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Abstract

We present a novel application of best N-term approximation theory in the framework of electronic
structure calculations. The paper focus on the description of electron correlations within a Jastrow-type
ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymp-
totic behaviour of two-particle correlation functions F(2) near electron-electron and electron-nuclear
cusps. Based on Nitsche’s characterization of best N-term approximation spaces Aα

q (H1), we prove that

F(2) ∈ Aα
q (H1) for q > 1 and α = 1

q
− 1

2
with respect to a certain class of anisotropic wavelet tensor

product bases. Computational arguments are given in favour of this specific class compared to other
possible tensor product bases. Finally, we compare the approximation properties of wavelet bases with
standard Gaussian-type basis sets frequently used in quantum chemistry.
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1 Introduction

A natural starting point in quantum many-particle theory is to choose an approximate ansatz for the exact
wavefunction which is convenient from a technical point of view and incorporates the essential physical
features of the problem under consideration. In general it is not possible to make rigorous statements
concerning the systematic error related to a specific ansatz for the wavefunction. In a second step an
appropriate discretization scheme has to be chosen that enables a numerical solution of the problem. The
discretization error is usually better accessible to analysis and provides important insights concerning the
computational complexity of many-particle methods. Within the present work, we focus on the Jastrow
ansatz for electronic wavefunctions

Ψ (x1,x2, . . . ,xn) = F (x1,x2, . . . ,xn) Φ (x1,x2, . . . ,xn) , (1.1)

where the wavefunction consists of a product of a correlation factor F , usually called Jastrow factor, and a
given approximate solution Φ. In most applications, Φ corresponds to a single Slater determinant, obtained,
e.g., from a Hartree-Fock calculation which incorporates the permutational symmetry of the wavefunction.
Therefore, Jastrow factors are required to be symmetric with respect to an interchange of electron coordinates
xi ∈ R

3. It is convenient to express the Jastrow factor in exponential form

F (x1,x2, . . . ,xn) = exp

⎛
⎝∑

i

F (1)(xi) +
∑
i<j

F (2)(xi,xj) + · · ·
⎞
⎠ , (1.2)

where it decomposes into p-particle correlation functions F (p) with p = 1, 2, . . . , n. These functions possess
the cluster property (cf. [4]), which means that for an arbitrary subset of p particles P := {i1, ..., ip}, the
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correlation function vanishes if at least one of the particles is separated from the others, i.e.,

F (p)(xi1 , ...,xip) → 0 as max{|xia − xib | : ia, ib ∈ P} → ∞.

For most applications it is possible to neglect correlation functions beyond a certain order (cf. [4]). With
this, the exponential ansatz guarantees size-consistency for extended systems1 which means that expectation
values of operators that correspond to extensive thermodynamic properties, like the energy, are proportional
to the system size.

Within the present work we consider the nonrelativistic Hamiltonian in atomic units,

H = −1
2

n∑
i=1

∆i −
K∑
a=1

n∑
i=1

Za
|xi − Ra| +

∑
i<j

1
|xi − xj | +

∑
a<b

ZaZb
|Ra − Rb| ,

where xi ∈ R
3 are the electron coordinates and Za, Ra are charges and positions of the nuclei, respectively.

The corresponding expectation value of the energy for the product ansatz (1.1) is given by

E =
〈FΦ, HFΦ〉
〈FΦ,FΦ〉 , (1.3)

where 〈 , 〉 denotes the scalar product in the L2(R3n) Hilbert space of many-particle wavefunctions. A
variational theory of Jastrow factors requires the minimization of the expectation value of the energy (1.3)
with respect to the correlation functions F (1),F (2), . . .. Even for the simplest systems this is a formidable task
due to the nonlinear character of the Jastrow ansatz and the high dimensionality of the resulting integrals.
A direct numerical treatment is therefore only possible in quantum Monte Carlo (QMC) methods where
efficient algorithms have been developed for a stochastic optimization of Jastrow factors (cf. [42, 48, 49]).

In order to develop traditional many-particle theories for the Jastrow ansatz, which result in compu-
tationally tractable problems, it turns out to be necessary to introduce further approximations. For most
applications, including electronic structure calculations, a two-particle correlation function F (2) of Jastrow
factors provides the dominant contribution. Possible contributions from one-particle terms F (1) can be
incorporated into the Slater determinant of the product ansatz (1.1). The remaining contributions from
three-particle and higher order terms are fairly small (cf. [30]) because of Pauli’s principle which forces
the wavefunction to vanish at the coalescence points of three or more electrons. Therefore, most of the
developments in many-particle theory restrict to two-particle correlation functions F (2). These theories, we
just want to mention the Fermi hypernetted chain (FHNC) method (cf. [4]), have reached a high level of
sophistication for homogeneous systems in condensed matter and nuclear physics. A generalization of the
FHNC method to inhomogeneous systems has been developed by Krotscheck et al. [2, 33, 34, 41]. The
resulting integro-differential equations are still difficult to handle in numerical calculations, which presently
limits its applicability to systems with additional symmetries like slabs or films that are homogeneous in
two dimensions (cf. [33]) or spherically symmetric atoms (cf. [2, 41]). Nevertheless, the FHNC method can
achieve an overall complexity similar to density functional theory (DFT). The basic quantities which have to
be considered are two-particle functions related to the two-particle correlation function F (2) and the reduced
one-particle density matrix of the reference wavefunction Φ. This has to be compared with the Kohn-Sham
formalism in DFT, where the density matrix alone is already sufficient. If it is possible to achieve an efficient
numerical treatment for these two-particle functions, both methods are, at least from a formal point of view,
of compatible complexity. The advantage of the FHNC method is the underlying many-body theory which
is based on a systematic hierarchy of approximations.

For a large range of applications it is sufficient to consider linearized versions of the original variational
problem. Such kind of approaches comprise the local ansatz of Stollhoff-Fulde [19, 44, 45], Talman’s [46, 47]
cluster expansion and a recently proposed Jastrow-Møller-Plesset perturbation theory (cf. [38]). These
methods can be expressed in terms of standard Galerkin schemes for the two-particle correlation function
F (2). Given a basis ΣΛ := {χλ : λ ∈ Λ} for a finite index set Λ, the Galerkin scheme for the local ansatz
corresponds to a F (2)

Λ ∈ span{ΣΛ} that is a solution of the equation

〈χλΦ, (H −HSCF)Φ〉 + 〈χλΦ, H F (2)
Λ Φ〉 − 〈χλΦ,F (2)

Λ Φ〉〈Φ, H Φ〉 = 0 for all χλ ∈ ΣΛ.

1In the terminology of quantum chemistry this is usually called size-extensivity.
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For simplicity, the local ansatz has been defined with respect to the Hartree-Fock model (cf. [19]), where the
Hartree-Fock Hamiltonian HSCF and Slater determinant Φ enters into the Galerkin scheme. The correlation
energy can be calculated from the Galerkin solution via

Ecorr = 〈Φ, (H −HSCF)F (2)
Λ Φ〉.

