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A NEW SPECTRAL CANCELLATION IN QUANTUM GRAVITY

G. ESPOSITO, G. FUCCI, A. KAMENSHCHIK, AND K. KIRSTEN

Abstract. A general method exists for studying Abelian and non-Abelian
gauge theories, as well as Euclidean quantum gravity, at one-loop level on
manifolds with boundary. In the latter case, boundary conditions on metric
perturbations h can be chosen to be completely invariant under infinitesimal
diffeomorphisms, to preserve the invariance group of the theory and BRST
symmetry. In the de Donder gauge, however, the resulting boundary-value
problem for the Laplace type operator acting on h is known to be self-adjoint
but not strongly elliptic. The present paper shows that, on the Euclidean
four-ball, only the scalar part of perturbative modes for quantum gravity is
affected by the lack of strong ellipticity. Interestingly, three sectors of the
scalar-perturbation problem remain elliptic, while lack of strong ellipticity is
“confined” to the remaining fourth sector. The integral representation of the
resulting ζ-function asymptotics on the Euclidean four-ball is also obtained;
this remains regular at the origin by virtue of a peculiar spectral identity
obtained by the authors. There is therefore encouraging evidence in favour
of the functional determinant with fully diff-invariant boundary conditions
remaining well defined, at least on the four-ball, although severe technical
obstructions remain in general.

1. Introduction

This paper is motivated by the authors’ struggle over many years with an im-
portant problem in quantum field theory and spectral geometry, i.e. the functional
determinant in Euclidean quantum gravity on manifolds with non-empty boundary.
The related open issues are not yet settled, but there is a sufficient amount of new
calculations to justify further efforts, as we are going to see shortly.

The subject of boundary effects in quantum field theory (Deutsch and Candelas
in Ref. 1) has always received a careful consideration in the literature by virtue of
very important physical and mathematical motivations, that can be summarized as
follows.

(i) Boundary data play a crucial role in the functional-integral approach (De-
Witt in Ref. 2), in the quantum theory of the early universe (Hartle-Hawking and
Hawking in Ref. 3) in supergravity (Hawking in Ref. 4) and even in string theory
(Abouelsaood et al. in Ref. 5).

(ii) The way in which quantum fields react to the presence of boundaries is
responsible for remarkable physical effects, e.g. the attractive Casimir force among
perfectly conducting parallel plates (Bordag et al., Milton, Nesterenko et al. in
Ref. 6), which can be viewed as arising from differences of zero-point energies of
the quantized electromagnetic field.

(iii) The spectral geometry of a Riemannian manifold (Gilkey in Ref. 7) with
boundary is a fascinating problem where many new results have been derived over
the last few years (Kirsten in Ref. 8, Vassilevich in Ref. 9).
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(iv) Boundary terms (Moss in Ref. 10) in heat-kernel expansions have become
a major subject of investigation in quantum gravity (Avramidi in Ref. 11), since
they shed new light on one-loop conformal anomalies (Esposito et al., Moss and
Poletti in Ref. 12, Tsoupros in Ref. 13) and one-loop divergences (Esposito in Ref.
14, Esposito et al. in Ref. 15).

In our paper we are interested in boundary conditions for metric perturbations
that are completely invariant under infinitesimal diffeomorphisms, since they are
part of the general scheme according to which the boundary conditions are preserved
under the action of the symmetry group of the theory (Barvinsky in Ref. 16, Moss
and Silva in Ref. 17, Avramidi and Esposito in Ref. 18). In field-theoretical
language, this means setting to zero at the boundary that part πA of the gauge
field A that lives on the boundary B (π being a projection operator):

(1)
[
πA
]
B

= 0,

as well as the gauge-fixing functional,

(2)
[
Φ(A)

]
B

= 0,

and the whole ghost field

(3) [ϕ]B = 0.

For Euclidean quantum gravity, Eq. (1) reads as

(4) [hij ]B = 0,

where hij are perturbations of the induced three-metric. To arrive at the gravita-
tional counterpart of Eqs. (2) and (3), note first that, under infinitesimal diffeo-
morphisms, metric perturbations hµν transform according to

(5) ĥµν ≡ hµν + ∇(µ ϕν),

where ∇ is the Levi–Civita connection on the background four-geometry with metric
g, and ϕνdx

ν is the ghost one-form (strictly, our presentation is simplified: there
are two independent ghost fields obeying Fermi statistics, and we will eventually
multiply by −2 the effect of ϕν to take this into account). In geometric language,
the infinitesimal variation δhµν ≡ ĥµν − hµν is given by the Lie derivative along ϕ
of the four-metric g. For manifolds with boundary, Eq. (5) implies that (Esposito
et al. in Ref. 19, Avramidi et al. in Ref. 20)

(6) ĥij = hij + ϕ(i|j) +Kijϕ0,

where the stroke denotes three-dimensional covariant differentiation tangentially
with respect to the intrinsic Levi–Civita connection of the boundary, while Kij

is the extrinsic-curvature tensor of the boundary. Of course, ϕ0 and ϕi are the
normal and tangential components of the ghost, respectively. By virtue of Eq. (6),
the boundary conditions (4) are “gauge invariant”, i.e.

(7)
[
ĥij

]
B

= 0,

if and only if the whole ghost field obeys homogeneous Dirichlet conditions, so that

(8) [ϕ0]B = 0,

(9) [ϕi]B = 0.
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The conditions (8) and (9) are necessary and sufficient since ϕ0 and ϕi are indepen-
dent, and three-dimensional covariant differentiation commutes with the operation
of restriction to the boundary. We are indeed assuming that the boundary B is
smooth and not totally geodesic, i.e. Kij �= 0. However, for totally geodesic
boundaries, having Kij = 0, the condition (8) is no longer necessary.

