2} be the connected components of $\partial B_{r}(0) \backslash\{a, b\}$. Since $D u(z)$ is close to $S O(2)$ for most of the points $z \in \partial B_{r}(0)$ it is easy to see that $H^{1}\left(u\left(\Gamma_{i}\right)\right) \lesssim \pi r$ for $i=1,2$ which together with the fact that each $u\left(\Gamma_{i}\right)$ must go around the outside of the "ball" $u\left(B_{r}(0)\right)$ to connect $u(a)$ to $u(b)$ this implies that $u(a)$ and $u(b)$ must be antipodal.

Proof of Step 2. Let $v \in \Theta$, let a_{v}, b_{v} be antipodal points on $\partial B_{r}(0)$ defined by $\frac{a_{v}-b_{v}}{\left|a_{v}-b_{v}\right|}=v$. By definition of Θ there exists $s_{\sigma} \in(0,1)$ such that $|H v|<s_{\sigma}$. And by Step 1 we know $|u(a)-u(b)| \gtrsim r$, so using the formula $H^{1}\left(u\left(\left[a_{v}, b_{v}\right]\right)\right)=\int_{a_{v}}^{b_{v}}|D u(z) v| d x$, we have

$$
\begin{aligned}
H^{1}\left(u\left(\left[a_{v}, b_{v}\right]\right)\right) & =H^{1}\left(u\left(\left[a_{v}, b_{v}\right] \backslash B\right)\right)+H^{1}\left(u\left(B \cap\left[a_{v}, b_{v}\right]\right)\right) \\
& \lesssim H^{1}\left(\left[a_{v}, b_{v}\right] \backslash B\right)+\left|H \frac{a_{v}-b_{v}}{\left|a_{v}-b_{v}\right|}\right| H^{1}\left(B \cap\left[a_{v}, b_{v}\right]\right)+\int_{a_{v}}^{b_{v}} d(D u, K) d x \\
& \lesssim r-\left(1-s_{\sigma}\right) H^{1}\left(B \cap\left[a_{v}, b_{v}\right]\right)
\end{aligned}
$$

and since $H^{1}\left(u\left(\left[a_{v}, b_{v}\right]\right)\right) \geq\left|u\left(a_{v}\right)-u\left(b_{v}\right)\right| \gtrsim r$. So we must have $H^{1}\left(B \cap\left[a_{v}, b_{v}\right]\right) \approx 0$. Now by the co-area formula we

$$
\int_{X} \frac{1}{|z|} \chi_{B}(z) d L^{2} z=\int_{\Theta}\left(L^{1}\left(B \cap\left[a_{v}, b_{v}\right]\right)+\int_{a_{v}}^{b_{v}} d(D u, K) d x\right) d H^{1} v \approx 0
$$

which gives $L^{2}(B \cap X) \approx 0$.

3. Fine properties of Sobolev functions and functions of integrable dilation

We will need the following well known lemma.
Lemma 2. Let Ω be a Lipschitz domain. Let $u \in W^{1, p}(\Omega)$. There exists a Borel $G_{u} \subset \Omega$ with $H^{1}\left(\operatorname{int}(\Omega) \backslash G_{u}\right)=0$ such that for every $x \in G_{u}$ the limit $\lim _{r \rightarrow 0} \pi^{-1} r^{-2} \int_{B_{r}(x)} u(z) d L^{2} z=$: $\widehat{u}(x)$ exists and we even have

$$
\lim _{r \rightarrow 0} r^{-2} \int_{B_{r}(x)}|u(z)-\widehat{u}(x)|^{p^{*}} d L^{2} z=0
$$

where p^{*} is the Hölder conjugate, i.e. $\frac{1}{p^{*}}+\frac{1}{p}=1$.
This follows from Theorem 1 of Section 4.8 and Theorem 3 of Section 5.6.3 of [10].

[^4]Definition 1. Given $u \in W^{1, p}(\Omega)$ we define the precise representative \widehat{u} of u by

$$
\widehat{u}(x):=\left\{\begin{array}{l}
\lim _{r \rightarrow 0}\left(\pi r^{2}\right)^{-1} \int_{B_{r}(x)} u(z) d L^{2} z \text { if } x \in G_{u} \\
0 \text { if } x \in \Omega \backslash G_{u}
\end{array}\right.
$$

The following lemma is also well known, see for example [12],[10] for convenience of the reader we give some details.
Proposition 1. Let $w \in W^{1, p}(\Omega)$. Suppose $B_{h}(0) \subset \Omega$ then for almost every $h \in(0, r)$ the function

$$
w^{h}(t):=\widehat{u}\left(h \cos \frac{t}{h}, h \sin \frac{t}{h}\right)
$$

is absolutely continuous over $[0,2 \pi h]$ and

$$
\int_{h=0}^{r} \int_{0}^{2 \pi}\left|D w^{h}(z)\right|^{p} d L^{1} z d L^{1} r \leq \int_{B_{r}(0)}|D w(z)|^{p} d L^{2} z
$$

Proof. We define the standard convolution, $w_{\epsilon}:=w * \rho_{\epsilon}$ where $\rho_{\epsilon}(x):=\rho\left(\frac{x}{\epsilon}\right) \epsilon^{-2}$ and ρ is a smooth convolution kernel. So we known by the standard theorems $w_{\epsilon} \xrightarrow{W^{1, p}} w$ as $\epsilon \rightarrow 0$.

Let $\delta>0$. By the co-area formula, following arguments of the proof of Theorem 4.50 [12] there must exist $K_{\delta} \subset(0, r)$ with $L^{1}\left((0, r) \backslash K_{\delta}\right) \leq \delta$ and a sequence $\epsilon_{n} \rightarrow 0$ such that for any $h \in K$

$$
\begin{equation*}
\int_{\partial B_{h}\left(x_{0}\right)}\left|\hat{w}(z)-w_{\epsilon_{n}}(z)\right|^{p}+\left|D w(z)-D w_{\epsilon_{n}}(z)\right|^{p} d H^{1} z \rightarrow 0 \tag{13}
\end{equation*}
$$

as $n \rightarrow \infty$.
So let $h \in K$ be one of the a.a. radii for such that $D w$ is defined on all but a set of H^{1} zero measure on $\partial B_{h}(0)$, and the function $x \rightarrow D w(x)$ is L^{p} integrable on $\partial B_{h}(0)$.

Let $v_{\epsilon_{n}}^{h}(t):=w_{\epsilon_{n}}(h \cos t, h \sin t)$ for $t \in[0,2 \pi)$. Let $L_{h}:[0,2 \pi)$ be the L^{p} integrable function given by $L_{h}(t):=\frac{-\partial w}{\partial x_{1}}(h \cos t, h \sin t) h \sin t+\frac{\partial \hat{w}}{\partial x_{2}}(h \cos t, h \sin t) h \cos t$. By (13) we have that $D v_{\epsilon_{n}}^{h} \xrightarrow{L^{p}([0,2 \pi))} L_{h}$ as $n \rightarrow \infty$. So for any $\epsilon>0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that $\left\|D v_{\epsilon_{n_{1}}}^{h}-D v_{\epsilon_{n_{2}}}^{h}\right\|_{L^{p}([0,2 \pi))} \leq \epsilon$ for all $n_{1}, n_{2} \geq N_{\epsilon}$.

From this by picking a Lebesgue point of w on $\partial B_{h}(0)$ and using the fundamental theorem of Calculus (as in the proof of Theorem 1, Section 4.9 .1 [10]) we can show the sequence $v_{\epsilon_{n}}^{h}$ converges uniformly to the limit $v^{h}(t):=\hat{w}(h \cos t, h \sin t)$ and $v^{h} \in W^{1, p}((0,2 \pi])$ with $D v^{h}(t)=L_{h}(t)$ for a.e. $t \in(0,2 \pi]$.

Define $w^{h}(t):=v^{h}\left(\frac{t}{h}\right)$ for $t \in[0,2 \pi h]$. Then

$$
\begin{aligned}
\int_{h \in K_{\delta}} \int_{[0,2 \pi h]}\left|D w^{h}(t)\right|^{p} d L^{1} t d L^{1} h & \leq \int_{h \in K_{\delta}} \int_{[0,2 \pi h]}\left|D w\left(h \cos \frac{t}{h}, h \sin \frac{t}{h}\right)\right|^{p} d L^{1} t d L^{1} h \\
& \leq \int_{B_{r}(0)}|D w(z)|^{p} d L^{2} z
\end{aligned}
$$

by the co-area formula. Since δ was arbitrary we have that the function w^{h} is defined and absolutely continuous on $\partial B_{h}(0)$ for every $h \in \bigcup_{n} K_{n^{-1}}$ and this completes the proof.

Definition 2. Given an open set $\Omega \subset \mathbb{R}^{n}$. A function $f: \Omega \rightarrow \mathbb{R}^{n}$ is called sense preserving if $\operatorname{det}(D f(z)) \geq 0$ for a.e. $z \in \Omega$.
Definition 3. Given a connected open set $\Omega \subset \mathbb{R}^{n}$. A sense preserving function $f: \Omega \rightarrow \mathbb{R}^{n}$ is said to be of finite dilation if and only if $\|D f(x)\|^{n} \leq K(x)|\operatorname{det}(D f(x))|$ a.e. where $1 \leq$ $K(x)<\infty$. The function f is said to have integrable dilation if and only if $\int_{\Omega} K(x) d L^{n} x<$ ∞.

We will need the following theorem [15].
Theorem 4 (Iwaniec, Šverák). Let $\Omega \subset \mathbb{R}^{2}$ be a connected open set. Given function $f: \Omega \rightarrow$ $\mathbb{R}^{2}, f \in W^{1,2}(\Omega)$ which has integrable dilation then f is open and discrete.

It is also well known that functions of finite dilation are continuous [13].
Lemma 3. Let Ω be an open connected set in \mathbb{R}^{2}. Let $q \geq 1$. Let $C>0$ be some arbitrary large constant. Suppose $u \in W^{2, q}(\Omega)$ is a sense preserving function with the property that $\sup _{x \in \Omega}\left\|[D u(x)]^{-1}\right\| \leq C$ In addition u satisfies

$$
\begin{equation*}
\int_{\Omega} d(D u(z), K) d L^{2} z \leq \infty \tag{14}
\end{equation*}
$$

then u has integrable dilation and consequently for any $z \in \Omega$ and a.e. $r>0$ such that $B_{r}(z) \subset \Omega$ we have that $u\left(B_{r}(z)\right)$ is an open set of finite perimeter and

$$
\begin{equation*}
\partial u\left(B_{r}(z)\right) \subset u\left(\partial B_{r}(z)\right), \text { which gives } \operatorname{Per}\left(u\left(B_{r}(z)\right)\right) \leq H^{1}\left(u\left(\partial B_{r}(z)\right)\right) \tag{15}
\end{equation*}
$$

Proof. Now let $R(x) \in S O(2), S(x) \in M_{s y m}^{2 \times 2}$ be the polar decomposition of the matrix $D u(x)$, i.e. $D u(x)=R(x) S(x)$. Let $\lambda_{1}(x), \lambda_{2}(x)$ be the eigenvalues of $S(x)$, by assumption we have $\min \left\{\left|\lambda_{1}(x)\right|,\left|\lambda_{2}(x)\right|\right\} \geq C^{-1}$ for a.e. $x \in \Omega$.

Given $x \in \Omega$ for which $D u(x)$ is defined, assume without loss of generality that $\left|\lambda_{1}(x)\right| \geq$ $\left|\lambda_{2}(x)\right|$. Now for any $v \in S^{1}$,

$$
\begin{align*}
|D u(x) v|^{2} & \leq\left|\lambda_{1}(x)\right|^{2} \\
& \leq C\left|\lambda_{1}(x)\right|^{2}\left|\lambda_{2}(x)\right| \\
& \leq c(d(D u(x), K)+1) \operatorname{det}(D u(x)) \tag{16}
\end{align*}
$$

And as $(d(D u(x), K)+1)$ is integrable so by (16) we know u is a mapping of integrable dilation. By Sobolev embedding theorem we know $u \in W^{1,2}(\Omega)$ and thus by Theorem 4 we have that u is open and discrete, we also know u is continuous.

Since u is open, it is well know (see exercise 9.12, [32]) that $\partial u\left(B_{r}(z)\right) \subset u\left(\partial B_{r}(z)\right)$. By Proposition 1 for a.e. $r>0$ such that $B_{r}(x) \subset \Omega$ we know $\widehat{D u}$ is absolutely continuous on $\partial B_{r}(z)$ and so $H^{1}\left(u\left(\partial B_{r}(z)\right)\right)=\int_{\partial B_{r}(z)}\left|\widehat{D u}(y) t_{y}\right| d H^{1} y<\infty$ where t_{y} is the tangent to $\partial B_{t}(z)$ at y, which of course implies $H^{1}\left(\partial u\left(B_{r}(z)\right)\right)<\infty$. So by Proposition $3.61[1] u\left(B_{r}(z)\right)$ is a set of finite perimeter and $\operatorname{Per}\left(u\left(B_{r}(z)\right)\right) \leq H^{1}\left(\partial u\left(B_{r}(z)\right)\right) \leq H^{1}\left(u\left(\partial B_{r}(z)\right)\right)$.

4. Details of proof of Theorem 1

4.1. Preproof. Following the notation of the introduction, let B be the set of points for which $D u$ is close to $S O(2) H$, we have to split the lemma into cases depending on the proportion of B inside $B_{1}(0)$.

If B is the majority, we will have to do a change of variables and define $\tilde{u}=u \circ H^{-1}$, then \tilde{u} is defined on a thin ellipse in which we will need to look for circles for which $D \tilde{u}$ stays close to $S O(2)$. In order to find such a circle we will need $D \tilde{u}$ to be "mostly" close to $S O(2)$ in the ellipse. For this we require B to be the "large" majority in $B_{1}(0)$.

On the other hand if $L^{2}\left(B_{1}(0) \backslash B\right)>\sqrt{\mathcal{C}_{1}}$ since we can use the hypotheses (4), (5) to show that on all but a set of radii of measure $\approx \mathcal{C}_{1}$ we have $D u$ is uniformly close to either $S O$ (2) or $S O(2) H$ on $\partial B_{r}(0)$, and so we must be able to find at least one for which $D u$ is uniformly close to $S O$ (2).

