
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Why approximate LU decompositions of finite

element discretizations of elliptic operators can

be computed with almost linear complexity

by

Mario Bebendorf

Preprint no.: 8 2005

Why approximate LU decompositions of finite

element discretizations of elliptic operators can

be computed with almost linear complexity∗

Mario Bebendorf†

January 24, 2005

Abstract

Although the asymptotic complexity of direct methods for the solution of large sparse
finite element systems arising from second-order elliptic partial differential operators is far
from being optimal, these methods are often preferred over modern iterative methods. This
is mainly due to their robustness. In this article it is shown that an (approximate) LU
decomposition exists and that it can be computed in the algebra of hierarchical matrices with
almost linear complexity and with the same robustness as the classical LU decomposition.

Mathematics Subject Classification (2000): 35C20, 65F05, 65F50, 65N30
Keywords: Approximate LU decomposition, fast direct solution, preconditioning, non-smooth
coefficients, hierarchical matrices

1 Introduction

This article deals with the efficient solution of large sparse linear systems

Ax = b, A ∈ R
n×n, (1)

arising from the discretization of general second-order elliptic partial differential operators

Du = −div [C∇u + c′u] + c′′ · ∇u + c0u (2)

with coefficients cij, c
′
i, c

′′
j , c0 ∈ L∞(Ω), i, j = 1, . . . , d, on a bounded Lipschitz domain Ω ⊂ R

d.
For the solution of (1) two main classes of methods, iterative and direct, can be distinguished.
The latter are based on factorizations of the sparse coefficient matrix A into easily invertible
matrices. These methods are widely used due to their robustness. However, they suffer from
so-called fill-in, i.e., compared with the sparsity of A considerably more entries of the factors will
be non-zero. This usually happens to all entries within the bandwidth of the original matrix,
which for Galerkin matrices of operators (2) scales like n1−1/d even if the bandwidth has been
reduced for instance by the reverse Cuthill-McKee algorithm, by the minimum degree algorithm
or by nested dissection. Hence, the fill-in will lead to a computational complexity of order
n3−2/d. Constants, however, are extremely small, making direct methods the methods of choice

∗This work was supported by the DFG priority program SPP 1146 “Modellierung inkrementeller Umformver-
fahren”

†Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Ger-
many, bebendorf@math.uni-leipzig.de

1

if n is not too large. This situation persists if we are to solve large scale problems in two spatial
dimensions. Here, recent multifrontal solvers (see [1] and the references therein) can be used.

For higher dimensions usually iterative methods such as Krylov subspace methods are more
efficient, especially if an approximate solution of relatively low accuracy is sought. The advantage
of these solution techniques is that the coefficient matrix enters the computation only through
the matrix-vector product. On the other hand the convergence rate and hence the number of
iterations usually depends on certain properties such as the condition number of the coefficient
matrix. Since D is a second-order operator, the condition number of the finite element Galerkin
matrix A grows like n2/d for large n, but also depends significantly on the coefficients of D.
Hence, preconditioning is necessary in order to obtain reasonable convergence rates. This can be
achieved for instance by multigrid [13] or the Bramble, Pasciak and Xu (BPX) preconditioner [8]
if the problem class is restricted to stiffness matrices of elliptic operators with smooth coefficients,
where special properties of the operator can be exploited. In the case of non-smooth coefficients,
these methods might still work but suffer from poor convergence rates if the respective method
is not adapted to the coefficients. In the last years much work has been done to develop robust
multilevel methods. The algebraic multigrid (AMG) solvers [19] try to achieve this robustness
by mostly heuristic strategies. Domain decomposition methods [22] are commonly used if the
computational domain can be subdivided into a small number of parts on each of which the
coefficients do not vary too much. In this case a problem can be decomposed into smaller ones
for the purpose of parallel processing.

A class of preconditioners that are based on the ideas of the LU decomposition while avoiding
fill-in are the so-called incomplete LU factorizations (ILU), see [20]. The ILU overcomes the
problem of fill-in by setting entries in the factors L and U outside of the sparsity pattern of A to
zero. Although the ILU can be applied to any sparse coefficient matrix provided the factorization
does not break down, it is well suited for M - and diagonally dominant matrices. Generating an
ILU is extremely fast and improves the convergence rate. However, it does usually not lead to
a bounded number of iterations.

The aim of this article is to present a new approach that merges the advantages of direct
and iterative methods. We will present an approximate LU decomposition which on one side
inherits the robustness of the classical LU decomposition and which does not require a grid
hierarchy while one the other side has logarithmic-linear complexity independently of the spatial
dimension. Depending on the chosen accuracy, the approximate LU decomposition can be used
as a direct solver or as a preconditioner in iterative schemes. Since fill-in will also occur during
an approximate LU decomposition, we make use of the structure of hierarchical matrices, by
which appropriate dense matrices can be treated with almost linear complexity. Consequently,
the bandwidths of the factors L and U will not be an issue.

In the last years fast methods for the treatment of large dense matrices M ∈ R
n×n have

considerably spread. After the introduction of the fast multipole method [18], numerous methods
based on low-rank approximations

Mts ≈ UV T

of appropriate subblocks Mts in the rows and columns t, s ⊂ {1, . . . , n} of M , where U ∈ R
t×k,

V ∈ R
s×k and k is small compared with |t| and |s|, have been developed. The ideas of the

fast multipole method originally aiming at an efficient approximate evaluation of matrix-vector
products have recently been extended to a structure called hierarchical matrices (H-matrices),
see [12, 15]. Basically, these are matrices that are low-rank on each block of a certain partition
stemming from a recursive subdivision of the set of matrix indices. In addition to the efficient
matrix-vector multiplication (also with the transposed matrix) this structure provides approxi-
mate operations such as matrix addition, matrix-matrix multiplication and matrix inversion of

2

dense matrices with almost linear complexity. Furthermore, H-matrices can be stored in an al-
most linear amount of units of memory. The structure of H-matrices has originally been applied
to integral equations, see [4, 5]. Recently [6, 2] it was shown that the inverse of finite element
discretizations of operators of type (2) can be approximated by H-matrices with a blockwise rank
that depends logarithmically on both, the number of unknowns n and the accuracy ε. Interest-
ingly, this approximation is very robust with respect to non-smooth coefficients. The presented
approximate LU decomposition can be computed in significantly less time while keeping the
same robustness with respect to the coefficients of D.

The structure of the following part of this article is as follows: In Section 2 a brief review of
the structure of H-matrices will be given. All results and notations from the field of H-matrices
necessary for this article will be presented. In particular we will describe how a hierarchical
matrix partition is built from an arbitrary quasi-uniform discretization of Ω. In contrast to
multigrid methods, where coarse grid nodes would have to be identified, we only have to cluster
geometrically neighbored degrees of freedom.

Our aim is to accelerate the usual LU decomposition by employing H-matrices as approx-
imants to the factors L and U . It is by no means obvious that L and U allow for such an
approximation. This question will be answered in Section 3. For this purpose we first prove that
each Schur complement in A can be approximated by H-matrices. This relies on the fact that the
inverse of A has this property. It will be seen that the knowledge that each Schur complement
of a matrix can be approximated will be enough to show that the factors L and U have approx-
imants in the set of H-matrices. In contrast to the inverse of a finite element Galerkin matrix,
the LU decomposition of it has no analytic equivalent. It is thus surprising that the matrix
partition that has proved useful for elliptic problems can also be used for the approximation of
the factors L and U . The complexity estimates show the same dependence on the coefficients
of operator (2) as the estimates for the H-inverse. Hence, the asymptotic complexity and the
robustness of the hierarchical inverse is inherited by the H-LU decomposition.

In Section 4 this result is used when generating the approximate LU decomposition by an
approximate block LU decomposition procedure using the H-arithmetic. Once the matrix par-
tition has been generated from the mesh information, by this procedure an approximate LU
decomposition can be obtained from any Galerkin matrix in a purely algebraic way. Finally, in
Section 5 numerical results for elliptic partial differential operators with non-smooth coefficients
will confirm our analysis. It will be seen that the proposed approximate LU decomposition can
be computed, stored and used during forward/backward substitution with almost linear com-
plexity. Compared with the hierarchical inverse, the H-LU decomposition can be computed in
significantly less time. Furthermore, a problem-independent number of iterations of the con-
jugate gradients method can be achieved if a low-precision H-LU decomposition is used as a
preconditioner. Since the proposed preconditioner is explicit, it is particularly efficient if the
same system with many right hand sides has to be solved.

