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Abstract

The aim of this article is to shows that hierarchical matrices (H-matrices) provide a means
to efficiently precondition linear systems arising from the streamline diffusion finite-element
method applied to convection-dominated problems. Approximate inverses and approximate
LU decompositions can be computed with logarithmic-linear complexity in the standard H-
matrix format. Neither the complexity of the preconditioner nor the number of iterations
will depend on the dominance. Although the established theory is only valid for irrotational
convection, numerical experiments show that the same efficiency can be observed for general
convection terms.

1 Introduction

We are concerned with the numerical solution of Dirichlet problems,

−ε∆u+ c · ∇u = f in Ω, (1a)
u = g on ∂Ω, (1b)

with 0 < ε � |c| on bounded, simply connected Lipschitz domains Ω ⊂ R
n. Such kind of

problems arise for instance from linearizing Navier-Stokes equations. Since the standard finite-
element method on quasi-uniform grids is not uniformly stable with respect to ε, for the dis-
cretization of (1) the streamline diffusion finite-element method (SDFEM), see [26], or finite-
difference methods, see [32], are used. Both methods provide ε-independent stability under
reasonable assumptions.

In this article we concentrate on coefficient matrices S ∈ R
N×N which have been generated

from discretizing (1) by the SDFEM. Here and in the following, N denotes the number of degrees
of freedom, which is assumed to be large. The Galerkin matrix S is sparse but has a bandwidth
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of order N1−1/n, which due to fill-in leads to a complexity of direct methods of order N3−2/n.
Although recent implementations of the LU decomposition can hardly be beaten in two spatial
dimensions, they are only suited for small problem sizes for three-dimensional problems. In the
latter case iterative methods are usually more efficient.

Optimal complexity can be achieved by the multigrid method [20]. Since the convergence rate
of multigrid methods depends on the coefficients of the operator and therefore on the parameter
ε, in the last years much work has been done to develop robust multilevel methods. This is
usually done by reordering techniques; see [28, 9].

For preconditioning Krylov subspace methods, whose convergence rates is determined by the
distribution of eigenvalues of S, so-called sparse approximate inverse (SAI) preconditioners, see
[7, 18, 12, 11] and [8] for an overview, have been introduced. In this approach the quantity
‖I − SC‖F is usually minimized for matrices C having a given sparsity pattern. For a detailed
survey on precondition techniques the reader is referred to [6].

The preconditioner presented in this article is related with the incomplete LU factorization
(ILU) and its variants; see [31]. Similar to sparse inverses, the ILU is the LU decomposition
computed on a given sparsity pattern, thereby avoiding fill-in. ILU is one of the best known
and most often used preconditioning techniques. Although the ILU can be applied to any sparse
coefficient matrix provided the factorization does not break down, it is well suited for M - and
diagonally dominant matrices. ILU often significantly improves the convergence, but it does
usually not lead to a bounded number of iterations of the solver. Instead of achieving an almost
linear complexity by fixing the sparsity pattern of the factors L and U , we will compute low-rank
approximations to suitable matrix blocks, i.e., the approximation of L and U will be done by
so-called hierarchical matrices.

By the structure of hierarchical matrices (H-matrices) introduced by Hackbusch et al. [22, 23]
it is possible to treat fully populated matrices with logarithmic-linear complexity. In [2, 3] it
was shown that the inverse of finite-element stiffness matrices of second order elliptic partial
differential operators L with L∞-coefficients can be approximated by H-matrices. The proof
relies on the relation

L−1ϕ(x) =
∫

Ω
G(x, y)ϕ(y) dy for all ϕ ∈ C∞

0 (Ω) (2)

between the solution operator L−1 and the Green function G for L and Ω. This result shows that
H-matrices are robust in the sense that their efficiency does not depend on the smoothness and
only slightly on the size of the coefficients. Low-precision approximants can therefore be used to
precondition finite-element systems without any adaptation to the operator or to the geometry;
see [4]. The results on the approximation of the inverse were used to prove the existence of
H-matrix approximants to the factors L and U of the LU decomposition; see [5]. Although
approximations to both, the inverse and the LU decomposition, can be computed with almost
linear complexity, the approximation of the factors L and U can be done significantly faster.

The proof in [3] on the approximation of inverses includes problems of type (1), but it does
not account for the limiting case ε→ 0 since the constants become unbounded as ε→ 0. The aim
of this article is to extend the existing theory to singularly perturbed problems. As a first step,
we will consider the model problem (1) with the convection term c assumed to be irrotational. In
this case it will be proved for SDFE stiffness matrices S that S−1 can be approximated by an H-
matrix which has logarithmic-linear complexity with ε-uniformly bounded constants. This result
lays ground to the existence of approximate LU decompositions with almost linear complexity
and hence to robust preconditioners for singularly perturbed problems. The algorithm for the
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computation of the preconditioner is exactly the same as it is used for computing preconditioners
of general second-order elliptic operators. In [27] numerical experiments indicate that the H-
matrix format has to be adapted to dominating convection when approximating inverses of
finite-difference matrices even for constant convection. We remark that our theory and also the
numerical experiments from this article show that the SDFE discretization allows to employ the
usual H-matrix format, which does not depend on the coefficients of the operator.

