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1 Introduction

Our investigation is stimulated by a multiplier theorem of S. Mustapha stat-
ing the following (for a more detailed discussion see Section 3):

Consider a semidirect product G of the real line R and a stratified nilpo-
tent Lie group N , where R is acting on N via natural dilations. Then G is
a solvable Lie group with exponential volume growth. Let ∆ be a (distin-
guished type of) left invariant sub-Laplacian on G, and let Lp(G) be the Lp-
space on G with respect to the right invariant Haar measure. Let κ > 2, and
let Hκ(R) be the L2-Sobolev space of order κ on R. Mustapha showed in [27]
that for continuous, compactly supported f ∈ Hκ(R) the restriction of f(∆)
to L2 ∩ Lp(G) extends to a bounded operator on Lp(G) for all 1 ≤ p ≤ ∞.
Roughly speaking: it suffices to control a finite number of derivatives of f
to get Lp-boundedness for f(∆). (In this situation we say that ∆ admits
differentiable Lp-functional calculus, and f is called an Lp-multiplier for ∆.)

This multiplier theorem has many predecessors, starting with the classical
results of Mikhlin and Hörmander in the Euclidean setting (cf. [18]). So it
is well known that sub-Laplacians on connected Lie groups with polynomial
volume growth (including all connected nilpotent Lie groups) have always
differentiable Lp-functional calculus [1]. But for a sub-Laplacian on a solvable
Lie group with exponential volume growth the validity of such a theorem is a
priori not clear. In fact there are sub-Laplacians on exponential groups known
that do not admit differentiable Lp-functional calculus as defined above – they
are of so-called holomorphic Lp-type [5, 17, 23].

A particularly interesting facet of the result of S. Mustapha is the order
κ of the Sobolev space that is independent of the “size” of the group, which,
e.g., can be expressed by the Euclidean dimension of G or the homogeneous
dimension Q of N . Actually, W. Hebisch proved in [16] a multiplier theorem
that is identical with the one of Mustapha, except for the order of the Sobolev
space, which is Q/2+5/2 + ε instead of 2 + ε. And indeed, in the conditions
of the multiplier theorems for solvable groups that have been proven so far
there regularly appears some quantity describing the size of the underlying
group (see, e.g., [1, 2, 4, 6, 7, 11, 14, 18, 24, 25, 26]). Referring to this, the
result of Mustapha seems remarkable.

One aim of this paper is to present a different proof strategy of Mustapha’s
multiplier theorem than the one used in [27]: Our approach is purely analytic
and relies on bounded functional calculus and Bessel functions instead of on
stochastic methods like Brownian motion.
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Another aim is to extend the multiplier theorem to a larger class of op-
erators. We define this class in a more abstract way, but it includes several
interesting differential operators on those Lie groups mentioned above. These
particular operators are not necessarily hypoelliptic, left-invariant nor of sec-
ond order like the sub-Laplacians considered by Mustapha.

The article is organized as follows: In Section 2 we consider operators

T = −∂2
r ⊗ I + e2νr ⊗ L , ν ∈ R \ {0} ,

on L2(R×X), where X is an arbitrary σ-finite measure space, ∂r the deriva-
tive with respect to the parameter r ∈ R, I the identity operator on L2(X),
e2νr the multiplication operator ϕ(r) �→ e2νrϕ(r) on L2(R) and L a positive
selfadjoint operator on L2(X). T can be realized as a selfadjoint operator,
and we deduce a representation of the holomorphic semigroup (e−zT )�(z)>0

of T in terms of (e−tL)t≥0. From this it is almost straightforward to derive
our central multiplier result Theorem 2.2.

In Section 3 we present differential operators on Lie groups, which fulfill
the conditions of our multiplier theorem. There we discuss also the result of
S. Mustapha in detail.

The appendix (Section 4) provides a selfadjointness theorem for gener-
alized sub-Laplacians and Schrödinger operators on Lie groups. “General-
ized” means here that the operators are not required to satisfy the so-called
Hörmander condition, i.e., they are not necessarily hypoelliptic. The result
is probably known in the literature, but we are not aware of any explicit
reference. Since we use the theorem a few times in the main text, we decided
to give a proof (which is actually of simple conception).

2 The general multiplier result

Let (X, dx) be a σ-finite measure space and L a positive selfadjoint operator
on L2(X) with domain D(L). Let dr be the Lebesgue measure on R and
dr⊗dx the product measure on R×X. Let ν ∈ R \ {0} be fixed. We denote
the function r �→ e2νr on R briefly by e2νr. For κ ≥ 0 let

Hκ(R) := {f ∈ L2(R) : (1 + | · |)κf̂ ∈ L2(R)}
be the Sobolev space of order κ on R, and put

A := H2(R) ∩ {f ∈ L2(R) : e2νrf ∈ L2(R)} .
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The positive operator −∂2
r +e2νrL is defined on A ⊗D(L) ⊆ L2(R×X) and its

closure is denoted by T . It is clear that T has a selfadjoint extension, namely
its Friedrichs’ extension. In fact T itself is already a selfadjoint operator, as
we shall prove in Proposition 2.10.

The precise definition of an Lp-multiplier that we want to use throughout
this article is the following: Let p ∈ [1,∞]. We call a bounded function
f : R → C an Lp-multiplier for T if there exists a positive constant C such
that

‖f(T )ϕ‖Lp(R×X) ≤ C‖ϕ‖Lp(R×X) for all ϕ ∈ L2 ∩ Lp(R ×X).

Notice that in the case p = ∞ this definition does not necessarily imply that
f(T ) can be extended to a bounded operator on the whole space L∞(R×X),
since, for a non-trivial measure dx, L2∩L∞(R×X) is not dense in L∞(R×X).
On the other hand, if f(T ) is given explicitly, e.g., by integration against a
suitable kernel function, then it is often easy to extend f(T ) to a bounded
operator on L∞(R ×X) in a canonical way.

Before we state the main results of this section, some remarks concerning
notations: We use the abbreviations sh, ch and th for the hyperbolic functions
sinh, cosh and tanh respectively. �(z) stands for the real part, 
(z) for the
imaginary part and z∗ for the complex conjugate of the complex number z.
For f ∈ L2(R ×X) and s ∈ R let fs denote the function x �→ f(s, x) on X.

2.1 Results of Section 2

First we give a representation of the holomorphic semigroup of T in terms of
the semigroup of L with positive time parameter.

