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Abstract

We give a rigorous derivation of continuum theory from atomic models
for thin films. This scheme has been proposed by Friesecke and James in
[17]. The resulting continuum energy expression is obtained by integrat-
ing a stored energy density which not only depends on the deformation
gradient but also on ν − 1 director fields when ν is the (fixed) number of
atomic film layers.
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1 Introduction

The derivation of effective theories for thin elastic structures is a classical prob-
lem in elasticity theory, see, e.g., [26]. Rigorous results deriving membrane,
plate or shell theories from three-dimensional elasticity have been obtained only
recently (cf. [23, 24, 25, 18, 19, 20, 21]). By now there has emerged a whole
hierarchy of plate theories according to different scalings of the stored energy
(cf. [20]).

Another area of research concerns the passage from discrete atomic mod-
els to continuum theories. Rigorous Γ-convergence results, especially in one
dimension, are proved in [8, 9, 10] for pair potentials under suitable growth
assumptions on the atomic interactions. The results in [5, 6, 7] on the other
hand deal with both pair potential and quantum mechanical energy models,
but assume the Cauchy-Born rule to deduce continuum limits in this general
framework.

The aim of the present work is to derive and discuss continuum theory for
thin films, starting from a microscopic atomic model as proposed by Friesecke
and James in [17]. More precisely, for h > 0 fixed and k ∈ N we start with
reference configurations

Lk = Z
3 ∩ [0, k] × [0, k] × [0, h]

(more general lattices are possible) subject to some deformation y(k) : Lk → R
3.

The elastic energy of such a deformation is denoted by E(y(k)). The natural
limiting objects in the limit k → ∞ (the variables of the continuum theory
to be developed) are argued to be (after rescaling) given by some function
u : [0, 1] × [0, 1] → R

3 and vector fields bi : [0, 1] × [0, 1] → R
3, i = 1, . . . , ν − 1,

where the film consists of ν layers of atoms. Having defined a suitable notion
of convergence, we are led to the fundamental problem:
Problem. Find ϕ : R

3·2 × (R3)ν−1 → R such that

E(u, b1, . . . , bν−1) := lim
k→∞

E(y(k)) =
∫

[0,1]2
ϕ(∇u, b1, . . . , bν−1).

Here, we do not want to restrict to pointwise limits, but rather calculate a
variational limit of the energy allowing for some microscopic relaxation. This
kind of convergence is in the spirit of Γ-convergence, cf. [14].

In section 2, we introduce the model, in particular, we discuss the admissible
limiting deformations and energy functions that may be considered. We define
precisely in what sense microscopic deformations are understood to converge to
their macroscopic representatives.

Section 3 is the core of the theory. It shows how to pass from atomic
to continuum theory in the framework set up so far. The scheme has been
introduced by Friesecke and James in [17], where they suggest to follow the
following strategy:

- Replace (u,b) by their piecewise affine resp. constant approxima-
tions (uε,bε).
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- Partition the body into mesoscopic regions where uε,bε are affine
resp. constant and show that the energy decouples.

- Find minimizers separately on these regions.
- Patch them together.
- Obtain an integral expression in terms of ∇u and b.

We give a rigorous version of these steps, which in part were derived formally
in [17]. Note, however, that there are some major differences. In particular,
the (central) notion of weak neighborhood given here is at variance with that of
[17] resulting in some technical differences. These neighborhoods are not only
of technical interest but also describe physically which deformation fluctuations
are subject to relaxation and which will be seen in continuum theory.

Furthermore we show that the hypotheses on the decay of the energy made
in [17] may be weakened. We also give a proof for the convergence of the relaxed
energy on a mesoscale level under homogeneous conditions, thus showing that
the continuum theory derived is indeed well-defined. This is also proved for a
modified version of weak neighborhoods leading to a representation result for the
limiting energy density ϕ. The results are extended to systems with unbounded
interaction potential which are of physical interest. Finally, we discuss some
extensions, in particular, to certain systems of distinguishable particles, and
variants of the continuum theory.

In section 4, we examine physical energy functions and exhibit conditions
under which these fit into the theory. In particular we treat pair potentials,
angular forces (to incorporate materials whose binding energy depends on the
bond-angles) and pair functionals (derived by the embedded atom method).
We show that under reasonable hypotheses on the parameters these energies
are admissible for our passage to continuum theory. To give an explicit example
we also treat the case of an elementary nearest neighbor model.