Hence in our lemmas we will have to argue two cases depending on the sign of

$$
\begin{equation*}
L^{\mathfrak{e}}(u):=\int_{B_{1}(0)} \mathfrak{e} d(D u(z), S O(2))-d(D u(z), S O(2) H) d L^{2} z \tag{17}
\end{equation*}
$$

4.2. Preliminary lemmas.

Lemma 4. Let E be a set of finite perimeter in \mathbb{R}^{2} with $L^{2}(E) \geq 1$, let ε be a small number, suppose E has the following properties

$$
\begin{equation*}
\operatorname{Per}(E) \leq 2 \pi\left(\frac{L^{2}(E)}{\pi}\right)^{\frac{1}{2}}+\varepsilon \tag{18}
\end{equation*}
$$

then there exists $a \in \mathbb{R}^{2}$ such that for $R:=\left(\frac{L^{2}(E)}{\pi}\right)^{\frac{1}{2}}$

$$
\begin{equation*}
B_{c_{1} \varepsilon^{\frac{1}{4}}}(x) \cap \partial E \neq \emptyset \text { for each } x \in \partial B_{R}(a) \tag{19}
\end{equation*}
$$

Proof. Let $\lambda(E)$ be defined as in (7) Lemma 1. So there exists $a \in \mathbb{R}^{2}$ such that $L^{2}\left(E \backslash B_{R}(a)\right) \leq 2 \lambda(E) \pi R^{2}$ and by Lemma $1(\operatorname{Per}(E))^{2} \geq 4 \pi^{2}\left(1+\frac{(\lambda(E))^{2}}{4}\right) R^{2}$. So by (18)

$$
\pi R^{2}(\lambda(E))^{2} \leq 4 \pi \varepsilon R+\varepsilon^{2} \leq 20 \varepsilon R
$$

and so $(\lambda(E))^{2} \leq 10 \varepsilon R^{-1}$, thus $\lambda(E) \leq \frac{c_{0}}{2} \sqrt{\varepsilon}$ for some constant $c_{0}>1$ so

$$
\begin{equation*}
L^{2}\left(E \cap B_{R}(a)\right) \geq\left(1-c_{0} \sqrt{\varepsilon}\right) \pi R^{2} \tag{20}
\end{equation*}
$$

Thus $B_{c_{0} \varepsilon^{\frac{1}{4}} R}(x) \cap E \cap B_{R}(a) \neq \emptyset$ for any $x \in \partial B_{R}(a)$, since otherwise we contradict (20).
On the other hand if for some $x \in \partial B_{R}(a)$ we have $B_{c_{0} \varepsilon^{\frac{1}{4}} R}(x) \backslash B_{R}(a) \subset E$ then we have $L^{2}\left(E \backslash B_{R}(a)\right) \geq \frac{\pi c_{0}^{2}}{2} \sqrt{\varepsilon} R^{2}$ and together with (20) this implies $L^{2}(E)>\pi R^{2}$ which contradicts the definition of R. So let $c_{1}=c_{0} R_{1}$ for every $x \in \partial B_{R}(a)$ we have $B_{c_{1} \varepsilon^{\frac{1}{4}}}(x) \cap E^{c} \neq \emptyset$ and $B_{c_{1} \varepsilon^{\frac{1}{4}}}(x) \cap E \neq \emptyset$. Hence

$$
\begin{equation*}
B_{c_{1} \varepsilon^{\frac{1}{4}}}(x) \cap \partial E \neq \emptyset \text { for any } x \in \partial B_{R}(a) . \tag{21}
\end{equation*}
$$

Lemma 5. Let $p \geq 1, q \geq 1$. Suppose $u \in W^{2, p}\left(B_{1}(0)\right) \cap W^{1, q}\left(B_{1}(0)\right)$ satisfies properties (4), (5). Let $L^{e}(u)$ be defined by (17).

There exists a small positive constant $\mathfrak{e}=\mathfrak{e}(\sigma)$ such that the following holds true:
If $L^{e}(u) \geq 0$ then for any $b \in B_{\frac{\sigma^{2}}{8}}(0)$ we must be able to find a set $E_{b} \subset\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)$ such that $L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash E_{b}\right)<\frac{\mathcal{C}_{1} \sigma^{-2}}{\sqrt{\mathfrak{e}}}$ and for any $R \in E_{b}$

$$
\begin{equation*}
\int_{H^{-1}\left(\partial B_{R}(b)\right)} d^{q}(\widehat{D u}(z), S O(2) H) d H^{1} z \leq c \epsilon \tag{22}
\end{equation*}
$$

If $L^{\mathfrak{e}}(u)<0$ then for any $b \in B_{\mathfrak{e}^{2}}(0)$ we can find a set $E_{b} \subset\left(2 \mathfrak{e}^{2}, 1-\mathfrak{e}^{2}\right)$ such that $L^{1}\left(\left(2 \mathfrak{e}^{2}, 1-\mathfrak{e}^{2}\right) \backslash E_{b}\right)<\frac{\mathcal{C}_{1} \sigma^{-2}}{\sqrt{\mathfrak{e}}}$ and for any $R \in E_{b}$

$$
\begin{equation*}
\int_{\partial B_{R}(b)} d^{q}(\widehat{D u}(z), S O(2)) d H^{1} z \leq c \epsilon \tag{23}
\end{equation*}
$$

Proof. First we will deal with the case were $L^{\mathfrak{e}}(u) \geq 0$. Let $b \in B_{\frac{\sigma^{2}}{8}}(0)$.
Let

$$
\Pi=\left\{r \in\left(0, \frac{\sigma}{2}\right): \widehat{D u} \text { is absolutely continuous on } H^{-1}\left(\partial B_{r}(b)\right)\right\}
$$

By a version of Proposition 1^{5} we have $L^{1}\left(\left(0, \frac{\sigma}{2}\right) \backslash \Pi\right)=0$. For any $r \in \Pi$ let $\widehat{D u}^{\prime}$ denote the derivative of $\widehat{D u}$ along $H^{-1}\left(\partial B_{r}(b)\right)$. Note $\widehat{D u}^{\prime} \in L^{p}\left(H^{-1}\left(\partial B_{r}(b)\right)\right)$ and

$$
\begin{equation*}
\int_{H^{-1}\left(B_{R}(b)\right)}\left|D^{2} u(z)\right|^{p} d L^{2} z \geq \sigma \int_{0}^{R} \int_{H^{-1}\left(\partial B_{r}(b)\right)}\left|\widehat{D u}^{\prime}(z)\right|^{p} d H^{1} z d L^{1} r \tag{24}
\end{equation*}
$$

Since $L^{e}(u) \geq 0$

$$
\begin{align*}
\int_{B_{1}(0)} d(D u(z), S O(2) H) d L^{2} z & \leq \int_{B_{1}(0)} \mathfrak{e} d(D u(z), S O(2)) d L^{2} z \\
& \leq \int_{B_{1}(0)} \mathfrak{e}\left(d(D u(z), K)+\sigma^{-1}\right) d L^{2} z \\
& \leq 7 \mathfrak{e} \sigma^{-1} \tag{25}
\end{align*}
$$

Let

$$
\begin{equation*}
G_{1}:=\left\{r \in\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right): \int_{H^{-1}\left(\partial B_{r}(b)\right)} d^{q}(\widehat{D u}(z), K) d H^{1} z \leq \sqrt{\mathfrak{e}} \epsilon\right\} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}:=\left\{r \in\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \cap \Pi: \int_{H^{-1}\left(\partial B_{r}(b)\right)}\left|\widehat{D u}^{\prime}(z)\right|^{p} d H^{1} z \leq \sqrt{\mathfrak{e}} \epsilon^{1-p}\right\} \tag{27}
\end{equation*}
$$

Now we can define function $\Psi: H^{-1}\left(B_{\frac{\sigma}{2}}(b)\right) \rightarrow \mathbb{R}$ by

$$
\Psi(z):=r \text { if and only if } z \in H^{-1}\left(\partial B_{r}(b)\right)
$$

It is easy to see $|D \Psi| \leq \sigma^{-1}$, so by the co-area formula

$$
\begin{aligned}
& \int_{r \in\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash G_{1}} \int_{H^{-1}\left(\partial B_{r}(b)\right)} d^{q}(\widehat{D u}(z), K) d H^{1} z d L^{1} r \\
& \leq \int_{H^{-1}\left(B_{\frac{\sigma}{2}}(b)\right)}|D \Psi(z)| d^{q}(D u(z), K) d L^{2} z \\
& \stackrel{(4)}{\leq} \mathcal{C}_{1} \sigma^{-1} \epsilon
\end{aligned}
$$

So

$$
\begin{equation*}
L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash G_{1}\right) \leq \frac{\mathcal{C}_{1} \sigma^{-1}}{\sqrt{\mathfrak{e}}} \tag{28}
\end{equation*}
$$

In exactly the same way we have

$$
\begin{equation*}
L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash G_{2}\right) \leq \frac{\mathcal{C}_{1} \sigma^{-2}}{\sqrt{\mathfrak{e}}} \tag{29}
\end{equation*}
$$

Let $p *$ be the Holder conjugate of p, i.e. $\frac{1}{p *}+\frac{1}{p}=1$. Now for any $r \in G_{1} \cap G_{2} \cap \Pi$ we have

$$
\begin{equation*}
\int_{H^{-1}\left(\partial B_{r}(b)\right)} \frac{\left(d^{\frac{q}{p *}}(\widehat{D u}(z), K)\right)^{p *}}{p *}+\epsilon^{p} \frac{\left|\widehat{D u}^{\prime}(z)\right|^{p}}{p} d H^{1} z \stackrel{(26),(27)}{\leq} 2 \sqrt{\mathfrak{e} \epsilon} \tag{30}
\end{equation*}
$$

By Young's inequality this implies

$$
\begin{equation*}
\int_{H^{-1}\left(\partial B_{r}(b)\right)} d^{\frac{q}{p^{*}}}(\widehat{D u}(z), K)\left|\widehat{D u}^{\prime}(z)\right| d H^{1} z \leq 2 \sqrt{\mathfrak{e}} \tag{31}
\end{equation*}
$$

[^5]Since $r \in G_{1}$, (see (26)) we must have a point $x_{0} \in H^{-1}\left(\partial B_{r}(b)\right)$ such that

$$
\begin{equation*}
d\left(\widehat{D u}\left(x_{0}\right), S O(2) J_{1}\right) \leq c(\sqrt{\mathfrak{e}} \epsilon)^{\frac{1}{q}} \text { for some } J_{1} \in\{I d, H\} \tag{32}
\end{equation*}
$$

Step 1. We will show that for any $r \in G_{1} \cap G_{2} \cap \Pi$ we have $J_{1} \in\{I d, H\}$ such that $d\left(\widehat{D u}(z), S O(2) J_{1}\right) \leq d(\widehat{D u}(z), K)$ for all $z \in H^{-1}\left(\partial B_{r}(b)\right)$.
Proof of Step 1. We know there exists $x_{0} \in H^{-1}\left(\partial B_{r}(b)\right)$ such that (32) holds true. Let $J_{2} \in\{I d, H\} \backslash J_{2}$. If Step 1 is false we have a point $x_{1} \in H^{-1}\left(\partial B_{r}(b)\right)$ such that

$$
d\left(\widehat{D u}\left(x_{1}\right), S O(2) J_{2}\right)<d\left(\widehat{D u}\left(x_{1}\right), S O(2) J_{1}\right)
$$

Recall we chose $r>0$ so that $\widehat{D u}$ is absolutely continuous on $H^{-1}\left(\partial B_{r}(b)\right)$. Define g : $[0,2 \pi) \rightarrow \mathbb{R}$ by $g(\theta):=d\left(\widehat{D u}\left(H^{-1}\left(r e^{i \theta}+b\right)\right), K\right)$. Let $W:=\{\theta \in(0,2 \pi]: g(\theta)>0\}$, it is easy to see g is absolutely continuous on W and $|D g(\theta)| \leq c\left|\widehat{D u}^{\prime}\left(H^{-1}\left(r e^{i \theta}+b\right)\right)\right|$ for any $\theta \in W$. Let $d_{0}:=d(S O(2), S O(2) H)$.

Now $\sup _{z \in[0,2 \pi)} g(z) \geq \frac{d_{0}}{2}, \inf _{z \in[0,2 \pi)} g(z) \leq 2(\sqrt{\mathfrak{e}} \epsilon)^{\frac{1}{q}}$, so there must be a subinterval $I \subset$ ($0,2 \pi$] with the following properties;

- letting a, b be the end points of $I,|g(a)-g(b)|=\frac{d_{0}}{4}$.
- $\inf \{g(x): x \in I\}>\frac{d_{0}}{8}, \sup \{g(x): x \in I\}<d_{0}$.

So

$$
\begin{align*}
\frac{d_{0}}{4} & =|g(a)-g(b)| \\
& =\left|\int_{I} D g(x) d L^{1} x\right| \\
& \leq c \int_{H^{-1}\left(\partial B_{r}(b)\right)}\left|\widehat{D u}^{\prime}(z)\right| d H^{1} z . \tag{33}
\end{align*}
$$

Let $J:=\left\{H^{-1}\left(r e^{i \theta}+b\right): \theta \in I\right\}$. We know $d^{\frac{q}{p^{*}}}(\widehat{D u}(x), K)>\left(\frac{d_{0}}{8}\right)^{\frac{q}{p^{*}}}$ for all $x \in J$, so

$$
\begin{aligned}
\int_{J}\left|\widehat{D u}^{\prime}(x)\right| d^{\frac{q}{p^{*}}}(\widehat{D u}(x), K) d H^{1} x & \geq\left(\frac{d_{0}}{8}\right)^{\frac{q}{p^{*}}} \int_{J}\left|\widehat{D u}^{\prime}(x)\right| d H^{1} x \\
& \stackrel{(33)}{\geq}\left(\frac{d_{0}}{8}\right)^{\frac{q}{p^{*}}} \frac{d_{0}}{4 c}
\end{aligned}
$$

by (31) assuming constant \mathfrak{e} is small enough we have a contradiction, thus Step 1 is proved.
Step 2. We will show there exists $J_{1} \in\{I d, H\}$ such that for any $r \in G_{1} \cap G_{2} \cap \Pi$ we have

$$
\begin{equation*}
d\left(\widehat{D u}(z), S O(2) J_{1}\right) \leq d(\widehat{D u}(z), K) \text { for all } z \in H^{-1}\left(\partial B_{r}(b)\right) \tag{34}
\end{equation*}
$$

Proof of Step 2. Suppose not, so we can find $r_{1}, r_{2} \in G_{1} \cap G_{2} \cap \Pi$ such that

$$
d(\widehat{D u}(z), S O(2)) \leq d(\widehat{D u}(z), K) \text { for all } z \in H^{-1}\left(\partial B_{r_{1}}(b)\right)
$$

and

$$
d(\widehat{D u}(z), S O(2) H) \leq d(\widehat{D u}(z), K) \text { for all } z \in H^{-1}\left(\partial B_{r_{2}}(b)\right)
$$

Assume without loss of generality that $r_{1} \leq r_{2}$. Let

$$
\begin{equation*}
W_{1}:=\left\{z \in H^{-1}\left(\partial B_{r_{1}}(b)\right): d(\widehat{D u}(z), S O(2))<\sqrt{\mathfrak{e}} \sqrt{\epsilon}\right\} \tag{35}
\end{equation*}
$$

and let

$$
\begin{equation*}
W_{2}:=\left\{z \in H^{-1}\left(\partial B_{r_{2}}(b)\right): d(\widehat{D u}(z), S O(2) H)<\sqrt{\mathfrak{e}} \sqrt{\epsilon}\right\} . \tag{36}
\end{equation*}
$$