On imposing boundary conditions on the remaining set of metric perturbations,
the key point is to make sure that the invariance of such boundary conditions under
the infinitesimal transformations (5) is again guaranteed by (8) and (9), since other-
wise one would obtain incompatible sets of boundary conditions on the ghost field.
Indeed, on using the DeWitt–Faddeev–Popov formalism for the 〈out|in〉 amplitudes
of quantum gravity, it is necessary to use a gauge-averaging term in the Euclidean
action, of the form2

(10) Ig.a. =
1

16πG

∫
M

ΦνΦν

2α

√
det g d4x,

where Φν is any functional which leads to self-adjoint (elliptic) operators on metric
and ghost perturbations. One then finds that

(11) δΦµ(h) ≡ Φµ(h) − Φµ(ĥ) = F ν
µ ϕν ,

where F ν
µ is an elliptic operator that acts linearly on the ghost field. Thus, if one

imposes the boundary conditions

(12)
[
Φµ(h)

]
B

= 0,

and if one assumes that the ghost field can be expanded in a complete orthonormal
set of eigenfunctions u (λ)

ν of F ν
µ which vanish at the boundary, i.e.

(13) F ν
µ u

(λ)
ν = λu (λ)

µ ,

(14) ϕν =
∑

λ

Cλu
(λ)
ν ,

(15)
[
u (λ)

µ

]
B

= 0,

the boundary conditions (12) are automatically gauge-invariant under the Dirichlet
conditions (8) and (9) on the ghost.

Having obtained the general recipe expressed by Eqs. (4) and (12), we can
recall what they imply on the Euclidean four-ball. This background is relevant
for one-loop quantum cosmology in the limit of small three-geometry on the one
hand (Schleich in Ref. 21), and for spectral geometry and spectral asymptotics on
the other hand.8,9 As shown in Ref. 19, if one chooses the de Donder gauge-fixing
functional

(16) Φµ(h) = ∇ν
(
hµν − 1

2
gµνg

ρσhρσ

)
,

which has the virtue of leading to an operator of Laplace type on hµν in the one-loop
functional integral, Eq. (12) yields the mixed boundary conditions

(17)
[
∂h00

∂τ
+

6
τ
h00 − ∂

∂τ
(gijhij) +

2
τ2
h

|i
0i

]
B

= 0,
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(18)
[
∂h0i

∂τ
+

3
τ
h0i − 1

2
∂h00

∂xi

]
B

= 0.

In Refs. 15, 19, the boundary conditions (4), (17) and (18) were used to evaluate the
full one-loop divergence of quantized general relativity on the Euclidean four-ball,
including all hµν and all ghost modes. However, the meaning of such a calculation
became unclear after the discovery in Ref. 18 that the boundary-value problem for
the Laplacian P acting on metric perturbations is not strongly elliptic by virtue
of tangential derivatives in the boundary conditions (17) and (18). Moreover, the
work by Dowker and Kirsten in Ref. 22 had proved even earlier, in a simpler
case, that the boundary-value problem with tangential derivatives is, in general,
not strongly elliptic. Strong ellipticity8,18 is a technical requirement ensuring that
a unique smooth solution of the boundary-value problem exists which vanishes at
infinite geodesic distance from the boundary. If it is fulfilled, this ensures that the
L2 trace of the heat semigroup e−tP exists, with the associated global heat-kernel
asymptotics that yields one-loop divergence and one-loop effective action. However,
when strong ellipticity does not hold, the L2 trace of e−tP acquires a singular part,18

and hence ζ-function calculations may become ill-defined.
All of this has motivated our analysis, which therefore derives in Sec. 2 the

eigenvalue conditions for scalar modes. Section 3 obtains the first pair of resulting
scalar-mode ζ-functions and Sec. 4 studies the remaining elliptic and non-elliptic
parts of spectral asymptotics. Results and open problems are described in Sec. 5.

2. Eigenvalue conditions for scalar modes on the four-ball

On the Euclidean four-ball, which can be viewed as the portion of flat Euclidean
four-space bounded by a three-sphere of radius q, metric perturbations hµν can be
expanded in terms of hyperspherical harmonics as (Lifshitz and Khalatnikov in Ref.
23, Esposito et al. in Ref. 24)

(19) h00(x, τ) =
∞∑

n=1

an(τ)Q(n)(x),

(20) h0i(x, τ) =
∞∑

n=2

⎡⎣bn(τ)
Q

(n)
|i (x)

(n2 − 1)
+ cn(τ)S(n)

i (x)

⎤⎦ ,

hij(x, τ) =
∞∑

n=3

dn(τ)

⎡⎣ Q(n)
|ij (x)

(n2 − 1)
+
cij
3
Q(n)(x)

⎤⎦ +
∞∑

n=1

en(τ)
3

cijQ
(n)(x)

+
∞∑

n=3

[
fn(τ)

(
S

(n)
i|j (x) + S

(n)
j|i (x)

)
+ kn(τ)G(n)

ij (x)
]
,(21)

where τ ∈ [0, q] and Q(n)(x), S(n)
i (x) and G

(n)
ij (x) are scalar, transverse vector

and transverse-traceless tensor hyperspherical harmonics, respectively, on a unit
three-sphere with metric cij . By insertion of the expansions (19)-(21) into the
eigenvalue equation for the Laplacian acting on hµν , and by setting

√
E → iM ,

which corresponds to a rotation of contour in the ζ-function analysis (Barvinsky
et al. in Ref. 25) one finds the modes as linear combinations of modified Bessel
functions of first kind. Modified Bessel functions of the second kind are not included
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to ensure regularity at the origin τ = 0. For details, we refer the reader to the work
by Esposito et al. in Ref. 26.