It is obvious from the high dimensional character of the problem that an efficient discretization requires
a careful choice of the basis set. Within the present work, we focus on wavelet bases which seem to be a
natural candidate from the physical point of view (cf. [12]). An illustrative example for this can be found in
Appendix A, where we present a multi-resolution analysis for a Jastrow factor in the case of a homogeneous
electron gas. In previous papers [12, 13, 37] we have discussed an “optimal” construction of wavelet bases
based on empirical evidence. It is the purpose of the present work to present more rigorous arguments based
on certain natural assumptions concerning the regularity of Jastrow factors. The computational complexity
does not only depend on the cardinality of the basis set but also on its specific properties which enter into
the computation of the Galerkin matrix. This topic is beyond the scope of our paper and we refer to [13]
for a detailed discussion.

1.1 Basic assumptions on the regularity of Jastrow factors

In order to study the approximation of the two-particle correlation functions F (2) in a wavelet bases, we
have to assume certain smoothness properties. Proceeding on the assumption that F (2) is smooth away
from the diagonal, with possible exceptions at the positions of the nuclei, we have to specify the asymptotic
behaviour of F (2) and its derivatives near the electron-electron (e − e) and electron-nuclear (e − n) cusps.
Both from a physical and mathematical point of view, it makes sense to consider first the case of a pure
e − e cusp. This is rigorously justified only for many-particle models where singular nuclear potentials are
absent, like jellium models or soft-core pseudo-potentials that are frequently used in solid state physics. For
such kind of models, we make the following assumption on the asymptotic smoothness near the e− e cusp.

Assumption 1.1 The two-particle correlation function F (2) belongs to C∞(R3 × R
3 \ D) with

D :=
{
(x,y) ∈ R

3 × R
3 : x = y

}
. Furthermore it satisfies the asymptotic smoothness property

|∂αx∂βyF (2)(x,y)| ≤ cα,β |x − y|1−|α|−|β| for x �= y and |α| + |β| ≥ 1, (1.4)

in any bounded domain Ω × Ω ⊂ R
3 × R

3.

Here we have introduced the usual short-hand notation

∂β :=
∂β1

∂xβ1
1

∂β2

∂xβ2
2

∂β3

∂xβ3
3

,

with absolute value of the multi-index |β| := β1 + β2 + β3. Due to the complicated character of the
variational problem and its approximate variants, it is not possible to give a rigorous justification for our
basic assumption even in the case of a homogeneous electron gas. We refer however to Appendix A, where the
asymptotic smoothness property is demonstrated for a homogeneous electron gas within the random-phase
approximation using a simple argument related to the calculus of pseudo-differential operators. The basic
Assumption 1.1 is consistent with the asymptotic analysis of the exact wavefunction near the e − e cusp
(cf. [31, 28, 29]). Furthermore there exists a huge amount of empirical evidence from QMC calculations.
The standard ansatz in QMC for pure two-electron correlation functions consists of polynomials (cf. [42]) or
Padé approximants (cf. [48]) in the inter-electron distance, i.e.,

F (2)(xi,xj) =
∑
�

d� r
�
ij or F (2)(xi,xj) =

∑
� b� r

�
ij

1 +
∑

� d� r
�
ij

with rij := |xi − xj |,

respectively, which obviously satisfy the basic Assumption 1.1. In order to avoid a blow up of the polynomial
ansatz at rij → ∞, either a renormalized inter-electron distance rij with limrij→∞ rij → 1 is used (cf. [42])
or the polynomial is multiplied by an appropriate cut-off function (cf. [49]). For inhomogeneous systems,
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like atoms and molecules, a significant amount of the correlation energy is due to electron-electron-nuclear
(e−e−n) correlations, which are described by incorporating electron-nuclear distances into the polynomials
(cf. [42, 48]), e.g.,

F (2)(xi,xj) =
∑
α

∑
�

dα�mn r
�
ijs

m
α,is

n
α,j with sα,i := |xi − Rα|, (1.5)

where Rα corresponds to the positions of the nuclei. This ansatz was strongly motivated by the highly
accurate Hylleraas wavefunctions for two-electron systems (cf. [18]). Such kind of polynomial expansion
raises the question for off-diagonal e−n cusps and the behaviour of F (2) at the three-particle e− e−n cusp.
There exist two different kind of approaches to this problem. In the first kind of approach it is required that
the approximate solution Φ of the product ansatz (1.1) already satisfies Kato’s [31] e − n cusp condition,
which means that the leading order term of an asymptotic expansion of the spherically averaged exact
wavefunction is correctly reproduced. Neglecting the anisotropy of the wavefunction around a nucleus and
higher order terms, it is assumed that F (2) has no off-diagonal e−n cusps (cf. [42, 16]). As a consequence for
coupling terms like r�ijs

m
α,i (�,m > 0) only even powers were employed in the extended ansatz (1.5). No such

restrictions are imposed in the second kind of approach (cf. [48]), where all possible combinations are taken
into account. The recent comparative study [11] reveals that the second type of approach is only slightly
more accurate with respect to the energy, however, provides a considerable improvement in the variance of
the local energy which measures the deviation of an approximate wavefunction from an eigenfunction of the
Hamiltonian. Therefore it is desirable to consider an extended version of our basic assumption which allows
for off-diagonal e− n cusps as well.

Assumption 1.2 The two-particle correlation function F (2) belongs to C∞(R3 × R
3 \ (D ∪N)) with D :={

(x,y) ∈ R
3 × R

3 : x = y
}

and N := {(x,y) ∈ R
3 × R

3 : x = R ∨ y = R}, where R corresponds to the
position of a nucleus. Furthermore it satisfies the generalized asymptotic smoothness property

|∂αx∂βyF (2)(x,y)| ≤ cα,β sup
α1,β1

(
δ|α1| + |x − R|1−|α1|

) (
δ|β1| + |y − R|1−|β1|

)
×

(
δ|α2|+|β2| + |x − y|1−|α2|−|β2|

)
with α1 + α2 = α, β1 + β2 = β,

for (x,y) �∈ D ∪N , in any bounded neighbourhood Ω × Ω ⊂ R
3 × R

3 of the nuclear position R.

This assumption seems to be general enough even for the e − e − n cusp where additional logarithmic
terms have to be taken into account (cf. [17, 18]).

So far our discussion focused exclusively on two-particle correlation functions F (2). However for actual
calculations within many-particle methods it might be of interest to consider more general functions in-
cluding pointwise products with density matrices ρ(x,y)F (2)(x,y), ρ(x,y)2F (2)(x,y) (cf. [13]), or nonlinear
expressions like

h(x,y) = e2F
(2)(x,y) − 1.

The latter replaces F (2) as the basic quantity in FHNC methods or certain types of cluster expansions (cf. [4]).
It is evident that provided F (2) satisfies Assumptions 1.1 or 1.2 and ρ is the corresponding assumption from
[14], the same is true for these functions. Our discussion of best N -term approximations for F (2) is therefore
immediately transferable to such cases.