2 Hierarchical matrices

This section gives a brief overview over the structure of H-matrices originally introduced by
Hackbusch et al. [12, 15]. We will describe the two principles on which the efficiency of H-
matrices is based. These are the hierarchical partitioning of the matrix into blocks and the
blockwise restriction to low-rank matrices. These principles were also used in the mosaic-skeleton
method [23].

In this article we will consider matrices A ∈ R
n×n with entries

aij = a(ϕj , ϕi), i, j = 1, . . . , n, (3)

3

where a is a bilinear form and ϕi are basis functions with support Xi := supp ϕi, i ∈ I :=
{1, . . . , n}. For this article it is crucial that the basis functions ϕi are locally supported. Matrices
of type (3) arise for instance from the Galerkin method, which is frequently used to discretize
operators of type (2). If a arises from the variational formulation of differential operators, then
A is a sparse matrix. If a, however, incorporates a non-local operator, then A will be fully
populated in general.

In order to be able to approximate each block b = t × s, t, s ⊂ I, of A by a matrix of low
rank, i.e.,

Ab ≈ UV T , U ∈ R
t×k, V ∈ R

s×k,

where k is small compared with |t| and |s|, b has to satisfy a certain condition which is caused by
the operator hidden in a. In the field of elliptic partial differential operators D the corresponding
Green function G(x, y) has an algebraic singularity for x = y. Hence, the following condition on
b = t × s has proved useful:

min{diam Xt, diam Xs} < η dist(Xt,Xs), (4)

where η > 0 is a given real number, which typically is chosen from the interval [0.5, 1.5]. Blocks
(t, s) satisfying (4) will be called admissible. The support Xt of a cluster t is the union of the
supports of the basis functions corresponding to the indices in t:

Xt :=
⋃
i∈t

Xi.

The far-field F(t) of t ⊂ I is defined as

F(t) := {i ∈ I : η dist(Xi,Xt) > diam Xt}

and by Nη(t) := I \ Fη(t) we denote the near-field of t. As usual we denote

diam Xt = sup
x,y∈Xt

|x − y| and dist(Xt,Xs) = inf
x∈Xt, y∈Xs

|x − y|.

Hence, (4) is equivalent to the condition s ⊂ F(t) or t ⊂ F(s). Note that condition (4) implies

Figure 1: An admissible cluster pair (t, s)

that the partition we are looking for has to be refined towards the diagonal of A, since the
diagonal entries arise from the interaction of the same basis functions, i.e., dist(Xt,Xs) = 0 for
all blocks t × s containing the diagonal.

4

2.1 The cluster tree

Since A cannot be approximated globally by a single low-rank matrix, we have to subdivide A
into admissible blocks. One possibility is to recursively subdivide a block b = t × s into four
subblocks t1 × s1, t1 × s2, t2 × s1 and t2 × s2, where t = t1 ∪ t2 and s = s1 ∪ s2, until its parts
satisfy condition (4). Another possibility, which aims at generating blocks of largest possible
size, is proposed in [5].

The rule how to subdivide a cluster t is given by the so called cluster tree TI satisfying the
following conditions:

(i) I is the root of TI

(ii) if t ∈ TI is not a leaf, then t has sons t1, t2 ∈ TI so that t = t1 ∪ t2 and t1 ∩ t2 = ∅.
The set of sons of t is denoted by S(t), while L(TI) stands for the set of leaves of the tree TI .
We assume contiguous clusters t, i.e., for t ∈ TI there is tmin, tmax ∈ N such that

t = {i ∈ I : tmin ≤ i ≤ tmax}. (5)

A cluster tree is usually generated by recursive subdivision of I so as to minimize the diameter
of each part. For practical purposes the recursion should be stopped if a certain cardinality nmin

of the clusters is reached, rather than subdividing the clusters until only one index is left.
There a different methods for building the cluster tree. We favor the following strategy which

is based on the principal component analysis and can be applied to arbitrary quasi-uniform sets
Xi with centers pi ∈ R

d, i ∈ I. A cluster t ⊂ I is subdivided by the hypersurface through its
center

mt :=
∑

i∈t |Xi|pi∑
i∈t |Xi|

with normal wt, where wt is the main direction of t, i.e., the vector maximizing∑
i∈t

|wT (pi − mt)|2

with respect to w. Note that with Dt :=
∑

i∈t(pi − mt)(pi − mt)T ∈ R
d×d it holds that∑

i∈t

|wT (pi − mt)|2 =
∑
i∈t

wT (pi − mt)(pi − mt)T w = wT Dtw.

Hence, wt is the eigenvector corresponding to the largest eigenvalue of the symmetric matrix Dt.
Using wt, the sons S(t) = {t1, t2} of t are defined by

t1 = {i ∈ t : wT
t (pi − mt) > 0}

and t2 := t \ t1. Note that the assumption (5) can be satisfied by moving the indices of t1 to the
beginning of t thereby reordering the index set I. The same division strategy is then recursively
applied to the sons t1, t2 of t. The depth p of the resulting cluster tree TI is of order log n. The
complexity of building it can be estimated as O(n log n); cf. [3]. In the case of quasi-uniform
meshes it can be seen that using this procedure the diameters of two clusters t and s from the
same level of TI are equivalent in the following sense: there is a constant q ≥ 1 such that

diam Xt ≤ q diam Xs. (6)

Remark 2.1. Since for each subdivision we have only two possibilities to arrange the indices,
i.e, t = [t1, t2] or t = [t2, t1], the above construction leaves room for only 2pnmin! permutations
of I (the size of the leaves in TI is assumed to be exactly nmin). Hence, building the cluster tree
determines the numbering of the indices in I up to O(n) permutations.

5

2.2 The block cluster tree

Based on a cluster tree TI which contains a hierarchy of partitions of I, we are able to construct
the so called block cluster tree TI×I describing a hierarchy of partitions of I × I by the following
rule:

procedure build block cluster tree(s × t)
begin

if t × s is not admissible and s, t �∈ L(TI) then
S(t × s) := {t′ × s′ : t′ ∈ S(t), s′ ∈ S(s)}
for t′ × s′ ∈ S(t × s) do build block cluster tree(t′ × s′)

else S(t × s) := ∅
end

Applying build block cluster tree to I × I, we obtain a cluster tree for the index set I × I.
Upon completion of the algorithm, the set of leaves P := L(TI×I) is a partition of I × I with
blocks b = t×s ∈ P either satisfying (4) or consisting of clusters t and s with min{|t|, |s|} ≤ nmin.
For the generated blocks b = t × s ∈ P it holds that b is either on the diagonal (t = s), in the
lower triangular part (min t ≥ max s) or in the upper triangular part (max t ≤ min s). The
complexity of building the block cluster tree in the case of quasi-uniform grids can be estimated
as O(η−dn log n); cf. [3].

We are now in a position to define the set of H-matrices for a partition P with blockwise
rank k

H(P, k) := {M ∈ R
I×I : rankMb ≤ k for all b ∈ P}.

Note that H(P, k) is not a linear space since in general the sum of two rank-k matrices exceeds
rank k.
Remark 2.2. For a block B ∈ R

t×s the low-rank representation B = UV T , U ∈ R
t×k, V ∈

R
s×k, is only advantageous compared with the entrywise representation, if k(|t| + |s|) ≤ |t| |s|.

For the sake of simplicity in this article we will however assume that each block has the low-rank
representation. Employing the entrywise representation for appropriate blocks will accelerate
the algorithms.

The cost of multiplying an H-matrix M ∈ H(P, k) or its transposed MT by a vector x ∈ R
n

is inherited from the blockwise matrix-vector multiplication:

Mx =
∑

t×s∈P

Mt×sxs and MT x =
∑

t×s∈P

(Mt×s)T xt.

Since each block t×s has the representation Mt×s = UV T , U ∈ R
t×k, V ∈ R

s×k (see Remark 2.2),
O(k(|t|+|s|)) units of memory are needed to store Mt×s. The matrix-vector multiplies Mt×sxs =
UV T xs and (Mt×s)T xt = V UT xt can be done with O(k(|t| + |s|)) operations. Exploiting the
hierarchical structure of M , it can therefore be shown that both storing M and multiplying M
or MT by a vector has O(η−dkn log n) complexity. For a rigorous analysis the reader is referred
to [3]. Therefore, H-matrices are well suited for iterative schemes such as Krylov subspace
methods.