The boundary conditions (4), (17), (18), (8), (9), jointly with the mode-expansions
on the four-ball, can be used to obtain homogeneous linear systems that yield,
implicitly, the eigenvalues of our problem. The conditions for finding non-trivial
solutions of such linear systems are given by the vanishing of the associated deter-
minants; these yield the eigenvalue conditions δ(E) = 0, i.e. the equations obeyed
by the eigenvalues by virtue of the boundary conditions. For the purpose of a rigor-
ous analysis, we need the full expression of such eigenvalue conditions for each set
of coupled modes. Upon setting

√
E → iM , we denote by D(Mq) the counterpart

of δ(E), bearing in mind that, strictly, only δ(E) yields implicitly the eigenvalues,
while D(Mq) is more convenient for ζ-function calculations.25

In particular, we here focus on scalar modes (for the whole set of modes, see
again the work in Ref. 26). For all n ≥ 3, coupled scalar modes an, bn, dn, en are
ruled by a determinant reading as

(22) Dn(Mq) = det ρij(Mq),

with degeneracy n2, where ρij is a 4 × 4 matrix with entries

(23) ρ11 = In(Mq) −MqI ′n(Mq), ρ12 = MqI ′n(Mq),

(24)
ρ13 = (2 − n)In−2(Mq) +MqI ′n−2(Mq), ρ14 = (2 + n)In+2(Mq) +MqI ′n+2(Mq),

(25) ρ21 = −(n2 − 1)In(Mq), ρ22 = 2MqI ′n(Mq) + 6In(Mq),

(26) ρ23 = 2(n+ 1)MqI ′n−2(Mq) − (n2 − 6n− 7)In−2(Mq),

(27) ρ24 = −2(n− 1)MqI ′n+2(Mq) − (n2 + 6n− 7)In+2(Mq),

(28) ρ31 = 0, ρ32 = −In(Mq),

(29) ρ33 =
(n+ 1)
(n− 2)

In−2(Mq), ρ34 =
(n− 1)
(n+ 2)

In+2(Mq),

(30) ρ41 = 3In(Mq), ρ42 = −2In(Mq), ρ43 = −In−2(Mq), ρ44 = −In+2(Mq).

The hardest part of our analysis is the investigation of the equation obtained by
setting to zero the determinant (22). For this purpose, we first exploit the recurrence
relations among In, In+1 and I ′n to find
(31)
ρ11 = In(w)−wI ′n(w), ρ12 = wI ′n(w), ρ13 = wI ′n(w)+nIn(w), ρ14 = wI ′n(w)−nIn(w),

(32) ρ21 = −(n2 − 1)In(w), ρ22 = 2(wI ′n(w) + 3In(w)),

(33)

ρ23 = (n+1)
{[

3(n+ 1) +
2n(n− 1)(n+ 3)

w2

]
In(w)+2

[
w +

(n− 1)(n+ 3)
w

]
I ′n(w)

}
,

(34)

ρ24 = (n−1)
{[

3(n− 1) +
2n(n+ 1)(n− 3)

w2

]
In(w)−2

[
w +

(n+ 1)(n− 3)
w

]
I ′n(w)

}
,

(35) ρ31 = 0, ρ32 = −In(w),
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(36) ρ33 =
(n+ 1)
(n− 2)

[(
1 +

2n(n− 1)
w2

)
In(w) +

2(n− 1)
w

I ′n(w)
]
,

(37) ρ34 =
(n− 1)
(n+ 2)

[(
1 +

2n(n+ 1)
w2

)
In(w) − 2(n+ 1)

w
I ′n(w)

]
,

(38) ρ41 = 3In(w), ρ42 = −2In(w),

(39) ρ43 = −
(

1 +
2n(n− 1)

w2

)
In(w) − 2(n− 1)

w
I ′n(w),

(40) ρ44 = −
(

1 +
2n(n+ 1)

w2

)
In(w) +

2(n+ 1)
w

I ′n(w).

The resulting determinant, despite its cumbersome expression, can be studied by
introducing the variable

(41) y ≡ I ′n(w)
In(w)

,

which leads to

(42) Dn(w) =
48n(1 − n2)

(n2 − 4)
I4
n(w)(y − y1)(y − y2)(y − y3)(y − y4),

where

(43) y1 ≡ − n

w
, y2 ≡ n

w
, y3 ≡ − n

w
− w

2
, y4 ≡ n

w
− w

2
,

and hence
(n2 − 4)

48n(1 − n2)
Dn(w) =

(
I ′n(w) +

n

w
In(w)

) (
I ′n(w) − n

w
In(w)

)
·
(
I ′n(w)+

(w
2

+
n

w

)
In(w)

)(
I ′n(w)+

(w
2
− n

w

)
In(w)

)
.(44)

3. First pair of scalar-mode ζ-functions

In our problem, the differential operator under investigation is the Laplacian on
the Euclidean four-ball acting on metric perturbations. The boundary conditions
for vector, tensor and ghost modes correspond to a familiar mixture of Dirichlet
and Robin boundary conditions for which integral representation of the ζ-function
and heat-kernel coefficients are immediately obtained. New features arise instead
from Eq. (44), that gives rise to four different ζ-functions. On studying the first
line of Eq. (44), we can exploit the work by Dowker and Kirsten in Ref. 22 and the
uniform asymptotic expansion of Bessel functions and their first derivatives (see
Appendix) to say that the integral representation of the resulting ζ-function reads
as
(45)

ζ±A (s) ≡ (sinπs)
π

∞∑
n=3

n−(2s−2)

∫ ∞

0

dz z−2s ∂

∂z
log
[
z−β±(n)

(
znI ′n(zn) ± nIn(zn)

)]
.