2 Best N-term approximation for Jastrow factors

Within the last decade, the rather abstract concept of best N -term approximation attracted renewed interest
in the context of wavelet based multi-resolution analysis. Initiated by the work of DeVore-Jawerth-Popov
[9] a powerful theory has been developed which is based on certain peculiar features of wavelet bases. In
order to make the paper reasonably self-contained, we give a brief outline of the basic ideas and refer to [8]
for a detailed exposition of the subject. The basic idea is to consider nonlinear submanifolds ΣN ⊂ ΣΛ of
the original basis set. These submanifolds

ΣN :=
{∑

λ∈∆
cλ χλ : ∆ ⊂ Λ,#∆ ≤ N

}
, (2.1)
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consist of all possible linear combinations of basis functions with at most N terms. For an appropriately
chosen separable Hilbert space H , the approximation error with respect to ΣN is given by

σN (f) := inf
fN∈ΣN

‖f − fN‖H , f ∈ H.

For our purposes we consider the Sobolev space H1 equipped with its natural Hilbert space structure. The
approximation spaces of best N -term approximations

Aαq (H) := {f ∈ H : |f |Aα
q (H) <∞} with |f |Aα

q (H) := q

√∑
N∈N

(NασN (f))q N−1

determine the optimal convergence rate that can be achieved with respect to the number of basis functions.
Loosely speaking, if f ∈ Aαq (H) it is possible to achieve a convergence rate σN (f) ∼ N−α. Here and in the
following, a ∼ b means that the quantities can be uniformly bounded by some constant multiple of each
other. Similarly a � b means that a is uniformly bounded by some constant multiple of b.

A drawback of the initial theory was that it loses some of its efficiency in higher dimensions. Recently,
best N -term approximation has been extended by Nitsche [40] to hyperbolic wavelet bases (cf. [10]), which
enable an effective treatment of high dimensional problems. This approach is based on hierarchical tensor
products that are well known in finite element methods as sparse grids (cf. [1]). In the previous paper [14] we
have studied best N -term approximations for one-electron reduced density matrices. For this we considered
the fully anisotropic wavelet tensor product basis

χ̃j,a(x) = ψj1,a1(x1)ψj2,a2(x2) . . . ψj6,a6(x6) with
{

j := (j1, j2, . . . , j6),
a := (a1, a2, . . . , a6),

(2.2)

constructed from orthogonal univariate wavelets ψj,a(x) := 2j/2ψ(2jx− a). It has been argued in [12, 13] on
the basis of physical considerations that the following hybrid approach might be more appropriate for the
description of electron correlations. First of all, multivariate isotropic 3d-wavelets

γ
(s)
j,a(x) = ψ

(s1)
j,a1

(x1)ψ
(s2)
j,a2

(x2)ψ
(s3)
j,a3

(x3) with s := (s1, s2, s3), a := (a1, a2, a3), (2.3)

are obtained by taking mixed tensor products of orthogonal univariate wavelets ψ(1)
j,a(x) := 2j/2ψ(2jx − a)

and scaling functions ψ(0)
j,a (x) := 2j/2ϕ(2jx − a) on the same level of refinement j. Pure scaling function

tensor products γ(0)
j0,a

are included on the coarsest level j0 only. From these wavelets we construct a hybrid
anisotropic 6d-wavelet basis

χ
(s1,s2)
j1,j2,a1,a2

(x,y) = γ
(s1)
j1,a1

(x) γ(s2)
j2,a2

(y). (2.4)

In Section 2.3 below, we present some rigorous mathematical arguments in favour of this construction.
Following Nitsche [40], we consider tensor product Besov spaces

B̃αq (Ω × Ω) =
{
Bα+1
q (Lq(Ω))

⊗
Bαq (Lq(Ω))

}⋂{
Bαq (Lq(Ω))

⊗
Bα+1
q (Lq(Ω))

}
for bounded domains Ω ⊂ R

3. These spaces are norm equivalent to weighted �q norms for anisotropic wavelet
coefficients

‖f‖qB̃α
q

=
∑

j1,j2≥j0
2max{j1,j2}q

(∑
s1,s2

∑
a1,a2

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

, f〉
∣∣∣q
)
, if α =

3
q
− 3

2
, (2.5)

with 〈χ(s1,s2)
j1,j2,a1,a2

, f〉 :=
∫

R3×R3
γ

(s1)
j1,a1

(x) f(x,y) γ(s2)
j2 ,a2

(y) dxdy.

The norm equivalence requires a univariate wavelet ψ with p > α+1 vanishing moments and ψ ∈ Bβq (Lq) for
some β > α + 1. The corresponding relation between best N -term approximation spaces and Besov spaces
is given by

Aα/3q (H1(Ω × Ω)) = B̃αq (Ω × Ω), if α =
3
q
− 3

2
. (2.6)
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2.1 Besov regularity of Jastrow factors at the e − e cusp

We assume that Jastrow factors possess the asymptotic smoothness property (1.4) near the e − e cusp. If
this is the case we can prove the following lemma.

Lemma 2.1 Suppose F (2) satisfies Assumption 1.1. Then F (2) ∈ B̃αq (Ω × Ω) for q > 1 and α = 3
q − 3

2 .

Proof. Suppose that the isotropic 3d-wavelets γ(s)
j,a are constructed from an univariate wavelet ψ with p > α+1

vanishing moments. For each γ(s)
j,a, we define a cube �j,a centred at 2−ja with edge length 2−jL, such that

supp γ(s)
j,a ⊂ �j,a. In order to estimate the norm (2.5) for two-particle correlation functions, we restrict

ourselves to wavelet coefficients with j1 ≥ j2 and |s1| = |s2| = 1. This combination of 3d-wavelet types
corresponds to the worst case where vanishing moments can act in one direction only.

We first consider the case dist(�j1,a1,�j2,a2) ≤ 2−j2L. In order to apply the asymptotic smoothness
property (1.4), we decompose the cube �j2,a2 into non-overlapping subcubes �i (i ∈ ∆) with edge length
2−j1L. The subcubes �i with i ∈ ∆0 := {i ∈ ∆ : dist(�j1,a1 ,�i) ≤ 2−j1L} are considered separately.
Their number is #∆0 = O(1) independent of the wavelet levels j1, j2. For the remaining subcubes �i

(i ∈ ∆ \ ∆0) it becomes necessary to control their contributions with respect to dist(�j1,a1,�i) because
#(∆ \ ∆0) = O(23(j1−j2)) depends on the wavelet levels. The wavelet coefficients can be estimated by the
separate sums

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣ ≤ ∑

i∈∆0

∣∣∣∣∣
∫

�j1,a1×�i

γ
(s1)
j1,a1

(x)F (2)(x,y) γ(s2)
j2,a2

(y)dxdy

∣∣∣∣∣ (2.7)

+
∑

i∈∆\∆0

∣∣∣∣∣
∫

�j1,a1×�i

γ
(s1)
j1,a1

(x)F (2)(x,y) γ(s2)
j2,a2

(y)dxdy

∣∣∣∣∣ .
For the first sum we can use the following proposition (see, e.g., [14] for details):

Proposition 2.2 If f ∈ Lip(R), then∣∣∣∣
∫

R

f(x)ψ(1)
j,k (x)dx

∣∣∣∣ � 2−3j/2‖f ′‖
L∞(suppψ

(1)
j,k)

.