Since $r_{1}, r_{2} \in G_{1}$ (see definition (26)) we have that

$$
\begin{aligned}
H^{1}\left(H^{-1}\left(\partial B_{r_{1}}(b)\right) \backslash W_{1}\right) \sqrt{\mathfrak{e}} \sqrt{\epsilon} & \leq \int_{H^{-1}\left(\partial B_{r_{1}}(b)\right)} d(\widehat{D u}(z), S O(2)) d H^{1} z \\
& \leq \sqrt{\mathfrak{e} \epsilon}
\end{aligned}
$$

So

$$
\begin{equation*}
H^{1}\left(H^{-1}\left(\partial B_{r_{1}}(b)\right) \backslash W_{1}\right) \leq \sqrt{\epsilon} \tag{37}
\end{equation*}
$$

and in the same way

$$
\begin{equation*}
H^{1}\left(H^{-1}\left(\partial B_{r_{2}}(b)\right) \backslash W_{2}\right) \leq \sqrt{\epsilon} \tag{38}
\end{equation*}
$$

Let

$$
\begin{aligned}
& F_{1}=\left\{a \in\left[-\sigma r_{1}, \sigma r_{1}\right]: \int_{P_{e_{1}^{1}}^{-1}(a) \cap B_{1}(0)} d^{q}(\widehat{D u}(z), K) d H^{1} z \leq \sqrt{\mathfrak{e} \epsilon}\right\} \\
& F_{2}=\left\{a \in\left[-\sigma r_{1}, \sigma r_{1}\right]: \int_{P_{e_{1}^{1}}^{-1}(a) \cap B_{1}(0)}\left|\widehat{D u}^{\prime}(z)\right|^{p} d H^{1} z \leq \sqrt{\mathfrak{e}} \epsilon^{1-p}\right\} .
\end{aligned}
$$

In exactly the same way as we established (28) and (29), by Fubini $L^{1}\left(\left[-\sigma r_{1}, \sigma r_{1}\right] \backslash F_{1}\right) \leq \frac{\mathcal{C}_{1}}{\sqrt{\varepsilon}}$ and $L^{1}\left(\left[-\sigma r_{1}, \sigma r_{1}\right] \backslash F_{2}\right) \leq \frac{\mathcal{c}_{1}}{\sqrt{e}}$ and note that for any $a \in F_{1} \cap F_{2}$ we have

$$
\begin{aligned}
\int_{P_{e_{\frac{1}{1}}^{-1}(a) \cap B_{1}(0)}} \epsilon d^{\frac{q}{p^{*}}} & (\widehat{D u}(z), K)\left|\widehat{D u}^{\prime}(z)\right| d L^{1} z \\
& \leq \int_{P_{e_{1}^{1}}^{-1}(a) \cap B_{1}(0)} d^{q}(\widehat{D u}(z), K)+\epsilon^{p}\left|\widehat{D u}^{\prime}(z)\right|^{p} d L^{1} z \\
& \leq \sqrt{\mathfrak{e} \epsilon}
\end{aligned}
$$

where p^{*} is the Holder exponent of p.
So by an identical argument to that of Step 1 we can show that for any $x \in F_{1} \cap F_{2}$ there exists $J_{1} \in\{I d, H\}$ such that for $J_{2} \in\{I d, H\} \backslash\left\{J_{1}\right\}$ we have $d\left(\widehat{D u}(z), S O(2) J_{1}\right) \leq$ $d\left(\widehat{D u}(z), S O(2) J_{2}\right)$ for all $z \in P_{e_{1}^{\perp}}^{-1} \cap B_{1}(0)$. However by (37), (38) $L^{1}\left(P_{e_{\perp}^{\perp}}\left(W_{1} \cap W_{2}\right)\right) \geq$ $\frac{\sigma r_{1}}{2}$ so assuming \mathcal{C}_{1} is chosen small enough we have $P_{e_{1}^{\perp}}\left(W_{1} \cap W_{2}\right) \cap F_{1} \cap F_{2} \neq \emptyset$ which contradicts the definition of W_{1}, W_{2}, see (36) and (35). This completes the proof Step 2.

Step 3. We complete the proof of Lemma 5 for the case $L^{e}(u)>0$.
Proof of Step 3. We need only show that in (34) we can take, $J_{1}=H$ for any $r \in G_{1} \cap G_{2} \cap \Pi$.
Let $\mathbb{A}:=\bigcup_{r \in G_{1} \cap G_{2} \cap \Pi} H^{-1}\left(\partial B_{r}(b)\right)$.
So suppose not, then

$$
\begin{aligned}
\int_{\mathbb{A}} d^{q}(\widehat{D u}(z), S O(2)) d L^{2} z & =\int_{\mathbb{A}} d^{q}(\widehat{D u}(z), K) d L^{2} z \\
& \leq(4)
\end{aligned}
$$

Note that by (28), (29) and the co-area formula we have

$$
\begin{aligned}
L^{2}(\mathbb{A}) & \geq \sigma L^{1}\left(G_{1} \cup G_{2}\right) \\
& \geq \frac{\sigma^{2}}{16}
\end{aligned}
$$

Now we can extract subset $\widetilde{\mathbb{A}} \subset \mathbb{A}$ such that $\sup \left\{d^{q}(D u(z), S O(2)): z \in \widetilde{\mathbb{A}}\right\} \leq 2 c \epsilon$ with the property that $L^{2}(\widetilde{\mathbb{A}}) \geq \frac{L^{2}(\mathbb{A})}{2}$, but as $d_{0} \gg \epsilon^{\frac{1}{q}}$ we have $\inf \{d(D u(z), S O(2) H): z \in \widetilde{\mathbb{A}}\} \geq$ $\frac{d_{0}}{2}$ and hence

$$
\int_{\widetilde{\mathbb{A}}} d(D u(z), S O(2) H) d L^{2} z \geq \frac{d_{0}}{2} \frac{\sigma^{2}}{32}
$$

and (assuming \mathfrak{e} is small enough) this contradicts (25). Now defining $E_{b}:=G_{1} \cap G_{2} \cap \Pi$ by (28) and (29) this set satisfies all the properties of the statement. Hence the lemma is proved for the case $L^{\mathfrak{e}}(u) \leq 0$.

Step 4. We complete the proof of the case where $L^{e}(u)<0$.
Proof of Step 4. Arguing identically to the case where $L^{e}(u) \geq 0$ we can show there exists a set $E_{b} \subset\left(2 \mathfrak{e}^{2}, 1-\mathfrak{e}^{2}\right), J_{1} \in\{I d, H\}$ such that $L^{1}\left(\left(2 \mathfrak{e}^{2}, 1-\mathfrak{e}^{2}\right) \backslash E_{b}\right) \leq \frac{2 \sigma^{-2} \mathcal{C}_{1}}{\sqrt{\mathfrak{e}}}$ and

$$
\int_{\partial B_{r}(b)} d^{q}\left(\widehat{D u}(z), S O(2) J_{1}\right) d H^{1} z \leq c \epsilon \text { for each } r \in E_{b} .
$$

So the set $\mathbb{U}:=\bigcup_{r \in E_{b}} \partial B_{r}(b)$ has the property

$$
\begin{equation*}
\int_{\mathbb{U}} d^{q}\left(\widehat{D u}(z), S O(2) J_{1}\right) d H^{1} z \leq \mathcal{C}_{1} \epsilon \tag{39}
\end{equation*}
$$

We claim $J_{1}=I d$. Suppose not, assuming \mathcal{C}_{1} is small enough $L^{2}\left(B_{1}(0) \backslash \mathbb{U}\right) \leq 5 \mathfrak{e}^{2}$. By Hölder's inequality

$$
\begin{align*}
\int_{\mathbb{U}} d(D u(z), S O(2) H) d L^{2} z & \leq c\left(\int_{\mathbb{U}} d^{q}(D u(z), S O(2) H) d L^{2} z\right)^{\frac{1}{q}} \\
& \stackrel{(39)}{\leq} c \epsilon^{\frac{1}{q}} \tag{40}
\end{align*}
$$

Thus

$$
\begin{align*}
\int_{B_{1}(0)} & d(D u(z), S O(2) H) d L^{2} z \\
& \leq \int_{\mathbb{U}} d(D u(z), S O(2) H) d L^{2} z+\int_{B_{1}(0) \backslash \mathbb{U}} d(D u(z), K)+\sigma^{-1} d L^{2} z \\
& \stackrel{(40),(4)}{\leq} c \epsilon^{\frac{1}{q}}+\sigma^{-1} L^{2}\left(B_{1}(0) \backslash \mathbb{U}\right) \\
& \leq c \mathfrak{e}^{2} . \tag{41}
\end{align*}
$$

However since $L^{\mathfrak{e}}(u)<0$ this implies

$$
\begin{equation*}
\int_{B_{1}(0)} d(D u(z), S O(2)) d L^{2} z<c \mathfrak{e} \tag{42}
\end{equation*}
$$

Let

$$
\mathbb{D}:=\left\{z \in B_{1}(0): d(D u(z), S O(2) H) \leq \sqrt{\mathfrak{e}}, \text { and } d(D u(z), S O(2)) \leq \sqrt{\mathfrak{e}}\right\}
$$

so by $(42),(41) L^{2}(\mathbb{D}) \leq \pi-c \sqrt{\mathfrak{e}}$ however as $d(S O(2), S O(2) H)=d_{0}, \mathbb{D}$ should be empty, so this a contradiction.

Lemma 6. Let $p \geq 1, q \geq 1$. Suppose $u \in W^{2, p}\left(B_{1}(0)\right) \cap W^{1, q}\left(B_{1}(0)\right)$ is a sense preserving function for which $\sup _{x \in B_{1}(0)}\left\|[D u(x)]^{-1}\right\| \leq C$ and u satisfies properties (4), (5). Let L^{e} be defined by (17) and let constant $\mathfrak{e}=\mathfrak{e}(\sigma)$ be as in Lemma 5 .

If $L^{\mathfrak{e}}(u) \geq 0$ then for any $b \in B_{\frac{\sigma^{2}}{8}}(0)$ there exists a set $\mathcal{Y}_{b} \subset\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)$ with $L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash \mathcal{Y}_{b}\right) \leq$ $\frac{\sigma}{100}$ and for any $r \in \mathcal{Y}_{b}$ we have

$$
\begin{equation*}
L^{2}\left(u\left(H^{-1}\left(B_{r}(b)\right)\right)\right) \geq \pi r^{2}-c \epsilon^{\frac{1}{q}} \tag{43}
\end{equation*}
$$

If $L^{\epsilon}(u)<0$ then for any $b \in B_{\mathfrak{e}^{2}}(0)$ there exists a set $\mathcal{Y}_{b} \subset\left(2 \mathfrak{e}^{2}, \frac{1}{2}\right)$ with $L^{1}\left(\left(2 \mathfrak{e}^{2}, \frac{1}{2}\right) \backslash \mathcal{Y}_{b}\right) \leq$ $\frac{1}{100}$ and any $r \in \mathcal{Y}_{b}$ is such that

$$
L^{2}\left(u\left(B_{r}(b)\right)\right) \geq \pi r^{2}-c \epsilon^{\frac{1}{q}}
$$

Proof. We will only argue the case $L^{\mathfrak{e}}(u) \geq 0$, the argument for the case $L^{\mathfrak{e}}(u)<0$ is identical.

Step 1. We will show that for any $b \in B_{\frac{\sigma^{2}}{8}}(0)$ there exists a set $\mathcal{Y}_{b} \subset\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)$ with $L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash \mathcal{Y}_{b}\right) \leq \frac{\sigma}{100}$ such that for some $A \in S O(2) H$ there exists an affine function l_{A} with derivative A such that

$$
\begin{equation*}
\left\|u-l_{A}\right\|_{L^{\infty}\left(H^{-1}\left(\partial B_{r}(b)\right)\right)} \leq c \sqrt{\mathcal{C}_{1} \mathfrak{e}^{-\frac{1}{2}}} \tag{44}
\end{equation*}
$$

Proof of Step 1. Let $E_{b} \subset\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)$ be the set defined in Lemma 5. Let

$$
D:=\bigcup_{r \in E_{b} \cap\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)} H^{-1}\left(\partial B_{r}(b)\right) .
$$

Now by definition of E_{b}, see (22) we have

$$
\begin{align*}
\int_{D} d^{q}(D u(z), S O(2) H) d L^{2} z & \leq \sigma^{-1} \int_{E_{b}} \int_{H^{-1}\left(\partial B_{r}(b)\right)} d^{q}(D u(z), S O(2) H) d H^{1} z d L^{1} r \\
& \leq c \epsilon \tag{45}
\end{align*}
$$

And let $T:=\bigcup_{r \in\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)} H^{-1}\left(\partial B_{r}(b)\right)$, we know

$$
\begin{align*}
L^{2}(T \backslash D) & \leq 5 \sigma^{-1} L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash E_{b}\right) \\
& \leq \frac{5 \mathcal{C}_{1} \sigma^{-3}}{\sqrt{\mathfrak{e}}} \tag{46}
\end{align*}
$$

Now by Proposition A1 [11] there exists a constant $U=U(T)$ and a function $v: T \rightarrow \mathbb{R}^{2}$ such that $\|D v\|_{L^{\infty}(T)} \leq U 100 \sigma^{-1}$ and

$$
\begin{equation*}
\|D v-D u\|_{L^{q}(T)} \leq c \int_{\left\{x \in T:|D u(x)|>100 \sigma^{-1}\right\}}|D u(x)|^{q} d L^{2} x \tag{47}
\end{equation*}
$$

Now

$$
\begin{align*}
\int_{\left\{x \in T:|D u(x)|>100 \sigma^{-1}\right\}}|D u(x)|^{q} d L^{2} x & \leq 2^{q} \int_{\left\{x \in T:|D u(x)|>100 \sigma^{-1}\right\}} d^{q}(D u(x), K) d L^{2} x \\
& \stackrel{\text { (4) }}{ } 2^{q} \epsilon \tag{48}
\end{align*}
$$

And

$$
\begin{aligned}
\int_{T} d^{q}(D v(z), S O(2) H) d L^{2} z & \leq \\
& c L^{2}(T \backslash D)+\int_{D} d^{q}(D v(z), S O(2) H) d L^{2} z \\
& \stackrel{(46),(47),(48)}{\leq} \int_{D} d^{q}(D u(z), S O(2) H) d L^{2} z+\frac{c \mathcal{C}_{1}}{\sqrt{\mathfrak{e}}}+c \epsilon \\
& \stackrel{(45)}{\leq} \\
& \frac{c \mathcal{C}_{1}}{\sqrt{\mathfrak{e}}}
\end{aligned}
$$