With our notation, β+(n) = n, β−(n) = n + 2, where these factors are fixed by
the leading behaviour of the eigenvalue condition as z → 0 (Bordag et al. in Ref.
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27); the uniform asymptotic expansion of modified Bessel functions and their first
derivatives can be used to find (hereafter τ = τ(z) ≡ (1 + z2)−

1
2 )

(46) znI ′n(zn) ± nIn(zn) ∼ n√
2πn

enη

√
τ

(1 ± τ)

(
1 +

∞∑
k=1

pk,±(τ)
nk

)
,

where

(47) pk,±(τ) ≡ (1 ± τ)−1
(
vk(τ) ± τuk(τ)

)
,

for all k ≥ 1, and

(48) log

(
1 +

∞∑
k=1

pk,±(τ)
nk

)
∼

∞∑
k=1

Tk,±(τ)
nk

.

Thus, the ζ-functions (45) obtain, from the first pair of round brackets in Eq. (46),
the contributions (cf. Ref. 22)

(49) A+(s) ≡
∞∑

n=3

n−(2s−2) (sin πs)
π

∫ ∞

0

dz z−2s ∂

∂z
log
(
1 + (1 + z2)−

1
2

)
,

(50) A−(s) ≡
∞∑

n=3

n−(2s−2) (sinπs)
π

∫ ∞

0

dz z−2s ∂

∂z
log

(
1 − (1 + z2)−

1
2

z2

)
,

where z2 in the denominator of the argument of the log arises, in Eq. (50), from
the extra z−2 in the prefactor z−β−(n) in the definition (45). Moreover, the second
pair of round brackets in Eq. (46) contributes

∑∞
j=1 Aj,±(s), having defined

(51) Aj,±(s) ≡
∞∑

n=3

n−(2s+j−2) (sin πs)
π

∫ ∞

0

dz z−2s ∂

∂z
Tj,±(τ(z)),

where, from the formulae

(52) T1,± = p1,±,

(53) T2,± = p2,± − 1
2
p2
1,±,

(54) T3,± = p3,± − p1,±p2,± +
1
3
p3
1,±,

we find

(55) T1,± = −3
8
τ ± 1

2
τ2 − 5

24
τ3,

(56) T2,± = − 3
16
τ2 ± 3

8
τ3 +

1
8
τ4 ∓ 5

8
τ5 +

5
16
τ6,

(57) T3,± = − 21
128

τ3 ± 3
8
τ4 +

509
640

τ5 ∓ 25
12
τ6 +

21
128

τ7 ± 15
8
τ8 − 1105

1152
τ9,

and hence, in general,

(58) Tj,±(τ) =
3j∑

a=j

f (j,±)
a τa.
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We therefore find, from the first line of Eq. (44), contributions to the generalized
ζ-function, from terms in round brackets in Eq. (46), equal to

(59) χ±
A(s) = ω0(s)F±

0 (s) +
∞∑

j=1

ωj(s)F±
j (s),

where, for all λ = 0, j,

(60) ωλ(s) ≡
∞∑

n=3

n−(2s+λ−2) = ζH(2s+λ−2; 3) = ζR(2s+λ−2)−1−2−(2s+λ−2),

while, from Eqs. (49)–(51),

(61) F+
0 (s) ≡ (sinπs)

π

∫ ∞

0

dz z−2s ∂

∂z
log
(
1 + (1 + z2)−

1
2

)
,

(62) F−
0 (s) ≡ −2

(sinπs)
π

∫ ∞

0

dz
z−(2s−1)

(1 + z2)
− F+

0 (s) = −1 − F+
0 (s),

(63) F±
j (s) ≡ (sinπs)

π

3j∑
a=j

L±(s, a, 0)f (j,±)
a ,

having set (this general definition will prove useful later, and arises from a more
general case, where τa is divided by the b-th power of (1 ± τ) in Eq. (58))

(64) L±(s, a, b) ≡
∫ 1

0

τ2s+a(1−τ)−s(1+τ)−s
(
±b(1±τ)−b−1−aτ−1(1±τ)−b

)
dτ.

Moreover, on considering

(65) L+
0 (s) ≡ π

sinπs
F+

0 (s),

and changing variable from z to τ therein, all L-type integrals above can be obtained
from

(66) Q(α, β, γ) ≡
∫ 1

0

τα(1 − τ)β(1 + τ)γdτ.

In particular, we will need

(67) L+
0 (s) = −Q(2s,−s,−s− 1),

(68) L+(s, a, b) = bQ(2s+ a,−s,−s− b− 1) − aQ(2s+ a− 1,−s,−s− b),

where, from the integral representation of the hypergeometric function, one has
(Gradshteyn and Ryzhik in Ref. 28)

(69) Q(α, β, γ) =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
F (−γ, α+ 1;α+ β + 2;−1).