Theorem 2.1. Let z ∈ C with �(z) > 0 and f ∈ L2(R ×X). Then

e−zTf(r, x) =(∫
R

∫ ∞

0

|ν|Ψν2z(ξ) exp
(
− ch(ν(r − s))

ξ

)
exp

(
− ξeν(r+s)

2ν2
L
)
fs dξ ds

)
(x)

(1)

for almost all (r, x) ∈ R ×X, where the function Ψz :]0,∞[→ C is given by

Ψz(ξ) =
ξ−2

√
4π3z

exp
(π2

4z

)∫ ∞

0

sh(ϑ) sin
(πϑ

2z

)
exp

(
− ϑ2

4z
− ch(ϑ)

ξ

)
dϑ . (2)
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There exists a Cz > 0, only depending on z, with |Ψz(ξ)| ≤ Czξ
−2 for all

ξ > 0.

With the help of Theorem 2.1 it is easy to prove estimate (3), which is
the key inequality for our main multiplier result:

Theorem 2.2. Let p ∈ [1,∞]. If there exists a constant C > 0 fulfilling
‖e−tLψ‖Lp(X) ≤ C‖ψ‖Lp(X) for each t > 0 and every ψ ∈ L2 ∩ Lp(X), then

‖e−(ρ+iσ)Tϕ‖Lp(R×X) ≤ C(2+ |ν|√ρ) exp
( π2

4ν2ρ

)(
1+

|σ|
ρ

)3/2

‖ϕ‖Lp(R×X) (3)

for all ρ > 0, σ ∈ R and ϕ ∈ L2 ∩ Lp(R × X). Moreover, for every κ > 2
each continuous f ∈ Hκ(R) with compact support is an Lq-multiplier for T
if q satisfies 1/q = s+ (t− s)/p for some s, t ∈ [0, 1] with s+ t = 1.

The following theorem states our multiplier result in terms of heat or
evolution kernels rather than in terms of semigroups:

Theorem 2.3. Assume that L has a measurable evolution kernel (pt)t>0,
i.e., e−tLψ(x) =

∫
X
pt(x, y)ψ(y) dy for almost all x ∈ X. If the opera-

tors (Λt)t>0, defined by ψ �→ ∫
X
|pt(·, y)|ψ(y) dy, are bounded on L2(X) with

‖Λt‖L2(X)→L2(X) ≤ κ, κ independent of t > 0, then T has an evolution kernel
(Pz)�(z)>0, given by

Pz((r, x), (s, y)) =

∫ ∞

0

|ν|Ψν2z(ξ) exp
(
− ch(ν(r − s))

ξ

)
p ξeν(r+s)

2ν2

(x, y) dξ (4)

for almost all ((r, x), (s, y)) ∈ (R ×X)2.
If there is in addition a constant C > 0 with ‖pt(·, x)‖L1(X) ≤ C for all

t > 0 and x ∈ X, then for each z ∈ C with �(z) > 0 and every g ∈ R ×X

‖Pz(·, g)‖L1(R×X) ≤ C(2 + |ν|
√
�(z)) exp

( π2

4ν2�(z)

)(
1 +

|
(z)|
�(z)

)3/2

. (5)

In particular we have for every ε > 0 and every p ∈ [1,∞] that each compactly
supported, continuous f ∈ H2+ε(R) is an Lp-multiplier for T .

Remark 2.4. (i) The exponent 3/2 of 1 + |
(z)|/�(z) in (3) and (5) is
optimal in the sense, that there exists an operator T = −∂2

r + e2rL with

‖e−(1+iσ)T‖L1(R×X)→L1(R×X) ∼ (1 + |σ|)3/2 .
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This was shown in [27] for a sub-Laplacian T on some solvable Lie group G,
given by R acting on R2 via natural dilations (cf. Section 3). S. Mustapha
used a concrete formula from [3] for the heat kernel Φz of T to demonstrate
that ‖Φ1+iσ‖L1(G) ∼ (1 + |σ|)3/2.

(ii) One observes that the term C exp(π2/4ν2�(z))(2 + |ν|√�(z)) in (3)
and (5) tends to infinity if |ν| tends to zero. That reflects the fact that for
operators of the form −∂2

r + L in general one can not achieve estimates like
(3) and (5). If, e.g., L is the Laplacian on Rn, then −∂2

r +L is the Laplacian
on Rn+1 and for its heat kernel Φz holds

‖Φ1+iσ‖L1(Rn+1) ∼ (1 + |σ|)n+1
2 .

Thus for n > 2 an estimate like (5) does not hold for Pz(·, 0) = Φz.

2.2 Proof of the results

For a ≥ 0 we consider the operator A = A(a) := −∂2
r + ae2νr defined on the

space of test functions C∞
c (R). We denote its closure again by A(a). Then

A(a) is selfadjoint with domain

D(A(a)) =

{
H2(R) if a = 0,

A if a > 0

(see, e.g., Theorem 4.1).
Guideline for the proof of Theorem 2.1 and 2.2: The multiplier statement

in Theorem 2.2 follows from estimate (3) by utilizing the spectral theorem
and the Fourier inversion formula: There holds

f(T ) =
1

2π

∫
R

F̂ (ξ)e−(1−iξ)T dξ ,

where F := f ·exp. Hence we get for ϕ ∈ L2∩Lp(R×X), with v(ξ) := 1+ |ξ|
and K := C(2 + |ν|) exp(π2/4ν2),

‖f(T )ϕ‖Lp(R×X) ≤ 1

2π

∫
R

|F̂ (ξ)|‖e−(1−iξ)Tϕ‖Lp(R×X) dξ

≤K

2π

∫
R

|F̂ (ξ)|v(ξ) 3
2 dξ ‖ϕ‖Lp(R×X)

≤K

2π
‖v− 1

2
−ε‖L2(R)‖v2+εF̂‖L2(R)‖ϕ‖Lp(R×X) .
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To apply a duality argument, we use the following statement: For all q, q′ ∈
[1,∞] with 1/q + 1/q′ = 1, and for all ξ ∈ Lq(R ×X) we have

‖ξ‖Lq(R×X) = sup{|〈ξ, τ〉| : τ ∈ L2 ∩ Lq′(R ×X), ‖τ‖Lq′(R×X) = 1} . (6)