The structure of the rest of this article is as follows. In Section 2 a brief review of the
structure of H-matrices together with the existence results for the approximation of the inverse
and the LU decomposition will be given. Section 3 contains the existence theory of degenerate
kernel approximants of the Green function for operators L of type (1), i.e.,

G(x, y) ≈
k∑

i=1

ui(x)vi(y), x ∈ D1 and y ∈ D2,

on an appropriate pair of domains (D1,D2). In Section 4 this result is then employed using (2) to
show that the discrete inverse of L can be approximated by H-matrices, which in turn leads to the
existence of H-matrix approximants to the inverse stiffness matrix. The numerical experiments
from Section 5 will support our theory. It will be see that the hierarchical LU decomposition
can be computed with almost linear complexity independently of ε. In addition, we employ this
approximate LU decomposition to precondition GMRES applied to SDFE discretizations of (1).
From these experiments a problem-independent (especially ε-independent) convergence rate can
be observed for both, irrotational and rotational convection terms.

2 Hierarchical matrices

This section gives a brief overview over the structure of H-matrices introduced by Hackbusch
et al. [22, 23]. Roughly speaking, H-matrices are matrices which are blockwise low-rank on
partitions P stemming from recursive subdivision of the set of matrix indices. They provide a
means to handle fully populated matrices with almost linear complexity. The combination of
low-rank matrices and recursive subdivisions was also used in the mosaic-skeleton method [33].

Usually, matrices cannot be represented by H-matrices without approximation. In order to
exploit their efficiency, it is crucial to know whether a given matrix A can be approximated, i.e.,
for each block b = t× s ∈ P

Ab ≈ UV T , U ∈ R
t×k, V ∈ R

s×k,

and, what is even more important, that the required blockwise rank k is small compared with
|t| and |s|. A logarithmic dependence on the approximation accuracy and hence on the number
of degrees of freedom is desirable. Obviously, by Ab we denote the subblock in the intersection
of the rows t and columns s of A.

From Example 2.1 it will be seen that the stiffness matrix S ∈ R
N×N with

sij = a(ϕj , ψi), i, j ∈ I := {1, . . . , N}, (3)

of operators L of the general type (6) possesses this property. In fact, S can be represented in
the H-matrix format without approximation. In the last expression, ϕj and ψi denote ansatz
and trial functions and a is a bilinear form. While S is sparse, its inverse and the factors of its
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LU decomposition are fully populated. In Section 2.3 we will review the theory on the existence
of H-matrix approximants for the latter matrices.

In contrast to other efficient methods like wavelet techniques [10, 13, 14], fast multipole and
panel clustering, see [17], [24] and the references therein, H-matrices concentrate on the matrix
level. They are purely algebraic in the sense that once the H-matrix approximant is built, no
further information about the underlying problem is needed.

2.1 Admissibility condition

In order to be able to approximate each block b of a given matrix A by a low-rank matrix, b
usually has to satisfy a certain condition. This so-called admissibility condition is the criterion
for choosing whether a block b belongs to P . In the field of elliptic partial differential equations
the following condition on b = t× s has proved useful:

min{diamXt, diamYs} ≤ η dist(Xt, Ys), (4)

where η > 0 is a given real number from the interval [0.5, 1.5] and

Xt :=
⋃
j∈t

Xj , Ys :=
⋃
i∈s

Yi

is the union of the supports of the basis functions ψi, i ∈ t, and ϕj , j ∈ s. We will see that
under quite general assumptions this condition allows to approximate the Green function of L
by a degenerate kernel, i.e., there are functions ui, vi, i = 1, . . . , k, so that

G(x, y) ≈
k∑

i=1

ui(x)vi(y) in Xt × Ys, (5)

where k depends only logarithmically on N . The degenerate approximation of G on Xt × Ys

will finally lead to a low-rank approximation of the block b. The construction of P can be done
automatically from a given polyhedrization of Ω with almost linear complexity; see [1, 16] for
two similar concepts.

The set of H-matrices for a partition P with blockwise rank k is defined as

H(P, k) := {M ∈ R
I×I : rankMb ≤ k for all b ∈ P}.

Note that H(P, k) is not a linear space, since the sum of two rank-k matrices exceeds rank k in
general.
Example 2.1. The stiffness matrix S of the differential operator L from (6) is in H(P, nmin),
where nmin denotes the minimal blocksize. If b ∈ P satisfies (4), then the supports of the basis
functions are pairwise disjoint. Hence, the matrix entries in this block vanish. In the remaining
case b does not satisfy (4). Then the size of one of the clusters is less than or equal to nmin. In
both cases the rank of Sb does not exceed nmin.