For example, explicitly,

(70) L+
0 (s) = −Γ(2s+ 1)Γ(1 − s)

Γ(s+ 2)
F (s+ 1, 2s+ 1; s+ 2;−1).

Now we exploit Eqs. (45), (46) and (59) to write
(71)

ζ+
A (s) = χ+

A(s)+
(sinπs)

π

∞∑
n=3

n−(2s−2)

∫ ∞

0

dz

[
z−(2s−1)

2(1 + z2)
+ nz−(2s+1)

(√
1 + z2 − 1

)]
.
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Hence we find

(72) ζ+
A (0) = lim

s→0

⎡⎣ω0(s)F+
0 (s) +

∞∑
j=1

ωj(s)F+
j (s)+

(
ζ+
A (s) − χ+

A(s)
)⎤⎦ .

The first limit in Eq. (72) is immediately obtained by noting that

(73) lim
s→0

L+
0 (s) = − log(2),

and hence

(74) lim
s→0

ω0(s)F+
0 (s) = lim

s→0

[
ζH(2s− 2; 3)

(sinπs)
π

L+
0 (s)

]
= 0.

To evaluate the second limit in Eq. (72), we use

(75) lim
s→0

L+(s, a, 0) = −1,

and bear in mind that ωj(s) is a meromorphic function with first-order pole, as
s→ 0, only at j = 3 by virtue of the limit

(76) lim
y→1

[
ζR(y) − 1

(y − 1)

]
= γ.

Hence we find (see coefficients in Eq. (57))

lim
s→0

∞∑
j=1

ωj(s)F+
j (s) = lim

s→0

(sinπs)
π

∞∑
j=1

ωj(s)

⎡⎣ 3j∑
a=j

L+(s, a, 0)f (j,+)
a

⎤⎦
= −1

2

9∑
a=3

f (3,+)
a = − 1

720
,(77)

while, from Eqs. (71) and (69),

lim
s→0

(
ζ+
A (s) − χ+

A(s)
)

= lim
s→0

(
1
4
ζH(2s− 2; 3) +

1
4
√
π

Γ
(
s− 1

2

)
Γ(s+ 1)

ζH(2s− 3; 3)

)

= −5
4

+
1079
240

.(78)

We therefore find, with the same algorithms as in Ref. 27,

(79) ζ+
A (0) = −5

4
+

1079
240

− 1
2

9∑
a=3

f (3,+)
a =

146
45

,

(80) ζ−A (0) = −5
4

+
1079
240

+ 5 − 1
2

9∑
a=3

f (3,−)
a =

757
90

.

These results have been double-checked by using also the powerful analytic tech-
nique in Ref. 25.
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4. Further spectral asymptotics: elliptic and non-elliptic parts

As a next step, the second line of Eq. (44) suggests considering ζ-functions
having the integral representation (cf. Eq. (45) and see further comments in Sec.
5)

ζ±B (s) ≡ (sinπs)
π

∞∑
n=3

n−(2s−2)

∫ ∞

0

dz z−2s ∂

∂z
log
[
z−β±(n)

(
znI ′n(zn) +

(
z2n2

2
± n

)
In(zn)

)]
.(81)

To begin, we exploit again the uniform asymptotic expansion of modified Bessel
functions and their first derivatives to find (cf. Eq. (46))

(82) znI ′n(zn) +
(
z2n2

2
± n

)
In(zn) ∼ n2

2
√

2πn
enη

√
τ

(
1
τ
− τ

)(
1 +

∞∑
k=1

rk,±(τ)
nk

)
,

where we have (bearing in mind that u0 = v0 = 1)

(83) rk,±(τ) ≡ uk(τ) +
2τ

(1 − τ2)

(
(vk−1(τ) ± τuk−1(τ)

)
,

for all k ≥ 1. Hereafter we set

(84) Ω ≡
∞∑

k=1

rk,±(τ(z))
nk

,

and rely upon the formula

(85) log(1 + Ω) ∼
∞∑

k=1

(−1)k+1 Ωk

k

to evaluate the uniform asymptotic expansion (cf. Eq. (48))

(86) log

(
1 +

∞∑
k=1

rk,±(τ(z))
nk

)
∼

∞∑
k=1

Rk,±(τ(z))
nk

.

The formulae yielding Rk,± from rk,± are exactly as in Eqs. (52)–(54), with T
replaced by R and p replaced by r (see, however, comments below Eq. (90)).
Hence we find, bearing in mind Eq. (83),

(87) R1,± = (1 ∓ τ)−1

(
17
8
τ ∓ 1

8
τ2 − 5

24
τ3 ± 5

24
τ4

)
,

(88) R2,± = (1 ∓ τ)−2

(
−47

16
τ2 ± 15

8
τ3 − 21

16
τ4 ± 3

4
τ5 − 1

16
τ6 ∓ 5

8
τ7 +

5
16
τ8

)
,

R3,± = (1 ∓ τ)−3

(
1721
384

τ3 ∓ 441
128

τ4 +
597
320

τ5 ∓ 1033
960

τ6 +
239
80

τ7

∓ 28
5
τ8 +

2431
576

τ9 ± 221
192

τ10 − 1105
384

τ11 ± 1105
1152

τ12

)
,(89)

and therefore

(90) Rj,±(τ(z)) = (1 ∓ τ)−j

4j∑
a=j

C(j,±)
a τa,
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where, unlike what happens for the Tj,± polynomials, the exponent of (1 ∓ τ)
never vanishes. Note that, at τ = 1 (i.e. z = 0), our rk,+(τ) and Rk,+(τ) are
singular. Such a behaviour is not seen for any of the strongly elliptic boundary-value
problems.8 This technical difficulty motivates our efforts below and is interpreted
by us as a clear indication of the lack of strong ellipticity proved, on general ground,
in Ref. 18.