Hölder’s inequality shows that the right hand side of (6) is bounded from
above by the left hand side. For q ∈]1,∞[ equality follows from the theorem
of Hahn-Banach, the fact that Lq′ is isometrically isomporphic to the dual
space of Lq and the fact that L2 ∩Lq′ is dense in Lq′ . In the remaining cases
q = 1,∞ the σ-finiteness of the measure space R ×X allows us to construct
sequences (ηn) in L2∪Lq′(R×X) satisfying |〈ξ, ηn〉| → ‖ξ‖Lq(R×X) for n→ ∞.
(These constructions are straightforward. Nevertheless, the details can be
found in [10, §1.1].) From (6) we get, with a simplified notation,

sup{‖f(T )ψ‖Lp′ : ψ ∈ L2 ∩ Lp′ , ‖ψ‖Lp′ = 1}
=sup{|〈f(T )ψ, τ〉| : ψ ∈ L2 ∩ Lp′, τ ∈ L2 ∩ Lp, ‖ψ‖Lp′ = 1 = ‖τ‖Lp}
=sup{|〈ψ, f ∗(T )τ〉| : ψ ∈ L2 ∩ Lp′ , τ ∈ L2 ∩ Lp, ‖ψ‖Lp′ = 1 = ‖τ‖Lp}
=sup{‖f ∗(T )τ‖Lp : τ ∈ L2 ∩ Lp, ‖τ‖Lp = 1} ≤ K

2π

∫
R

|F̂ (ξ)|v(ξ) 3
2 dξ ,

since (f ∗ · exp)∧(ξ) = F̂ (−ξ)∗.
The full multiplier statement follows now from the interpolation theorem

of Riesz-Thorin.
Inequality (3) is more or less a direct consequence of identity (1), as we

shall show later. Therefore the crucial part of the proof is to verify (1).
Actually it is sufficient to establish (1) for ν = 1, since the general case
can then be derived using the coordinate transform s := νr. We consider
therefore only the case ν = 1 to make formulas a little bit shorter.

The formal idea to establish (1) is the following: Instead of looking
directly at e−zT = e−z(−∂2

r +e2rL), we first consider the family of operators
e−z(−∂2

r +ae2r) = e−zA(a), a ∈ [0,∞[. These operators have an integration
kernel qz(a, ·, ·), i.e.,

e−zA(a)ϕ =

∫
R

qz(a, ·, s)ϕ(s) ds for any ϕ ∈ L2(R),

which can be calculated easily. After deriving a suitable representation of qz,
we are able to replace the variable a again by the operator L in the sense of
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bounded functional calculus, and we get

e−zTϕ⊗ ψ =

∫
R

(qz(L, ·, s)ψ)ϕ(s) ds for any ϕ ∈ L2(R), ψ ∈ L2(X).

On the next pages we realize this proof idea in a mathematically rigorous
manner. The first step is to calculate the kernel qz(a, ·, ·) of e−zA(a), a ≥ 0.

Lemma 2.5. Let a ∈ [0,∞[ and z ∈ C with �(z) > 0. For n ∈ N let the
curve γn : R → C be defined by γn(θ) = (θ + i2−n)2.
(i) There holds

e−zA(a) = − 1

2πi

∫
γn

e−zλ(λ−A(a))−1 dλ ; (7)

here the parameterized integrand s �→ γ′n(s)e−zγn(s)(γn(s) − A(a))−1 is an
L1-mapping from R into the space of bounded linear operators on L2(R).
(ii) If ϕ ∈ C∞

c (R), then there holds for almost all r ∈ R

e−zA(a)ϕ(r) = − 1

2πi

∫
γn

e−zλ((λ−A(a))−1ϕ)(r) dλ . (8)

Proof. Formulas like (7) are well known in the literature, see, e.g., [28, §1.7].
From (7) follows for almost all r ∈ R

e−zA(a)ϕ(r) = − 1

2πi

(∫
γn

e−zλ(λ−A(a))−1ϕdλ
)
(r) .

Since ϕ is smooth, one can change the order of integration and point evalu-
ation in r. Thus (8) holds.

Equation (8) indicates that we can calculate qz if we have a concrete
formula for the resolvent of A(a). We found such a formula in [20] (it is
also stated in [29, Ex. 4.15]): For a > 0 and θ ∈ C we define the function
ka

θ : R2 → C by

ka
θ (r, s) =

{
−I−iθ(

√
aer)Kiθ(

√
aes) for s ≥ r ,

−I−iθ(
√
aes)Kiθ(

√
aer) for s < r ,

where I and K are the so called Bessel functions of imaginary argument.
(Our reference for Bessel functions is [22].) Furthermore, we define ϑ(θ) to
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be the complex number with ϑ(θ)2 = θ and arg(ϑ(θ)) ∈ [0, π[. Then for
λ ∈ C \ [0,∞[ and ϕ ∈ C∞

c (R) we have

(λ− A(a))−1ϕ(r) =

∫
R

ka
ϑ(λ)(r, s)ϕ(s) ds for almost all r ∈ R. (9)

Before we calculate qz, we want to prove another auxiliary lemma:

Lemma 2.6. There exists a C > 0 such that for all a > 0, r, s ∈ R and all
z ∈ C with 
(z) ≥ 0

|ka
z (r, s)| ≤ Ca−1/4e−(r+s)/4 .

Proof. Because of symmetry we can confine ourselves to the case r ≥ s. If
J0 denotes the Bessel function of first type and order 0, we have

Kiz(
√
aer)I−iz(

√
aes) =

1

2

∫ +∞

r−s

J0(
√

2aer+s
√

ch(σ) − ch(r − s))eizσ dσ .

J0 is bounded on [0,∞[ and there exists a C > 0 with |J0(x)| ≤ C/
√
x for

all x ∈ [0,∞[. Therefore

|Kiz(
√
aer)I−iz(

√
aes)| ≤ C

2
(2a)−1/4e−(r+s)/4

∫ ∞

r−s

(ch(σ) − ch(r − s))−1/4 dσ .

With the substitution τ := ch(σ), dσ = (τ 2 − 1)−1/2 dτ we get∫ ∞

r−s

(ch(σ) − ch(r − s))−1/4 dσ =

∫ ∞

ch(r−s)

(τ − ch(r − s))−1/4 dτ√
τ 2 − 1

=

∫ ∞

0

τ−1/4 dτ√
(τ + ch(r − s))2 − 1

≤
∫ ∞

0

τ−3/4 dτ√
τ + 2

<∞ .

Proposition 2.7. Let a > 0, z ∈ C with �(z) > 0 and ϕ ∈ C∞
c (R). Then

e−zA(a)ϕ(r) =

∫
R

qz(a, r, s)ϕ(s) ds for almost all r ∈ R, (10)

where

qz(a, r, s) := − 1

πi

∫
R

θe−zθ2

ka
θ (r, s) dθ .
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Proof. Lemma 2.5(ii) and (9) imply for ϕ ∈ C∞
c (R)

e−zA(a)ϕ(r) = − 1

2πi

∫
γn

e−zλ

∫
R

ka
ϑ(λ)(r, s)ϕ(s) ds dλ

= − 1

πi

∫
R

∫
R

(θ + i2−n) exp(−z(θ + i2−n)2)ka
θ+i2−n(r, s)ϕ(s) ds dθ

for almost all r and every n ∈ N. For fixed r ∈ R the integrand of the last
term converges for n→ ∞ pointwise to the function

(θ, s) �→ θe−zθ2

ka
θ (r, s)ϕ(s) .