Suppose s1,1 = 1 for the wavelet γ(s1)
j1,a1

(see definition (2.3)), we obtain from Proposition 2.2 that

∑
i∈∆0

∣∣∣∣∣
∫

�j1,a1×�i

γ
(s1)
j1,a1

(x)F (2)(x,y) γ(s2)
j2,a2

(y)dxdy

∣∣∣∣∣ (2.8)

� 2−
3
2 j1︸ ︷︷ ︸

(a)

2−j1︸︷︷︸
(b)

2−3j12
3
2 j2︸ ︷︷ ︸

(c)

‖∂x1F (2)‖L∞(�j1,a1×�i) � 2−
11
2 j12

3
2 j2 ,

where the prefactors constitute in the following way: (a) Proposition 2.2 for ψ(1)
j1,a1

(x1), (b) normalization

constant of ψ(s1,2)
j1,a2

(x2)ψ
(s1,3)
j1,a3

(x3) and sectional area of �j1,a1 in the x2, x3 plane, (c) volume of the cube �i

and normalization constant of γ(s2)
j2,a2

.
The second sum can be estimated using the next proposition (see, e.g., [14] for details):

Proposition 2.3 Suppose the function f(x) with x ∈ R
3 is smooth on the support of an isotropic 3d-wavelet

γ
(s)
j,a. Then the following estimate holds,∣∣∣∣

∫
R3
f(x) γ(s)

j,a(x)dx
∣∣∣∣ � 2−(p|s|+3/2)j‖∂s1px1

∂s2px2
∂s3px3

f‖
L∞(supp γ

(s)
j,a)

with |s| := s1 + s2 + s3.
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With this and the estimate (1.4) for wavelets γ(s1)
j1,a1

with p vanishing moments (i.e., |s1| = 1), we obtain

∑
i∈∆\∆0

∣∣∣∣∣
∫

�j1,a1×�i

γ
(s1)
j1,a1

(x)F (2)(x,y) γ(s2)
j2,a2

(y)dxdy

∣∣∣∣∣ �
∑

i∈∆\∆0

2−(p+ 3
2 )j1︸ ︷︷ ︸

(a)

2−3j12
3
2 j2︸ ︷︷ ︸

(b)

‖∂px1
F (2)‖L∞(�j1,a1×�i)

� 2−(p+ 3
2 )j12

3
2 j2

∫ 2−j2+2L

2−j1L

r3−p dr �

⎧⎨
⎩

2−(p+ 3
2 )j12−( 5

2−p)j2 if p ≤ 3
(j1 − j2 + 1)2−

11
2 j12

3
2 j2 if p = 4

2−
11
2 j12

3
2 j2 if p > 4

, (2.9)

where the prefactor in the second line constitutes in the following way: (a) Proposition 2.3 for γ(s1)
j1,a1

, (b)

volume of the cube �i and normalization constant of γ(s2)
j2,a2

.
Once we have obtained the estimates (2.8) and (2.9), it is straightforward to get an upper bound for

the contribution of anisotropic tensor products with translation parameters (a1, a2) ∈ Aj1,j2 := {(a1,a2) :
dist(�j1,a1 ,�j2,a2) ≤ 2−j2L} to the norm (2.5),∑

j1≥j2≥j0
2qj1

∑
(a1,a2)∈Aj1,j2

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣q (2.10)

�
∑

j1≥j2≥j0

⎧⎨
⎩

2−(pq+ q
2−3)j12−( 5

2−p)qj2 if p ≤ 3
(j1 − j2 + 1)2−( 9

2 q−3)j12
3
2 qj2 if p = 4

2−( 9
2 q−3)j12

3
2 qj2 if p > 4

⎫⎬
⎭ <∞, if

{
q > 6

5 for p = 2,
q > 1 for p ≥ 3,

where we have used #Aj1,j2 = O(23j1 ).
In order to get an upper bound for the norm (2.5) it remains to estimate the contributions of anisotropic

wavelet coefficients where the supports of the corresponding 3d-wavelets are well separated. For this we have
to consider the parameter set Bj1,j2 := {(a1, a2) : 2−j2L < dist(�j1,a1 ,�j2,a2)}. Using estimate (1.4) and
Proposition 2.3, the contributions can be estimated∑

(a1,a2)∈Bj1,j2

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣q �

∑
(a1,a2)∈Bj1,j2

2−(p+ 3
2 )q(j1+j2)‖∂px1

∂py1F (2)‖qL∞(�j1,a1×�j2,a2)

� 2−(pq+ 3
2 q−3)j12−(pq+ 3

2 q−3)j2

∫ diamΩ

2−j2L

r2+q(1−2p) dr � 2−(qp+ 3
2 q−3)j12(p− 5

2 )qj2 ,

where we have used p > α+ 1 and α = 3
q − 3

2 , hence

2 − 2pq + q < −1 − q(p− 3
2
) < −1, since p ≥ 2,

follows for the exponent of the integrand. The remaining sum with respect to the wavelet levels yields∑
j1≥j2≥j0

2qj1
∑

(a1,a2)∈Bj1,j2

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣q �

∑
j1≥j2≥j0

2−(qp+ 1
2 q−3)j12(p− 5

2 )qj2

�
∑
j1≥j0

{
2−( 5

2 q−3)j1 if p = 2
2−3(q−1)j1 if p ≥ 3

}
<∞, if

{
q > 6

5 for p = 2,
q > 1 for p ≥ 3, (2.11)

from which we obtain, together with our previous estimate (2.10), the lower bound on the Besov space
parameter q.

Lemma 2.1 demonstrates that there exists an upper bound on the regularity of two-particle correlation
functions F (2) in tensor product Besov spaces B̃αq and therefore, via relation (2.6), restrictions on the best

N -term approximation spaces Aα/3q (H1(Ω × Ω)) to which they belong. Only in the special case of wavelets
with p = 2 vanishing moments, the function F (2) belongs to all best N -term approximation spaces that
are accessible for such kind of wavelet bases. The following corollary shows that the bound of Lemma 2.1
has to be considered as sharp. For this we consider an explicit example which represents, up to a constant
prefactor, the simplest possible two-particle correlation function consistent with Kato’s [31] cusp condition.
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Corollary 2.4 The two-particle correlation function F (2)
c (x,y) = |x−y| satisfies Assumption 1.1 and does

not belong to B̃αq (Ω × Ω) for q ≤ 1 and α = 3
q − 3

2 .

Proof. We consider the norm equivalence (2.5) and restrict ourselves to the contributions of diagonal tensor
products

‖F (2)
c ‖qB̃α

q

≥
∑
j≥j0

2jq
∑
s

∑
a

∣∣∣〈χ(s,s)
j,j,a,a,F (2)

c 〉
∣∣∣q (2.12)

with
〈χ(s,s)
j,j,a,a,F (2)

c 〉 :=
∫

R3×R3
γ

(s)
j,a(x) |x − y| γ(s)

j,a(y) dxdy.