The ζ−B (s) function is more easily dealt with. It indeed receives contributions
from terms in round brackets in Eq. (82) equal to (cf. Eq. (50) and bear in mind
that β− − β+ = 2 in Eq. (81))

B−(s) ≡
∞∑

n=3

n−(2s−2) (sinπs)
π

∫ ∞

0

dz z−2s ∂

∂z
log

(
1

τ(z) − τ(z)

z2

)

= ω0(s)
(sin πs)

π

∫ ∞

0

dz z−2s ∂

∂z
log

1√
1 + z2

= −1
2
ω0(s),(91)

and
∑∞

j=1 Bj,−(s), having defined, with λ = 0, j (cf. Eq. (51))

(92) ωλ(s) ≡
∞∑

n=3

n−(2s+λ−2) = ζH(2s+ λ− 2; 3),

(93) Bj,−(s) ≡ ωj(s)
(sin πs)

π

∫ ∞

0

dz z−2s ∂

∂z
Rj,−(τ(z)).

On using the same method as in Sec. 3, the formulae (81)–(93) lead to

(94) ζ−B (0) = −5
4

+
1079
240

+
5
2
− 1

16

12∑
a=3

C(3,−)
a =

206
45

,

a result which agrees with a derivation of ζ−B (0) relying upon the method of Ref.
25.

Although we have stressed after Eq. (90) the problems with the ζ+
B (s) part, for

the moment let us proceed formally in the same way as above. Thus we define, in
analogy to Eq. (91),

(95) B+(s) ≡ ω0(s)
(sin πs)

π

∫ ∞

0

dz z−2s ∂

∂z
log
(

1
τ(z)

− τ(z)
)
,

and, in analogy to Eq. (93),

(96) Bj,+(s) ≡ ωj(s)
(sin πs)

π

∫ ∞

0

dz z−2s ∂

∂z
Rj,+(τ(z)).

In order to make the presentation as transparent as possible, we write out the
derivatives of Rj,+. On changing integration variable from z to τ we define

(97) Cj(τ) ≡ ∂

∂τ
Rj,+(τ),

and we find the following results:

(98) C1(τ) = (1 − τ)−2

(
17
8

− 1
4
τ − 1

2
τ2 +

5
4
τ3 − 5

8
τ4

)
,

(99)

C2(τ) = (1−τ)−3

(
−47

8
τ +

45
8
τ2 − 57

8
τ3 +

51
8
τ4 − 21

8
τ5 − 33

8
τ6 +

45
8
τ7 − 15

8
τ8

)
,
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C3(τ) = (1 − τ)−4

(
1721
128

τ2 − 441
32

τ3 +
1635
128

τ4 − 163
16

τ5 +
1545
64

τ6 − 227
4
τ7

+
4223
64

τ8 − 221
16

τ9 − 5083
128

τ10 +
1105
32

τ11 − 1105
128

τ12

)
,(100)

so that the general expression of Cj(τ) reads as

(101) Cj(τ) = (1 − τ)−j−1

4j∑
a=j−1

K(j)
a τa, ∀j = 1, . . .,∞ .

These formulae engender a ζ+
B (0) which can be defined, after change of variable from

z to τ , by splitting the integral with respect to τ , in the integral representation of
ζ+
B (s), according to the identity∫ 1

0

dτ =
∫ µ

0

dτ +
∫ 1

µ

dτ,

and taking the limit as µ → 1 after having evaluated the integral. More precisely,
since the integral on the left-hand side is independent of µ, we can choose µ small
on the right-hand side so that, in the interval [0, µ] (and only there!), we can use
the uniform asymptotic expansion of the integrand where the negative powers of
(1 − τ) are harmless. Moreover, independence of µ also implies that, after having
evaluated the integrals on the right-hand side, we can take the µ→ 1 limit. Within
this framework, the limit as µ → 1 of the second integral on the right-hand side
yields vanishing contribution to the asymptotic expansion of ζ+

B (s).
With this caveat, on defining (cf. (66))

(102) Qµ(α, β, γ) ≡
∫ µ

0

τα(1 − τ)β(1 + τ)γdτ,

we obtain the representations
(103)

B+(s) = −ω0(s)
(sin πs)

π

[
−Qµ(2s,−s−1,−s)+Qµ(2s,−s,−s−1)−Qµ(2s−1,−s,−s)

]
,

(104) Bj,+(s) = −ωj(s)
(sinπs)

π

4j∑
a=j−1

K(j)
a Qµ(2s+ a,−s− j − 1,−s).

The relevant properties of Qµ(α, β, γ) can be obtained by observing that this func-
tion is nothing but a hypergeometric function of two variables,28 i.e.

(105) Qµ(α, β, γ) =
µα+1

α+ 1
F1(α + 1,−β,−γ, α+ 2;µ,−µ).