For the case $q>1$ we can (after change of variables) apply Theorem 3 to conclude there exists $A \in S O(2) H$ such that

$$
\begin{equation*}
\int_{T}|D v(z)-A|^{q} d L^{2} z \leq \frac{c \mathcal{C}_{1}}{\sqrt{\mathfrak{e}}} \tag{49}
\end{equation*}
$$

For the case $q=1$ note

$$
\begin{aligned}
\int_{T} d^{2}(D v(z), S O(2) H) & \leq c \int_{T} d(D v(z), S O(2) H) \\
& \leq \frac{c \mathcal{C}_{1}}{\sqrt{\mathfrak{e}}}
\end{aligned}
$$

and again we apply Theorem 3, so there exists $A \in S O$ (2) H such that

$$
\begin{align*}
\int_{T}|D v(z)-A| d L^{2} z & \leq c\left(\int_{T}|D v(z)-A|^{2} d L^{2} z\right)^{\frac{1}{2}} \\
& \leq c \sqrt{\mathcal{C}_{1} \mathfrak{e}^{-\frac{1}{2}}} \tag{50}
\end{align*}
$$

Now by applying (47), (48) to (49), (50), for any $q \geq 1$ we have

$$
\int_{T}|D u(z)-A|^{q} d L^{2} z \leq c \sqrt{\mathcal{C}_{1} \mathfrak{e}^{-\frac{1}{2}}}
$$

By Poincaré's inequality there exists and affine map l_{A} with $D l_{A}=A$ such that

$$
\int_{T}\left|u(z)-l_{A}(z)\right|^{q} d L^{2} z \leq c \sqrt{\mathcal{C}_{1} \mathfrak{e}^{-\frac{1}{2}}}
$$

So by the co-area formula there exists a set $\mathcal{Y}_{b} \subset\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)$ such that $L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash \mathcal{Y}_{b}\right) \leq \frac{\sigma}{100}$ such that for each $r \in \mathcal{Y}_{b}$ we have

$$
\begin{equation*}
\int_{H^{-1}\left(\partial B_{r}(b)\right)}\left|u(z)-l_{A}(z)\right|^{q}+|D u(z)-A(z)|^{q} d H^{1} z \leq c \sqrt{\mathcal{C}_{1} \mathfrak{e}^{-\frac{1}{2}}} \tag{51}
\end{equation*}
$$

By the fundamental theorem of Calculus any $r \in \mathcal{Y}_{b}$ satisfies (44) so this completes the proof of Step 1.

Step 2. We will show we can find $r_{1} \in\left(\frac{\sigma}{4}, \frac{3 \sigma}{8}\right) \cap \mathcal{Y}_{b}$ such that

$$
\int_{H^{-1}\left(B_{r_{1}}(b)\right)} \operatorname{det}(D u(z)) d L^{2} z=L^{2}\left(u\left(H^{-1}\left(B_{r_{1}}(b)\right)\right)\right) .
$$

Proof of Step 2. Following ideas of [6] (Step 1 of the proof Proposition 2.2) we will use some elements of degree theory.

Let $r_{0} \in \mathcal{Y}_{b} \cap\left(\frac{22 \sigma}{50}, \frac{\sigma}{2}\right)$. We consider the homotopy defined by $\mathbb{H}(x, t)=t u(x)+(1-t) l_{A}(x)$ for $t \in[0,1], x \in H^{-1}\left(B_{r_{0}}(b)\right)$. Note that for every $t \in[0,1], x \rightarrow \mathbb{H}(x, t)$ is C^{0}. Also note that for \mathcal{C}_{1} small enough by (44) we have

$$
l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right) \cap \mathbb{H}\left(\partial H^{-1}\left(B_{r_{0}}(b)\right), t\right)=\emptyset
$$

for all $t \in[0,1]$. So by Theorem 2.3 [12] we have that for any $p \in l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)$, $d\left(\mathbb{H}(t, \cdot), H^{-1}\left(B_{r_{0}}(b)\right), p\right)$ is independent of t. As $\operatorname{det}(A)=1$ and we know

$$
d\left(l_{A}(x), H^{-1}\left(B_{r_{0}}(b)\right), p\right)=1
$$

this implies $d\left(u, H^{-1}\left(B_{r_{0}}(b)\right), p\right)=1$ for any $p \in l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)$.

Now since by Sobolev embedding $u \in W^{1,2}\left(B_{1}(0)\right)$ and $\operatorname{det}(D u(x)) \geq C^{-2}$ for a.e. $x \in$ $B_{1}(0)$ by Theorem 5.32 [12] we know u satisfies the hypotheses to apply Remark 5.26 [12] and so we know that for a.e. $p \in l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)$ we have

$$
\begin{equation*}
d\left(u, H^{-1}\left(B_{r_{0}}(b)\right), p\right)=\sum_{z \in\left\{y \in H^{-1}\left(B_{r_{0}}(b)\right): u(y)=p\right\}} \operatorname{sgn}(\operatorname{det}(D u(z))) \tag{52}
\end{equation*}
$$

and as $\operatorname{det}(D u(z))=1$ this gives us that $\#\left\{y \in H^{-1}\left(B_{r_{0}}(b)\right): u(y)=p\right\}=1$ for a.e. $p \in$ $l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)$.

Now take $r_{1} \in\left(\frac{\sigma}{4}, \frac{5 \sigma}{16}\right) \cap \mathcal{Y}_{b}$, so again assuming \mathcal{C}_{1} is small enough from (44) we have $u\left(\partial H^{-1}\left(B_{r_{1}}(b)\right)\right) \subset l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)$ hence $\mathbb{H}\left(\partial H^{-1}\left(B_{r_{1}}(b)\right), t\right) \subset l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)$ for all $t \in[0,1]$. So for $p \notin l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)$ we know by Theorem 2.3 [12] the degree $d\left(\mathbb{H}(t, \cdot), H^{-1}\left(B_{r_{1}}(b)\right), p\right)$ is independent of t and so we know $d\left(u, H^{-1}\left(B_{r_{1}}(b)\right), p\right)=0$, by (52) this implies that $L^{2}\left(u\left(H^{-1}\left(B_{r_{1}}(b)\right)\right) \backslash l_{A}\left(H^{-1}\left(B_{\frac{3 \sigma}{8}}(b)\right)\right)\right)=0$.

Hence for a.e. $p \in u\left(H^{-1}\left(B_{r_{1}}(b)\right)\right)$, since $r_{1}<r_{0}$ we have

$$
\begin{aligned}
1 & \leq \#\left\{y \in H^{-1}\left(B_{r_{1}}(b)\right): u(y)=p\right\} \\
& \leq \#\left\{y \in H^{-1}\left(B_{r_{0}}(b)\right): u(y)=p\right\} \\
& =1
\end{aligned}
$$

So by Remark 5.26 [12] we know $d\left(u, H^{-1}\left(B_{r_{1}}(b)\right), y\right)=1$ for a.e. $y \in u\left(H^{-1}\left(B_{r_{1}}(b)\right)\right)$. Now we can apply Theorem 5.35 [12], so

$$
\begin{align*}
\int_{H^{-1}\left(B_{r_{1}}(b)\right)} \operatorname{det}(D u(z)) d L^{2} z & =\int_{u\left(H^{-1}\left(B_{r_{1}}(b)\right)\right)} d\left(u, H^{-1}\left(B_{r_{1}}(b)\right), y\right) d L^{2} y \\
& =L^{2}\left(u\left(H^{-1}\left(B_{r_{1}}(b)\right)\right)\right) \tag{53}
\end{align*}
$$

This completes the proof of Step 2.
Let $\mathcal{G}:=\left\{z \in H^{-1}\left(B_{r_{1}}(b)\right): d(D u(z), K) \leq 1\right\}$ so by (4) we have $L^{2}\left(H^{-1}\left(B_{r_{1}}(b)\right) \backslash \mathcal{G}\right) \leq$ $c \epsilon$. So for each $z \in \mathcal{G}$ let $A(z) \in S O(2) \cup S O(2) H$ such that $d(D u(z), K)=|D u(z)-A(z)|$.

$$
\begin{aligned}
\int_{\mathcal{G}} \operatorname{det}(D u(z)) d L^{2} z & =\int_{\mathcal{G}} \operatorname{det}(A(z)+(D u(z)-A(z))) d L^{2} z \\
& =\int_{\mathcal{G}} \operatorname{det}(A(z))+\operatorname{cof}(A(z)):(D u(z)-A(z))+\operatorname{det}(D u(z)-A(z)) d L^{2} z \\
& \stackrel{(4)}{\geq} L^{2}(\mathcal{G})-c \epsilon^{\frac{1}{q}} \\
& \geq \pi r_{1}^{2}-c \epsilon^{\frac{1}{q}}
\end{aligned}
$$

And since $\operatorname{det}(D u(z))>0$ for a.e. $z \in B_{1}(0)$, this together with (53) clearly implies (43).

4.3. Main Proposition.

Proposition 2. Let $p, q \geq 1$. Suppose $u \in W^{2, p}\left(B_{1}(0)\right) \cap W^{1, q}\left(B_{1}(0)\right)$ is a sense preserving function with $\sup _{x \in B_{1}(0)}\left\|[D u(x)]^{-1}\right\| \leq C$ which satisfies inequalities (4), (5).

There exists small positive constant $\mathfrak{e}=\mathfrak{e}(\sigma)$ such that if we define $L^{\mathfrak{e}}(u)$ by (27) and define $\Theta_{u} b y$

$$
\Theta_{u}:= \begin{cases}H \text { if } & L^{\mathfrak{e}}(u) \geq 0 \\ I d \text { if } & L^{\mathfrak{e}}(u)<0\end{cases}
$$

Then the function $\tilde{u}:=u \circ \Theta_{u}^{-1}$ satisfies the following property.

There exists constant $\mathfrak{c}_{1}=\mathfrak{c}_{1}(\sigma)>0$ such that for any $b \in B_{\mathfrak{c}_{1}}$ (0) we can find $R_{1} \geq 2 \mathfrak{c}_{1}$ with the property that for every $\beta \in(0,2 \pi],\left\{a_{\beta}, b_{\beta}\right\}=\left\{\lambda e^{i \beta}+b: \lambda>0\right\} \cap \partial B_{R_{1}}(b)$, then

$$
\begin{equation*}
\left|\tilde{u}\left(a_{\beta}\right)-\tilde{u}\left(b_{\beta}\right)\right| \geq 2\left(1-c \epsilon^{\frac{1}{4 q}}\right) R_{1} \tag{54}
\end{equation*}
$$

Proof.
We will argue the case $L^{e}(u) \geq 0$, the case $L^{e}(u)<0$ can be dealt with in an identical manner.

Now by Lemmas 5, 6 there exists $A \in S O(2) H$ and sets $\mathcal{Y}_{b}, E_{b} \subset\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right)$ with

$$
L^{1}\left(\left(\frac{\sigma}{4}, \frac{\sigma}{2}\right) \backslash \mathcal{Y}_{b} \cap E_{b}\right) \leq \frac{\sigma}{50}
$$

such that for any $r \in \mathcal{Y}_{b} \cap E_{b},(22)$ implies that $D u$ is close to A in the $d H_{\left\lfloor\partial H^{-1}\left(\partial B_{R}(b)\right)\right.}^{1}$ norm, and from (43) we have

$$
\begin{equation*}
L^{2}\left(u\left(H^{-1}\left(B_{r}(b)\right)\right)\right) \geq \pi r^{2}-c \epsilon^{\frac{1}{q}} \tag{55}
\end{equation*}
$$

Let $\tilde{u}:=u \circ H^{-1}$. Let $R_{1} \in \mathcal{Y}_{b} \cap E_{b}$. So using Hölder for the last inequality

$$
\begin{align*}
\int_{\partial B_{R_{1}}(b)} d(\widehat{D \tilde{u}}(z), S O(2)) d H^{1} z & \leq c \int_{H^{-1}\left(\partial B_{R_{1}}(b)\right)} d\left(\widehat{D u}(y) \circ H^{-1}, S O(2)\right) d H^{1} y \\
& \stackrel{(22)}{\leq} c \epsilon^{\frac{1}{q}} \tag{56}
\end{align*}
$$

Let $\widetilde{K}=K H^{-1}$, it is easy to see that by Hölder's inequality, from (4)

$$
\begin{equation*}
\int_{B_{\sigma}(0)} d(D \tilde{u}(z), \widetilde{K}) d L^{2} z \leq c \epsilon^{\frac{1}{q}} \tag{57}
\end{equation*}
$$

Claim. We will show $\tilde{u}\left(B_{R_{1}}(b)\right)$ satisfies condition (18) of Lemma 2.
Proof of Claim. From (55) we know

$$
\begin{align*}
L^{2}\left(\tilde{u}\left(B_{R_{1}}(b)\right)\right) & =L^{2}\left(u\left(H^{-1}\left(B_{R_{1}}(b)\right)\right)\right) \\
& \geq \pi R_{1}^{2}-c \epsilon^{\frac{1}{q}} . \tag{58}
\end{align*}
$$

So

$$
\begin{equation*}
\sqrt{\frac{L^{2}\left(\tilde{u}\left(B_{R_{1}}(b)\right)\right)}{\pi}} \geq R_{1}-c \epsilon^{\frac{1}{q}} \tag{59}
\end{equation*}
$$

Now we know $H^{1}\left(\tilde{u}\left(\partial B_{R_{1}}(b)\right)\right)=\int_{\partial B_{R_{1}}(b)}\left|\widehat{D} \tilde{u}(z) t_{z}\right| d H^{1} z$. So

$$
\begin{align*}
\left|H^{1}\left(\tilde{u}\left(\partial B_{R_{1}}(b)\right)\right)-2 \pi R_{1}\right| & \leq\left|\int_{\partial B_{R_{1}}(b)}\right| \widehat{D \tilde{u}}(z) t_{z}\left|-1 d H^{1} z\right| \\
& \leq \int_{\partial B_{R_{1}}(b)} d(\widehat{D \tilde{u}}(z), S O(2)) d H^{1} z \\
& \leq c \epsilon^{\frac{156}{q}} \tag{60}
\end{align*}
$$

Now we can assume R_{1} was chosen to be one of the radii for which we can apply Lemma 3, so we know $u\left(B_{R_{1}}(b)\right)$ is a set of finite perimeter and so $\operatorname{Per}\left(u\left(B_{R_{1}}(b)\right)\right) \leq H^{1}\left(u\left(\partial B_{R_{1}}(b)\right)\right)$. So putting this together with (59) we have

$$
\begin{equation*}
\sqrt{\frac{L^{2}\left(\tilde{u}\left(B_{R_{1}}(b)\right)\right)}{\pi}} \geq \frac{\operatorname{Per}\left(u\left(B_{R_{1}}(b)\right)\right)}{2 \pi}-c \epsilon^{\frac{1}{q}} \tag{61}
\end{equation*}
$$

Hence the set $\tilde{u}\left(B_{R_{1}}(b)\right)$ has property (18) for $\varepsilon=c \epsilon^{\frac{1}{q}}$, which proves the claim.