From

|(θ + i2−n) exp(−z(θ + i2−n)2)ka
θ+i2−n(r, s)ϕ(s)|

≤ C

a1/4
(1 + |θ|) exp(−�(z)(θ2 − 1) + 2|
(z)θ|) e−(r+s)/4|ϕ(s)|

(see Lemma 2.6) and the dominated convergence theorem we get

e−zAϕ(r) = − 1

πi

∫
R

∫
R

θe−zθ2

ka
θ(r, s)ϕ(s) ds dθ .

Hence Fubini’s theorem verifies (10) for test functions.

Proposition 2.8. Let z ∈ C with �(z) > 0 and Ψz as in (2). For all a > 0
and all r, s ∈ R we have

qz(a, r, s) =

∫ ∞

0

Ψz(ξ) exp
(
− ch(r − s)

ξ

)
exp

(
− ξer+s

2
a
)
dξ . (11)

Proof. Let a > 0. From

Kν(ζ) =
π

2

I−ν(ζ) − Iν(ζ)

sin(πν)
, ν /∈ Z , and K−ν = Kν

we get for r ≥ s

qz(a, r, s) =
2

π2

∫ +∞

0

θ sh(θπ)e−zθ2

Kiθ(
√
aer)Kiθ(

√
aes) dθ .
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Obviously this result holds still if r < s. From the integral representation
[22, (5.10.25)] of Kiθ follows for s, r ∈ R

qz(a, r, s) =
1

2π2

∫ ∞

0

θ sh(θπ)e−zθ2+iθ(r−s)
( ∫ ∞

0

exp
(
− v − ae2r

4v

)
v−iθ−1 dv

)

·
(∫ ∞

0

exp
(
− w − ae2s

4w

)
wiθ−1 dw

)
dθ

=
1

2π2

∫ ∞

0

∫ ∞

0

∫ ∞

0

θ sh(θπ) exp(−zθ2 + iθ(r − s) + iθ ln(w/v))

· exp
(
− a

4

(e2r

v
+
e2s

w

)
− w − v

) dv
v

dw

w
dθ .

The identity qz(a, r, s) = 1
2
(qz(a, r, s)+qz(a, s, r)) shows that we can exchange

the factor exp(iθ(r−s+ln(w/v))) of the integrand by cos(θ(r−s+ln(w/v))).
Then, with substitutions ν := 2ve−r+s, µ := 2wer−s,

qz(a, r, s) =
1

2π2

∫ ∞

0

∫ ∞

0

∫ ∞

0

θ sh(θπ) cos(θ(s− r + ln(µ/ν)))e−zθ2

· exp
(
− a

2
er+s

(1

ν
+

1

µ

)
− 1

2

(
νer−s + µes−r

)) dν
ν

dµ

µ
dθ .

Using the coordinate transformation

Φ : {(ξ, η) : ξ > 0, |η| < ξ} →]0,∞[2 , (ξ, η) �→
( 2

ξ + η
,

2

ξ − η

)
=: (µ, ν) ,

we get

qz(a, r, s) =
1

π2

∫ ∞

0

∫ ∞

0

∫ ξ

−ξ

θ sh(θπ) cos
(
θ
(
s− r + ln

(ξ − η

ξ + η

))
e−zθ2

· exp
(
− aer+sξ

2
− er−s

ξ − η
− es−r

ξ + η

) dη dξ

ξ2 − η2
dθ

=
1

π2

∫ ∞

0

∫ ∞

0

∫ +1

−1

θ sh(θπ) cos
(
θ
(
s− r + ln

(1 − w

1 + w

))
e−zθ2

· exp
(
− aer+sξ

2
− 1

ξ

( er−s

1 − w
+

es−r

1 + w

)) dw dξ

ξ(1 − w2)
dθ ,

where in the last step we employed the transformation of variables w = η/ξ.
If we define u := arth(w), there holds ln((1−w)/(1+w)) = −2 arth(w) = −2u
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and 1 − w2 = 1 − th(u)2 = ch(u)−2. Furthermore, we get

er−s

1 − w
+

es−r

1 + w
= 2 ch(u) ch(r − s+ u) ,

This leads to

qz(a, r, s) =
1

π2

∫ ∞

0

∫ ∞

0

∫ +∞

−∞
θ sh(θπ) cos(θ(s− r − 2u))e−zθ2

· 1

ξ
exp

(
− aer+sξ

2
− 2

ξ
ch(u) ch(r − s+ u)

)
du dξ dθ .

With ϑ := 2u+ r − s we have the identity

2 ch(u) ch(r − s + u) = ch(r − s) + ch(ϑ) .

That implies

qz(a, r, s) =
1

π2

∫ ∞

0

∫ ∞

0

(∫ ∞

0

θ sh(θπ) cos(θϑ)e−zθ2

dθ
)

· 1

ξ
exp

(
− aer+sξ

2
− 1

ξ
(ch(r − s) + ch(ϑ))

)
dϑ dξ .

With partial integration and [13, Eq. 4.133] we get for z ∈]0,∞[∫ ∞

0

θ sh(θπ) cos(θϑ)e−zθ2

dθ

=

√
π

2
√
z

exp
(π2 − ϑ2

4z

)( π

2z
cos

(πϑ
2z

)
− ϑ

2z
sin

(πϑ
2z

))

=

√
π

2
√
z

exp
(π2

4z

)
∂ϑ

(
exp

(
− ϑ2

4z

)
sin

(πϑ
2z

))
.

As all terms in the preceding calculation are holomorphic in z, this identity
holds for all z ∈ C with �(z) > 0. After partial integration with respect to
the ϑ-variable we get eventually formula (11).

Corollary 2.9. Let z ∈ C with �(z) > 0, and let us define qz(a, r, s) for
a = 0 via (11). Then qz is continuous on [0,∞[×R2, and there exists a
Cz > 0, just depending on z, with

|qz(a, r, s)| ≤ Cz ch(r − s)−1 for all a ≥ 0 and r, s ∈ R. (12)

Furthermore, identity (10) holds for all a ≥ 0 and all ϕ ∈ L2(R).

12



Proof. It is easy to see that there exists a Cz > 0, just depending on z, with
|Ψz| ≤ Czξ

−2. This implies

|qz(a, r, s)| ≤ Cz

∫ ∞

0

ξ−2 exp
(
− ch(r − s)

ξ

)
dξ = Cz ch(r − s)−1 .