Using the scaling relation
〈χ(s,s)
j,j,a,a,F (2)

c 〉 = 2−4j〈χ(s,s)
0,0,0,0,F (2)

c 〉
for the wavelet coefficients, we obtain for the sum∑

a

∣∣∣〈χ(s,s)
j,j,a,a,F (2)

c 〉
∣∣∣q = C 23j2−4jq

∣∣∣〈χ(s,s)
0,0,0,0,F (2)

c 〉
∣∣∣q . (2.13)

Inserting Eq. (2.13) into the estimate (2.12), we get ‖F (2)
c ‖qB̃α

q

= ∞ for q ≤ 1.

2.2 Besov regularity of Jastrow factors with off-diagonal electron-nuclear cusp

Lemma 2.5 Suppose F (2) satisfies Assumption 1.2. Then F (2) ∈ B̃αq (Ω × Ω) for q > 1 and α = 3
q − 3

2 .

Proof. For the sake of notational simplicity, we assume without loss of generality that R = 0. Furthermore it
is sufficient to consider the case of p > 4 vanishing moments. Like for the proof of Lemma 2.1 it is possible to
perform all estimates with p > α+ 1 vanishing moments. This would not, however, provide any new insight
and instead makes the whole proof unnecessarily long-winded. At first, we provide modified estimates for
the partial derivatives of F (2) which are more convenient from an analytical point of view. The following
estimates are an immediate consequence of the basic Assumption 1.2,

|∂αx∂βyF (2)(x,y)| �
{ (

δ|α| + |x|1−|α|) (δ|β| + |y|1−|β|) if min{|x|, |y|} < |x − y|
|x − y|1−|α|−|β| if |x − y| ≤ |x|, |y| (2.14)

�
(
δ|α| + |x|1−|α|

)(
δ|β| + |y|1−|β|

)
+ |x − y|1−|α|−|β|

for (x,y) �∈ D ∪N and |α| + |β| > 0.
In the lemma, we consider four different cases with respect to the spatial configurations of the hypercubes

�j1,a1 × �j2,a2 which contain the supports of tensor product wavelets χ(s1,s2)
j1,j2,a1,a2

.
Case a:
First we consider the set of parameters

Aj1,j2 := {(a1,a2) : dist(�j1,a1,0) ≤ 2−j1+εL, dist(�j2,a2,0) ≤ 2−j2+εL}

with cardinality #Aj1,j2 = O(1). The parameter ε > 0 will be fixed in the sequel. Let us assume j1 ≥ j2.
Using Lipschitz continuity of F (2), we derive from Proposition 2.2 the following estimate for the wavelet
coefficients: ∣∣∣〈χ(s1,s2)

j1,j2,a1,a2
,F (2)〉

∣∣∣ � 2−
5
2 j12−

3
2 j2‖∂x1F (2)‖L∞(�j1,a1×�j2,a2) � 2−

5
2 j12−

3
2 j2 . (2.15)

This immediately shows the boundedness of the contributions from Aj1,j2 to the Besov norm (2.5):

∑
j1≥j2≥j0

2j1q
∑

(a1,a2)∈Aj1,j2

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣q �

∑
j1≥j2≥j0

2−
3
2 q(j1+j2) <∞.
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Case b:
Here we consider the set of parameters Bj1,j2 ∩ Cj1,j2 ,

Bj1,j2 := {(a1,a2) : dist(�j1,a1 ,0) ≤ 2−j1+εL, dist(�j2,a2 ,0) > 2−j2+εL},
Cj1,j2 := {(a1,a2) : dist(�j1,a1 ,�j2,a2) ≤ 2−min{j1,j2}L}.

For j1 ≥ j2 we can use the previous estimate (2.15) because of #(Bj1,j2 ∩ Cj1,j2) = O(1). The remaining
combination j2 > j1 requires a decomposition of the form (2.7) for the cube �j1,a1 . Using the estimates
(2.8), (2.9), and (2.14) we obtain for the wavelet coefficients

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣ � 2

3
2 j12−

11
2 j2 +

∑
i∈∆\∆0

∣∣∣∣∣
∫

�i×�j2,a2

γ
(s1)
j1,a1

(x)F (2)(x,y) γ(s2)
j2 ,a2

(y)dxdy

∣∣∣∣∣
� 2

3
2 j12−

11
2 j2 +

∑
i∈∆\∆0

2
3
2 j12−(p+ 9

2 )j2‖∂py1F (2)‖L∞(�i×�j2,a2)

� 2
3
2 j12−

11
2 j2 + 2−

3
2 j12−(p+ 3

2 )j2 |2−j2a2|1−p,

where #{�i} = O(23(j2−j1)) has been used in the last line. With this and #(Bj1,j2 ∩Cj1,j2) = O(23(j2−j1)),
we can estimate the contributions from Bj1,j2 ∩ Cj1,j2 to the Besov norm (2.5),∑

j2≥j1≥j0
2j2q

∑
(a1,a2)∈Bj1,j2∩Cj1,j2

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣q

�
∑

j2≥j1≥j0

(
2( 3

2 q−3)j12−( 9
2 q−3)j2 + 2−

3
2 qj12−q(p+

1
2 )j2

∑
a2

|2−j2a2|q(1−p)
)

�
∑

j2≥j1≥j0

(
2−3j12−3(q−1)j2 + 2−

3
2 qj12−(qp+ q

2−3)j2

∫ ∞

2−j2+εL

r2+q(1−p)dr
)

�
∑

j2≥j1≥j0

(
2−3j12−3(q−1)j2 + 2−

3
2 q(j1+j2)

)
<∞ since q > 1.

Case c:
We consider now the parameter set Bj1,j2 \ Cj1,j2 , where

|y| � |x − y| for (x,y) ∈ �j1,a1 × �j2,a2 .

The wavelet coefficients can be estimated by∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣ � 2−

3
2 j12−(p+ 3

2 )j2‖∂py1F (2)‖L∞(�j1,a1×�j2,a2 ) � 2−
3
2 j12−(p+ 3

2 )j2 |2−j2a2|1−p.

From this, the boundedness of the contributions from the parameter set Bj1,j2 \ Cj1,j2 to the Besov norm
(2.5) follows through the estimate∑

j1,j2≥j0
2max{j1,j2}q

∑
(a1,a2)∈Bj1,j2\Cj1,j2

∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣q

�
∑

j1,j2≥j0
2max{j1,j2}q2−

3
2 qj12−(qp+ 3

2 q−3)j2

∫ ∞

2−j2+εL

r2+q(1−p) dr

�
∑

j1,j2≥j0
2max{j1,j2}q2−

3
2 qj12−

5
2 qj2 <∞ .

Case d:
Let us assume j1 ≥ j2, and consider first the set of parameters Dj1,j2 ∩Cj1,j2 with

Dj1,j2 := {(a1,a2) : 2−j1+εL < dist(�j1,a1,0), 2−j2+εL < dist(�j2,a2,0)},
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where we can choose the parameter ε in such a way that

|x − y| � |x|, |y| for (x,y) ∈ �j1,a1 × �j2,a2 .

Due to this relation, we can use the estimates (2.8), (2.9) from the first part of the proof of Lemma 2.1 in
order to show the boundedness of this contribution to the Besov norm (2.5).