It remains to study qualitative aspects of the theory derived here. This
will be done in [28] in detail. The dependence of ϕ on a relaxation parameter
introduced here will be examined. The limiting behavior of ϕ(A,b) under very
extensive or compressive strain and convexity properties will be discussed. The
results for systems satisfying assumption 2.8 turn out to be different from those
for nearest neighbor like interactions as in paragraph 3.6.2. In [28] we will also
consider more realistic mass-spring models for which interesting phenomena will
be observed when examining ϕ at A near O(2, 3).

2 Microscopic model and macroscopic variables

After introducing the atomic model of a thin film subject to some deformation,
we identify the variables of continuum theory as limiting points of these de-
formations. Finally, we collect the basic assumptions on the admissible energy
functions.
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2.1 Kinematics

2.1.1 Atomistic model

We consider a film of ν atomic layers. Our reference configuration will be

Lk = L ∩ (Sk × [0, h]),

where L = Z
3, Sk := [0, k] × [0, k] for k ∈ N and h := ν − 1 is the height of the

film. (Only minor changes are necessary to treat more general Bravais-lattices
L, cf. paragraph 3.6.)
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It will sometimes be convenient to enumerate these points as x1, . . . , xν(k+1)2 .
The deformations of this configuration will be denoted by

y = y(k) : Lk → R
3.

(Also write y as (y1, . . . , yν(k+1)2) for yi = y(xi).) In order for y to be defined
not only at the atomic positions, we will assume some interpolation between
the atomic positions. However, we then have to be careful that our results do
not depend on the particular interpolation chosen, see below.

Our aim being to study the limit k → ∞, it is natural to introduce the
rescaled functions ỹ defined on the common domain S1 × [0, h]:

ỹ(k)(x) :=
1
k
y(k)(kx1, kx2, x3).

Assume for the moment some interpolation is chosen. As pointed out in
[17], imposing regularity assumptions on the deformations y, implies existence
of limiting deformations in the limit k → ∞. It is argued that these limits
have to be considered the natural variables of continuum theory. In detail, the
assumptions on the deformations made in [17] are the following. There are
constants c1, c2 > 0 such that,

(a) |y(x)| ≤ c2k (boundedness),

(b) |y(x2) − y(x1)| ≤ c2|x2 − x1| (Lipschitz),

(c) |y(x2) − y(x1)| ≥ c1|x2 − x1| (minimal strain hypothesis),

for all x, x1, x2 ∈ Sk × [0, h].
While conditions (a) and (b) guarantee the existence of well-defined limiting

points by weak*-compactness of the set of admissible deformations as k →
∞, a minimal strain hypothesis is needed in order localize the energy of a
deformation. Without that assumption the film could by repeatedly folding
back on itself be deformed into a block of bulk material, which would certainly
not give rise to film-like behavior.
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2.1.2 Macroscopic variables

As indicated above, for fixed c2 the set of admissible functions ỹ is weak*-
compact in W 1,∞(S1×[0, h]; R3). Also, (kỹ(k)

,3 ) is bounded in L∞(S1×[0, h]; R3).
So there are, for k → ∞, limit points of these deformations: There is u such
that (for a subsequence)

ỹ(k) ∗
⇀ u, ∇ỹ(k) ∗

⇀ ∇u in L∞. (1)

It is easy to see that u is independent of x3.
There is also a subsequence such that (kỹ(k)

,3 ) weak*-converges in L∞. How-
ever, this is cannot become a free variable of our continuum theory, since the
limit function must be determined by the atomic positions only. We instead
follow [17] and consider

∆iỹ(k)(xp) = ỹ(k)(x1, x2, i) − ỹ(k)(x1, x2, 0), i = 1, . . . ν − 1,

xp = (x1, x2). These quantities measure the relative shift of the layers of the
film. By assumption, (k∆iỹ(k)) is a bounded sequence, and so some subsequence
weak*-converges to, say, bi(x1, x2):

k
(
ỹ(k)(·, i) − ỹ(k)(·, 0)

) ∗
⇀ bi in L∞. (2)

These objects, u and b = (b1, . . . , bν−1) constitute the natural variables of a
continuum theory.
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While the first condition (1) does not depend too much on the particular
interpolation chosen, we can expect condition (2) to hold only for suitable
interpolations (cf. below).