Let a_{β}, b_{β} be two antipodal points on $\partial B_{R_{1}}(a)$, i.e. $\left\{a_{\beta}, b_{\beta}\right\}=\partial B_{R_{1}}(a) \cap\left\{\left\langle e^{i \beta}\right\rangle+a\right\}$. Let Γ_{1}, Γ_{2} be the connected components of $\partial B_{R_{1}}(a) \backslash\left\{a_{\beta}, b_{\beta}\right\}$. Note $\tilde{u}\left(\Gamma_{1}\right)$ and $\tilde{u}\left(\Gamma_{2}\right)$ are the connected components of $\tilde{u}\left(\partial B_{R_{1}}(a)\right) \backslash\left\{\tilde{u}\left(a_{\beta}\right), \tilde{u}\left(b_{\beta}\right)\right\}$.

Let $R_{2}:=\sqrt{\frac{L^{2}\left(\tilde{u}\left(B_{R_{1}}(b)\right)\right)}{\pi}}+c \epsilon^{\frac{1}{q}}$, i.e. $R_{2} \geq R_{1}\left(\right.$ see (59)). Now by Lemma 4 for $\varepsilon=c \epsilon^{\frac{1}{q}}$ there exists $a \in \mathbb{R}^{2}$, such that $\partial B_{R_{2}}(a)$ has property (21). Let $x_{1}, x_{2}, \ldots x_{2 m}$ be evenly spaced points on $\partial B_{R_{2}}(a)$ where $\left|x_{k}-x_{k+1}\right| \in\left(1000 c_{1} \varepsilon^{\frac{1}{4}}, 2000 c_{1} \varepsilon^{\frac{1}{4}}\right)$, see figure 3 .

Recall that by Lemma 3 we know that $\partial \tilde{u}\left(B_{R_{1}}(a)\right) \subset \tilde{u}\left(\partial B_{R_{1}}(a)\right)$. We start with x_{1}, by Lemma 2 we can pick $z_{1} \in B_{c_{1} \varepsilon^{\frac{1}{4}}}\left(x_{1}\right) \cap \tilde{u}\left(\partial B_{R_{1}}(a)\right)$, suppose without loss of generality that $z_{1} \in \tilde{u}\left(\Gamma_{1}\right)$. It will be clear in the forth coming argument that we must have

$$
\begin{equation*}
B_{c_{1} \varepsilon^{\frac{1}{4}}}\left(x_{k}\right) \cap \tilde{u}\left(\Gamma_{1}\right)=\emptyset \text { for some } k \in\{2,3, \ldots 2 m\} \tag{62}
\end{equation*}
$$

we will assume this is the case for the time being and come back to it later.
Let

$$
\varphi_{1}=\min \left\{k \in\{2,3, \ldots 2 m\}: B_{c_{1} \varepsilon^{\frac{1}{4}}}\left(x_{k}\right) \cap \tilde{u}\left(\Gamma_{1}\right)=\emptyset\right\}
$$

and let

$$
\varphi_{2}=\max \left\{k \in\{2,3, \ldots 2 m\}: B_{c_{1} \varepsilon^{\frac{1}{4}}}\left(x_{k}\right) \cap \tilde{u}\left(\Gamma_{1}\right)=\emptyset\right\} .
$$

Now any $k \in\left\{\varphi_{1}+1, \ldots \varphi_{2}-1\right\}$ has to be such that $B_{c_{1} \varepsilon^{\frac{1}{4}}}\left(x_{k}\right) \cap \tilde{u}\left(\Gamma_{1}\right)=\emptyset$ since otherwise $\tilde{u}\left(\Gamma_{1}\right)$ would be dis-connected. Now let $\left\{\tilde{z}_{1}, \tilde{z}_{2}, \ldots \tilde{z}_{2 m}\right\}$ be a reordering of $\left\{z_{1}, \ldots z_{2 m}\right\}$ where \tilde{z}_{k+1} is the clockwise nearest neighbour to \tilde{z}_{k} for each $k \in\{1,2, \ldots 2 m-1\}$ and $\tilde{z}_{1}, \tilde{z}_{2}, \ldots \tilde{z}_{p_{1}} \in$ $\tilde{u}\left(\Gamma_{1}\right), \tilde{z}_{p_{1}+1}, \tilde{z}_{2}, \ldots \tilde{z}_{2 m} \in \tilde{u}\left(\Gamma_{2}\right)$.

Let θ_{k} denote the angle between \tilde{z}_{k} and \tilde{z}_{k+1} for $k=1,2, \ldots 2 m-1$ and $\theta_{2 m}$ be the angle between $z_{2 m}$ and z_{1}. It is easy to see $\left|\tilde{z}_{k}-\tilde{z}_{k+1}\right| \geq 2\left(R_{2}-c \epsilon^{\frac{1}{4 q}}\right) \sin \frac{\theta_{k}}{2}$. Hence

$$
\begin{align*}
H^{1}\left(\tilde{u}\left(\Gamma_{1}\right)\right) & \geq \sum_{k=1}^{p_{1}-1}\left|\tilde{z}_{k}-\tilde{z}_{k+1}\right| \\
& \geq 2\left(R_{2}-c \epsilon^{\frac{1}{4 q}}\right) \sum_{k=1}^{p_{1}-1} \sin \frac{\theta_{k}}{2} \\
& \geq R_{2}\left(\sum_{k=1}^{p_{1}-1} \theta_{k}\right)-c \epsilon^{\frac{1}{4 q}} \tag{63}
\end{align*}
$$

And we know from (56) $H^{1}\left(\tilde{u}\left(\Gamma_{1}\right)\right)=\int_{\Gamma_{1}}\left|D \tilde{u}(x) t_{x}\right| d H^{1} x \leq \pi R_{1}+c \epsilon^{\frac{1}{q}}$, which implies

$$
\pi R_{1}+c \epsilon^{\frac{1}{4 q}} \stackrel{(63)}{\geq} R_{2}\left(\sum_{k=1}^{p_{1}-1} \theta_{k}\right)
$$

and hence as $R_{2} \geq R_{1}$ we have $\sum_{k=1}^{p_{1}-1} \theta_{k} \leq \pi+c \epsilon^{\frac{1}{4 q}}$.
Via exactly the same arguments it is clear (62) must be true, i.e. if (62) was false then $H^{1}\left(\tilde{u}\left(\Gamma_{1}\right)\right)$ would be too long. Also by the same argument we can show $\sum_{k=p_{1}}^{2 m-1} \theta_{k} \leq \pi+c \epsilon^{\frac{1}{4 q}}$. Since obviously $\sum_{k=1}^{2 m} \theta_{k}=2 \pi$ so we have

$$
\begin{equation*}
\left|\sum_{k=1}^{p_{1}-1} \theta_{k}-\pi\right| \leq c \epsilon^{\frac{1}{4 q}} \tag{64}
\end{equation*}
$$

Now $\tilde{z}_{1}, \tilde{z}_{p_{1}} \in N_{c \epsilon}{ }^{\frac{1}{4 q}}\left(\tilde{u}\left(\partial \Gamma_{1}\right)\right)$, without loss of generality we can assume $\tilde{z}_{1} \in N_{c \epsilon}{ }^{\frac{1}{4 q}}\left(\tilde{u}\left(a_{\beta}\right)\right)$ and $\tilde{z}_{p_{1}} \in N_{c \epsilon^{\frac{1}{4}}}\left(\tilde{u}\left(b_{\beta}^{c \epsilon}\right)\right)$. So as $\tilde{u}\left(a_{\beta}\right), \tilde{u}\left(b_{\beta}\right) \in N_{c \epsilon^{\frac{1}{4 q}}}\left(\partial B_{R_{2}}(a)\right)$ and as by (64) the angle

Figure 3
between them is within $c \epsilon^{\frac{1}{4 q}}$ of π, thus $\left|\tilde{u}\left(a_{\beta}\right)-\tilde{u}\left(b_{\beta}\right)\right| \geq 2 R_{2}-c \epsilon^{\frac{1}{4 q}}$. This completes the proof of Proposition 2 in the case where $L^{\mathfrak{e}}(u) \geq 0$.

In the case where $L^{\mathfrak{e}}(u)<0$ we know there exists $R>2 \mathfrak{c}_{1}$ satisfying (23). We can then argue in exactly the same way to show $\sqrt{\frac{L^{2}\left(u\left(B_{R}(b)\right)\right)}{\pi}} \geq \frac{H^{1}\left(\partial u\left(B_{R}(b)\right)\right)}{2 \pi}-c \epsilon^{\frac{1}{q}}$ then we can use Lemma 4 to show antipodal points on $\partial B_{R}(b)$ are mapped to points distance $R-c \epsilon^{\frac{1}{4 q}}$ apart.
4.4. Proof of Theorem 1 continued. As in the proof of Proposition 2, we will concentrate on the case where $L^{e}(u) \geq 0$.

By Proposition 2, $\tilde{u}:=u \circ H^{-1}$ has the property that for every $b \in B_{\mathbf{c}_{1}}(0)$ there exists $R_{1}>2 \mathfrak{c}_{1}$ and $a \in \mathbb{R}^{2}$ such that (54) holds true. As stated before, it is easy to see

$$
\begin{equation*}
\int_{B_{\sigma}(0)} d(D \tilde{u}(z), \widetilde{K}) d L^{2} z \leq c \epsilon^{\frac{1}{q}} . \tag{65}
\end{equation*}
$$

It is a calculation to see that for

$$
\phi_{1}:=\binom{\frac{\sigma}{\sqrt{1+\sigma^{2}}}}{\frac{1}{\sqrt{1+\sigma^{2}}}} \text { and } \phi_{2}:=\binom{\frac{\sigma}{\sqrt{1+\sigma^{2}}}}{\frac{-1}{\sqrt{1+\sigma^{2}}}}
$$

we have $\left|H^{-1} \phi_{i}\right|=1$. Let

$$
\Xi_{1}:=\left\{\theta \in(0,2 \pi]: e^{i \theta}=\left(\frac{\frac{a}{\sqrt{1+a^{2}}}}{\sqrt{1+a^{2}}}\right) \text { for some } a \in\left(\frac{-\sigma}{\sqrt{2}}, \frac{\sigma}{\sqrt{2}}\right)\right\}
$$

And $l_{\theta}^{z}:=\left(\left\langle e^{i \theta}\right\rangle+z\right) \cap B_{R_{1}}(z)$. Let $V_{r}(x):=\left\{l_{\theta}^{x} \cap B_{r}(x): \theta \in \Xi_{1}\right\} \backslash B_{\frac{r}{2}}(x)$.
Using the Fubini argument from Section $2.3[6]$ we will show we can find $b \in V_{\mathfrak{c}_{1}}(0)$ such that

$$
\begin{equation*}
\int_{B_{\frac{\sigma}{2}}(b)} d(D \tilde{u}(z), \widetilde{K})|z-b|^{-1} d L^{2} z \leq c \epsilon \tag{66}
\end{equation*}
$$

we argue as follows, by Fubini Theorem we have

$$
\begin{aligned}
& \int_{V_{c_{1}}(0)} \int_{B_{\frac{\sigma}{2}}(b)} d(D \tilde{u}(x), \widetilde{K})|x-y|^{-1} d L^{2} x d L^{2} y \\
& \quad \leq \int_{V_{c_{1}}(0)} \int_{B_{\sigma}(0)} d(D \tilde{u}(x), \widetilde{K})|x-y|^{-1} d L^{2} x d L^{2} y \\
& \quad=\int_{B_{\sigma}(0)} d(D \tilde{u}(x), \widetilde{K}) \int_{V_{c_{1}}(0)}|x-y|^{-1} d L^{2} y d L^{2} x \\
& \quad \leq c \int_{B_{\sigma}(0)} d(D \tilde{u}(x), \widetilde{K}) d L^{2} x \\
& \quad \leq c \epsilon .
\end{aligned}
$$

Thus there must exists $y \in V_{\mathfrak{c}_{1}}(0)$ such that (66) holds true. Note that for some constant $\mathfrak{c}_{2}=\mathfrak{c}_{2}(\sigma)>0$ we have $B_{\mathfrak{c}_{2}}(0) \subset V_{\mathfrak{c}_{1}}(b)$

By Proposition 4 there exists $R_{1}>2 \mathfrak{c}_{1}$ such that for any $\beta \in(0,2 \pi]$, letting $\left\{a_{\beta}, b_{\beta}\right\}=$ $\left(\left\langle e^{i \beta}\right\rangle+b\right) \cap \partial B_{R_{1}}(b)$ we have

$$
\begin{equation*}
\left|\tilde{u}\left(a_{\beta}\right)-\tilde{u}\left(b_{\beta}\right)\right| \geq 2\left(1-c \epsilon^{\frac{1}{4 q}}\right) R_{1} \tag{67}
\end{equation*}
$$

Let

$$
\begin{equation*}
B:=\left\{x \in B_{R_{1}}(b): d\left(D \tilde{u}(x), S O(2) H^{-1}\right) \leq d(D \tilde{u}(x), S O(2))\right\} \tag{68}
\end{equation*}
$$

Now it is an exercise to see that there exists $s_{\sigma} \in(0,1)$ such that for any $\theta \in \Xi_{1}$ we have $\left|H^{-1} e^{i \theta}\right| \leq s_{\sigma}$. We estimate that

$$
\begin{align*}
\left|\tilde{u}\left(a_{\theta}\right)-\tilde{u}\left(b_{\theta}\right)\right| & \leq \int_{l_{\theta}^{b}}\left|D \tilde{u}(z) e^{i \theta}\right| d H^{1} z \\
& \leq s_{\sigma} H^{1}\left(l_{\theta}^{b} \cap B\right)+H^{1}\left(l_{\theta}^{b} \backslash B\right)+\int_{l_{\theta}^{b}} d(D \tilde{u}(z), \widetilde{K}) d H^{1} z \\
& =H^{1}\left(l_{\theta}^{b}\right)-\left(1-s_{\sigma}\right) H^{1}\left(l_{\theta}^{b} \cap B\right)+\int_{l_{\theta}^{b}} d(D \tilde{u}(z), \widetilde{K}) d H^{1} z . \tag{69}
\end{align*}
$$

Now $H^{1}\left(l_{\theta}^{b}\right)=\left|a_{\theta}-b_{\theta}\right|=2 R_{1}$ so putting (67), with (69) we have

$$
2\left(1-c \epsilon^{\frac{1}{4 q}}\right) R_{1} \leq 2 R_{1}-\left(1-s_{\sigma}\right) H^{1}\left(l_{\theta}^{b} \cap B\right)+\int_{l_{\theta}^{b}} d(D \tilde{u}(z), \widetilde{K}) d H^{1} z
$$

This implies

$$
\begin{equation*}
\left(1-s_{\sigma}\right) \int_{l_{\theta}^{b}} \chi_{B}(z) d H^{1} z \leq \int_{l_{\theta}^{b}} d(D \tilde{u}(z), \widetilde{K}) d H^{1} z+c \epsilon^{\frac{1}{4 q}} \tag{70}
\end{equation*}
$$