It remains to consider the set of parameters Dj1,j2 \ Cj1,j2 :∣∣∣〈χ(s1,s2)
j1,j2,a1,a2

,F (2)〉
∣∣∣q � 2−(p+ 3

2 )q(j1+j2)‖∂px1
∂py1F (2)‖qL∞(�j1,a1×�j2,a2)

� 2−(p+ 3
2 )q(j1+j2)

(
|2−j1a1 − 2−j2a2|q(1−2p) + |2−j1a1|q(1−p)|2−j2a2|q(1−p)

)
.

For the first term, we can use estimate (2.11) from the second part of the proof of Lemma 2.1. The
contributions from the second term are also bounded according to the following estimate∑

j1≥j2≥j0
2j1q2−(p+ 3

2 )q(j1+j2)
∑

(a1,a2)∈Dj1,j2\Cj1,j2

|2−j1a1|q(1−p)|2−j2a2|q(1−p)

�
∑

j1≥j2≥j0
2−(qp+ q

2−3)j12−(qp+ 3
2 q−3)j2

∫ ∞

2−j1+εL

r
2+q(1−p)
1 dr1

∫ ∞

2−j2+εL

r
2+q(1−p)
2 dr2

�
∑

j1≥j2≥j0
2−

3
2 qj12−

5
2 qj2 <∞.

Altogether, this demonstrates the finiteness of the Besov space norm (2.5) for F (2).

2.3 Practical implications for electronic structure calculations

It is an immediate consequence of Lemmata 2.1 and 2.5 that there exists a sharp upper bound on the
approximation error of best N -term approximations for two-particle correlation functions

σN (F (2)) := inf
F(2)

N ∈ΣN

‖F (2) −F (2)
N ‖H1 � N− 1

2 (2.16)

where F (2)
N belongs to the nonlinear submanifold (2.1), irrespectively of the number of vanishing moments

p ≥ 3 of the wavelet basis. It is not surprising with respect to our previous result for the one-electron reduced
density matrix (cf. [14]) that e−n cusps have no effect on the approximation properties of anisotropic tensor
product bases. This has already been observed by Nitsche [39] for boundary value problems with point-
like singularities. Concerning the choice of the multivariate wavelet basis it has been argued in [14] that a
fully anisotropic basis (2.2) is considerably more favourable for the density matrix compared to the hybrid
approach (2.4). For Jastrow factors this is not the case any more. It is easy to see that the upper bound
for a fully anisotropic wavelet basis cannot be better than (2.16). However in order to reach this bound
it requires only p ≥ 2 vanishing moments for the underlying univariate wavelet basis compared to p ≥ 3
vanishing moments for the hybrid approach (2.4). Concerning the computational complexity this is only a
minor advantage which has to be compared with the considerably more complicated matrix structure for
fully anisotropic wavelets. Furthermore it has been argued in [13] that the vanishing moments property
enables the compression of integrals which are required for the construction of Galerkin matrices. Another
argument in favour of fairly regular wavelets is the efficient expansion of pointwise wavelet products [12]
appearing in these integrals. For such reasons it is desirable to use wavelet bases with a moderate number
of vanishing moments (e.g., p ≈ 5) which meet the regularity requirements of best N -term approximations.
According to these arguments one might wonder whether fully isotropic wavelets

χ̆
(s)
j,a(x) = ψ

(s1)
j,a1

(x1)ψ
(s2)
j,a2

(x2) . . . ψ
(s6)
j,a6

(x6) with s := (s1, s2, . . . , s6), a := (a1, a2, . . . , a6),

where the bound (2.16) requires p ≥ 4 vanishing moments, are an even better choice. Numerical studies,
however, revealed that two-particle correlation functions have a pronounced hyberbolic-cross structure on
coarse scales (cf. [13]). This sparsity, which is of considerable practical importance, would be lost for fully
isotropic wavelet bases.
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3 Comparison with other approximation schemes

3.1 Sparse grid spaces of mixed partial derivatives

Recently it has been proven by Yserentant [50] that exact solutions of the many-electron Schrödinger equation
belong to Sobolev spaces of mixed partial derivatives. This result enables the construction of sparse grid
approximations for the entire wavefunction [21, 51]. It is instructive to apply this method to Jastrow factors,
because Nitsche’s [40] approach to best N -term approximation actually corresponds to an adaptive variant
of sparse grids. For this we have to consider two-particle correlation functions in mixed Sobolev norms

‖F (2)‖Hs,1
mix

:=
∫

R3×R3

(
1 + |k1|2 + |k2|2

) (
1 + |k1|2

)s (
1 + |k2|2

)s |F̂ (2)(k1,k2)|2dk1dk2, s > 0, (3.1)

with F̂ (2)(k1,k2) =
∫

R3×R3
F (2)(x,y)e−ik1xe−ik2ydxdy. (3.2)

Instead of presenting a general treatment of this subject, we restrict ourselves to the illustrative example
from Corollary 2.4. In order to allow for mixed Sobolev norms in R

3 ×R
3, convenient cut-off functions have

to be added.

Observation 3.1 The two-particle correlation function

F (2)
c (x,y) = |x − y|e−(|x|2+|y|2), (3.3)

which satisfies Assumption 1.1, belongs to the Sobolev spaces of mixed partial derivatives Hs,1
mix (R3×R

3), i.e.,
‖F (2)

c ‖Hs,1
mix

<∞ for all 0 < s < 3
4 .

Proof. A straightforward calculation shows that the Fourier transform (3.2) of the two-particle correlation
function (3.3) can be represented in terms of an oscillatory integral

F̂ (2)
c (k1,k2) = 2

3
2π

5
2 e−

1
8 |k1+k2|2 1

|k1 − k2|
∫ ∞

0

s2e−
1
2 s

2
sin

(
1
2
|k1 − k2|s

)
ds. (3.4)

The asymptotic behaviour of oscillatory integrals of this kind is given by the general formula∫ ∞

0

eisxf(s)sn ds ∼
∞∑
j=0

ajx
−j−n−1 for n > −1 with aj = ij+n+1 Γ(j + n+ 1)

j!
f (j)(0), (3.5)

which can be applied to any function f ∈ C∞(R) that vanishes together with all of its derivatives at infinity.
For a proof of this formula we refer, e.g., to Copson’s monograph [5]. For our present purpose it is sufficient
to determine the leading order term of Eq. (3.4),

F̂ (2)
c (k1,k2) ∼ 2

3
2π

5
2 e−

1
8 |k1+k2|2

[
− 24

|k1 − k2|4 +O

(
1

|k1 − k2|6
)]

for |k1 − k2| → ∞. (3.6)

Introducing new variables k1 = p + t, k2 = p − t, we define ˜̂F (2)
c (p, t) := F̂ (2)

c (p + t,p − t). From the
estimates

|ki|2s ≤ (|p| + |t|)2s ≤ 22s
(|p|2s + |t|2s) with i = 1, 2,

we obtain an estimate for the mixed Sobolev norm (3.1)

‖F (2)
c ‖Hs,1

mix
�

∫
R3×R3

(
1 + |p|2 + |t|2) (1 + |p|2s + |t|2s)2 | ˜̂F (2)

c (p, t)|2dpdt

in terms of the new variables. Together with Eq. (3.4) and the asymptotic expansion (3.6), the observation
is now an obvious consequence.