In detail, a summary of results needed to consider the limiting behaviour of ζ+
B (s)

as s→ 0 is

(106) ω0(s)
(sin πs)

π
∼ −5s+ O(s2),

(107) ωj(s)
(sin πs)

π
∼ 1

2
δj,3 + b̃j,1s+ O(s2),

(108) lim
µ→1

Qµ(2s,−s− 1,−s) ∼ −1
s

+ O(s0),
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(109) lim
µ→1

Qµ(2s,−s,−s− 1) ∼ log(2) + O(s),

(110) lim
µ→1

Qµ(2s− 1,−s,−s) ∼ 1
2s

+ O(s),

lim
µ→1

Qµ(2s+ a,−s− j − 1,−s)

=
Γ(−j − s)Γ(a+ 2s+ 1)

Γ(a− j + s+ 1)
F (a+ 2s+ 1, s, a− j + s+ 1;−1)

∼ bj,−1(a)
s

+ bj,0(a) + O(s),(111)

where

(112) b̃j,1 = −1 − 22−j + ζR(j − 2)(1 − δj,3) + γδj,3,

(113) bj,−1(a) =
(−1)j+1

j!
Γ(a+ 1)

Γ(a− j + 1)
(1 − δa,j−1),

and we only strictly need b3,0(a) which, unlike the elliptic cases studied earlier,
now depends explicitly on a and is given by (ψ being the standard notation for the
logarithmic derivative of the Γ-function)
(114)

b3,0(a) =
1
6

Γ(a+ 1)
Γ(a− 2)

[
−log(2)−1

4
(6a2−9a+1)

Γ(a− 2)
Γ(a+ 1)

+2ψ(a+1)−ψ(a−2)−ψ(4)
]
.

Remarkably, the coefficient of 1
s in the small-s behaviour of the generalized ζ-

function ζ+
B (s) is zero because it is equal to

(115) lim
s→0

sζ+
B (s) =

12∑
a=2

b3,−1(a)K(3)
a =

1
6

12∑
a=3

a(a− 1)(a− 2)K(3)
a ,

which vanishes by virtue of the rather peculiar general property

(116)
4j∑

a=j

Γ(a+ 1)
Γ(a− j + 1)

K(j)
a =

4j∑
a=j

j−1∏
l=0

(a− l)K(j)
a = 0, ∀j = 1, . . .,∞,

and hence we find eventually

ζ+
B (0) = −5

4
+

1079
240

+
5
2
− 1

2

12∑
a=2

b3,0(a)K(3)
a −

∞∑
j=1

b̃j,1

4j∑
a=j−1

bj,−1(a)K(j)
a

=
5
4

+
1079
240

+
599
720

=
296
45

,(117)

because the infinite sum on the first line of Eq. (117) vanishes by virtue of Eqs.
(113) and (116), and exact cancellation of log(2) terms is found to occur by virtue
of Eq. (116).

To cross-check our analysis we remark that, on applying the technique of Ref.
25, one finds

(118) ζ+
B (0) = −15

4
+

1079
240

− 1
720

=
67
90
,
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where − 1
720 results from working in the n→ ∞ and w → 0 limit in(

I ′n(w) +
(w

2
+
n

w

)
In(w)

)
on the second line of Eq. (44); such a term then reduces to

(
I ′n(w) + n

w In(w)
)
, not

identically but only in the region where n→ ∞ and w → 0. Such a discrepancy still
needs to be understood.

Remaining contributions to ζ(0), being obtained from strongly elliptic sectors of
the boundary-value problem, are instead found to agree with the results in Ref. 19,
i.e.

(119) ζ(0)[transverse traceless modes] = −278
45

,

(120) ζ(0)[coupled vector modes] =
494
45

,

(121) ζ(0)[decoupled vector mode] = −15
2
,

(122) ζ(0)[scalar modes(a1, e1; a2, b2, e2)] = −17,

(123) ζ(0)[scalar ghost modes] = −149
45

,

(124) ζ(0)[vector ghost modes] =
77
90
,

(125) ζ(0)[decoupled ghost mode] =
5
2
.

5. Concluding remarks

We have studied the analytically continued eigenvalue conditions for metric per-
turbations on the Euclidean four-ball, in the presence of boundary conditions com-
pletely invariant under infinitesimal diffeomorphisms in the de Donder gauge and
with the α parameter set to 1 in Eq. (10). This has made it possible to prove that
only one sector of the scalar-mode determinant is responsible for lack of strong
ellipticity of the boundary-value problem (see second line of Eq. (44) and the anal-
ysis in Secs. 3 and 4). The first novelty with respect to the work in Ref. 18 is
a clear separation of the elliptic and non-elliptic sectors of spectral asymptotics
for Euclidean quantum gravity. We have also shown that one can indeed obtain a
regular ζ-function asymptotics at small s in the non-elliptic case by virtue of the
remarkable identity (116). Our prescription for the ζ(0) value differs from the result
first obtained in Ref. 19, where, however, neither the strong ellipticity issue18 nor
the non-standard spectral asymptotics of our Sec. 4 had been considered.

As far as we can see, the issues raised by our results are as follows.

(i) The integral representation (81) is legitimate because the second line of Eq. (44)
corresponds to the eigenvalue conditions, for n ≥ 3,

(126) F±
B (n, x) ≡ J ′

n(x) +
(
−x

2
± n

x

)
Jn(x) = 0.

For both choices of sign in front of n
x , if xi is a root, then so is −xi, with positive

eigenvalue Ei = x2
i (having set the 3-sphere radius q = 1 for simplicity). For
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any fixed n, there is a countable infinity of roots xi and they grow approximately
linearly with the integer i counting such roots. The function F±

B admits therefore
a canonical-product representation (Ahlfors in Ref. 29) which ensures that the
integral representation (81) reproduces the standard definition of generalized ζ-
function, i.e.