2.2 Storage and accelerated matrix operations

The cost of multiplying an H-matrix A ∈ H(P, k) and its transposed AT by a vector x ∈ R
N is

inherited from the blockwise matrix-vector multiplication

Ax =
∑

t×s∈P

At×sxs and ATx =
∑

t×s∈P

(At×s)Txt.
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Since each block t× s has the representation At×s = UV T , U ∈ R
t×k, V ∈ R

s×k, O(k(|t| + |s|))
units of memory are needed to store At×s and the matrix-vector products

At×sxs = UV Txs and (At×s)Txt = V UTxt

can be done with O(k(|t| + |s|)) operations. Exploiting the hierarchical structure of A, it can
therefore be shown that both storingA and multiplyingA andAT by a vector has O(η−nkN logN)
complexity. For a rigorous analysis the reader is referred to [1]. Therefore, H-matrices are well
suited for iterative schemes such as Krylov subspace methods. In addition to the exact matrix-
vector product also approximate versions of the usual matrix operations such as addition, mul-
tiplication and inversion can be defined using approximate block operations. These algorithms
can be shown to have almost linear complexity; cf. [22, 23, 16].

2.3 Approximation of FE inverses

In [2, 3] we have considered general second order elliptic operators

Lu = −div [A∇u+ bu] + c · ∇u+ du (6)

on bounded Lipschitz domains Ω ⊂ R
n. Let κ ∈ R denote an upper bound for the ratio of the

largest and the smallest eigenvalue of A(x), x ∈ Ω. In [3, Thm. 3.5] it was shown that the Green
function of such operators L can be approximated on domains which are far enough away from
each other.
Theorem 2.2. Let D1,D2 ⊂ R

n satisfy dist(D1,D2) ≥ η diamD2. Then for any δ > 0 there
are functions ui, vi with Lvi = 0, i = 1, . . . , k, in D2 such that

Gk(x, y) :=
k∑

i=1

ui(x)vi(y)

satisfies
‖G(x, ·) −Gk(x, ·)‖L2(D2) ≤ δ‖G(x, ·)‖L2(D̂2) for all x ∈ D1,

where D̂2 := {y ∈ Ω : 2ηdist(y,D2) < diamD2}. For the degree of degeneracy k it holds that
k ≤ cnL| log δ|n+1 + | log δ|, where

cL := 2cAe(1 + η)

((
4
√
κ+

δ

λ
‖|b| + |c|‖∞

)2

+ 8
δ

λ
‖|b|‖∞ + 2

δ2

λ
‖d‖∞

)1/2

(7)

depends only on the size of the coefficients of L. If d ≥ 0, then d does not appear in (7).
This result was used in [3] to show that the inverse FE stiffness matrix S can be approximated

by an H-matrix with blockwise rank at most k.
Based on the previous result, in [5] a similar result for the approximation of the factors L

and U of the LU decomposition of S has been proved. In the following theorem ρN denotes the
growth factor, cf. [25], which plays a central role for the stability of the LU decomposition.
Theorem 2.3. There are lower and upper triangular matrices LH, UH ∈ H(P, k) with

k ∼ (logN)2
[
| log δ| + (logN)2 + (logN)(log ρNcond2A)

]n+1

such that
‖A− LHUH‖2 ≤ δ.
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The asymptotic complexity of computing approximations of the inverse and of the factors of
an LU decomposition is inherited from the approximate matrix multiplication. Hence, computing
these approximations in H(P, k) can be done with O(k2N log2 k) arithmetical operations. We
remark that the computation of an approximation to the factors of the LU decomposition is
significantly faster than approximating the inverse. Since forward/backward substitution for
H-matrices can be done as fast the hierarchical matrix-vector multiplication, see [5], the LU
decomposition should be used instead of the inverse. Hence, we will only use H-matrix inverses
for theoretical purposes.

3 Application to convection-dominated problems

As a model problem we consider the convection-dominated linear system

−ε∆u+ c · ∇u = f in Ω (8a)
u = 0 on ∂Ω, (8b)

where 0 < ε � 1 and c ∈ (H1(Ω))n, |c(x)| = 1 for all x from the simply connected Lipschitz
domain Ω ⊂ R

n. Since we are particularly interested in the limiting case ε→ 0, we may assume
that 2εdiv c ≤ 1.

The operator L : H1
0 (Ω) → H−1(Ω) defined by

Lu = −ε∆u+ c · ∇u

is an invertible second-order partial differential operator of type (6). If we try to apply the
results from Theorem 2.2 to convection-dominated problems, the constant cL from (7) will read

cL = 2cAe(1 + η)
(

4 +
δ

ε

)
,

which is unbounded for the critical limit ε → 0. Since this constant enters the rank estimate,
our existing theory does not show boundedness of the rank with respect to ε.

The aim of this article is to present another approach which will guarantee the desired
boundedness. For this purpose we assume that the convection is an irrotational vector field, i.e.,
curl c = 0. The following lemma shows that after appropriate transformation this problem can
be looked at as a diffusion-reaction problem.
Lemma 3.1. Assume that curl c = 0. Then there is φε : Ω → R such that

−ε∆u+ c · ∇u = εeφε

[
−∆v +

1
2ε

(
1
2ε

− div c
)
v

]
,

where v = e−φεu.

Proof. Since curl c = 0 and since Ω is simply connected, a potential φε exists such that

∇φε =
1
2ε
c for all x ∈ Ω. (9)

We first observe that ∇(e−φεu) = e−φε(∇u− u∇φε). From

div e−φε∇u = e−φε (∆u−∇φε · ∇u)
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and
div e−φεu∇φε = e−φε

(
∇u · ∇φε − u|∇φε|2 + u∆φε

)
we obtain ∆v = div∇(e−φεu) = e−φε

[
∆u− 2∇φε · ∇u+ |∇φε|2u− u∆φε

]
. Using (9), we are

led to
eφε∆v − 1

2ε
(

1
2ε

− div c)u = ∆u− ε−1c · ∇u,

which proves the assertion.