Since $R_{1} \leq \frac{\sigma}{2}$ by the co-area argument of Section 2.3, Case 1 [6].

$$
\begin{aligned}
\int_{V_{R_{2}}(b)}\left(1-s_{\sigma}\right) \chi_{B}(z)|z-b|^{-1} d L^{2} z & =\int_{\Xi_{1}} \int_{l_{\theta}^{b}}\left(1-s_{\sigma}\right) \chi_{B}(z) d H^{1} z d L^{1} \theta \\
& \stackrel{(70)}{\leq} \int_{\Xi_{1}} \int_{l_{\theta}^{b}} d(D \tilde{u}(z), \tilde{K}) d H^{1} z d L^{1} \theta+c \epsilon^{\frac{1}{4 q}} \\
& \leq \int_{B_{R_{2}}(b)} d(D \tilde{u}(z), \widetilde{K})|z-b|^{-1} d L^{2} z+c \epsilon^{\frac{1}{4 q}} \\
& \stackrel{(66)}{\leq} c \epsilon+c \epsilon^{\frac{1}{4 q}} .
\end{aligned}
$$

As $|z-b|^{-1} \geq 1$ for any $z \in B_{R_{2}}(b)$, and since $B_{\mathfrak{c}_{2}}(0) \subset V_{R_{1}}(b)$, this gives

$$
\begin{equation*}
L^{2}\left(B \cap B_{\mathbf{c}_{2}}(0)\right) \leq c \epsilon^{\frac{1}{4 q}} \tag{71}
\end{equation*}
$$

So (recall definition (68))

$$
\begin{align*}
& \int_{B_{\mathfrak{c}_{2}}(0)} d(D \tilde{u}(z), S O(2)) d L^{2} z \\
& \leq \int_{B_{\mathrm{c}_{2}}(0) \backslash B} d(D \tilde{u}(z), \widetilde{K}) d L^{2} z+\int_{B_{\mathfrak{c}_{2}}(0) \cap B} d(D \tilde{u}(z), \widetilde{K})+\sigma^{-1} d L^{2} z \\
& \quad \stackrel{(65)}{\leq} c \epsilon^{\frac{1}{q}}+\sigma^{-1} L^{2}\left(B_{\mathfrak{c}_{2}}(0) \cap B\right) \\
& \quad \stackrel{(71)}{\leq} c \epsilon^{\frac{1}{4 q}} . \tag{72}
\end{align*}
$$

Since $d^{q}(D \tilde{u}(z), S O(2)) \leq c\left(d(D \tilde{u}(z), S O(2))+d^{q}(D \tilde{u}(z), \widetilde{K})\right)$ we have

$$
\int_{B_{\mathbf{c}_{2}}(0)} d^{q}(D \tilde{u}(z), S O(2)) d L^{2} z \stackrel{(65),(72)}{\leq} c \epsilon^{\frac{1}{4 q}}
$$

Now in the case $q>1$ we can apply Theorem 3 so we have that there exists $A \in K$ such that

$$
\int_{B_{c_{2}}(0)}|D \tilde{u}(z)-A|^{q} d L^{2} z \leq c \epsilon^{\frac{1}{4 q}}
$$

which implies

$$
\begin{equation*}
\int_{B_{\sigma c_{2}}(0)}|D u(z)-A H|^{q} d L^{2} z \leq c \epsilon^{\frac{1}{4 q}} \tag{73}
\end{equation*}
$$

In the case $q=1$ we have to apply Proposition A1 of [11] which gives us a c-Lipschitz function v such that

$$
\begin{equation*}
\|D \tilde{u}-D v\|_{L^{1}\left(B_{1}(0)\right)} \leq c \epsilon \tag{74}
\end{equation*}
$$

So using Lipschitzness

$$
\begin{aligned}
\int_{B_{\mathfrak{c}_{2}}(0)} d^{d^{\frac{5}{4}}}(D v(z), S O(2)) d L^{2} z & \leq c \int_{B_{\mathfrak{c}_{2}}(0)} d(D v(z), S O(2)) d L^{2} z \\
& \stackrel{(74)}{\leq} c \int_{B_{\mathfrak{c}_{2}}(0)} d(D \tilde{u}(z), S O(2)) d L^{2} z+c \epsilon \\
& \stackrel{(72)}{\leq} c \epsilon^{\frac{1}{4}}
\end{aligned}
$$

So applying Theorem 3 we have there exists $R \in S O$ (2) such that

$$
\begin{equation*}
\int_{B_{\mathrm{c}_{2}}(0)}|D v(z)-R|^{\frac{5}{4}} d L^{2} z \leq c \epsilon^{\frac{1}{4}} \tag{75}
\end{equation*}
$$

Thus using Hölder's inequality

$$
\begin{aligned}
\int_{B_{c_{2}}(0)}|D \tilde{u}(z)-R| d L^{2} z & \stackrel{(74)}{\leq} \int_{B_{c_{2}}(0)}|D v(z)-R| d L^{2} z+c \epsilon \\
& \leq c\left(\int_{B_{c_{2}}(0)}|D v(z)-R|^{\frac{5}{4}} d L^{2} z\right)^{\frac{4}{5}}+c \epsilon \\
& \stackrel{(75)}{\leq} c \epsilon^{\frac{1}{5}} .
\end{aligned}
$$

And this implies

$$
\int_{B_{\sigma c_{2}}(0)}|D u(z)-R H| d L^{2} z \leq c \epsilon^{\frac{1}{5}}
$$

In the case where $L^{e}(u)<0$ the argument is identical.

5. Proof of Theorem 2

With a view to later developments we will prove the following results in more generality than is needed.

Definition 4. For $p>1, q \geq 1$, $e \geq 1$. We will say we have an (p, q, e) Liouville Theorem for a function class in $W^{1, p}\left(B_{1}(0)\right) \cap W^{2, q}\left(B_{1}(0)\right)$ if there exists positive constants $\mathcal{C}_{1} \ll 1$ and $\mathcal{C}_{2} \gg 1$ depending on p, q, σ such that the inequalities

$$
\int_{B_{1}(0)} d^{p}(D u(z), K) d L^{2} z \leq \mathcal{C}_{1} \epsilon, \quad \int_{B_{1}(0)}\left|D^{2} u(z)\right|^{q} d L^{2} z \leq \mathcal{C}_{1} \epsilon^{1-q}
$$

imply that there exists $J \in\{I d, H\}, R \in S O$ (2) such that

$$
\int_{B_{\mathcal{C}_{1}}(0)}|D u(z)-R J|^{p} d L^{2} z \leq \mathcal{C}_{2} \epsilon^{\frac{1}{e_{p}}}
$$

So in Theorem 1 we established a $(p, q, 4)$ Liouville Theorem for orientation preserving functions in $W^{1, p}\left(B_{1}(0)\right) \cap W^{2, q}\left(B_{1}(0)\right)$ with the property $\sup _{x \in B_{1}(0)}\left\|[D u(x)]^{-1}\right\| \leq C$. In Conjecture 1 we conjectured that an (optimal) ($p, q, 1$) Liouville Theorem holds for functions in $W^{1, p}\left(B_{1}(0)\right) \cap W^{2, q}\left(B_{1}(0)\right)$ and recall in [6] a $(p, 1,1)$ Liouville Theorem has been proved.

We have the following proposition.
Proposition 3. Let $H=\left(\begin{array}{cc}\sigma & 0 \\ 0 & \sigma^{-1}\end{array}\right), K=S O(2) \cup S O(2) H$. Let $p \in[1,2], q \geq 1, e \in[1,4]$. Let B_{F}^{h} be as defined in Theorem 2. Let A denote the space of sense preserving functions in $W^{1, p}\left(Q_{1}(0)\right) \cap W^{2, q}\left(Q_{1}(0)\right)$ for which $\sup _{x \in Q_{1}(0)}\left\|[D u(x)]^{-1}\right\| \leq C$. Define \mathcal{F}_{h} as in Theorem 2.

Suppose we have a (p, q, e) Liouville Theorem for A. Let A_{F}^{ζ} denote the subset of functions in A with affine boundary condition F that are ζ-Lipschitz. Let $\delta>0$ be a small number. Let $\alpha \in[1,2]$, if $u \in A_{F}^{\zeta}$ is such that

$$
\begin{equation*}
I_{\epsilon}^{q}(u) \leq \epsilon^{\frac{\alpha}{3 q}} \tag{76}
\end{equation*}
$$

then there exists a constant $\mathcal{C}_{3}=\mathcal{C}_{3}(\delta, q, \sigma, \zeta)$ such that for $h=\epsilon^{\frac{1}{q}}$, letting $\tilde{u} \in B_{F}^{h}$ denote the piecewise affine interpolant of u we have

$$
\mathcal{F}_{h}(\tilde{u}) \leq \mathcal{C}_{3} h^{\frac{\alpha}{3}-\delta}
$$

If $e=1$ we have the stronger result $\mathcal{F}_{0}(\tilde{u}) \leq \mathcal{C}_{3} h^{\frac{\alpha}{3}-\delta}$.

Proof. Let $p \in(1,2]$ be such that $\frac{2(p-1) \alpha}{q}=\delta$ we assume δ is sufficiently small so that such a p can be found. Let $w_{1}, w_{2} \in S^{1}$ be two (non-equal) vectors such that w_{1}, w_{2} and $w_{1}-w_{2}$ are not in the set of rank- 1 connections. We assume the triangulation \triangle_{h} is composed of triangles which (in pairs, see figure 4) form the parallelepipeds of the set

$$
Q_{1}(0) \backslash\left(\left\{k \epsilon^{\frac{1}{q}} w_{2}+\left\langle w_{1}\right\rangle: k \in \mathbb{Z}\right\} \cup\left\{k \epsilon^{\frac{1}{q}} w_{1}+\left\langle w_{2}\right\rangle: k \in \mathbb{Z}\right\}\right)
$$

Let $\varphi>1$ be some constant we will decided on later. Let $\left\{c_{i}: i=1,2, \ldots N_{0}\right\}$ be an ordering of the points

$$
\left\{k_{1} w_{1} \epsilon^{\frac{1}{q}}+k_{2} w_{2} \epsilon^{\frac{1}{q}}: k_{1}, k_{2} \in \mathbb{Z}, k_{1} w_{1} \epsilon^{\frac{1}{q}}+k_{2} w_{2} \epsilon^{\frac{1}{q}} \in Q_{1-\varphi \epsilon^{\frac{1}{q}}}(0)\right\}
$$

For each $i \in\left\{1,2, \ldots N_{0}\right\}$ let $v_{i}: Q_{\varphi}(0) \rightarrow \mathbb{R}^{2}$ be defined by $v_{i}(z):=u\left(c_{i}+z \epsilon^{\frac{1}{q}}\right) \epsilon^{-\frac{1}{q}}$. Let

$$
\begin{align*}
\alpha_{i} & :=\mathcal{C}_{1}^{-1} \int_{Q_{\varphi}(0)} d^{p}\left(D v_{i}(z), K\right) d L^{2} z \\
& =\epsilon^{-\frac{2}{q}} \mathcal{C}_{1}^{-1} \int_{Q}{ }_{\varphi \epsilon^{\frac{1}{q}}\left(c_{i}\right)} d^{p}(D u(z), K) d L^{2} z \tag{77}
\end{align*}
$$

So note

$$
\begin{align*}
& \sum_{i=1}^{N_{0}} \epsilon^{\frac{2}{q}} \alpha_{i}=\mathcal{C}_{1}^{-1} \sum_{i=1}^{N_{0}} \int_{Q}^{\varphi \epsilon^{\frac{1}{q}}\left(c_{i}\right)} \\
& d^{p}(D u(z), K) d L^{2} z \tag{78}\\
& \quad(76) \\
& \leq c \epsilon^{\frac{\alpha}{3 q}}
\end{align*}
$$

Let

$$
B_{1}:=\left\{i: \int_{Q_{\varphi}(0)}\left|D^{2} v_{i}(z)\right|^{q} d L^{2} z \geq \mathcal{C}_{1} \alpha_{i}^{1-q}\right\}
$$

Let $M=\operatorname{Card}\left(B_{1}\right)$. Now there must exist subset $\widetilde{B_{1}} \subset B_{1}$ such that $\operatorname{Card}\left(\widetilde{B_{1}}\right) \geq \frac{M}{2}$ with the property that for every $i \in \widetilde{B_{1}}$ we have $\alpha_{i} \leq c^{\prime} \epsilon^{\frac{\alpha}{3 q}-\frac{2}{q}} M^{-1}$ since otherwise we have that the set $E_{1}:=\left\{i \in B_{1}: \alpha_{i} M>c^{\prime} \epsilon^{\frac{\alpha}{3 q}-\frac{2}{q}}\right\}$ is such that $\operatorname{Card}\left(E_{1}\right) \geq \frac{M}{2}$.