2.3 Bandwidth and H-matrices

Although H-matrices are primarily aiming at dense matrices, the stiffness matrix A of the
differential operator D from (2) is in H(P, nmin) and can therefore be stored in this format with
complexity O(n). This can be seen by the following arguments. If b ∈ P is admissible, then

6

the supports of the basis functions are pairwise disjoint. Hence, the matrix entries in this block
vanish. In the remaining case, b does not satisfy (4). Then the size of one of the clusters is less
or equal to nmin. In either case, the rank of Ab does not exceed nmin. The last observation is
of particular importance since it will allow to compute an LU decomposition using approximate
arithmetical operations on the set of H-matrices, see Section 4.

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

0 0
0

0 0

0 0

0 0 0

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

0
0 0

0 0

0 0 0

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0
0

0 0
0 0

0 0
0 0

0 0 0 0 0

0 0
0

0 0
0 0

0 0 0

0 0 0

0 0
0 0

15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0
0

0
0

15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

0 0

0
0 0

0
0 0

0 0

0 0 0

0 0

0
0

0
0 0

0 0

0 0

0 0

0 0

0
0

15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

0 0
0

0 0

0 0

0 0 0

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

0
0 0

0 0

0 0 0

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

Figure 2: A sparse H-matrix with its rank distribution

The efficiency of the usual LU decomposition is determined by the bandwidth of A. The
reason for this is that although A is sparse, the factors L and U will in general be fully populated
up to the bandwidth. Since H-matrices are able to handle dense matrices with almost linear
complexity, the bandwidth of A is not an issue when using this structure. Due to the reordering
of indices required when building the cluster tree, we even obtain a bandwidth which is of order
n. This will result in an enormous fill-in and is unavoidable as can be seen by the following
example.

A matrix entry aij in the Galerkin matrix A will in general be non-zero if the supports of the
associated basis functions ϕi and ϕj have a non-empty intersection. For simplicity we investigate
the situation which occurs for a regular triangulation of the unit square in R

2. Assume that
after two subdivision steps this square has been subdivided into four smaller squares of the same
size each containing n/4 supports. During the subdivision, the indices are reordered so that the
k-th square contains the indices (k − 1)n/4 + 1 to kn/4, k = 1, . . . , 4. Hence, the first and the
last square contain indices which differ by at least n/2. These squares intersect in the center
of the original square. Therefore, at this point the supports of two basis functions ϕi and ϕj

with |i − j| ≥ n/2 intersect. This situation persists when the subdivision is continued since the
indices are only rearranged within each subsquare.

2.4 Where can H-matrices be applied ?

The structure of H-matrices was originally designed to accelerate the building process and the
matrix-vector multiplication of discrete integral operators with smooth kernels having an alge-
braic singularity at x = y. This kind of integral operator arises for instance from the boundary
element method. For such operators the ACA algorithm [4, 5] can be used to generate the
low-rank approximants from few of the original matrix entries.

In addition to discretizations of integral operators with smooth kernel functions, in [6, 2] it
was shown that inverses of discrete elliptic differential operators with measurable coefficients can
be approximated on partitions satisfying (4). Since the analysis of this article will be based on
approximations of the inverse, we state the main result of [2]. Let the operator D from (2) be

7

a uniformly elliptic, i.e., for the coefficient C(x) ∈ R
d×d of D it holds that C is symmetric with

cij ∈ L∞(Ω) and
0 < λ ≤ λ(x) ≤ Λ

for all eigenvalues λ(x) of C(x) and almost all x ∈ Ω.
Let eh(u) := ‖u − Phu‖L2(Ω) be the finite element error, where Ph : H1

0 (Ω) → Vh is the Ritz
projector mapping u ∈ H1

0 (Ω) to its finite element solution, i.e., the solution of a(uh, vh) = f(vh)
for all vh ∈ Vh. We assume that the finite element method converges in the following sense

eh(u) ≤ εh‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω), (7)

where εh → 0 as h → 0. Note that due to the lack of regularity of D we cannot assume a specific
rate of convergence.
Theorem 2.3. Let p be the depth of the cluster tree TI defined in Section 2.1. Then there is a
constant c > 0 defining k := cp2 logd+1(p/εh) and there is CH ∈ H(P, k) such that

‖A−1 − CH‖2 ≤ c(D,Ω, η) εh,

where c(D,Ω, η) > 0 depends on the coefficients of D, the diameter of Ω and η. If εh = O(hβ)
for some β > 0, k = O(logd+3 n) holds.

In order to prove the previous theorem, the integral representation

D−1ϕ(x) =
∫

Ω
G(x, y)ϕ(y) dy

with the Green function G of D and Ω was used. In contrast to operators arising from the
boundary element method, the kernel function G is only locally in H1 with respect to each
variable. Nevertheless it is possible to prove that G and as a consequence the inverse of the
finite element stiffness matrix can be approximated.
Remark 2.4. Since the proof of Theorem 2.3 is based on the finite element error estimate (7),
we were only able to show existence of approximants with an accuracy which is of the order of
the finite element error εh. This is not a restriction since a higher accuracy in the approximation
of the inverse would be superposed by the finite element error in the solution anyway. However,
numerical experiments show that the above result is true for any accuracy. Therefore, in this
article we assume that for any ε > 0 there is CH ∈ H(P, k) with k ∼ | log ε|d+1(log n)2 such that

‖A−1 − CH‖2 < cε, (8)

where c > 0 depends on the coefficients of D, the diameter of Ω and the cluster parameter η.

2.5 Schur complements

For domain decomposition methods (see for instance [22]), the efficient treatment of Schur com-
plements is of particular importance. In this section it will be shown that Schur complements
of subblocks of A can be approximated by H-matrices. This result will lay ground to our main
aim, the approximation of the factors L and U arising from the LU decomposition of A.

Assume that the Galerkin stiffness matrix A ∈ R
n×n is partitioned in the following way:

A =
[
A11 A12

A21 A22

]
, (9)

8

where A11 ∈ R
r×r, r ⊂ I. We will show that the Schur complement

S = A22 − A21A
−1
11 A12

can be approximated by an H-matrix with blockwise rank k, where k depends only logarithmi-
cally on both, the approximation accuracy and n. For this purpose it is crucial to note that
A11 in (9) is nothing but the Galerkin matrix of D if we replace Ω by the subdomain Xr × Xr.
Hence, Theorem 2.3 guarantees that an H-matrix approximant for A−1

11 exists.
Let

N(t) = {i ∈ I : dist(Xi,Xt) = 0}
denote a neighborhood of the cluster t. Since #t ≥ nmin, for quasi-uniform meshes we may
assume that

diam XN(t) ≥ 3h, (10)

where h = maxi∈I diam Xi. We need the following basic lemma, which states that the neighbor-
hood of t is in the far-field of the neighborhood of s if t is in the far-field of s.
Lemma 2.5. Let 0 < η < 1/(3 + q), where q is defined in (6). If t ⊂ Fη(s), then

N(t) ⊂ Fη̃(N(s)), where η̃ =
3η

1 − (3 + q)η
.

Proof. Let x, y ∈ XN(s). Since dist(x,Xs) ≤ h, we obtain

|x − y| ≤ dist(x,Xs) + dist(y,Xs) + diam Xs ≤ diam Xs + 2h.

Hence, diam XN(s) ≤ diam Xs + 2h. If x ∈ XN(t) and y ∈ XN(s), using (6) and (10) one has

|x − y| ≥ dist(Xt,Xs) − dist(x,Xt) − diam Xt − dist(y,Xs) − diam Xs

≥ 1
η
(1 − (1 + q)η)diam Xs − 2h

≥ 1
η
(1 − (1 + q)η)(diam XN(s) − 2h) − 2h

≥ 1
3η

(1 − (3 + q)η)diam XN(s),

which proves the assertion.

By the following lemma (cf. [10]) it is possible to relate the blockwise spectral norm of an
H-matrix to its global norm.
Lemma 2.6. If ‖Ab‖2 ≤ ε for all b ∈ P , then ‖A‖2 ≤ cpε, where p is the depth of the cluster
tree TI .

Using the last two lemmas, we can now prove that the Schur complement S of finite element
Galerkin matrices A can be approximated. For the proof we exploit the fact that the spectral
norm of A is bounded with respect to n

‖A‖2 ≤ cn1−2/d, (11)

see for instance [14].