Hence, the last lemma proves the representation

L = εeφεL̂e−φε

if we define

L̂ = −∆ +
1
2ε

(
1
2ε

− div c
)
.

3.1 Degenerate approximation of the Green function

It is shown in [19] that in the case n ≥ 3 a Green function Ĝ : Ω × Ω → R ∪ {∞} for L̂ and Ω
exists with the properties

Ĝ(x, ·) ∈ H1(Ω \Br(x)) ∩W 1,1
0 (Ω) for all x ∈ Ω and all r > 0, (10a)

â(Ĝ(x, ·), ϕ) = ϕ(x) for all ϕ ∈ C∞
0 (Ω) and x ∈ Ω, (10b)

where Br(x) is the open ball centered at x with radius r and

â(u, v) =
∫

Ω
∇v · ∇udx+

1
2ε

(
1
2ε

− div c
)
uv (11)

denotes the bilinear form associated with L̂. Using Ĝ we define

G(x, y) = ε−1eφε(y)Ĝ(x, y)e−φε(x).

Then G(x, ·) ∈ H1(Ω \Br(x)) ∩W 1,1
0 (Ω) for all x ∈ Ω and all r > 0. Furthermore,

(LyG(x, y), ϕ(y))L2 = (eφε(y)L̂ye
−φε(y)eφε(y)Ĝ(x, y)e−φε(x), ϕ(y))L2

= (eφε(y)−φε(x)L̂yĜ(x, y), ϕ(y))L2

= (L̂yĜ(x, y), eφε(y)−φε(x)ϕ(y))L2 = ϕ(x)

for all ϕ ∈ C∞
0 (Ω). Therefore, G is a Green function for L and Ω. The following lemma is stated

for later use.
Lemma 3.2. For the Green function G for L and Ω it holds that G ≥ 0.

Proof. Since G(x, y) = ε−1eφε(y)Ĝ(x, y)e−φε(x), it is sufficient to show that Ĝ(x, y) ≥ 0. For this
purpose let y ∈ Ω be fixed. We employ a technique that was also used in [19]. The bilinear form

â(u, v) =
∫

Ω
∇u · ∇v +

1
2ε

(
1
2ε

− div c
)
uv
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associated with the diffusion-reaction problem is continuous, symmetric and positive definite on
H1

0 (Ω) ×H1
0 (Ω). By the Lax-Milgram theorem for each ρ > 0 there is Ĝρ ∈ H1

0 (Ω), such that

â(Ĝρ, ϕ) =
1

volBρ(y)

∫
Bρ(y)

ϕ for all ϕ ∈ H1
0 (Ω).

Note that Ĝρ → G for ρ→ 0. In particular, we obtain

â(Ĝρ, Ĝρ) =
1

volBρ(y)

∫
Bρ(y)

Ĝρ ≤ 1
volBρ(y)

∫
Bρ(y)

|Ĝρ| = â(Ĝρ, |Ĝρ|).

This defines r ≤ 1 such that â(Ĝρ, Ĝρ) = â(Ĝρ, r|Ĝρ|). From

â(r|Ĝρ|, r|Ĝρ|) = r2â(Ĝρ, Ĝρ) ≤ â(Ĝρ, r|Ĝρ|)

we obtain

â(r|Ĝρ| − Ĝρ, r|Ĝρ| − Ĝρ) = â(r|Ĝρ|, r|Ĝρ|) − 2â(Ĝρ, r|Ĝρ|) + â(Ĝρ, Ĝρ) ≤ 0.

Hence, Ĝρ = r|Ĝρ| ≥ 0. The assertion follows in the limit ρ→ 0.

Our aim is to define a degenerate approximant for G by a degenerate approximant for Ĝ.
From Theorem 2.2 we know that on an admissible pair (D1,D2) of domains for any δ > 0 there
are functions ûi, v̂i with L̂v̂i = 0, i = 1, . . . , k, in D2 such that Ĝk(x, y) :=

∑k
i=1 ûi(x)v̂i(y)

satisfies
‖Ĝ(x, ·) − Ĝk(x, ·)‖L2(D2) ≤ δ‖Ĝ(x, ·)‖L2(D̂2) for all x ∈ D1, (12)

where D̂2 := {y ∈ Ω : 2ηdist(y,D2) < diamD2}. Since we may assume that 2εdiv c ≤ 1, the
reaction coefficient

1
2ε

(
1
2ε

− div c
)

is non-negative and will therefore not appear in the bound on the degeneracy k. Hence, we have
that k ≤ cn

L̂
| log δ|n+1 + | log δ| with

cL̂ = 8cAe(1 + η)

is bounded independently of ε.
Instead of the L2 estimate (12) we rather need a pointwise estimate. Exploiting the elliptic

nature of the problem, this is derived in the following lemma.
Lemma 3.3. Assume that dist(D1,D2) ≥ η diamD2. Then for any δ > 0 there are functions
ûi, v̂i, i = 1, . . . , k, such that Ĝk(x, y) :=

∑k
i=1 ûi(x)v̂i(y) satisfies

|Ĝ(x, y) − Ĝk(x, y)| ≤ δ|Ĝ(x, y)| for all x ∈ D1 and all y ∈ D2, (13)

where k ≤ cn(η)| log δ|n+1 + | log δ| and cn(η) depends only on the spatial dimension n and η.