The sparse-grids approximation scheme for wavefunctions recently suggested by Yserentant [51] can be
also applied to the two-particle correlation function. It provides an error estimate

‖F (2) −F (2)
N ‖H1 � 2−Ls‖F (2)

c ‖Hs,1
mix
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with respect to the sparse-grids parameter L. Similarly to the wavelet tensor products (2.4), Yserentant
constructed an anisotropic tensor product basis from hierarchical 3d-basis functions. According to the
standard approach to sparse grids, this basis contains all tensor products with �1 + �2 ≤ L, where �i
corresponds to the levels of the underlying 3d-basis functions. The cardinality of the 3d-basis on level �
is of O(23�). Therefore the cardinality of the tensor product basis increases with O(L23L). This yields a
convergence of almost O(N−1/4) in the Sobolev space H1, which is half of the convergence rate (2.16) that
can be achieved for best N -term approximation.

3.2 Gaussian-type orbital bases

Approximation of correlated wavefunctions is a central topic in quantum chemistry (cf. [25]) with long-
standing history. Despite the tremendous amount of work which has been devoted to the development of
many-particle models, like coupled cluster (CC) or many-body perturbation theory, only little is known
about approximation properties of the underlying discretization schemes. Some rigorous results concerning
partial wave expansions of atomic wavefunctions have been derived by Hill-Kutzelnigg-Morgan [27, 35, 36].
The partial wave expansions and atomic centred Gaussian-type orbital (GTO) basis sets [25], commonly used
in quantum chemistry, share the angular momentum quantum number � as a common ordering parameter.
However GTO basis sets have as an additional parameter, namely the exponent of the Gaussians which
determines the radial approximation of the basis set. In correlation-consistent GTO basis sets (cf. [25]),
usually denoted as cc-pVXZ bases, angular and radial parameters are combined in a balanced manner into
a single parameter X = 2, 3, 4, . . .. For these basis sets it has been observed from molecular CC calculations
that the error in energy decreases asymptotically as X−3, while the cardinality of the basis set increases
as X3 (cf. [24, 26]). This observation is consistent with the convergence rate derived from partial wave
expansions for atoms.

In order to compare the computational complexity with best N -term approximations, we consider the
CC method restricted to single and double excitations (CCSD) (cf. [25]). This is roughly equivalent to
a Jastrow factor (1.2) where only one- and two-particle correlation functions are taken into account. For
CCSD calculations the number of degrees of freedom N , represented by the cluster amplitudes, increases as
X6, which means that the corresponding error in energy decreases as N−1/2. Let us assume that our actual
realization of the Jastrow factor ansatz has the same convergence behaviour as a strictly variational treatment
according to Rayleigh-Ritz’s variational principle. Such kind of assumption is actually fulfilled in practice for
CC and related methods like many-body perturbation theory. According to a standard argument, the error
in energy has twice the convergence rate with respect to the H1 error. Therefore best N -term approximation
converges as N−1 with respect to the energy compared with N−1/2 for standard GTO basis sets.

We want to close this section with a few remarks on how to overcome these limitations for both GTO
and wavelet bases. A promising approach for GTO basis sets is to incorporate a term linear in the inter-
electron distance into the wavefunction (cf. [35]). This yields twice the convergence rate and enables very
accurate calculations using the CC method or many-body perturbation theory (cf. [24, 26]). For wavelets
we can use a similar approach which, however, offers a larger flexibility due to the peculiar features of
local multi-resolution bases. In order to illustrate the difference between wavelet and GTO basis sets it
is sufficient to consider a single atom. Increasing the size of an atomic GTO basis set always corresponds
to a global refinement in the configuration space of electrons. Compared to this, wavelets, on sufficiently
fine scales, allow for local refinements in the immediate neighbourhood of the e− e cusp. Concerning two-
particle correlation functions, the e − e cusp corresponds to a three dimensional hypersurface in R

6, and
therefore requires a comparatively large number of tensor-product wavelets (2.4) on fine scales. However
it is well known from QMC methods that Jastrow factors actually vary rather smoothly along the e − e
cusp (cf. [15, 16, 22]). Therefore it is possible to considerably reduce the number of degrees of freedom by
contracting wavelets in the immediate neighbourhood of the e − e cusp [12, 37]. Such kind of contraction
scheme can be represented through a hierarchical Kronecker tensor product decomposition (cf. [23]), which,
furthermore, enables an efficient evaluation of integrals (cf. [37]).
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Appendix

A Multi-resolution analysis within the random phase approxima-
tion

Among numerous applications of Jastrow factors in quantum chemistry and condensed matter physics, the
homogenous electron gas is probably the most extensively studied model system. It can be considered as a
simplified model for metals (cf. [19]) where individual atomic cores are replaced by a constant background
charge density. Due to translational invariance and isotropy of this model system it became possible to
study Jastrow factors using various kinds of quantum many-body theories (cf. [3, 32, 46, 47]). In the
following we want to consider Jastrow factors within the so-called random phase approximation (RPA). For
a thorough discussion of the underlying physics, we refer, e.g., to [19]. This approximation provides an
explicit representation of the two-particle correlation function in momentum space,

F̂RPA(k) =
1

2ρSF (k)

[
1 −

(
1 +

4ρv̂(k)SF (k)2

k2

) 1
2
]

(A.1)

(cf. [46]), where the static structure function of a non-interacting particle system

SF (k) =

{
3
4
k
kF

− 1
16

(
k
kF

)3

k < 2kF ,
1 k ≥ 2kF ,

(A.2)

enters as well as the Fourier transform of the Coulomb potential v̂ = 4π/k2. For the sake of notational
simplicity, we have introduced the variable k := |k| to denote the absolute value of the relative momentum
k ∈ R

3 between two electrons. The homogeneous electron gas can be either characterized by its density ρ
or by the Fermi momentum kF , both quantities are related through ρ = k3

F /(3π
2).

In order to study the asymptotic behaviour of the RPA two-particle correlation function in configuration
space, we perform a Littlewood-Paley decomposition of (A.1) in momentum space. Starting with a cut-off
function η(k) ∈ C∞

0 (R+) with η(k) = 1 for k < kF /2 and η(k) = 0 for k ≥ kF , we construct a dyadic
partition of unity in momentum space (cf. [43]):

1 = η(k) +
∞∑
j=1

δj(k) with δj(k) := η(2−jk) − η(2−j+1k).

Inserting this partition of unity into Eq. (A.1), we obtain a multi-scale decomposition of the two-particle
correlation function

FRPA(r) = S0F(r) +
∞∑
j=0

∆jF(r), (A.3)

with respect to its energy scales, where individual terms are given via the inverse Fourier transforms

S0F(r) :=
1

(2π)3

∫
R3
eikrη(k)F̂RPA(k) dk, (A.4)

∆jF(r) :=
1

(2π)3

∫
R3
eikrδj(k)F̂RPA(k) dk.