The continuity of qz follows now from the dominated convergence theorem.
Let a > 0. Since (12) holds, both sides of (10) define bounded linear

operators on L2(R), which then have to be equal on the whole space L2(R).
Let now a = 0: From (12) and the dominated convergence theorem we

have for ϕ, ψ ∈ L2(R) and a′ > 0

〈e−zA(a′)ϕ, ψ〉 =

∫
R

∫
R

qz(a
′, r, s)ϕ(s)ψ(r)∗ ds dr

−→
∫

R

∫
R

qz(0, r, s)ϕ(s)ψ(r)∗ ds dr for a′ ↘ 0 .

As e−zA(a′)ϕ → e−zA(0)ϕ for a′ ↘ 0 (see, e.g., [31, Thm. 9.17]), (10) holds
also for a = 0 and arbitrary ϕ ∈ L2(R).

Now let z ∈ C with �(z) > 0 and r, s ∈ R. According to (12) the function
a �→ qz(a, r, s) is bounded on [0,∞[, and in the sense of bounded functional
calculus we obtain

qz(L, r, s) =

∫ ∞

0

Ψz(ξ) exp
(
− ch(r − s)

ξ

)
exp

(
− ξer+s

2
L
)
dξ . (13)

Hereby the integrand on the right hand side of (13) is an L1-mapping from
]0,∞[ with values in the space of bounded linear operators on L2(X).

Proposition 2.10. The positive operator T is selfadjoint and its holomorphic
semigroup (e−zT )�(z)>0 is given by

e−zTf(r, x) =
(∫

R

qz(L, r, s)fs ds
)
(x) (14)

for all f ∈ L2(R ×X) and almost all (r, x) ∈ R ×X.

Proof. According to the spectral theorem, L is unitarily equivalent to an op-
erator of multiplication on some L2(Y ), where Y is another σ-finite measure
space. It is therefore sufficient to consider the case where Lψ = mψ for some
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measurable m : X → [0,∞[. For z ∈ C with �(z) > 0 let us define the
operator S(z) by

S(z)f(r, x) =

∫
R

qz
(
m(x), r, s

)
f(s, x) ds

for f ∈ L2(R × X). It is easy to see from the properties of the holo-
morphic semigroups (e−zA(a))�(z)>0, a ≥ 0, and their kernels qz(a, r, s) that
(S(z))�(z)>0 is a semigroup of operators on L2(R×X) and that the mapping
z �→ 〈S(z)f, g〉L2(R×X) is holomorphic for all f , g ∈ L2(R × X). Since the
semigroup (S(t))t≥0 is selfadjoint, the same holds for its infinitesimal gener-
ator −G. It is straightforward to show that A ⊗ D(L) ⊆ D(G) and that
T = G on A ⊗ D(L). Thus T = G|D(T ).

To conclude the proof, we only have to verify that T is a selfadjoint
operator, since then T = G and e−zT = S(z). One can surely realize that
in several ways, here we want to sketch the following approach: We prove
that D(T ) is a core of G (which implies T = G). For this it is sufficient
to show that D(T ) is invariant under (S(t))t≥0 [8, Thm. 1.9]. The technical
problem is here that our description of D(T ) is somewhat abstract, namely
that D(T ) is the completion of A ⊗ D(L) with respect to the graph norm
of T . To handle this, we define some “discrete approximation” of S(t): For
k = 1, . . . , 22n put an,k = n−1 + k2−n and V (n, k) = m−1([an,k, an,k+1[).
Furthermore, let an,0 = 0 and V (n, 0) = m−1({0}). We define the operator
πn on L2(R) ⊗ L2(X) by

πnη ⊗ ξ =

22n∑
k=0

e−tA(an,k)η ⊗ 1V (n,k)ξ ,

where 1V (n,k) is the characteristic function of V (n, k). It is not hard to see
that the range of πn is contained in D(T ). Moreover, the properties of qt and
the theorem of dominated convergence ensure that limn→∞ πnη⊗ξ = S(t)η⊗ξ
for all η ∈ L2(R), ξ ∈ L2(X).

We prove now limn→∞ T (πnϕ ⊗ ψ) = S(t)(Tϕ ⊗ ψ) for all ϕ ∈ A , ψ ∈
D(L), which then establishes S(t)(A ⊗ D(L)) ⊆ D(T ). Since a semigroup
and its generator commute on the domain of the generator, we get for k = 0

T (e−tA(0)ϕ⊗ 1V (n,0)ψ) = −(e−tA(0)ϕ)′′ ⊗ 1V (n,0)ψ

=e−tA(0)(−ϕ′′) ⊗ 1V (n,0)ψ = (e−tA(0) ⊗ 1V (n,0))(Tϕ⊗ ψ)
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and for k > 0

T (e−tA(an,k)ϕ⊗ 1V (n,k)ψ) = (e−tA(an,k) ⊗ 1V (n,k))(Tϕ⊗ ψ) +

+
(
e−tA(an,k)ϕ′′ − (e−tA(an,k)ϕ)′′

) ⊗ (
1 − m

an,k

)
1V (n,k)ψ .

From this follows almost directly

lim
n→∞

T (πnϕ⊗ ψ) = lim
n→∞

πn(Tϕ⊗ ψ) = S(t)(Tϕ⊗ ψ) .

Let us now consider an arbitrary f ∈ D(T ). Then there exists a sequence
(fn) in A ⊗ D(L) with fn → f and Tfn → Tf . Since S(t) is bounded, we
have S(t)fn → S(t)f . From what we have shown so far follows TS(t)fn =
S(t)Tfn → S(t)Tf . Thus the sequence (S(t)fn) in D(T ) converges to S(t)f
in the graph norm of T . This eventually proves S(t)(D(T )) ⊆ D(T ) for all
t ≥ 0.

Theorem 2.1 follows now from Proposition 2.10 and identity (13).

Proof of Theorem 2.2. Let ϕ ∈ L2 ∩ Lp(R ×X). From Proposition 2.10 and
(13) follows

‖e−zTϕ‖Lp(R×X)

≤
∥∥∥ ∫

R

∫ ∞

0

∣∣∣Ψz(ξ) exp
(
− ch(r − s)

ξ

)∣∣∣∥∥∥e− ξer+s

2
Lϕs

∥∥∥
Lp(X)

dξ ds
∥∥∥

Lp(R, dr)

≤C
∥∥∥ ∫

R

∫ ∞

0

∣∣∣Ψz(ξ) exp
(
− ch(s)

ξ

)∣∣∣‖ϕs+r‖Lp(X) dξ ds
∥∥∥

Lp(R, dr)

≤C
(∫

R

∫ ∞

0

∣∣∣Ψz(ξ) exp
(
− ch(s)

ξ

)∣∣∣ dξ ds)‖ϕ‖Lp(R×X) .