Proof. Let y ∈ D2 and r > 0 such that Br(y) ⊂ D2. For fixed x ∈ D1 define

u(y) = Ĝ(x, y) − Ĝk(x, y) = Ĝ(x, y) −
k∑

i=1

ûi(x)v̂i(y).
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Since L̂u = 0, we obtain by the estimate

|u(y)|2 ≤ c̃n
volBr(y)

∫
Br(y)

|u(z)|2 dz,

see [15, Thm. 8.17], together with (12) that

|Ĝ(x, y) − Ĝk(x, y)|2 = |u(y)|2 ≤ c̃n
volBr(y)

‖Ĝ(x, ·) − Ĝk(x, ·)‖2
L2(Br(y))

≤ c̃n
volBr(y)

δ2‖Ĝ(x, ·)‖2
L2(Br(1+1/η)(y)

=
c̃n(1 + 1/η)n

volBr(1+1/η)(y)
δ2‖Ĝ(x, ·)‖2

L2(Br(1+1/η)(y)).

The assertion follows from the fact that the ratio

‖Ĝ(x, ·)‖2
L2(Br(1+1/η)(y))

volBr(1+1/η)(y)

goes to |Ĝ(x, y)|2 as r → 0, since Ĝ(x, ·) is continuous on D2.

Now that we known that Ĝ can be approximated on each admissible pair of domains (D1,D2),
define Gk(x, y) by

Gk(x, y) := ε−1eφε(y)Ĝk(x, y)e−φε(x) =
k∑

i=1

ε−1e−φε(x)ui(x)eφε(y)vi(y).

Then Gk has the same degree of degeneracy as Ĝk and for the approximation error it holds that

|G(x, y) −Gk(x, y)| = ε−1eφε(y)−φε(x)|Ĝ(x, y) − Ĝk(x, y)|
≤ ε−1eφε(y)−φε(x)δ|Ĝ(x, y)|
= δ|G(x, y)|.

Hence, we have derived the
Theorem 3.4. Assume that dist(D1,D2) ≥ η diamD2. Then for any δ > 0 there are functions
ui, vi, i = 1, . . . , k, such that Gk(x, y) :=

∑k
i=1 ui(x)vi(y) satisfies

|G(x, y) −Gk(x, y)| ≤ δ|G(x, y)| for all x ∈ D1 and all y ∈ D2, (14)

where k ≤ cn(η)| log δ|n+1 + | log δ| and cn(η) depends only on the spatial dimension n and η.

4 H-matrix approximation of SDFE matrices

Using a finite element discretization, H1
0 (Ω) is approximated by Vh ⊂ H1

0 (Ω), i.e., for all v ∈
H1

0 (Ω)
inf

vh∈Vh

‖v − vh‖H1 → 0 for h→ 0. (15)

Usually, for Vh the set of piecewise linear functions defined on a polyhedrization Th of Ω are
used. We assume that ϕi ≥ 0, i ∈ I, and

∑
i∈I ϕi(x) = 1 for all x ∈ Ω. In agreement with the
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assumptions of Section 2, let N = dimVh be the dimension and {ϕi}i∈I a basis of Vh, where
I := {1, . . . , N} is used as an index set. The set Xi := suppXi is the support of the ith basis
function ϕi. It is well-known that the standard finite element discretization becomes unstable for
convection-dominated problems. A stable alternative is the streamline diffusion finite-element
method (SDFEM); see [26]. Its principle idea is to use wh := vh +αc ·∇vh with an appropriately
chosen parameter α > 0 instead of vh ∈ Vh as trial functions. Since for C0-elements wh �∈ H1,
the SDFEM is a non-conformal Petrov-Galerkin method. The variational formulation of (8) is
then to find uh ∈ Vh such that

a(uh, vh + αc · ∇vh) = (f, vh + αc · ∇vh) for all vh ∈ Vh,

where
a(u, v) = −ε

∑
τ∈Th

(∆u, v)τ + (c · ∇u, v).

Here, (·, ·)τ denotes the scalar product in L2(τ). Alternatively, one has the following variational
formulation

ah(uh, vh) = 
h(vh) for all vh ∈ Vh, (16)

where
ah(u, v) = ε(∇u,∇v) + (c · ∇u,∇v) +

∑
τ∈Th

ατ (−ε∆u+ c · ∇u, c · ∇v)τ

and

h(v) = (f, v) +

∑
τ∈Th

ατ (f, c · ∇v)τ .