9

Theorem 2.7. Let A ∈ R
n×n be partitioned as in (9). Then for the Schur complement

S = A22 − A21A
−1
11 A12

of A11 in A there is SH ∈ H(P, k), where k ∼ | log ε|d+1(log n)2, such that

‖S − SH‖2 < cpn2(1−2/d)ε,

where c > 0 is independent of n and ε.

Proof. We have to show that for each admissible block b = t × s ∈ P in the rows and columns
of A22 and any prescribed accuracy ε > 0 we can find a low-rank matrix which approximates Sb

with accuracy ε. Since b is admissible, (A22)b = 0 holds. Hence,

Sb = −AtrA
−1
11 Ars = −

∑
i,j∈r

Ati(A−1
11)ijAjs.

If i �∈ N(t), then Ati = 0. If on the other hand j �∈ N(s), then Ajs = 0. With the notation
N ′(t) = N(t) ∩ r, we have

Sb = −
∑

i∈N ′(t),j∈N ′(s)

Ati(A−1
11)ijAjs.

Since b is admissible, we have t ⊂ Fη(s) or s ⊂ Fη(t). According to Lemma 2.5, N(t) ⊂ Fη̃(N(s))
or N(s) ⊂ Fη̃(N(t)) holds. Following Theorem 2.3 (with η replaced by η̃), there is U ∈ R

N ′(t)×k

and V ∈ R
N ′(s)×k with k ∼ | log ε|d+1(log n)2 such that

‖(A−1
11)N ′(t)N ′(s) − UV T ‖2 < ε.

Let U and V be extended to Û ∈ R
r×k and V̂ ∈ R

r×k by adding zero rows. Observe that

AtrÛ V̂ T Ars =
∑

i∈N ′(t),j∈N ′(s)

k∑
�=1

AtiUi�Vj�Ajs =
k∑

�=1

⎛
⎝ ∑

i∈N ′(t)

AtiUi�

⎞
⎠

⎛
⎝ ∑

j∈N ′(s)

Vj�Ajs

⎞
⎠ = XY T ,

where X ∈ R
t×k, Y ∈ R

s×k with the entries

Xt� =
∑

i∈N ′(t)

AtiUi� and Ys� =
∑

j∈N ′(s)

Vj�Ajs, � = 1, . . . , k.

Define B ∈ R
r×r with entries

bij =

{
(A−1

11)ij , if i ∈ N ′(t) and j ∈ N ′(s)
0, else,

then

‖Sb − XY T ‖2 = ‖Atr(B − Û V̂ T)Ars‖2 ≤ ‖Atr‖2‖(A−1
11)N ′(t)N ′(s) − UV T ‖2‖Ars‖2 < ε‖A‖2

2.

Using (11) and Lemma 2.6, we obtain the assertion.

10

3 Hierarchical LU decomposition

Assume that all minors of A are non-zero. Then A can be decomposed as follows

A = LU,

where L is a lower-triangular and U is an upper-triangular matrix. In this subsection it will be
shown that the factors L and U can be approximated by H-matrices LH and UH if any Schur
complement in A has this property. Note that the following proof consists of purely algebraic
arguments only. Hence, the LU decompositions can be accelerated also for problems that do
not stem from finite element applications as long as the Schur complement is known to have an
approximant in the set of H-matrices.

When computing pointwise LU decompositions, usually pivoting is performed in order to
avoid zero or almost zero pivots. For block versions of the LU algorithm the possibilities of
pivoting are limited if the blocking is given. In our case we can only choose from two possible
pivots: block t1 × t1 or block t2 × t2 if the LU decomposition of a block t × t, t = t1 ∪ t2 is to
be computed; cf. Remark 2.1. Hence, the accuracy analysis cannot rely on the advantages of
pivoting.

In order to show that L and U can be approximated by H-matrices it seems natural to define
the approximants LH and UH recursively by replacing appropriate subblocks of the arising
Schur complements with low-rank matrices. The error could then be estimated by the error
analysis of the block LU decomposition, see [9]. The problem with this approach is that the
arising Schur complements are not the original complements but complements that contain the
perturbations from previous approximation steps. Since it cannot be guaranteed that these
perturbed complements can be approximated by H-matrices, we have to go a different way.

In the following subsection we first find a recursive relation between the Schur complement
of a block b and the complements of its subblocks. An approximation of the Schur complement
of b will then be defined by approximating the Schur complements on the leaves of b and using
this recursive relation in order to bring the approximation to b. This means that we do not
define an approximate LU decomposition by approximation in each step. Instead, we construct
an exact LU decomposition of an appropriately perturbed original Galerkin matrix.

3.1 Approximating Schur complements hierarchically

Let A ∈ R
n×n and t, s ⊂ I. With the notations t̂ = {i ∈ I : i ≤ max t} and ŝ = {j ∈ I : j ≤

max s} the Schur complement of the block t × s in At̂ŝ is defined as

S(t, s) = Ats − AtrA
−1
rr Ars, (12)

where r = {i ∈ I : i < min{t, s}}, see Figure 3. Note that in the case r = ∅ this definition is
meant to result in S(t, s) = Ats.

Before we relate the Schur complement of a block to the complements of its subblocks, we
state two estimates that will be important for the following error analysis. Let A(k) denote the
matrix after k steps of the pointwise LU algorithm. For the stability of the LU decomposition
the so-called growth factor (see for instance [16])

ρn := max
k=1,...,n−1

|A(k)|
|A| (13)

plays a central role. Here and in the following we use |A| = maxi,j=1,...,n |aij |. As a consequence

|S(t, t)| ≤ ρn|A| for all t ⊂ I. (14)

11

.
..
..
..
..
..
..
..
.

r

r

Arr

Atst

s

ŝ

t̂

Figure 3: Schur complement of a block t × s

A result due to Wilkinson states that ρn ≤ 2 if A is diagonally dominant (by rows or by columns),
see [16].

For t ⊂ I define t̄ = {i ∈ I : i ≥ min t} and r = I \ t̄. Since A is assumed to be non-singular,
each Schur complement in A is invertible. The (2, 2) block of the inverse of

A =
[
Arr Art̄

At̄r At̄t̄

]

coincides with S(t̄, t̄)−1. Hence, we have

‖S(t̄, t̄)−1‖2 ≤ ‖A−1‖2. (15)

From definition (12) the following relation between the complement of a block and the com-
plements of its subblocks can be obtained. For the ease of notation we first consider the case of
blocks on the diagonal.
Lemma 3.1. Let t ∈ TI and t1, t2 its sons. Then

S(t, t) =
[
S(t1, t1) S(t1, t2)
S(t2, t1) S(t2, t2) + S(t2, t1)S(t1, t1)−1S(t1, t2)

]
.

Proof. Let S(t, t) be decomposed in the following way

S(t, t) =
[
S11 S12

S21 S22

]
.

It is obvious that S11 = S(t1, t1), S12 = S(t1, t2) and S21 = S(t2, t1). Therefore, we only have to
show that

S22 = S(t2, t2) + S21S
−1
11 S12.

Let r = {i ∈ I : i < min t}. Then from the definition of S(t, t) it holds that

S(t2, t2) = At2t2 −
[
At2r At2t1

] [
Arr Art1

At1r At1t1

]−1 [
Art2

At1t2

]
.

Since [
Arr Art1

At1r At1t1

]−1

=
[
A−1

rr −A−1
rr Art1S

−1
11

0 S−1
11

] [
I 0

−At1rA
−1
rr I

]
,

12

we have

S(t2, t2) = At2t2 −
[
At2r At2t1

] [
A−1

rr −A−1
rr Art1S

−1
11

0 S−1
11

] [
I 0

−At1rA
−1
rr I

] [
Art2

At1t2

]

= At2t2 −
[
At2r At2t1

] [
A−1

rr −A−1
rr Art1S

−1
11

0 S−1
11

] [
Art2

S12

]

= At2t2 −
[
At2rA

−1
rr S21S

−1
11

] [
Art2

S12

]
= S22 − S21S

−1
11 S12,

which proves the assertion.