It was shown in [27, Sec. 3] that∫
R

∫ ∞

0

∣∣∣Ψz(ξ) exp
(
− ch(s)

ξ

)∣∣∣ dξ ds ≤ (2 +
√
�(z))e

π2

4�(z)

(
1 +

|
(z)|
�(z)

)3/2

.

That proves (3). As we demonstrated earlier, (3) implies the multiplier state-
ment of Theorem 2.2. Hence the proof of Theorem 2.2 is complete.

Remark 2.11. In a similar manner as in the proof of Theorem 2.2 one can
try to use representation (1) to obtain (under certain conditions on L) also
bounds for ‖e−zT‖Lp(R×X)→Lq(R×X), p �= q. In [12] we derived, e.g., some sort
of ultracontractivity result for e−zT . Depending on L, such a result may be
of interest for some operators T = T (L).
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Proof of Theorem 2.3. Let the first assumptions on (pt)t>0 and (Λt)t>0 hold.
Let η, τ ∈ L2(R×X). We want to be able to write the integrals appearing in
〈e−zTη, τ〉L2(R×X) in any order, so first we show that the theorem of Fubini-
Tonelli is applicable: Using the Cauchy-Schwarz inequality we get, with a
constant Mz just depending on z,∫

R

∫
R

∫ ∞

0

∫
X

∫
X

∣∣∣Ψz(ξ) exp
(
− ch(r − s)

ξ

)
p ξer+s

2

(x, y)η(s, y)τ(r, x)
∣∣∣dy

· dx dξ ds dr
≤

∫
R

∫
R

∫ ∞

0

∣∣∣Ψz(ξ) exp
(
− ch(r − s)

ξ

)∣∣∣∣∣〈Λ ξer+s

2

|ηs|, |τr|
〉

L2(X)

∣∣ dξ ds dr
≤κ

∫
R

(∫ ∞

0

∣∣∣Ψz(ξ) exp
(
− ch(s)

ξ

)∣∣∣ dξ)(∫
R

‖ηs+r‖L2(X)‖τr‖L2(X) dr
)
ds

≤κMz‖η‖L2(R×X)‖τ‖L2(R×X) .

The theorem of Fubini-Tonelli ensures now the existence of the integral in
(4) for almost all ((r, x), (s, y)) ∈ (R ×X)2. From (13) and (14) we get

〈e−zTη, τ〉L2(R×X) =

∫
X

∫
R

(∫
X

∫
R

Pz((r, x), (s, y))η(s, y) ds dy
)
τ(r, x)∗ dr dx .

Thus Pz is the integration kernel of e−zT .
Let now in addition ‖pt(·, x)‖L1(X) be bounded independently of x and t.

Then (5) can be proven in a similar way as (3). As (5) implies (3) for p = 1,
the multiplier statement in Theorem 2.3 follows from Theorem 2.2.

3 Differential operators on solvable Lie groups

with exponential volume growth

Let n be a real stratified nilpotent Lie algebra, i.e., there exist subspaces
V1, ..., Vq of n with n = V1 ⊕ ... ⊕ Vq and [Vi, Vj] ⊆ Vi+j (convention: Vk = 0
if k > q), and V1 generates the whole Lie algebra n. (For stratified nilpotent
Lie groups and algebras we refer to [9].) Let the derivation D on n be
defined by Dvj = jvj for all vj ∈ Vj and the group homomorphism θ :
R → Aut(n) by θ(r) = erD. Furthermore, let N be the set n, endowed with
the Campbell Hausdorff multiplication; thus N is, up to isomorphism, the
uniquely determined connected and simply connected nilpotent Lie group

16



with Lie algebra n. The exponential mapping expN is the identity In on n.
The Lebesgue measure dn on the Euclidean space n is a biinvariant Haar
measure on N . If Q denotes the trace of D (the so-called homogeneous
dimension of N), then∫

N

f(erDn) dn = e−rQ

∫
N

f(n) dn for all f ∈ L1(N).

We define the solvable Lie group G by G := N �θ R (“R is acting on N
via natural dilations”). If dr denotes the Lebesgue measure on R, then
dg := dn⊗dr is a right invariant Haar measure on G. The modular function
m on G is given by m(n, r) = erQ, hence G has exponential volume growth
(see [30, §IX.1]).

In the section “Improvements and open problems” of [16] W. Hebisch
asked whether the evolution kernel Pz of a sum of even powers of vec-
tor fields or of a Schrödinger operator T on G satisfies an estimate like

‖P1+iξ(·, 1G)‖L1(G) ≤ C(1 + |ξ|Q+4
2 ). (In [16] Hebisch derived such an in-

equality for sub-Laplacians on G. This result is obviously not as good as the
estimate (5), which is independent of the homogeneous dimension of X := N
and was shown by Mustapha in [27] in the case of sub-Laplacians (cf. Sub-
section 3.1). But the methods of Hebisch have the advantage to extend to a
reasonably larger class of Lie groups [11].)

For some special cases we can give a positive answer (independent of
the homogeneous dimension of N) by employing Theorem 2.2. We use the
following notation: For X ∈ n define vector fields XN on N and XG on G by

XNψ(x) =
d

dt
ψ(x · expN (tX ))|t=0 for ψ ∈ C1(N),

XGϕ(x, r) =
d

dt
ϕ((x, r) · expG(tX ))|t=0 for ϕ ∈ C1(G).

Furthermore, put XG
0 := ∂r. Then XG

0 is a left invariant vector field on G.

3.1 Sub-Laplacians

Let X1, ...,Xm ∈ V1 fulfill Hörmander’s condition, i.e., generate n as a Lie
algebra. The operator −∑m

j=1(XN
j )2 is defined on C∞

c (N); let L denote its

closure. L is positive and selfadjoint on L2(N) (see, e.g., Theorem 4.1), and
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hypoelliptic [19]. The semigroup of L is given by convolution from the right
with a smooth heat kernel φt, t > 0, which satisfies ‖φt‖L1(N) = 1:

e−tLϕ = ϕ ∗ φt .

Thus L induces a semigroup of contractions on L1(N), i.e.,

‖e−tLϕ‖L1(N) ≤ ‖ϕ‖L1(N)‖φt‖L1(N) = ‖ϕ‖L1(N) .

Therefore the sub-Laplacian T := −∑m
j=0(XG

j )2 on G, which is of the form

T = −∂2
r + e2rL, fulfills the conditions of Theorem 2.2. Consequently, each

compactly supported continuous f ∈ Hκ(R), κ > 2, is an Lp-multiplier with
respect to T for any p ∈ [1,∞].