By J1 : R
N → Vh and J2 : R

N → L2(Ω) we denote the natural bijections

J1x =
∑
i∈I

xiϕi and J2x =
∑
i∈I

xiψi,

where ψi := ϕi + αc · ∇ϕi, i ∈ I. Using
∑

i∈I ϕi = 1, it follows with e := (1, . . . , 1)T ∈ R
N that

J2e =
∑
i∈I

ψi =
∑
i∈I

ϕi + αc · ∇ϕi = 1 + αc ·
∑
i∈I

∇ϕi = 1 + αc · ∇
∑
i∈I

ϕi = 1.

Furthermore, from the non-negativity of ϕi we observe for x ∈ R
N

|J1x| = |
∑
i∈I

xiϕi| ≤
∑
i∈I

|xi|ϕi = J1|x|,

where |x| ∈ R
I denotes the vector with the components |xi|, i ∈ I. Since ∇ϕi cannot be assumed

to be non-negative, this estimate does not hold for J2. However, we can derive a similar estimate

|J2x| ≤ J2x̂,

where x̂ := |x| + cg‖x‖1e and cg := 2αmaxi∈I ‖∇ϕi‖2. This estimate results from

|J2x| ≤
∑
i∈I

|xi| (ϕi + α|c · ∇ϕ|) = J2|x| + α
∑
i∈I

|xi|(|c · ∇ϕi| − c · ∇ϕi)

≤ J2|x| + 2α
∑
i∈I

|xi||c · ∇ϕi| ≤ J2|x| + cg‖x‖1 = J2|x| + cg‖x‖1J2e.
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In order to avoid technical complications, we consider a quasi-uniform and shape-regular
triangulation. Hence, the step size h := maxi∈I diamXi fulfills

volXi ≥ cUh
n, i ∈ I (17)

For quasi-uniform and shape-regular triangulations it is known ,see [21, Thm. 8.8.1], that there
are constants 0 < cJ,1 ≤ cJ,2 (independent of h and N) such that

cJ,1‖x‖h ≤ ‖J1x‖L2(Ω) ≤ cJ,2‖x‖h for all x ∈ R
N , (18)

where ‖ · ‖h is the naturally scaled Euclidean norm induced by the scalar product 〈x, y〉h =
hn
∑

i∈I xiyi. Since J1 is also a function from R
N to H1

0 (Ω), the adjoint J∗
1 ∈ L(H−1(Ω),RN )

with respect to 〈·, ·〉h is defined. We define the stiffness matrix S ∈ R
N×N by sij = ah(ϕj , ϕi)

and the Galerkin discretization of the inverse of L by

B = J∗
1L

−1J2.

The matrix S is sparse, while B as well as S−1 are dense matrices.
Let b = t×s be an admissible block. The block Bb of the discrete inverse of L has the entries

Bij =
∫

Ω

∫
Ω
G(x, y)ϕi(x)ψj(y) dy dx, (i, j) ∈ b.

Using the approximant Gk of G we define the approximant BH for the entries in b by

BH
ij =

∫
Ω

∫
Ω
Gk(x, y)ϕi(x)ψj(y) dy dx. (19)

The rank of BH
b is obviously bounded by k. It remains to estimate the approximation error. If

u ∈ R
t, v ∈ R

s, from Lemma 3.2 we have

|uT (Bb −BH
b )v| = |

∫
Ω

∫
Ω
(G−Gk)(x, y)J1u(x)J2v(y) dy dx|

≤
∫

Ω

∫
Ω
|G−Gk|(x, y) |J1u|(x) |J2v|(y) dy dx

≤ δ

∫
Ω

∫
Ω
G(x, y)J1|u|(x)J2v̂(y) dxdy

= δ|u|TBbv̂ ≤ δ‖Bb‖2‖u‖2 ‖v̂‖2 ≤ (cgN + 1)δ‖Bb‖2‖u‖2‖v‖2,

because ‖v̂‖2 ≤ ‖v‖2 + cg‖v‖1‖e‖2 ≤ ‖v‖2 + cg
√
N‖v‖2

√
N . Hence,

‖Bb −BH
b ‖2 = sup

u,v

uT (Bb −BH
b )v

‖u‖2‖v‖2
≤ δ(cgN + 1)‖Bb‖2. (20)

The last estimate is an estimate of the relative approximation error on each admissible block
b. For non-admissible blocks b ∈ P we set BH

b := Bb without approximation. Hence, the
previous estimate holds for each block from the partition. In addition to blockwise estimates
such estimates are required for the whole matrix. If we are interested in the Frobenius norm,
estimates on each block Ab immediately lead to an estimate for A since

‖A‖2
F =

∑
b∈P

‖Ab‖2
F .

For the spectral norm this situation is a bit more difficult. We can however use the following
lemma together with the structure of P .
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Lemma 4.1. Assume that the partition P is generated from I × I by recursively subdividing
each block into a 2× 2 block structure at most 
 times. Furthermore, let X,Y ∈ R

I×I such that
‖Xb‖2 ≤ ‖Yb‖2 for each block b ∈ P . Then it holds that

‖X‖2 ≤ 2�‖Y ‖2.

Proof. The assertion is proved by induction over the depth 
 of the cluster tree. The estimate
is trivially true if 
 = 0. Assume that the assertion holds for an 
 ∈ N. Let

X =
[
X11 X12

X21 X22

]
and Y =

[
Y11 Y12

Y21 Y22

]

have depth 
+ 1. Since Xij and Yij , i, j = 1, 2, have depth 
, we know from the induction that

‖Xij‖2 ≤ 2�‖Yij‖2, i, j = 1, 2.