Since a block t × s in the upper triangular part, i.e., max t ≤ min s, can be embedded into
the block r × r, r = {i ∈ I : min t ≤ i ≤ max s}, Lemma 3.1 gives

S(t, s) =
[

S(t1, s1) S(t1, s2)
S(t2, s1) + S(t2, t1)S(t1, t1)−1S(t1, s1) S(t2, s2) + S(t2, t1)S(t1, t1)−1S(t1, s2)

]
.

Similarly, for a block t × s in the lower triangular part, i.e., max s ≤ min t, it holds that

S(t, s) =
[
S(t1, s1) S(t1, s2) + S(t1, s1)S(s1, s1)−1S(s1, s2)
S(t2, s1) S(t2, s2) + S(t2, s1)S(s1, s1)−1S(s1, s2)

]
.

According to Theorem 2.7, for each admissible b ∈ L(TI×I) the corresponding Schur comple-
ment S(b) can be approximated by a matrix S̃(b) of low rank, say kS . If b ∈ L(TI×I) does not
satisfy (4), we set S̃(b) = S(b). Following the recursive relation from Lemma 3.1, we define a
hierarchy of approximants to the Schur complements in the following way:

S̃(t, t) =
[
S̃(t1, t1) S̃(t1, t2)
S̃(t2, t1) S̃(t2, t2) + S̃(t2, t1)S̃(t1, t1)−1S̃(t1, t2)

]

for blocks t × t on the block diagonal. For blocks t × s in the upper triangular part we set
accordingly

S̃(t, s) =
[

S̃(t1, s1) S̃(t1, s2)
S̃(t2, s1) + S̃(t2, t1)S̃(t1, t1)−1S̃(t1, s1) S̃(t2, s2) + S̃(t2, t1)S̃(t1, t1)−1S̃(t1, s2)

]
,

(16)
and for blocks t × s in the lower part we define

S̃(t, s) =
[
S̃(t1, s1) S̃(t1, s2) + S̃(t1, s1)S̃(s1, s1)−1S̃(s1, s2)
S̃(t2, s1) S̃(t2, s2) + S̃(t2, s1)S̃(s1, s1)−1S̃(s1, s2)

]
.

Note that S̃(t1, t1) and S̃(s1, s1) are invertible if ε is small enough.
In the following lemma we derive an estimate for ‖S(b) − S̃(b)‖2 in terms of the quantity

κ := max{‖S(t, t)−1S(t, s)‖, ‖S(s, t)S(t, t)−1‖, t, s ∈ TI satisfying max t ≤ min s}.

Lemma 3.2. For all blocks b ∈ TI×I it holds that

‖S(b) − S̃(b)‖2 ≤ 2�(κ + 1)2�ε + O(ε2), (17)

where � denotes the maximum distance of b to its leaves in the block cluster tree TI×I .

13

Proof. The assertion is proved by induction over �. For � = 0, i.e., leaves in the block cluster
tree, (17) is trivially satisfied, since S̃(b) is just the low-rank approximant if b satisfies (4) or
S̃(b) = S(b) in the case that b is non-admissible.

Let b have height at most � + 1. Then the sons of b have height at most � and satisfy the
assertion due to the induction assumption. We consider blocks b = t × s on the diagonal, i.e.,
t = s. Then

S(b) =
[
S11 S12

S21 S22 + S21S
−1
11 S12

]
and S̃(b) =

[
S̃11 S̃12

S̃21 S̃22 + S̃21S̃
−1
11 S̃12

]
,

where for the ease of notation we set Sij = S(ti, tj) and S̃ij = S̃(ti, tj), i, j = 1, 2. As usual, t1
and t2 denote the sons of t. Due to the assumption, for the differences Eij := S̃ij−Sij , i, j = 1, 2,
it holds that

‖Eij‖2 ≤ 2�(κ + 1)2�ε + O(ε2).

With this notation

S̃(b) − S(b) =
[
E11 E12

E21 E22 + D

]
, where D := S̃21S̃

−1
11 S̃12 − S21S

−1
11 S12.

It remains to find a bound for ‖D‖2. Since

D = (S21 + E21)S̃−1
11 (S12 + E12) − S21S

−1
11 S12

= S21S̃
−1
11 S12 − S21S

−1
11 S12 + E21S̃

−1
11 S̃12 + S̃21S̃

−1
11 E12

= S21(S̃−1
11 − S−1

11)S12 + E21S̃
−1
11 S12 + S21S̃

−1
11 E12 + O(ε2)

and since S̃−1
11 has the expansion

S̃−1
11 = S−1

11 − S−1
11 E11S

−1
11 + O(ε2),

we obtain

‖D‖2 ≤ 2�(κ + 1)2�ε
(‖S21S

−1
11 ‖2‖S−1

11 S12‖2 + ‖S−1
11 S12‖2 + ‖S21S

−1
11 ‖2

)
+ O(ε2)

≤ 2�(κ + 1)2�εκ(κ + 2) + O(ε2).

This leads to

‖S̃(b) − S(b)‖2 = ‖
[
E11 E12

E21 E22 + D

]
‖2 ≤ 2max{‖E11‖2, ‖E12‖2, ‖E21‖2, ‖E22‖2 + ‖D‖2}

≤ 2ε2�(κ + 1)2� (1 + κ(κ + 2)) + O(ε2) = 2�+1(κ + 1)2(�+1)ε + O(ε2).

For blocks b = t × s in the upper or lower triangular part similar arguments apply.

Let b = t × s be a block in the upper triangular part, i.e., max t ≤ min s. Let ŝ = {i ∈ I :
i > max t} ⊃ s and t̄ = t ∪ ŝ = {i ∈ I : i ≥ min t}. The (1, 2)-block of the block inverse of

S(t̄, t̄) =
[
S(t, t) S(t, ŝ)
S(ŝ, t) S(ŝ, ŝ) + S(ŝ, t)S(t, t)−1S(t, ŝ)

]

is S(t, t)−1S(t, ŝ)S(ŝ, ŝ)−1. Hence, using (14) and (15) we obtain

‖S(t, t)−1S(t, s)‖2 ≤ ‖S(t, t)−1S(t, ŝ)‖2 = ‖(S(t̄, t̄)−1)12S(ŝ, ŝ)‖2

≤ ‖S(t̄, t̄)−1‖2‖S(ŝ, ŝ)‖2 ≤ nρn‖A−1‖2‖A‖2 = nρncond2(A).

14

For blocks b = t × s in the lower triangular part the same arguments apply. Hence, we obtain
the following worst-case estimate for κ

κ ≤ nρncond2(A).

If A is symmetric positive definite, then each Schur complement S(t, t), t ⊂ I is symmetric
positive definite. With the same arguments as above one has

‖S(t, t)−1S(t, s)‖2 ≤ ‖(S(t̄, t̄)−1)12S(ŝ, ŝ)‖2 = ‖(S(t̄, t̄)−1/2S(t̄, t̄)−1/2)12S(ŝ, ŝ)‖2

≤ ‖S(t̄, t̄)−1/2‖2‖
[
(S(t̄, t̄)−1/2)1,2

(S(t̄, t̄)−1/2)2,2

]
S(ŝ, ŝ)‖2

= ‖S(t̄, t̄)−1‖1/2
2 ‖S(ŝ, ŝ)(S(t̄, t̄)−1)22S(ŝ, ŝ)‖1/2

2

= ‖S(t̄, t̄)−1‖1/2
2 ‖S(ŝ, ŝ)‖1/2

2 .

The last equality follows from the fact that (S(t̄, t̄)−1)22 = S(ŝ, ŝ)−1. For symmetric positive
definite A one has ‖S(ŝ, ŝ)‖2 ≤ ‖Aŝŝ‖2 ≤ ‖A‖2. Hence, together with (15) we obtain

κ ≤
√

cond2(A).