This multiplier result was verified by S. Mustapha in [27]. Mustapha
derived the representation (4) for the heat kernel of T by using stochastic
methods and a formula from [32].

3.2 Non-hypoelliptic sums of squares of vector fields

Here X1, ...,Xm ∈ V1 are not required to fulfill Hörmander’s condition. Thus
the closure L of −∑m

j=1(XN
j )2 is still positive and selfadjoint (see again

Theorem 4.1), but in general not hypoelliptic. Although we cannot expect
L to have a smooth heat kernel, it still induces a semigroup of contractions
on L1(N), because

e−tLϕ =

∫
N

ϕ ◦ ρx dpt(x) ,

where ρx is the right translation on N by x and (pt)t>0 is a convolution
semigroup of probability measures on N [21]. Therefore T := −∑m

j=1(XG
j )2

fulfills still the conditions of Theorem 2.2. Again each compactly supported
continuous f ∈ Hκ(R), κ > 2, is an Lp-multiplier with respect to T for every
p ∈ [1,∞].

Theorem 2.2 and this subsection show that the hypoellipticity of the sub-
Laplacians plays no crucial role in Mustapha’s multiplier result.

3.3 Schrödinger operators

Let X1, ...,Xm ∈ V1 and f̃1, ..., f̃m ∈ C1(N,R). We consider

L̃ := −
m∑

j=1

(XN
j + if̃j)

2 .
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Moreover, define f0 := 0 and fj := f̃j ⊗ er for j = 1, ..., m. The operator

T := −
m∑

j=0

(XG
j + ifj)

2

is of the form T = −∂2
r + e2rL̃. L̃ and T are essentially selfadjoint (see

Theorem 4.1), and we denote their closures again by L̃ and T . (If {X1, ...,Xm}
spans V1, then L̃ and T are called Schrödinger operators.)

Now let L be the main part of L̃, i.e., L = −∑m
j=1(XN

j )2. Then

‖e−tL̃ϕ‖L1(N) ≤ ‖e−tL|ϕ|‖L1(N) ≤ ‖ϕ‖L1(N)

for any ϕ ∈ L1 ∩L2(N) since |e−tL̃ϕ| ≤ e−tL|ϕ| pointwise almost everywhere
(see, e.g., [15, Lemma 1.3] and its proof or, for a detailed proof of the whole
statement, [10, Lemma 3.21]). Hence Theorem 2.2 implies once again that
each f ∈ Cc ∩Hκ(R), κ > 2, is an Lp-multiplier with respect to T for every
p ∈ [1,∞].

Notice that, in contrast to sub-Laplacians, the operators T defined in this
subsection are not left invariant.

3.4 Rockland operators on N

A left invariant differential operator L on N is called homogeneous of degree
d ∈ N if L(ϕ ◦ θ(r)) = edr(Lϕ) ◦ θ(r) holds for all ϕ ∈ C∞

c (N) and all r ∈ R.
If in addition for every non-trivial irreducible unitary representation π of N
the operator dπ(L) is injective on the space of C∞-vectors of π (i.e., the set
of elements ϕ of the representation space Hπ, where N � x �→ π(x)ϕ is a
C∞-function), L is called Rockland operator. (For Rockland operators see
[9].)

We consider here a Rockland operator L which is positive and formally
selfadjoint on C∞

c (N). Then L|C∞
c (N) is essentially selfadjoint and its closure

shall again be denoted by L. L induces a semigroup on L2(N) by e−tLf = f ∗
φt, t > 0, where φt is in C∞∩L1(N) and satisfies ‖φt‖L1(N) = ‖φ1‖L1(N) =: C
for all t > 0.

In the notation of Theorem 2.3 we have pt(x, y) = φt(y
−1x), which implies

‖pt(·, m)‖L1(N) =

∫
N

|φt(m
−1n)| dn =

∫
N

|φt(n)| dn = C .
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By
(L̃f)(n, r) := erd(Lf( · , r))(n)

we obtain a left invariant differential operator L̃ on G. If we define the
operator T on G by T = −∂2

r + L̃, then T = −∂2
r + erdL. From Theorem 2.3

we get for the convolution kernel (Φz)�(z)>0 of e−zT

Φz(n, r) = Pz((n, r), 1G) =

∫ ∞

0

νΨν2z(ξ) exp
(
− ch(νr)

ξ

)
φ ξeνr

2ν2
(n) dξ ,

where ν := d/2 and 1G is the neutral element of G. Furthermore,

‖Φ1+iξ‖L1(G) ≤ Cν(1 + |ξ|)3/2 ,

Cν independent of ξ, and all compactly supported, continuous f ∈ H2+ε(R),
ε > 0, are Lp-multipliers of T for any p ∈ [1,∞].

The last example is a special case of the preceding class of differential
operators:

3.5 Sums of even powers of vector fields

Let X1, ...,Xm ∈ n generate the Lie algebra n, and let k1, ..., km ∈ N. More-
over, let the differential operator

L :=
m∑

j=1

(−1)kj(XN
j )2kj

on C∞
c (N) be homogeneous of degree 2ν, ν = max{kj : 1 ≤ j ≤ m}. (Hence

Xj ∈ Vl implies lkj = ν.) L is then a positive Rockland operator. If we define
the sum of even powers of vector fields T on G by

T = −∂2
r +

m∑
j=1

(−1)kj (XG
j )2kj ,

then T = −∂2
r + e2νrL. We have the results of Subsection 3.4 for d = 2ν.

Subsection 3.5 stresses that a differential operator T has not necessarily
to be of second order to satisfy the conditions of our multiplier theorem.
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4 Appendix: A selfadjointness theorem

LetG be a real Lie group with a countable number of connection components,
g its Lie algebra, dg a right invariant Haar measure on G and L2 = L2(G, dg).
Let 〈·, ·〉 be the scalar product and ‖ · ‖ the norm on L2. We shall identify
each X ∈ g with a left invariant vector field by

X f(g) =
d

dt
f(g · exp(tX ))|t=0 ,

where exp denotes the exponential function with respect to G and g.
Let J be a finite index set, Xj , j ∈ J , left invariant vector fields and Vj ,

j ∈ J , real valued, continuously differentiable functions on G. The operator

T := −
∑
j∈J

(Xj + iVj)
2

is well defined on C∞
c = C∞

c (G), the space of test functions on G.
For f ∈ L2 and for operators Φ, Φ∗ defined on C∞

c with 〈Φϕ, ψ〉 =
〈ϕ,Φ∗ψ〉 for all ϕ, ψ ∈ C∞

c we shall say that Φf exists in a weak sense if
there is a function f̃ ∈ L2 with 〈f,Φ∗ϕ〉 = 〈f̃ , ϕ〉 for all ϕ ∈ C∞

c . In this case
we define Φwf := f̃ , so the domain of the operator Φw is given by

D(Φw) = {f ∈ L2 : Φf exists in a weak sense} .