Observe that for matrices Ai, Bi satisfying ‖Ai‖2 ≤ ‖Bi‖2, i = 1, 2, we have

‖
[
A1

A2

]
‖2
2 = sup

‖x‖2=1
‖A1x‖2

2 + ‖A2x‖2
2 ≤ 2 sup

‖x‖2=1
max
i=1,2

‖Aix‖2
2

= 2max
i=1,2

sup
‖x‖2=1

‖Aix‖2
2 = 2max

i=1,2
‖Ai‖2

2 ≤ 2max
i=1,2

‖Bi‖2
2

= 2 sup
‖x‖2=1

max
i=1,2

‖Bix‖2
2 ≤ 2 sup

‖x‖2=1
‖B1x‖2

2 + ‖B2x‖2
2 = 2‖

[
B1

B2

]
‖2
2.

Since ‖A‖2 = ‖AT ‖2 for any matrix A, we also obtain that ‖
[
A1 A2

]
‖2 ≤

√
2‖
[
B1 B2

]
‖2.

Hence,

‖X‖2 = ‖
[
X11 X12

X21 X22

]
‖2 ≤ 2‖

[
2�Y11 2�Y12

2�Y21 2�Y22

]
‖2 = 2�+1‖Y ‖2,

which proves the assertion.

From (20) and the last lemma we obtain the main result of this article.
Theorem 4.2. Let δ > 0 and let P be an admissible partition. Then there is BH ∈ H(P, k)
with k ≤ c(logN + | log δ|)n+1 such that

‖B −BH‖2 ≤ δ‖B‖2

and c does neither depend on ε, N nor δ.

Proof. The assertion follows from (20) and the last lemma applied to P with 
 ∼ logN .

The previous theorem shows that we are able to approximate the discrete inverse of L by
H-matrices. Our aim however is to prove that the inverse of the stiffness matrix S possesses
this property. For this purpose we use the fact that S−1 can be approximated by M−1

1 BM−1
2 ,

where M1 and M2 denote the mass matrices for {ϕi} and {ψi}, respectively. The last product,
in turn, can be approximated by an H-matrix. In [2] this technique has already been used to
show that S−1 can be approximated up to the FE error. The same technique can be applied to
convection-dominated problems without any changes. We remark that although this technique
only provides an error estimate which is limited to the FE error, numerical experiments show
that the inverse can be approximated with any prescribed precision.
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We have already mentioned, see Theorem 2.3, that the existence of H-matrix approximants
to the factors of the LU decomposition follows from the existence of H-matrix approximants to
the inverse of a stiffness matrix. Hence, with Theorem 4.2 we obtain the existence result for the
factors of the LU decomposition; see [5] for details.

5 Numerical experiments

In this section the practical influence of the parameter ε in (1) on the efficiency and accuracy of
the H-matrix approximation is investigated. We have seen that the H-matrix inverse is important
for theoretical purposes while the hierarchical LU decomposition is significantly faster in practice.
Therefore, in the following tests we concentrate on the H-LU decomposition.

For simplicity all tests are performed on a uniform triangulation of the unit square Ω := (0, 1)2

in R
2. Other (also three-dimensional) polyhedral domains do not cause any additional difficulties.

We use piecewise linear elements for the discretization of H1
0 (Ω). Since for linear elements∑

τ (∆uh, c · ∇vh)τ = 0, equation (16) reads

ε(∇uh,∇vh) + (c · ∇uh, vh) + α(c · ∇uh, c · ∇vh) = (f, vh) + α(f, c · ∇vh)

for all vh ∈ Vh.
We report the results of applying the hierarchical LU decomposition with different precisions

for both, irrotational convection and general convection. Another set of tests will employ low-
precision LU decompositions for preconditioning. In each of the following cases the stiffness
matrix S is built in the H-matrix format. Then the usual decomposition algorithm1, see [5], is
applied to it with a relative rounding precision δ. Hence, the rank k is adaptively chosen and is
therefore expected to vary among the blocks. All tests were carried out on an Athlon64 (2 GHz)
PC with 4 GB of core memory.

5.1 Irrotational convection

In order to support our theory we first consider the irrotational vector field

c(x, y) =
[
x− 1/2
y − 1/2

]
.

Table 1 shows the backward error

E :=
‖A− LHUH‖2

‖A‖2

together with the CPU time for the computation of the factors LH and UH in the case δ = 0.1.
The columns labeled with MB show the memory requirements of LH and UH. Table 2 contains
the same quantities for the case δ = 110−4.

Apparently, neither the efficiency nor the backward error E of the approximate LU decompo-
sition depends on ε. As usual for hierarchical matrices, the complexity depends almost linearly
on N . Changing the accuracy δ from 110−1 to 110−4 increases the computational effort by a
factor of 1.7. The approximate LU decomposition appears to be backward stable.