3.2 Constructing the factors LH and UH

Based on the approximate Schur complements S̃(b), b ∈ TI×I , we construct the factors LH and
UH of the LU decomposition of Ã := S̃(I, I) by the following recursion. In order to define the
factors L̃ and Ũ of S̃(t, t) = L̃Ũ , t ∈ TI \ L(TI), we set

L̃ :=
[

L̃1 0
S̃(t2, t1)Ũ−1

1 L̃2

]
and Ũ :=

[
Ũ1 L̃−1

1 S̃(t1, t2)
0 Ũ2

]
, (18)

where
L̃1Ũ1 = S̃(t1, t1), L̃2Ũ2 = S̃(t2, t2)

and t1, t2 are the sons of t. If t ∈ L(TI) then L̃ and Ũ are defined by the pointwise LU
decomposition. Note that since[

L̃1 0
S̃(t2, t1)Ũ−1

1 L̃2

] [
Ũ1 L̃−1

1 S̃(t1, t2)
0 Ũ2

]
=

[
L̃11Ũ11 S̃(t1, t2)
S̃(t2, t1) L̃22Ũ22 + S̃(t2, t1)S̃(t1, t1)−1S̃(t1, t2)

]
,

due to Lemma 3.1 we obtain L̃Ũ = S̃(t, t).
The following lemma shows that the off-diagonal blocks in (18) are blockwise low-rank. Since

the diagonal blocks L̃1, L̃2 and Ũ1, Ũ2 have the same structure as L̃ and Ũ , respectively, it follows
that L̃ and Ũ are H-matrices.
Lemma 3.3. Let X,Y solve L̃X = S̃(t, s) and Y Ũ = S̃(s, t), where max t ≤ min s. Then X
and Y are H-matrices with blockwise rank at most kS , where kS is the rank that was used in
the construction of S̃.

Proof. We prove the assertion by induction. If t × s is a leaf, then S̃(t, s) is a matrix of rank at
most kS . Hence, the rank of X = L̃−1S̃(t, s) cannot exceed kS . If t × s is not a leaf, t has sons
t1 and t2. If we define X1 ∈ R

t1×s and X2 ∈ R
t2×s by

L̃1X1 = S̃(t1, s) and L̃2X2 = S̃(t2, s),

15

respectively, we know by induction that X1 and X2 are H-matrices. Hence,

X :=
[
X1

X2

]

is an H-matrix satisfying

L̃X =
[

L̃1 0
S̃(t2, t1)Ũ−1

1 L̃2

] [
X1

X2

]
=

[
S̃(t1, s)

S̃(t2, s) + S̃(t2, t1)S̃(t1, t1)−1S̃(t1, s)

]
= S̃(t, s)

due to the definition (18) of L̃ and (16). The proof for Y can be done analogously.

The following theorem is the main result of this article.
Theorem 3.4. Assume that any Schur complement S(b), b ∈ P admissible, of A can be ap-
proximated by a matrix of rank k with accuracy ε such that k ∼ (log n)α| log ε|β, α, β > 0. Then
there are lower and upper triangular matrices LH, UH ∈ H(P, k′) with

k′ ∼ (log n)α+β| log ε|β(log(nρncond2(A)))β

such that
‖A − LHUH‖2 ≤ ε.

Proof. According to Lemma 3.3 there are H-matrices LH, UH ∈ H(P, k) satisfying S̃(I, I) =
LHUH. Since A = S(I, I), we have

‖A − LHUH‖ = ‖S(I, I) − S̃(I, I)‖ ≤ 2p(nρncond2(A) + 1)2pε, (19)

where p ∼ log n is the depth of the cluster tree.

Remark 3.5. We have seen in Theorem 2.7 that in the case of finite element discretizations of
elliptic partial differential operators of type (2) each Schur complement S in A can be approx-
imated by an H-matrix. Hence, the last theorem can be applied to such matrices. Compared
with the rank of the inverse the blockwise rank of the factors LH and UH bears an additional
factor (log(n))2(d+1) provided ρn is bounded. However, from the numerical experiments it will
be seen that the complexity of the H-LU decomposition in practice is much smaller than the
complexity of the H-inverse.

4 Computing the hierarchical LU decomposition

In the last section we have seen that the factor L and U from an LU decomposition of A can
be approximated by H-matrices LH and UH whenever the Schur complements in A possess this
property. Although the construction used for the proof could in principle be used to compute
LH an UH, for an improved efficiency we rather use another method which is based on the block
LU decomposition, i.e., on the recursion (18).

On the set H(P, k) of hierarchical matrices approximate versions of the usual matrix oper-
ations like addition, matrix-matrix multiplication and inversion can be defined; cf. [12, 15, 11].
The truncation precision these operations are performed with will be denoted by εH. The hier-
archical LU decomposition can then be computed using these operations during the block LU
decomposition instead of the usual ones.

16

In order to define the H-LU decomposition we exploit the hierarchical block structure of a
block Att, t ∈ TI \ L(TI):

Att =
[
At1t1 At1t2

At2t1 At2t2

]
=

[
Lt1t1

Lt2t1 Lt2t2

] [
Ut1t1 Ut1t2

Ut2t2

]
,

where t1, t2 ∈ TI denote the sons of t in TI . Hence, the LU decomposition of a block Att is
reduced to the following four problems on the sons of t × t:

(i) Compute Lt1t1 and Ut1t1 from the LU decomposition Lt1t1Ut1t1 = At1t1 .

(ii) Compute Ut1t2 from Lt1t1Ut1t2 = At1t2 .

(iii) Compute Lt2t1 from Lt2t1Ut1t1 = At2t1 .

(iv) Compute Lt2t2 and Ut2t2 from the LU decomposition Lt2t2Ut2t2 = At2t2 − Lt2t1Ut1t2 .

If a block t × t ∈ L(TI×I) is a leaf, the usual pivoted LU decomposition is employed. For (i)
and (iv) two LU decompositions of half the size have to be computed. In oder to solve (ii), i.e.,
solve a problem of the structure LttBts = Ats for Bts, where Ltt is a lower triangular matrix
and t × s ∈ TI×I , we use a recursive block forward substitution: If the block t × s is not a leaf
in TI×I , from the decompositions of the blocks Ats, Bts and Ltt into their subblocks (t1, t2 and
s1, s2 are again the sons of t and s, respectively)[

Lt1t1

Lt2t1 Lt2t2

] [
Bt1s1 Bt1s2

Bt2s1 Bt2s2

]
=

[
At1s1 At1s2

At2s1 At2s2

]

one observes that Bts can be found from the following equations

Lt1t1Bt1s1 = At1s1

Lt1t1Bt1s2 = At1s2

Lt2t2Bt2s1 = At2s1 − Lt2t1Bt1s1

Lt2t2Bt2s2 = At2s2 − Lt2t1Bt1s2,

which are again of type (ii). If on the other hand t × s is a leaf, the usual forward substitution
is applied. Similarly, one can solve (iii) by recursive block backward substitution.

The complexity of the above recursions is mainly determined by the complexity of the hier-
archical matrix-matrix multiplication, which can be estimated as O(k2n log2 n) for two matrices
from H(P, k); cf. [11]. Each operation is carried out with precision εH. A result [9] on the
stability analysis of the block LU decomposition states that the product LU is backward stable
in the following sense

‖A − LU‖2 < c(n)εH(‖A‖2 + ‖L‖2‖U‖2).

Provided ‖L‖2‖U‖2 ≈ ‖A‖2, the accuracy of LU will hence be of order εH. Employing the
H-matrix arithmetic, it is therefore possible to generate an approximate LU decomposition of
an H-matrix A ∈ H(P, k) to any prescribed accuracy ε with almost linear complexity. The LU
decomposition of H-matrices of a format that is too restrictive for our needs has already been
used in [17].
Remark 4.1. Although the intermediate results of the H-LU decomposition are guaranteed
to be H-matrices, the blockwise rank k is not known. Note that our theory cannot be applied
to this construction of the LU decomposition since the computed Schur complements in (iv)
are approximate ones. Nevertheless, it will be seen from the numerical experiments that k still
depends logarithmically on both, the accuracy ε and the number of unknowns n.

17

In the case of positive definite matrices A it is possible to define an H-version of the Cholesky
decomposition of a block Att, t ∈ TI \ L(TI):

Att =
[
At1t1 At1t2

AT
t1t2 At2t2

]
=

[
Lt1t1

Lt2t1 Lt2t2

] [
Lt1t1

Lt2t1 Lt2t2

]T

.

This factorization is recursively computed by

Lt1t1L
T
t1t1 = At1t1

Lt1t1L
T
t2t1 = At1t2

Lt2t2L
T
t2t2 = At2t2 − Lt2t1L

T
t2t1

using the usual Cholesky decomposition on the leaves of TI×I . The second equation Lt1t1L
T
t2t1 =

At1t2 is solved for Lt2t1 in a similar way as Ut1t2 has previously been obtained in the LU decom-
position.