A helpful tool for the proof of our selfadjointness theorem is the convolu-
tion of two (suitable) functions ϕ, ψ on G, defined by

ϕ ∗ ψ(x) =

∫
G

ϕ(xg−1)ψ(g) dg .

We call a sequence (ϕn) in C∞
c a Dirac sequence if ϕn ≥ 0,

∫
ϕn dg = 1 for all

n ∈ N and if for each neighborhood U of the unit element of G there exists
an n0 ∈ N with supp(ϕn) ⊆ U for every n ≥ n0.

We also shall utilize a sequence (ψn) in C∞
c that approximates the char-

acteristic function of G in the following way:
(i) For any n ∈ N the condition 0 ≤ ψn ≤ 1 holds.
(ii) (ψ−1

n ({1})) is an increasing sequence of sets with ∪ψ−1
n ({1}) = G.

(iii) For each left invariant differential operator L there exists a C > 0,
independent of n, with |Lψn| ≤ C for all n.
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It is easy to see that such a sequence exists. (However, a construction
can be found in [10, Lemma 2.28].)

Furthermore, we will make use of the theory of quadratic forms of self-
adjoint operators and the well known theorem about Friedrichs’ extension.
This can, e.g., be found in [8, Ch. 4] and [31, §5.5].

Theorem 4.1. T is essentially selfadjoint on C∞
c ⊆ L2. Its selfadjoint

closure T is given by Tw. The domain of the quadratic form of Tw is

Q(Tw) = ∩j∈J D((Xj + iVj)w)

and the inclusion D(Tw) ⊆ Q(Tw) holds.

Proof. From the definition of the adjoint operator T ∗ of T on L2 it is clear
that T ∗ = Tw. As T is positive and symmetric on C∞

c , there exists Friedrichs’
extension S of T with D(S) = D(Tw) ∩ Q(S). Here the domain Q(S) of the
quadratic form of S is the set of all f ∈ L2(G) for which there exists a
sequence (fn) in C∞

c with L2-lim fn = f such that ((Xj + iVj)fn) is an L2-
Cauchy sequence for each j ∈ J .

Obviously we have T ⊆ S = S∗ ⊆ T ∗. Our aim is to show that T = S,
because that would imply T = T ∗ = Tw. Before we do so, we verify that Q(S)
is equal to Λ := ∩j∈J D((Xj + iVj)w). Since it is easy to see that Q(S) ⊆ Λ
holds, we just have to prove

Statement (a): Λ ⊆ Q(S).
To verify Statement (a), we first consider a compactly supported function

f ∈ Λ and a Dirac sequence (ϕn). Then (ϕn ∗ f) is a sequence in C∞
c with

‖f − ϕn ∗ f‖ → 0 for n → ∞. Let j ∈ J . From f ∈ Λ and Vjf ∈ L2 follows
f ∈ D((Xj)w). Therefore the left invariance of Xj leads us to Xj(ϕn ∗ f) =
ϕn ∗ (Xj)wf , and

‖(Xj + iVj)wf − (Xj + iVj)(ϕn ∗ f)‖
≤‖(Xj + iVj)wf − ϕn ∗ (Xj + iVj)wf‖ + ‖ϕn ∗ Vjf − Vj(ϕn ∗ f)‖ .

The first term on the right vanishes if n → ∞. In general for continuous ϑ
on G and compactly supported f̃ ∈ L2 there holds

‖ϕn ∗ ϑf̃ − ϑ(ϕn ∗ f̃)‖ ≤ ‖ϕn ∗ |f̃ |‖ sup |ϑ(x−1g) − ϑ(g)| , (15)

where the supremum is taken over all x ∈ supp(ϕn) and g ∈ supp(ϕn) supp(f̃).
The expression on the right hand side in (15) tends to zero for n → ∞. It
follows that f is an element of Q(S).
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Let us now consider a general f ∈ Λ, and let (ψn) be an approximating
sequence of the characteristic function of G as described above. It is trivial
that ψnf ∈ Λ with

(Xj + iVj)w(ψnf) = ψn(Xj + iVj)wf + (Xjψn)f .

Since supp(ψnf) is compact, we have ψnf ∈ Q(S). Obviously ψnf → f and

‖(Xj + iVj)w(f − ψnf)‖ ≤ ‖(1 − ψn)(Xj + iVj)wf‖ + ‖(Xjψn)f‖ .
The choice of (ψn) implies ‖(Xj + iVj)w(f−ψnf)‖ → 0 for n→ ∞. It follows
f ∈ Q(S), i.e., Statement (a) holds.

Statement (b): D(S) ⊆ D(T ).
Our strategy is similar as in the proof of Statement (a): First let f ∈ D(S)

be compactly supported. Then Vjf ∈ L2 and f ∈ D((Xj)w) for each j ∈ J ,
because f is contained in Q(S) = Λ (recall that D(S) ⊆ Q(S)). Moreover,
f is contained in D(Tw), D((VjXj)w) and V 2

j f , (XjVj)f ∈ L2 for each j ∈ J ,
which implies f ∈ D((

∑
j∈J X

2
j ))w).

Let us again consider a Dirac sequence (ϕn). The sequence (fn), where
fn := ϕn ∗ f , is a sequence in C∞

c with fn → f in L2. We obtain

‖Tw(f − fn)‖ ≤‖Twf − ϕn ∗ Twf‖ +
∑
j∈J

(
2‖ϕn ∗ (VjXj)wf − Vj(ϕn∗

∗(Xj)wf)‖ + ‖ϕn ∗ (V 2
j − i(XjVj))f − (V 2

j − i(XjVj))ϕn ∗ f‖) .
With (15) we observe that Tfn → Twf in L2, which means f ∈ D(T ) and
Tf = Twf .

Now let f be an arbitrary element in D(S), and let (ψn) be as in the
proof of Statement (a). Obviously ψnf ∈ D(S) for each n ∈ N. As ψnf has
compact support, we have ψnf ∈ D(T ). Moreover, ψnf → f in L2 and

‖Twf − T (ψnf)‖
≤‖(1 − ψn)Twf‖ +

∑
j∈J

(‖(X 2
j ψn)f‖ + 2‖(Xjψn)(Xj + iVj)wf‖

)
.

From our definition of (ψn) follows ‖Twf − T (ψnf)‖ → 0 for n → ∞. As
D(T ) is closed with respect to the graph norm of T , f is an element of D(T ).
This proves Statement (b), which implies T = S.
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