ζ(s) ≡
∑

Ek>0

d(Ek)E−s
k ,

where d(Ek) is the degeneracy of the eigenvalue Ek.

(ii) Even though the lack of strong ellipticity implies that the functional trace of
the heat semigroup no longer exists, and hence the Mellin transform relating ζ-
function to integrated heat kernel cannot be exploited, it remains possible to define
the functional determinant of the operator P acting on metric perturbations. For
this purpose, a weaker assumption provides a sufficient condition, i.e. the existence
of a sector in the complex plane free of eigenvalues of the leading symbol of P
(Seeley in Ref. 30). Note also that, if one looks at the A1 heat-kernel coefficient
for boundary conditions involving tangential derivatives,8 it is exactly for the ball
that the potentially divergent pieces involving the extrinsic curvature in A1 cancel.
Thus, on the Euclidean ball cancellations take place that maybe could explain why
ζ(0) is finite. This might be therefore a very particular result for the ball.

(iii) By virtue of standard recurrence relations among Bessel functions, the eigen-
value conditions (126) are equivalent to studying the eigenvalue conditions

(127) F̃±
B (n, x) = Jn(x) ∓ 2

x
Jn−1(x) = 0,

where the eigenvalues E(i, n,±) are obtained by squaring up the roots x(i, n,±).
The equation for F̃−

B (n, x) can be further re-expressed in the form

(128)
(

1 +
4n
x2

)
Jn(x) − 2

x
Jn−1(x) = 0.

The functions F̃±
B differ therefore by one term only, and this term gets small as

x gets larger. The numerical analysis confirms indeed that a ρ(i, n) positive and
much smaller than 1 exists such that one can write

(129) E(i, n,+) = E(1, n,+)δi,1 + E(i− 1, n,−)(1 + ρ(i, n))(1 − δi,1),

for all n ≥ 3 and for all i ≥ 1. One therefore finds a “decomposition” of the desired
ζ+
B (0) according to (Esposito et al. in Ref. 31)

(130) ζ+
B (0) = ζ−B (0) + lim

l→0

∞∑
n=3

n2E−l(1, n,+) +
∞∑

k=1

(−1)k rk(0)
k

,

where E(1, n,+) is obtained by squaring up31

(131) x(1, n,+) ∼ ±2
√
n− 1

[
1 +

1
2
(n− 1)−2 − 17

8
(n− 1)−4 + O((n− 1)−6)

]
,

while31

(132) rk(0) ≡ lim
l→0

[
l

∞∑
n=3

n2
∞∑

i=1

E−l(i, n,−)ρk(i+ 1, n)

]
.
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Unfortunately, Eq. (132) cannot be used with (130) and (131) to check our result
(117), because neither the eigenvalues E(i, n,−) nor the correction factor

(133) ρ(i+ 1, n) ≡ E(i+ 1, n,+)
E(i, n,−)

− 1

are explicitly known.

(iv) The remarkable factorization of eigenvalue conditions, with resulting isola-
tion of elliptic part of spectral asymptotics (transverse-traceless, vector and ghost
modes, all modes in finite-dimensional sub-spaces and three of the four equations
for scalar modes), suggests trying to re-assess functional integrals on manifolds
with boundary, with the hope of being able to obtain unique results from the non-
elliptic contribution. If this cannot be achieved, the two alternatives below should
be considered again.

(v) Luckock boundary conditions (Luckock in Ref. 32), which engender BRST-
invariant amplitudes but are not diffeomorphism invariant.15 They have already
been applied by Moss and Poletti in Refs. 12 and 33.

(vi) Non-local boundary conditions that lead to surface states in quantum cosmol-
ogy and pseudo-differential operators on metric and ghost modes (Marachevsky and
Vassilevich, Esposito in Ref. 34). Surface states are particularly interesting since
they describe a transition from quantum to classical regime in cosmology entirely
ruled by the strong ellipticity requirement, while pseudo-differential operators are
a source of technical complications.

There is therefore encouraging evidence in favour of Euclidean quantum gravity
being able to drive further developments in quantum field theory, quantum cosmol-
ogy and spectral asymptotics (see early mathematical papers by Grubb in Ref. 35,
Gilkey and Smith in Ref. 36) in the years to come.

Appendix: Olver expansions

In Secs. 3 and 4 we use the uniform asymptotic expansion of modified Bessel
functions Iν first found by Olver in Ref. 37:

(134) Iν(zν) ∼ eνη

√
2πν(1 + z2)

1
4

(
1 +

∞∑
k=1

uk(τ)
νk

)
,

where

(135) τ ≡ (1 + z2)−
1
2 , η ≡ (1 + z2)

1
2 + log

(
z

1 +
√

1 + z2

)
.

This holds for ν → ∞ at fixed z. The polynomials uk(τ) can be found from the
recurrence relation27

(136) uk+1(τ) =
1
2
τ2(1 − τ2)u′k(τ) +

1
8

∫ τ

0

dρ (1 − 5ρ2)uk(ρ),

starting with u0(τ) = 1. Moreover, the first derivative of Iν has the following
uniform asymptotic expansion at large ν and fixed z:

(137) I ′ν(zν) ∼ eνη

√
2πν

(1 + z2)
1
4

z

(
1 +

∞∑
k=1

vk(τ)
νk

)
,
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with the vk polynomials determined from the uk according to27

(138) vk(τ) = uk(τ) + τ(τ2 − 1)
[
1
2
uk−1(τ) + τu′k−1(τ)

]
,

starting with v0(τ) = u0(τ) = 1.
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