Once A has been decomposed, the solution of Ax = b can be found by forward/backward
substitution: LHy = b and UHx = y. Since LH and UH are H-matrices, yt, t ∈ TI \ L(TI), can
be computed recursively by solving the following systems for yt1 and yt2

Lt1t1yt1 = bt1 and Lt2t2yt2 = bt2 − Lt2t1yt1 .

If t ∈ L(TI) is a leaf, a usual triangular solver is used. The backward substitution can be
done analogously. The complexity of this forward/backward substitution is determined by the
complexity of the hierarchical matrix-vector multiplication, which is O(kn log n) if an H(P, k)-
matrix is multiplied by a vector.

4.1 Approximate direct or preconditioned iterative solution

The H-LU decomposition can be used for preconditioning iterative schemes. Let C = LHUH,
where LH and UH are lower and upper triangular H-matrices such that LHUH ≈ A is an
approximate LU decomposition. If A is symmetric positive definite, C = LHLT

H is used as
a preconditioner, where LH is the lower triangular H-matrix from the approximate Cholesky
decomposition LHLT

H ≈ A. Hence, during any Krylov subspace method like GMRES, in addition
to multiplications of A and AT by a vector, forward/backward substitutions have to be applied
when applying C−1 = (LHUH)−1 = U−1

H L−1
H .

Note that in order to generate a preconditioner it is not necessary to compute the H-LU
decomposition with high precision. Assume that we have computed a matrix C such that

‖In − AC−1‖2 ≤ δ < 1. (20)

It can be shown, cf. [7], that

|λi(AC−1)| ≥ 1 − δ, i = 1, . . . , n, (21)

where λi(AC−1) denotes the i-th eigenvalue of AC−1, and for the positive definite case

cond2(AC−1) ≤ 1 + δ

1 − δ
. (22)

Hence, in order to obtain a spectrally equivalent preconditioner with almost linear complexity,
the accuracy δ in (20) can be chosen independently of n, say δ = 0.1. Note that the condition
number will even be problem-independent, i.e., it will not only be bounded with respect to n

18

but also with respect to the coefficients of the operator in (2) and the computational domain Ω.
If A is symmetric positive definite, C also has to be symmetric positive definite in order to be
able to apply the conjugates gradient method. It can be shown [7] that C from (20) possess this
property if for δ from (22) it holds that δ < 1/2. Although in [7] preconditioners based on the
hierarchical inverse were investigated, the same results also hold for preconditioners employing
the hierarchical LU decomposition.

Since both, generating the H-LU decomposition and the forward/backward substitution are
efficient operations, one can equally use the H-LU decomposition as a direct solver. In this case
the accuracy ε which the H-LU decomposition is generated with has to be of the same order
as the finite element error εh. Once the factors have been computed, only forward/backward
substitutions have to be applied. Hence, if Ax = b is to be solved for many right-hand sides,
the overall complexity of this approach might be less than an iterative solution using the H-LU
preconditioner.

5 Numerical results

In this section we make use of the hierarchical LU decompositions for preconditioning finite
element stiffness matrices in two and three spatial dimensions. The emphasis in these tests is
laid on robustness with respect to varying coefficients of the underlying operator.

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

0 0
0

0 0

0 0

0 0 0

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

0
0 0

0 0

0 0 0

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0
0

0 0
0 0

0 0
0 0

0 0 0 0 0

0 0
0

0 0
0 0

0 0 0

0 0 0

0 0
0 0

15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0
0

0
0

15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

0 0

0
0 0

0
0 0

0 0

0 0 0

0 0

0
0

0
0 0

0 0

0 0

0 0

0 0

0
0

15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

0 0
0

0 0

0 0

0 0 0

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

0
0 0

0 0

0 0 0

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

=

15

15 6

0 15 18

0 15

0 0

3 6

0 0

0 0

0 0

0 15

0 0

15

18 6

0 15 18

0
15 6

0 15

0 0

4
3 2

6 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

15 6

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

0
0 15

0 0

3 6

0 0

0 0

0 0

0 15

0 0

0 0

3
4 3

3 6

0 0 4

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

4 6

0 0

0 0

0 0

0 15

0 0

0 0

15

18 6

0 15 18

0 15

0 0

3 6

0 0

0 0

0 0

0 15

0 0

15

18 6

0 15 18

3
18 7

0 15

2 3

4
4 3

6 4

2 2

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

18 7

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

0
0

15 6

0 15

0 0

4
4 3

6 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

0 0

4
3 2

4
4 3

7 4

0 0 4

0 0

0
0

0
0 0

0 0

0 0

0 0

0 0

0
0

15 7

0 15

0 0

4
4 3

7 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

0 0

18

15 6

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

0
15 6

0 15

0 0

4
4 3

6 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

15 6

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

3
3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

2 3

4
5 4

4 7

0 0 4

2 2

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

4 6

0 0

0 0

0 0

0 15

0 0

0 0

18

18 7

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

3
18 7

0 15

2 3

5
4 3

7 4

2 2

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

18 7

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

*

15 15 0

6 15

18

0 0

15 0

0 0

0 0

3 0

6 0

0 0

15 0

15 18 0

6 15

18

0 0
15 0

6 15 0

0 0
0 0

0 0 0

4 0
3 6

2 4 0

0 0
15 0

7 15 0
18 15 0

6 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

0 0
0 0

15 0

0 0

0 0

3 0

6 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

3 0
4

3 0

6 0

3 4 0

0 0
0 0

15 0

0 0

0 0

4 0

6 0

0 0

15 0
0

15 18 0

6 15

18

0 0

15 0

0 0

0 0

3 0

6 0

0 0

15 0

15 18 0

6 15

18

3 2
18 0

7 15 3

0 0
0 0

0 0 0

4 2
4 6

3 4 2

0 0
15 0

7 15 0
18 18 0

7 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

0 0
0 0

15 0

6 15 0

0 0
0 0

0 0 0

4 0
4 6

3 4 0

0 0
15 0

7 15 0
0

0 0
0 0

0 0
0 0

0 0 0 0 0

4 0
3

4 0
4 7

3 4 0

2 4 0

0 0
0 0

15 0

7 15 0

0 0
0 0

0 0 0

4 0
4 7

3 4 0

0 0
15 0

7 15 0
0

18 15 0

6 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

0 0
15 0

6 15 0

0 0
0 0

0 0 0

4 0
4 6

3 4 0

0 0
15 0

7 15 0
18 15 0

6 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

3 2
3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0
3

0 0
0 0

0 0

0 0 0 0

4 2
5

4 0

7 0

4 4 2

0 0
0 0

15 0

0 0

0 0

4 0

6 0

0 0

15 0
0

18 18 0

7 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

3 2
18 0

7 15 3

0 0
0 0

0 0 0

5 2
4 7

3 4 2

0 0
15 0

7 15 0
18 18 0

7 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

All computations were carried out on an Athlon64 PC (2 GHz) with 4 GB of core memory. For
compiling the H-matrix library1, the Intel compiler was used.

5.1 Two-dimensional diffusion

As a first set of tests we consider the Dirichlet boundary value problem

−div α(x)∇u = 0 in Ω,

u = f on ∂Ω,

where Ω = (0, 1)2 is the unit square in R
2 and α(x) is a random number from the interval [0, a]

for x = (x1, x2) satisfying x1 > x2. In the remaining part of Ω the coefficient α is set to 1. The
amplitude a will be used to demonstrate that the presented method is not sensitive with respect
to non-smooth coefficients.

The main aim of these two-dimensional tests is to show that the computational complexity of
the presented hierarchical LU decomposition is almost linear, thereby confirming our estimates.
In the following table we compare for different problem sizes n and for different amplitudes a the
computational effort if the hierarchical LU decomposition is used for preconditioning the problem
from above. Since the discrete operator is symmetric positive definite, we actually compute the

1A C++ implementation of the H-matrix structure can be obtained from the following web-site
http://www.mathematik.uni-leipzig.de/∼bebendorf/AHMED.html

19

Cholesky decomposition LLT . Table 1 shows the time (TLLT) for computing the hierarchical
Cholesky decomposition, its memory consumption (MB) and the number of iterations of the
conjugate gradients method (CG) required to reach a relative residual below 1e−4. The minimal
cluster size, see Subsection 2.1, was chosen to be nmin = 50.

a = 1 a = 109

n εH TLLT MB Its TIt TLLT MB Its TIt

39 061 7e − 2 0.9s 27.6 14 0.5s 0.9s 27.6 24 0.9s
78 961 6e − 2 2.1s 56.6 19 1.5s 2.1s 57.1 31 2.4s

159 201 5e − 2 5.6s 127.4 26 4.5s 5.6s 127.8 45 7.7s
318 096 4e − 2 13.4s 267.9 19 9.0s 13.0s 267.1 36 14.1s
638 401 3e − 2 32.1s 574.8 20 16.3s 33.8s 573.8 37 37.4s

1 276 900 2e − 2 77.3s 1221.1 24 39.2s 84.2s 1216.3 45 90.6s
2 556 801 1e − 2 230.3s 2774.5 28 115.6s 235.1s 2769.5 49 217.5s

Table 1: PCG for two-dimensional diffusion

The truncation precision εH, see the beginning of Section 4, has to be decreased if n increases.
This is mainly due to the condition number which grows with n, see (19). Apparently, the
presented preconditioner is able to adapt itself to the varying coefficients. The dependence of
the computational effort on a is surprisingly weak.