1A software library can be obtained from http://www.mathematik.uni-leipzig.de/∼bebendorf/AHMED.html.
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ε = 110−1 ε = 110−7 ε = 110−14
N time E MB time E MB time E MB

31329 1.7s 7.410−3 21 1.8s 5.510−3 22 1.8s 5.510−3 22
63 001 4.1s 1.010−2 45 4.2s 6.410−3 48 4.2s 6.410−3 48

126 736 9.9s 1.010−2 95 10.3s 5.810−3 102 10.3s 9.210−3 102
254 016 21.8s 6.910−3 196 23.3s 1.410−2 218 23.2s 9.710−3 217
509 796 56.0s 1.010−2 414 60.2s 2.710−2 456 60.8s 1.610−3 465

Table 1: H-LU with precision δ = 110−1

ε = 110−1 ε = 110−7 ε = 110−14
N time E MB time E MB time E MB

31329 2.7s 1.710−5 31 2.7s 2.310−5 31 2.6s 2.310−5 31
63 001 6.6s 2.010−5 68 6.7s 2.610−5 71 6.7s 2.510−5 72

126 736 15.8s 2.110−5 148 16.5s 1.410−5 156 16.5s 1.410−5 156
254 016 37.6s 2.110−5 323 40.7s 1.510−5 349 40.3s 1.510−5 348
509 796 90.8s 2.610−5 699 106.4s 2.010−5 772 105.0s 2.010−5 770

Table 2: H-LU with precision δ = 110−4

5.2 Cyclic convection

In a second set of experiments we consider the cyclic vector field

c(x, y) =
[
0.5 − y
x− 0.5

]

as the convection term. Compared with the tests with irrotational convection, the numeri-

ε = 110−1 ε = 110−7 ε = 110−14
N time E MB time E MB time E MB

31329 1.7s 5.510−3 21 1.8s 1.410−2 23 1.8s 1.410−2 23
63 001 4.1s 4.710−3 45 4.4s 1.610−1 51 4.4s 1.810−1 51

126 736 9.9s 6.310−3 95 10.5s 1.210−2 107 10.7s 3.310−2 108
254 016 22.6s 4.910−3 196 24.6s 9.410−2 224 24.6s 2.610−2 227
509 796 55.7s 8.410−3 415 59.7s 5.210−2 477 59.6s 6.810−2 474

Table 3: H-LU with precision δ = 110−1

cal effort has only slightly increased. Tables 3 and 4 show that the complexity of the H-LU
decomposition is bounded for ε→ 0.

According to [29], −div c ≥ c0 with some c0 > 0 is required for the coercivity of the bilinear
form ah from (16) on Vh × Vh. Although for the cyclic field we have div c = 0, the discretization
seems to be stable. This is possibly due to numerical diffusion.

14



ε = 110−1 ε = 110−7 ε = 110−14
N time E MB time E MB time E MB

31329 2.7s 2.810−5 31 3.5s 2.110−5 37 3.5s 2.110−5 37
63 001 6.7s 3.310−5 70 9.1s 1.910−5 82 9.1s 1.910−5 83

126 736 15.9s 2.910−5 151 23.8s 1.710−5 183 24.1s 1.710−5 183
254 016 38.4s 3.210−5 328 62.9s 1.310−5 408 63.6s 1.310−5 409
509 796 93.8s 2.910−5 707 168.5s 2.210−5 908 168.7s 2.210−5 909

Table 4: H-LU with precision δ = 110−4

5.3 Employing the H-LU decomposition as a preconditioner

For the preconditioning tests we consider the following vector field

c(x, y) =
[
0.5(1 + α) − y − αx
x− αy + 0.5(α − 1)

]

as the convection term. The parameter α > 0 will be used to find out the importance of the
presence of irrotational convection terms. The choice α = 0 provides a purely cyclic vector field,
while α > 0 adds divergence. Table 5 shows the results obtained for α = 110−1 and α = 110−4.
The rounding precision δ is chosen so that 50 iterations guarantee a relative residual error of at
most 110−4. The memory consumption of the preconditioner can be found in the columns 4 and
9, columns 3 and 8 contain the time for building the preconditioner, and in column 6 and 11 the
time required by GMRES is reported.

α = 110−1 α = 110−4
N δ time MB #It time δ time MB #It time

31 329 5.510−1 1.1s 19 49 1.0s 1.210−1 1.8s 25 49 1.1s
63 001 4.810−1 2.7s 42 48 2.3s 5.710−2 4.4s 62 51 2.7s

126 736 3.610−1 8.3s 102 48 5.3s 3.010−2 13.6s 130 50 6.5s
254 016 3.310−1 17.7s 200 48 11.3s 1.510−2 34.9s 299 48 13.4s
509 796 2.510−1 57.6s 455 48 31.4s 0.810−2 135.3s 727 55 47.9s

1 020 100 2.410−1 115.3s 933 49 63.7s 0.310−2 363.8s 1641 46 97.6s

Table 5: H-LU preconditioned GMRES with ε = 110−14

From the numerical experiments above we conclude that the proposed preconditioner is ro-
bust with respect to the coefficient ε. Note that the proposed method does not rely on reordering
the indices. The algorithms for the computation of the approximate LU decomposition were not
adapted to the convection, the method rather adapts itself. Both, the storage requirements and
the CPU time, scale almost linearly with the number of degrees of freedom N .
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