To simplify our notation, we have introduced the variable r := |r| to denote the absolute value of the vector
r ∈ R

3 describing the relative position of two electrons in configuration space. First we want to discuss the
behaviour of the high-energy scales in configuration space. For this we consider the partial sum

Fs(r) :=
∞∑
j=j0

∆jF(r), (A.5)

where j0 is chosen in such a way that min supp δj0 > 2kF . The sum (A.5) essentially comprises short-range
correlations close to the e− e cusp.
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Proposition A.1 The short-range part of the RPA two-particle correlation function Fs(|x − y|) satisfies
Assumption 1.1. Furthermore it satisfies the generalized asymptotic smoothness property∣∣∂αx∂βyFs(|x − y|)∣∣ ≤ Cα,β |x − y|1−|α|−|β|−N , if x �= y and |α| + |β| +N ≥ 1, (A.6)

for arbitrary N ≥ 0 and x,y ∈ R
3.

Proof. According to our construction, we first observe for the Fourier transform F̂s(k) ∈ C∞(R+) with
F̂s(k) = 0 for k ≤ 2kF . In addition, it satisfies the estimate∣∣∣∂αk F̂s(k)∣∣∣ ≤ Cα (1 + k)−4−|α| for |α| ≥ 0,

as can be easily seen from Eq. (A.1). Therefore F̂s can be considered as a translationally invariant symbol
of a pseudo-differential operator in the symbol class S−4(R3 ×R

3) following Stein’s [43] approach to pseudo-
differential operators in R

n. The estimate (A.6) for |α| + |β| +N > 1 is an immediate consequence of [43,
Proposition VI.4.1, p. 241]. It remains to prove the boundedness of the first derivatives. For this we consider
first the two-particle correlation function from Corollary 2.4

F (2)
c (|x − y|) =

1
2
|x − y|e−|x−y|2, (A.7)

where an appropriate cut-off function has been added. The prefactor corresponds to Kato’s cusp condition
for two electrons with antiparallel spin [31]. Performing the Fourier transformation, we can apply formula
(3.5) and obtain the asymptotic expansion

F̂ (2)
c (k) =

∫
R3
e−ikrF (2)

c (|r|) dr =
2π
k

∫ ∞

0

s2e−s
2
sin(ks) ds with k := |k|

∼ −4π
k4

− 48π
k6

+O

(
1
k8

)
for k → ∞. (A.8)

This has to be compared with the asymptotic expansion of the RPA two-particle correlation function (A.1)

F̂RPA(k) =
1
2ρ

(
1 −

√
1 +

16πρ
k4

)
for k > 2kF

∼ −4π
k4

+O

(
1
k8

)
. (A.9)

We can decompose the short-range part (A.5) according to

Fs = Fc + Fs −Fc︸ ︷︷ ︸
:=Fs−c

.

It follows from the asymptotic expansions (A.8) and (A.9) that F̂s−c ∼ O
(

1
k6

)
. Therefore Fs−c(|x − y|) ∈

C1(R3 × R
3), which demonstrates together with Eq. (A.7) the boundedness of the first derivatives.

At next we consider the low-energy contribution S0F which gives rise to long-range correlations in
configuration space. Such kind of correlations are typical for metals (cf. [19]) and seem to be less important
or even absent in semiconductors and insulators (cf. [20]). It is an immediate consequence of definition
(A.4) that S0F(|x − y|) ∈ C∞(R3 × R

3). Furthermore, the long-range part S0F satisfies an asymptotic
smoothness property which allows to estimate wavelet coefficients of the two-particle correlation function at
large distances.

Proposition A.2 The long-range part of the RPA correlation function S0F , defined via the Littlewood-Paley
decomposition (A.3), satisfies the estimate∣∣∂αx∂βyS0F(|x − y|)∣∣ ≤ Cα,β (1 + |x− y|)−(1+|α|+|β|) . (A.10)
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Proof. The proof is based on an analysis of the asymptotic behaviour of S0F(r) and its derivatives for
r → ∞. Using spherical symmetry, we can express the Fourier integral (A.4) in the form

S0F(r) =
1

2π2r

∫ ∞

0

k−1η(k)
(
k2F̂(k)

)
sin(kr) dk. (A.11)

From this we can derive a recurrence relation for the derivatives with respect to r,

dpS0F(r)
drp

= −p
r

dp−1S0F(r)
drp−1

+
1

2π2r

∫ ∞

0

k−1η(k)
(
k2F̂(k)

) ∂p sin(kr)
∂rp

dk. (A.12)

It is obvious from Eq. (A.1) that the function k2F̂(k)η(k) can be extended to a function in C∞
0 (R). With

this it is possible to use the standard formula (3.5) for asymptotic expansions of oscillatory integrals. The
expansion is immediately applicable to the second term on the right hand side of the recurrence relation
(A.12). The integral (A.11) requires the case n = −1 for which the asymptotic expansion (3.5) does not
apply. However it is straightforward to modify the proof of the asymptotic expansion (3.5) for the integral
(A.4) (see e.g. [43, Paragraph VIII.5.1]) because it contains only sin(kr) which is of O(k) for k → 0. The
modified asymptotic expansion for r → ∞,

S0F(r) ∼ ã0

r
+

∞∑
j=0

ã2j+1

r2j+2
with ã0 =

1√
4πρ

, ãj =
ij−1

2π2j

dj
(
k2F̂(k)

)
dkj

∣∣∣∣∣∣
k=0

(j > 0).

contains in leading order the plasmon frequency of the homogeneous electron gas ωpl =
√

4πρ (cf. [19]).
Altogether we derived asymptotic expansions for the long-range part of the RPA correlation function and
its derivatives via the recurrence relation (A.12), which proves the asymptotic smoothness property (A.10).

An important consequence of Proposition A.2 is that there exists a multi-resolution representation for
the long-range part of the RPA correlation function (A.4) that can be further compressed without significant
loss of accuracy. Using techniques similar to those used in Lemma 2.1, one of us proved the estimate∣∣∣∣

∫∫
γ

(s)
j,a(x)S0F(|x − y|)γ(t)

�,b(y) dxdy
∣∣∣∣ � 2−j(3/2+p|s|)2−�(3/2+p|t|)

dist(supp γ(s)
j,a , supp γ(t)

�,b)1+p(|s|+|t|)
,

in the context of Galerkin discretization of pseudo-differential operators (cf. [6, 7]).
Some of the remaining terms ∆jF (j = 1, . . . , j0 − 1) of the Littlewood-Paley decomposition (A.3), with

2kF ∈ supp δj , have discontinuous second derivatives at k = 2kF . This is an immediate consequence from
the corresponding behaviour of the static structure function of a non-interacting particle system (A.2) that
enters into Eq. (A.1). Concerning their asymptotic behaviour in configuration space we get

j0−1∑
j=1

∆jF(r) ∼ o

(
1
r2

)
,

which means that these correlations decay much faster than the long-range correlations discussed above.
Nevertheless, the lack of an asymptotic smoothness property similar to the estimate (A.10) indicates the
presence of an oscillatory behaviour in configuration space which prevents an efficient compression of the
remaining terms in a multi-resolution basis. Almost nothing is known about their physical significance.
Comparative QMC calculations between RPA and parametrized Jastrow factors that do not possess any
oscillatory behaviour indicate however that these correlations are of minor importance (cf. [3]).
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