5.2 Convection-diffusion problems

In the next test operators of type
L = −∆ + c · ∇

will be considered. The convection coefficient c is randomly chosen, i.e., c(x) ∈ [−a, a]2 for
x ∈ Ω := (0, 1)2. Table 2 shows the number of iterations for different parameters a. Note that
in this case a symmetry of the stiffness matrix cannot be exploited. Therefore, BiCGstab was
used as a solver. For the truncation accuracy εH = 0.2 was chosen independently of n

a = 10 a = 100
n TLU MB Its TIt TLU MB Its TIt

39 061 3.4s 55.5 10 0.8s 3.5s 55.7 8 0.6s
78 961 7.1s 112.6 16 2.8s 7.0s 112.4 15 2.6s

159 201 19.4s 242.0 19 8.9s 19.5s 241.8 20 8.6s
318 096 40.2s 489.8 20 21.9s 39.6s 489.7 25 21.8s
638 401 106.2s 1045.3 32 64.5s 105.6s 1045.3 34 81.2s

Table 2: preconditioned BiCGstab for diffusion-convection problems

Although the computational effort has increased compared with the diffusion problem, it still
scales almost linearly. A dependence on the coefficient c can hardly be observed. We could only
test relatively small amplitudes a since the finite element discretization becomes unstable in the
convection-dominated case.

20

5.3 Three-dimensional diffusion

As we have seen in Section 2.1, the structure of H-matrices can equally be applied to any
quasi-uniform finite element discretization of Ω given just by the grid information. In order to
demonstrate that the H-LU decomposition is also efficient for three-dimensional problems, we
test the proposed preconditioner on two tetrahedral discretizations (n = 34403 and n = 298727
of unknowns) of the volume shown in Figure 4. The meshes were generated using NETGEN
[21].

Figure 4: The computational domain

We consider the Dirichlet boundary value problem

−div A(x)∇u = 0 in Ω,

u = f on ∂Ω,

where A(x) ∈ R
3×3 is a symmetric positive definite matrix for all x ∈ Ω. The coefficients aij,

i, j = 1, 2, 3, are set to one in the left half space and to a random number from the interval [0, a]
in the right half space.

In Table 3 we compare the numerical effort to generate a preconditioner based on the hier-
archical Cholesky decomposition. The minimal cluster size was chosen to be nmin = 50. For
increasing amplitudes a in the second column the time that was needed to compute the approx-
imate Cholesky decomposition is shown. The memory consumption can be found in the third
column. Column four and five contain the number of iterations and the CPU time required for
PCG to reach a relative accuracy of the residual below 10−4. For these test εH = 0.8 was chosen.
Compared with the two-dimensional problems, the CPU time for generating the preconditioner

n = 34403 n = 298727
TLLT MB Its TIt TLLT MB Its TIt

a = 103 0.6s 15.2 19 0.5s 17.3s 190.6 34 11.1s
a = 106 0.6s 15.2 20 0.5s 17.3s 190.0 34 11.0s
a = 109 0.6s 15.2 20 0.5s 17.3s 190.1 34 11.1s

Table 3: PCG for three-dimensional diffusion

has increased. However, a similar behavior as for the two-dimensional tests can be observed: The

21

number of iterations of PCG is almost constant. The proposed preconditioner is able to adapt
itself to the varying coefficients. The numerical effort scales almost linearly and a dependence
on the coefficients can hardly be observed.

6 Conclusion

The convergence rate of iterative solvers for large sparse linear systems stemming from the
discretization of elliptic differential boundary value problems suffers from non-smooth coefficients
in the operator. Direct methods are robust but due to fill-in lead to non-competitive complexity
orders. In this article we have presented an existence result for the H-matrix approximation of
the LU decomposition of finite element Galerkin matrices. This approximate LU decomposition
can be computed with almost linear complexity while keeping the robustness of the pointwise LU
decomposition. Low-precision approximants can be used for preconditioning iterative solvers.
The proposed preconditioner is able to achieve problem-independent convergence rates.

References

[1] P. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster: A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15, 2001.

[2] M. Bebendorf: Efficient inversion of Galerkin matrices of general second order elliptic
differential operators. Preprint 6/2004, Max-Planck-Institut MIS, Leipzig; to appear in
Math. Comp.

[3] M. Bebendorf: Effiziente numerische Lösung von Randintegralgleichungen unter Verwen-
dung von Niedrigrang-Matrizen. dissertation.de, Verlag im Internet, 2001. ISBN 3-89825-
183-7.

[4] M. Bebendorf: Approximation of boundary element matrices. Numer. Math. 86, 565–589,
2000.

[5] M. Bebendorf and S. Rjasanow: Adaptive Low-Rank Approximation of Collocation Matrices.
Computing 70, 1–24, 2003.

[6] M. Bebendorf and W. Hackbusch: Existence of H-Matrix Approximants to the Inverse FE-
Matrix of Elliptic Operators with L∞-Coefficients. Numer. Math. 95, 1–28, 2003.

[7] M. Bebendorf: Approximate Inverse Preconditioning of FE Systems for Elliptic Operators
with non-smooth Coefficients. Preprint 7/2004, Max-Planck-Institute for Mathematics in
the Sciences, Leipzig.

[8] J. H. Bramble, J. E. Pasciak, and J. Xu: Parallel multilevel preconditioners. Math. Comp.
55, 1–22, 1990.

[9] J. W. Demmel and N. J. Higham and R. Schreiber: Stability of block LU factorization.
Numer. Linear Algebra Appl. 2, 173–190, 1995.

[10] L. Grasedyck: Theorie und Anwendungen Hierarchischer Matrizen. Dissertation, Univer-
sität Kiel, 2001.

[11] L. Grasedyck and W. Hackbusch: Construction and arithmetics of H-matrices. Computing
70: 295–334, 2003.

22

[12] W. Hackbusch: A sparse matrix arithmetic based on H-matrices. I. Introduction to H-
matrices. Computing 62, 89–108, 1999.

[13] W. Hackbusch: Multi-Grid Methods and Applications. Springer, 1985.

[14] W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen. B. G. Teubner,
Stuttgart, 1996 – English translation: Elliptic differential equations. Theory and numerical
treatment. Springer-Verlag, Berlin, 1992.

[15] W. Hackbusch and B. N. Khoromskij: A sparse H-matrix arithmetic. II. Application to
multi-dimensional problems. Computing 64, 21–47, 2000.

[16] N. J. Higham: Accuracy and stability of numerical algorithms., Second Edition, SIAM,
Philadelphia, PA, 2002.

[17] M. Lintner: Lösung der 2D Wellengleichung mittels hierarchischer Matrizen. Technische
Universität München, Germany, 2002.

[18] V. Rokhlin: Rapid solution of integral equations of classical potential theory. J. Comput.
Phys. 60:187–207, 1985.

[19] J. W. Ruge and K. Stüben: Algebraic multigrid. in Multigrid Methods, edited by S. F. Mc-
Cormick, p. 73, SIAM, 1987.

[20] Y. Saad: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[21] J. Schöberl: NETGEN – An advancing front 2D/3D-mesh generator based on abstract rules.
Comput. Visual. Sci., 1:41–52, 1997.

[22] B. F. Smith, P. E. Bjørstad, and W. D. Gropp: Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge Univ. Press, 1996.

[23] E. Tyrtyshnikov: Mosaic-skeleton approximations. Calcolo 33, 47–57 (1998), 1996.

23