So

$$
\begin{aligned}
\sum_{i \in E_{1}} \alpha_{i} & \geq \operatorname{Card}\left(E_{1}\right) \frac{c^{\prime}}{M} \epsilon^{\frac{\alpha}{3 q}-\frac{2}{q}} \\
& \geq \frac{c^{\prime}}{2} \epsilon^{\frac{\alpha}{3 q}-\frac{2}{q}}
\end{aligned}
$$

which contradicts (78) for constant c^{\prime} large enough.
So

$$
\begin{aligned}
\sum_{i \in \widetilde{B_{1}}} \int_{Q_{\varphi}(0)}\left|D^{2} v_{i}(z)\right|^{q} d L^{2} z & \geq \sum_{i \in \widetilde{B_{1}}} \mathcal{C}_{1} \alpha_{i}^{1-q} \\
& \geq \mathcal{C}_{1} \operatorname{Card}\left(\widetilde{B_{1}}\right)\left(c^{\prime} \epsilon^{\frac{\alpha}{3 q}-\frac{2}{q}} M^{-1}\right)^{1-q} \\
& \geq c \epsilon^{\left(\frac{\alpha}{3 q}-\frac{2}{q}\right)(1-q)} \operatorname{Card}\left(\widetilde{B_{1}}\right) M^{q-1} \\
& \geq c M^{q} \epsilon^{\left(\frac{\alpha}{3 q}-\frac{2}{q}\right)(1-q)} .
\end{aligned}
$$

Then

$$
\sum_{i \in \widetilde{B_{1}}} \int_{Q}{ }_{\varphi \epsilon}\left|D^{\frac{1}{q}} c^{2} u(y)\right|^{q} \epsilon^{1-\frac{2}{q}} d L^{2} y \geq c M^{q} \epsilon^{\left(\frac{\alpha}{3 q}-\frac{2}{q}\right)(1-q)}
$$

This implies $\epsilon^{\frac{\alpha}{3 q}-1} \geq c M^{q} \epsilon^{\left(\frac{\alpha}{3 q}-\frac{2}{q}\right)(1-q)-1+\frac{2}{q}}$ so $\epsilon^{\frac{\alpha}{3 q}-1} \geq c M^{q} \epsilon^{\frac{\alpha}{3 q}-\frac{\alpha}{3}+1}$ and thus

$$
\begin{equation*}
c \epsilon^{\frac{\alpha}{3 q}-\frac{2}{q}} \geq M=\operatorname{Card}\left(B_{1}\right) . \tag{79}
\end{equation*}
$$

So if $i \notin B_{1}$ then by the fact we have an (p, q, e) Liouville Theorem (see Definition 4) there exists $A_{i} \in K$ such that (recall (77))

$$
\begin{equation*}
\int_{Q_{\mathcal{C}_{1} \varphi}(0)}\left|D v_{i}(z)-A_{i}\right|^{p} d L^{2} z \leq \mathcal{C}_{2} \alpha_{i}^{\frac{1}{e_{p}}} \tag{80}
\end{equation*}
$$

Let $\tau>0$ be some small number we decide on later. We will show that if $A \geq \epsilon^{\frac{\tau e p}{e p-1}}$ then $A^{\frac{1}{e^{p}}} \leq \epsilon^{-\tau} A$. To see this note that

$$
A^{\frac{1}{e^{p}}}=A^{\frac{1}{e p}-1} A=\frac{A}{A^{\frac{e p-1}{e p}}}
$$

since $A \geq \epsilon^{\frac{\tau e p}{e^{p-1}}}$ we know $A^{\frac{e p-1}{e p}} \geq \epsilon^{\tau}$ so $A^{\frac{1}{e_{p}}} \leq \epsilon^{-\tau} A$.
Let $\Lambda=\epsilon^{\frac{\tau e p}{e p-1}}$. Now if $\alpha_{i} \in(0, \Lambda)$ then

$$
\begin{align*}
\int_{Q_{\mathcal{C}_{1} \varphi}(0)}\left|D v_{i}(z)-A_{i}\right|^{p} d L^{2} z & \leq \mathcal{C}_{2} \alpha_{i}^{\frac{1}{e^{p}}} \\
& \leq \mathcal{C}_{2} \Lambda^{\frac{1}{e^{p}}} \\
& =\mathcal{C}_{2} \epsilon^{\frac{\tau}{e^{p}-1}} \tag{81}
\end{align*}
$$

Let $B_{2}:=\left\{i: \alpha_{i} \in(0, \Lambda)\right\}$. Let $G:=\left\{1,2, \ldots N_{0}\right\} \backslash\left(B_{1} \cup B_{2}\right)$. So for each $i \in G$ by (80) there exists $A_{i} \in K$ such that

$$
\begin{align*}
\int_{Q_{\mathcal{C}_{1} \varphi}(0)}\left|D v_{i}(z)-A_{i}\right|^{p} d L^{2} z & \leq \mathcal{C}_{2} \alpha_{i}^{\frac{1}{e_{p}}} \\
& \leq \epsilon^{-\tau} \mathcal{C}_{2} \alpha_{i} \tag{82}
\end{align*}
$$

We assume φ has been chosen big enough so that $\operatorname{diam}\left(P_{i}\right) \leq \frac{\mathcal{c}_{1} \varphi \epsilon^{\frac{1}{q}}}{4}$ for any $i \in\left\{1,2, \ldots N_{0}\right\}$. So if $P_{i} \cap Q_{\frac{c_{1} \varphi}{2} \epsilon^{\frac{1}{q}}}\left(c_{j}\right) \neq \emptyset$ then $P_{i} \subset Q_{\mathcal{C}_{1} \varphi \epsilon^{\frac{1}{q}}}\left(c_{j}\right)$.

Let $Z_{1}:=\bigcup_{i \in G}^{2} Q_{\frac{c_{1} \varphi}{2} \epsilon^{\frac{1}{q}}}\left(c_{i}\right)$. Let

$$
F_{1}(x):=\sum_{i \in G} \chi_{Q}^{\mathcal{c}_{1} \epsilon^{\frac{1}{q}}}{ }^{\frac{1}{q}}\left(c_{i}\right)(x)\left|D u(x)-A_{i}\right|^{p}
$$

So

$$
\begin{aligned}
\int F_{1}(x) d L^{2} x & :=c \sum_{i \in G} \int_{Q}\left|D u(x)-A_{i}\right|^{p} d L^{2} x \\
& =c \sum_{i \in G} \epsilon^{\frac{2}{q}} \int_{Q_{\mathcal{C}_{1} \varphi}(0)}\left|D v_{i}(x)-A_{i}\right|^{p} d L^{2} x \\
& \stackrel{(82)}{\leq} c \epsilon^{\frac{2}{q}} \sum_{i \in G} \epsilon^{-\tau} \alpha_{i} \\
& \stackrel{(78)}{\leq} c \epsilon^{\frac{\alpha}{3 q}-\tau}
\end{aligned}
$$

Let $Z_{2}:=\bigcup_{i \in B_{2}} Q_{\frac{c_{1} \varphi}{2} \epsilon^{\frac{1}{q}}}\left(c_{i}\right)$. Recall for each $i \in B_{2}$ there exists $A_{i} \in K$ such that inequality (81) holds true.

Let

$$
Y_{t}^{1}:=\left\{k \epsilon^{\frac{1}{q}} w_{2}+\left\langle w_{1}\right\rangle: k \in \mathbb{Z}\right\}+t w_{2}, \quad Y_{t}^{2}:=\left\{k \epsilon^{\frac{1}{q}} w_{1}+\left\langle w_{2}\right\rangle: k \in \mathbb{Z}\right\}+t w_{1} .
$$

Let t_{0} be the smallest positive number such that $Y_{0}^{1}=Y_{t_{0}}^{1}$ and let t_{1} be the smallest positive number such that $Y_{0}^{2}=Y_{t_{1}}^{2}$. Let $L_{1}: Q_{1}(0) \rightarrow\left[0, t_{0}\right]$ be such that $L_{1}^{-1}(s)=Y_{s}^{1} \cap Q_{1}(0)$ and let $L_{2}: Q_{1}(0) \rightarrow\left[0, t_{1}\right]$ be such that $L_{2}^{-1}(s)=Y_{s}^{2} \cap Q_{1}(0)$. It is easy to see that $\left|D L_{1}\right| \leq c$ and $\left|D L_{2}\right| \leq c$ so by the co-area formula we must be able to find σ_{1}, σ_{2} such that

$$
\begin{equation*}
\int_{L_{1}^{-1}\left(\sigma_{1}\right)} F_{1}(z) d H^{1} z \leq c \epsilon^{-\frac{1}{q}} \epsilon^{\frac{\alpha}{3 q}-\tau} \tag{83}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{L_{1}^{-1}\left(\sigma_{2}\right)} F_{1}(z) d H^{1} z \leq c \epsilon^{-\frac{1}{q}} \epsilon^{\frac{\alpha}{3 q}-\tau} \tag{84}
\end{equation*}
$$

Let $\left\{P_{i}: i=1,2, \ldots N_{1}\right\}$ be an ordering of the set of (complete) parallelograms formed by $Q_{1}(0) \backslash\left(Y_{\sigma_{1}}^{1} \cup Y_{\sigma_{1}}^{2}\right)$. Let

$$
\begin{equation*}
V_{1}=\left\{i \in\left\{1,2, \ldots N_{1}\right\}: P_{i} \cap Z_{1} \neq \emptyset\right\}, \quad V_{2}=\left\{i \in\left\{1,2, \ldots N_{1}\right\}: P_{i} \cap Z_{2} \neq \emptyset\right\}, \tag{85}
\end{equation*}
$$

note that $V_{1} \cap V_{2} \neq \emptyset$. Now by (83) and (84) we know

$$
\begin{equation*}
\sum_{i \in V_{1}} \int_{\partial P_{i}} F_{1}(z) d H^{1} z \leq c \epsilon^{-\frac{1}{q}} \epsilon^{\frac{\alpha}{3 q}-\tau} \tag{86}
\end{equation*}
$$

Now each parallelogram P_{i} is composed of two triangles, denote them $\tau_{i}^{1}, \tau_{i}^{2}$. See figure 4 .

Figure 4
Let $\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$ denote the corners of the τ_{i}^{1} where $\left[a_{1}^{i}, a_{2}^{i}\right] \subset \partial P_{i}$ and $\left[a_{1}^{i}, a_{3}^{i}\right] \subset \partial P_{i}$ and let $\left\{b_{1}^{i}, b_{2}^{i}, b_{3}^{i}\right\}$ denote the corners of τ_{i}^{2} where $\left[b_{1}^{i}, b_{2}^{i}\right] \subset \partial P_{i}$ and $\left[b_{1}^{i}, b_{3}^{i}\right] \subset \partial P_{i}$. Now if $i \in V_{1}$ then $P_{i} \subset Q_{\mathcal{C}_{1} \varphi \epsilon^{\frac{1}{q}}}\left(c_{p(i)}\right)$ for some $p(i) \notin B_{1} \cup B_{2}$ and $F_{1}(x) \geq\left|D u(x)-A_{p(i)}\right|^{p}$ for all $x \in P_{i}$. See figure 5 .

Figure 5

Now

$$
\begin{aligned}
\left|\left(u\left(a_{1}^{i}\right)-u\left(a_{2}^{i}\right)\right)-A_{p(i)}\left(a_{1}^{i}-a_{2}^{i}\right)\right| \leq & \int_{\left\{\left[a_{1}^{i}, a_{2}^{i}\right]:\left|D u(z)-A_{p(i)}\right| \leq \epsilon^{\frac{\alpha}{3 q}}\right\}}\left|D u(z)-A_{p(i)}\right| d L^{1} z \\
& +\int_{\left\{\left[a_{1}^{i}, a_{2}^{i}\right]:\left|D u(z)-A_{p(i)}\right|>\epsilon^{\frac{\alpha}{3 q}}\right\}}\left|D u(z)-A_{p(i)}\right| d L^{1} z \\
\leq & \left|a_{1}^{i}-a_{2}^{i}\right| \epsilon^{\frac{\alpha}{3 q}}+\epsilon^{\frac{(1-p) \alpha}{3 q}} \int_{a_{1}^{i}}^{a_{2}^{i}}\left|D u(z)-A_{p(i)}\right|^{p} d L^{1} z \\
\leq & \left|a_{1}^{i}-a_{2}^{i}\right| \epsilon^{\frac{\alpha}{3 q}}+\epsilon^{\frac{(1-p) \alpha}{3 q}} \int_{a_{1}^{i}}^{a_{2}^{i}} F_{1}(z) d H^{1} z .
\end{aligned}
$$

And in exactly the same way

$$
\begin{equation*}
\left|\left(u\left(a_{1}^{i}\right)-u\left(a_{3}^{i}\right)\right)-A_{p(i)}\left(a_{1}^{i}-a_{3}^{i}\right)\right| \leq\left|a_{1}^{i}-a_{3}^{i}\right| \epsilon^{\frac{\alpha}{3 q}}+\epsilon^{\frac{(1-p) \alpha}{3 q}} \int_{a_{1}^{i}}^{a_{3}^{i}} F_{1}(z) d H^{1} z \tag{87}
\end{equation*}
$$

Which implies

$$
\left|D \tilde{u}_{\left\lfloor\tau_{1}^{i}\right.}-A_{p(i)}\right| \leq c \epsilon^{\frac{\alpha}{3 q}}+c \epsilon^{-\frac{1}{q}} \epsilon^{\frac{(1-p) \alpha}{3 q}} \int_{\partial P_{i}} F_{1}(z) d H^{1} z
$$

exactly the same inequality holds for τ_{2}^{i}.
So

$$
\begin{align*}
\sum_{i \in V_{1}} \sum_{q=1}^{2}\left|D \tilde{u}_{\left\lfloor\tau_{q}^{i}\right.}-A_{p(i)}\right| \epsilon^{\frac{2}{q}} & \leq 2 \operatorname{Card}\left(V_{1}\right) \epsilon^{\frac{2}{q}} \epsilon^{\frac{\alpha}{3 q}}+\sum_{i \in V_{1}} c \epsilon^{\frac{1}{q}} \epsilon^{\frac{(1-p) \alpha}{3 q}} \int_{\partial P_{i}} F_{1}(z) d H^{1} z \\
& \stackrel{(86)}{\leq} c \epsilon^{\frac{(1-p) \alpha}{3 q}} \epsilon^{\frac{\alpha}{3 q}-\tau} \tag{88}
\end{align*}
$$

Now for $i \in V_{2}$ we know $P_{i} \subset Q_{\mathcal{C}_{1} \epsilon^{\frac{1}{q}}}\left(c_{p(i)}\right)$ for some $p(i) \in B_{2}$ so (see (81))

$$
\int_{Q_{\mathcal{C}_{1} \varphi}(0)}\left|D v_{i}(z)-A_{p(i)}\right|^{p} d L^{2} z \leq \mathcal{C}_{2} \epsilon^{\frac{\tau}{e_{p}-1}}
$$

Now let $\tau=\frac{\alpha(p-1)}{q}$ so $\epsilon^{\frac{\tau}{e p-1}}=\epsilon^{\frac{\alpha(p-1)}{q(e p-1)}}$, so since v_{i} is Lipschitz

$$
\left(\int_{Q_{C_{1} \varphi}(0)}\left|D v_{i}(z)-A_{p(i)}\right|^{3} d L^{2} z\right)^{\frac{1}{3}} \leq c \epsilon^{\frac{\alpha(p-1)}{3 q(e p-1)}}
$$

Let $l_{A_{p(i)}}$ be the affine function with $l_{A_{p(i)}}(0)=v_{i}(0)$, and $D l_{A_{p(i)}}=A_{p(i)}$. Let $g:=v_{i}-l_{A_{p(i)}}$, so $g(0)=0$ and so by Morrey's inequality ([10] Section 4.5.3, Theorem 3) we have

$$
\begin{aligned}
\sup _{x \in Q_{\mathcal{C}_{1} \varphi}(0)}|g(x)| & \leq c\left(\int_{Q_{\mathcal{C}_{1} \varphi}(0)}|D g(z)|^{3} d L^{2} z\right)^{\frac{1}{3}} \\
& \leq c \epsilon^{\frac{\alpha(p-1)}{3(e p-1)}}
\end{aligned}
$$

Now recall $u(x)=v_{i}\left(\frac{x-c_{p(i)}}{\epsilon^{\frac{1}{q}}}\right) \epsilon^{\frac{1}{q}}$ for $x \in P_{1}$, so

$$
\begin{equation*}
\sup \left\{\left|u\left(\epsilon^{\frac{1}{q}} z+c_{p(i)}\right)-l_{A_{p(i)}}\left(\epsilon^{\frac{1}{q}} z\right)\right|: z \in Q_{\mathcal{C}_{1} \varphi}(0)\right\} \leq c \epsilon^{\frac{1}{q}} \epsilon^{\frac{\alpha(p-1)}{3 q(e p-1)}} \tag{89}
\end{equation*}
$$

Now take triangle τ_{i}^{1}, note that

$$
\begin{aligned}
\left|D \tilde{u}_{\left\lfloor\tau_{i}^{1}\right.}\left(a_{2}^{i}-a_{1}^{i}\right)-A_{p(i)}\left(a_{2}^{i}-a_{1}^{i}\right)\right| & =\left|\left(u\left(a_{2}^{i}\right)-u\left(a_{1}^{i}\right)\right)-\left(l_{A_{p(i)}}\left(a_{2}^{i}\right)-l_{A_{p(i)}}\left(a_{1}^{i}\right)\right)\right| \\
& \leq c \epsilon^{\frac{1}{q}} \epsilon^{\frac{\alpha(p-1)}{3 q(e p-1)}} .
\end{aligned}
$$

Thus

$$
\left|D \tilde{u}_{\left\lfloor\tau_{i}^{1}\right.}\left(\frac{a_{2}^{i}-a_{1}^{i}}{\left|a_{2}^{i}-a_{1}^{i}\right|}\right)-A_{p(i)}\left(\frac{a_{2}^{i}-a_{1}^{i}}{\left|a_{2}^{i}-a_{1}^{i}\right|}\right)\right| \leq c \epsilon^{\frac{\alpha(p-1)}{3 q(e p-1)}} .
$$

In exactly the same way

$$
\left|D \tilde{u}_{\left\lfloor\tau_{i}^{1}\right.}\left(\frac{a_{3}^{i}-a_{1}^{i}}{\left|a_{3}^{i}-a_{1}^{i}\right|}\right)-A_{p(i)}\left(\frac{a_{3}^{i}-a_{1}^{i}}{\left|a_{3}^{i}-a_{1}^{i}\right|}\right)\right| \leq c \epsilon^{\frac{\alpha(p-1)}{3 q(e p-1)}} .
$$

Thus $\left|D \tilde{u}_{\left\lfloor\tau_{i}^{1}\right.}-A_{p(i)}\right| \leq c \epsilon^{\frac{\alpha(p-1)}{3 q(e p-1)}}$. Let $K_{\epsilon}:=N_{c \epsilon^{\frac{\alpha(p-1)}{3 q(e p-1)}}}(K)$. So we have shown

$$
\begin{equation*}
D \tilde{u}_{\left\lfloor\tau_{i}^{w}\right.} \in K_{\epsilon} \text { for every } i \in V_{2}, w=1,2 \tag{90}
\end{equation*}
$$

Now note that $Q_{1}(0) \backslash\left(Z_{1} \cup Z_{2}\right)=Q_{1}(0) \backslash\left(\bigcup_{i \in G \cup B_{2}} Q_{\frac{c_{1}{ }^{2} \epsilon^{\frac{1}{q}}}{}}\left(c_{i}\right)\right)$ and note

$$
\begin{aligned}
L^{2}\left(Q _ { 1 } (0) \backslash \left(\bigcup_{i \in G \cup B_{2}}\right.\right. & \left.\left.Q_{\frac{c_{1} \varphi}{2} \epsilon^{\frac{1}{q}}}\left(c_{i}\right)\right)\right)
\end{aligned} \leq c \operatorname{Card}\left(B_{1}\right) \epsilon^{\frac{2}{q}} \underset{\substack{(79) \\
\leq} \epsilon^{\frac{\alpha}{3 q}}}{ }
$$

So as

$$
\bigcup_{i \in\left\{1,2, \ldots N_{1}\right\} \backslash\left(V_{1} \cup V_{2}\right)} P_{i} \stackrel{(85)}{\subset} Q_{1}(0) \backslash\left(\bigcup_{i \in G \cup B_{2}} Q_{\frac{c_{1} \varphi}{2} \epsilon^{\frac{1}{q}}}\left(c_{i}\right)\right)
$$

so

$$
\begin{equation*}
\sum_{i \in\left\{1,2, \ldots N_{1}\right\} \backslash\left(V_{1} \cup V_{2}\right)} L^{2}\left(P_{i}\right) \leq c \epsilon^{\frac{\alpha}{3 q}} \tag{91}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\int_{Q_{1}(0)} d\left(D \tilde{u}(z), K_{\epsilon}\right) d L^{2} z \quad & \leq \sum_{i=1}^{N_{1}} \sum_{w=1}^{2} d\left(D \tilde{u}_{L_{i}^{w}}, K_{\epsilon}\right) \epsilon^{\frac{2}{q}}+c \epsilon^{\frac{1}{q}} \\
& \leq \quad c \sum_{i \in V_{1}} \sum_{w=1}^{2} d\left(D \tilde{u}_{\left\lfloor\tau_{i}^{w}\right.}, K_{\epsilon}\right) \epsilon^{\frac{2}{q}}+c \sum_{i \in V_{2}} \sum_{w=1}^{2} d\left(D \tilde{u}_{\left\lfloor\tau_{i}^{w}\right.}, K_{\epsilon}\right) \epsilon^{\frac{2}{q}} \\
& +\sum_{i \in\left\{1,2, \ldots N_{1}\right\} \backslash\left(V_{1} \cup V_{2}\right)} c L^{2}\left(P_{i}\right)+c \epsilon^{\frac{1}{q}} \\
& \\
& \\
& \leq \epsilon^{(88),(90),(91)} \\
& c \epsilon^{\frac{(1-p) \alpha}{3 q}-\tau} \epsilon^{\frac{\alpha}{3 q}} \\
& c \epsilon^{\frac{4(1-p) \alpha}{3 q}} \epsilon^{\frac{\alpha}{3 q}} \\
& c \epsilon^{-\delta} \frac{\alpha}{3 q}
\end{aligned}
$$

Now in the case where $e=1, K_{\epsilon}=N_{c \epsilon} \frac{\alpha}{3 q}(K)$. So

$$
\begin{aligned}
\int_{Q_{1}(0)} d(D \tilde{u}(z), K) d L^{2} z & \leq \int_{Q_{1}(0)} d\left(D \tilde{u}(z), K_{\epsilon}\right) d L^{2} z+c \epsilon^{\frac{\alpha}{3 q}} \\
& \leq c \epsilon^{-\delta} \epsilon^{\frac{\alpha}{3 q}}
\end{aligned}
$$

Now for $e>1$, since $e \leq 4$ and $p \leq 2$, and recall $\frac{p-1}{q}=\frac{\delta}{2 \alpha}$ so

$$
\begin{aligned}
\epsilon^{\frac{p-1}{3 q(e p-1)}} & =\epsilon^{\frac{\delta}{6 \alpha(e p-1)}} \\
& \leq \epsilon^{\frac{\delta}{84}} \\
& \leq \epsilon^{\frac{\delta}{84 q}} .
\end{aligned}
$$

Hence $K_{\epsilon} \subset N_{\epsilon^{\delta 4 q}}(K)$. So

$$
\int_{Q_{1}(0)} d\left(D \tilde{u}(z), N_{\epsilon^{\frac{\delta}{84 q}}}(K)\right) d L^{2} z \leq \mathcal{C}_{3} \epsilon^{-\delta} \epsilon^{\frac{\alpha}{3 q}}
$$

Proof of Theorem 2.

To simplify details we will take $\Omega=Q_{1}(0)$. It will be clear that the proof works for any bounded Lipschitz domain. Suppose

$$
\begin{equation*}
\inf _{v \in B_{F}^{h}} \mathcal{F}_{h}(v) \geq \mathcal{A} h^{\frac{1}{3}} \tag{92}
\end{equation*}
$$

Let $q \geq 1$. If for some ϵ, there exists $u \in A_{F}^{\zeta}$ such that

$$
\begin{aligned}
I_{\epsilon}^{q}(u) & \leq \epsilon^{\frac{1}{3 q}+\delta} \\
& =\epsilon^{\frac{1+3 q \delta}{3 q}}
\end{aligned}
$$

let $\alpha=1+3 q \delta$. Now for $q>1$ by Theorem 1 we have an ($p, q, 4$) Liouville theorem, so $h=\epsilon^{\frac{1}{q}}$ by Proposition 3 we have

$$
\begin{aligned}
\mathcal{F}_{h}(\tilde{u}) & \leq \mathcal{C}_{3} h^{\frac{1}{3}+q \delta-\frac{\delta}{2}} \\
& \leq \mathcal{C}_{3} h^{\frac{1}{3}+\frac{\delta}{2}}
\end{aligned}
$$

which contradicts (92) for small enough h (depending on $\delta, \mathcal{A}, q, \sigma$ and ζ). So we have established (8).

For the case $q=1$, suppose $\int_{v \in B_{F}^{h}} \mathcal{F}_{0}(v) \geq \mathcal{A} h^{\frac{1}{3}}$. Since from [6] we have an $(p, 1,1)$ Liouville theorem. So let $h=\epsilon$, by Proposition 3 for $h=\epsilon$ we have $\mathcal{F}_{0}(\tilde{u}) \leq \mathcal{C}_{3} h^{\frac{1}{3}+\frac{\delta}{2}}$, contradiction for small enough h. So we have shown (9).

References

[1] L. Ambrosio; N. Fusco; D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. xviii+434 pp.
[2] J.M. Ball, R.D. James. Fine phase mixtures as minimisers of energy. Arch.Rat.Mech.-Anal, 100(1987), 13-52.
[3] J.M. Ball, R.D. James. Proposed experimental tests of a theory of fine microstructure and the two well problem. Phil. Tans. Roy. Soc. London Ser. A 338(1992) 389-450.
[4] M. Chipot. The appearance of microstructures in problems with incompatible wells and their numerical approach. M. Chipot, Numer. Math 83 (1999) no. 3 325-352.
[5] M. Chipot, D. Kinderlehrer. Equilibrium configurations of crystals. Arch.Rat.Mech.-Anal, 103 (1988), no. 3, 237-277.
[6] S. Conti, B. Schweizer. Rigidity and Gamma convergence for solid-solid phase transitions with $S O(2)-$ invariance. MIS-MPG preprint. 69/2004
[7] N. Chaudhuri, S. Müller. Rigidity Estimate for Two Incompatible Wells. MIS MPG Preprint Nr. 16/2003
[8] B. Dacorogna and P. Marcellini. General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases. Acta Math. 178 (1997), 1-37.
[9] G. Dolzman, S. Müller. Microstructures with finite surface energy: the two-well problem. Arch. Rational Mech. Anal. 132 (1995) no. 2. 101-141.
[10] L.C. Evans. R.F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[11] G. Friesecke, R. D. James and S. Müller. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) no. 11, 1461-1506.
[12] I. Fonseca, W. Gangbo. Degree theory in analysis and applications. Oxford Lecture Series in Mathematics and its Applications, 2. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
[13] S. K. Vodopyanov, V. M. Goldstein. Quasiconformal mappings, and spaces of functions with first generalized derivatives. (Russian) Sibirsk. Mat. Z̆. 17 (1976), no. 3, 515-531, 715.
[14] R.R. Hall; W.K. Hayman; A. W. Weitsman. On asymmetry and capacity. J. Analyse Math. 56 (1991), 87-123.
[15] T. Iwaniec, V. Šverák. On mappings with integrable dilatation. Proc. Amer. Math. Soc. 118 (1993), no. 1, 181-188.
[16] B. Kirchheim. Deformations with finitely many gradients and stability of quasiconvex hulls. C. R. Acad. Sci. Paris Sr. I Math. 332 (2001), no. 3, 289-294.
[17] B. Kirchheim. Rigidity and Geometry of Microstructures. Lectures note MPI-MIS Nr. 16/2003.
[18] R.V. Kohn, S. Müller. Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47 (1994) 405-435.
[19] A. Lorent. An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure. Mathematical Modeling and Numerical Analysis Vol. 35 No. 5.
[20] A. Lorent. Lower bounds for the two well problem with surface energy: Reduction to finite elements. Preprint, University of Jyväskylä. March 2002.
[21] A. Lorent. A two well Liouville Theorem. To appear, COCV.
[22] A. Lorent. The two well problem with surface energy. Preprint. www.mis.mpg.de/preprints/2004
[23] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, 1995.
[24] S. Müller, V. Šverák. Attainment results for the two-well problem by convex integration. "Geometric Analysis and the Calculus of Variations. For Stefan Hildebrandt" (J. Jost, Ed.), pp. 239-251, International Press, Cambridge, 1996.
[25] S. Müller; V. Šverák. Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. (JEMS) 1. (1999) no.4. 393-422.
[26] S. Müller; V. Šverák. Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. (2) 157 (2003), no. 3, 715-742.
[27] S. Müller, M. Rieger, V. Šverák. Parabolic systems with nowhere smooth solutions. MIS MPG Preprint. 11/2003.
[28] S. Müller. Variational models for microstructure and phase transitions. MPI Lecture Note Nr. $2 / 1998$ avaliable at: www.mis.mpg.de/cgi-bin/lecturenotes.pl
[29] M.A. Sychev. Comparing two methods of resolving homogeneous differential inclusions. Calc. Var. Partial Differential Equations 13 (2001), no. 2, 213-229.
[30] M.A. Sychev. S. Müller Optimal existence theorems for nonhomogeneous differential inclusions. J. Funct. Anal. 181 (2001) no.2. 447-475.
[31] V. Šverák. On the problem of two wells. Microstructure and phase transition. 183-189, IMA Vol.Math.Appl.54. Springer, New York, 1993.
[32] M. Vuorinen. Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics, 1319. Springer-Verlag, Berlin, 1988.

[^0]: ADDRESS: MIS MPG, INSELSTRASSE 22, D-04103 LEIPZIG.
 2000 MSC CLASSIFICATION, 74N15. KEYWORDS, TWO WELLS, SURFACE ENERGY

[^1]: ${ }^{1}$ We know it can not be a function u with $\mathcal{I}(u)=0$ because the result of Dolzmann Müller [9], that any u with this property and with the property that $D u$ is a BV has to be laminate

[^2]: ${ }^{2}$ Hall et al. state their Lemma for sets with smooth boundaries. By Theorem 3.41 [1] we can approximate any set A of finite perimeter with a sequence of sets $\left(A_{n}\right)$ that converge in measure to A which have smooth boundaries and for which $\operatorname{Per}\left(A_{n}\right) \rightarrow \operatorname{Per}(A)$ as $n \rightarrow \infty$, hence its easy to see the lemma holds for sets of finite perimeter.

[^3]: ${ }^{3}$ Friesecke, James, Müller Theorem was first stated for L^{2} but the same result holds for L^{q} for $q>1$ with small modifications of the proof

[^4]: ${ }^{4}$ By smallness of $\lambda\left(u\left(B_{r}(y)\right)\right)$, see Lemma 4

[^5]: ${ }^{5}$ This follows by almost exactly the same proof as Proposition 1 , the only difference being we need to use the co-area formula with respect to a function whose level sets are of the form $H^{-1}\left(\partial B_{r}(b)\right)$ hence the Jacobean of this function is equal to σ^{-1}