In our derivation – deviating from [17] – we will take the point of view that
we are given u and b = (b1, . . . , bν−1) and would like to assign an energy to
these variables allowing for atomic relaxation. Thus reflecting the fact that
we are interested in energies of macroscopic film-like configurations, we do not
restrict the lattice deformations themselves, but rather impose the following
conditions on u and b.

Definition 2.1 Let u ∈ W 1,∞(S1; R3) and b ∈ L∞(S1; (R3)ν−1). We say that
(u,b) is admissible (for given c0 > 0), i.e. (u,b) ∈ A, if there exists c1 > 0
such that

|u(x) − u(z)| ≥ c1|x− z| ∀x, z ∈ S1 (3)

(minimal strain hypothesis), and there exists b0 ∈ L∞ such that

‖b0‖L∞ , ‖bi − b0‖L∞ ≤ c0, i = 1, . . . , ν − 1. (4)
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The first hypothesis ensures the macroscopic deformation to be ‘film like’.
The meaning of the second condition will become clear when we have specified
our convergence scheme.

To be able to work also in un-rescaled variables, we define U : Sk → R
3 by

Ũ(x) = 1
kU(kx) = u(x).

The following lemma is elementary but important. In particular, the lower
bound in (ii) gives a ‘far field minimal strain hypothesis’ for deformations close
to u.

Lemma 2.2 Suppose u is admissible and y : Lk → R
3 some deformation with

supx∈Lk
|y(x) − U(xp)| ≤ c. Then y is Lipschitz. For any (rescaled) Lipschitz

interpolation y : Sk × [0, h] → R
3 (ỹ : S1 × [0, h] → R

3) there are constants
C1, C2, C3 > 0 such that,

(i) supx∈S1×[0,h] |ỹ(x)| ≤ C2,

(ii) C1|x− z| − C3 ≤ |y(x) − y(z)| ≤ C2|x− z| ∀x, z ∈ Sk × [0, h],

Proof. Since u is admissible, there are 0 < c1 ≤ c2 such that

c1|x− z| ≤ |u(x) − u(z)| ≤ c2|x− z| (5)

for all x, z ∈ S1. Then (i) is clear for x ∈ 1
kLk∩S1: choose C2 ≥ |u(0)|+√

2c2 +
c/k. For x, z ∈ Lk, |y(x) − y(z)| on the one hand is greater than or equal to

|U(xp) − U(zp)| − 2c ≥ c1|xp − zp| − 2c ≥ c1|x− z| − c1h− 2c

which proves the first inequality of (ii) for x, z ∈ Lk. On the other hand, for
x �= z ∈ Lk this is less than or equal to

|U(xp) − U(zp)| + 2c ≤ c2|xp − zp| + 2c ≤ c2|x− z| + 2c ≤ C|x− z|

since |x−z| ≥ 1. In particular, y is Lipschitz. Choosing a Lipschitz-interpolation
with Lipschitz constant C2, we get for all x ∈ Sk × [0, h]

|y(x) − U(xp)| ≤ C ′ + c+ |U(x̄p) − U(xp)| ≤ C ′ + c+ c2 =: c′

where x̄ ∈ Lk is such that |x̄− x| ≤ 1. Now repeat the above steps to conclude
(i) and the first part of (ii) for y on Sk × [0, h] (ỹ on S1 × [0, h]). �
Remarks:

(i) The constants C1, C2, C3 only depend on u through c, c1 and c2 and on
the Lipschitz constant of the chosen interpolation. Below, this constant
will be chosen independently of k.

(ii) If y is defined only on a subset of Lk and satisfies |y −U | ≤ c on this set,
then clearly the implications of the lemma remain valid on this set.
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2.1.3 Interpolation & convergence

Weak*-convergence for bounded sequences in L∞ is equivalent to convergence
of averages (e.g. over all sub-squares of the domain). We will therefore choose
our interpolation carefully such that

−
∫

Q
ỹ(z, i)dz ≈ 1

#( 1
kL ∩Q)

∑
z∈ 1

k
L∩Q

ỹ(z, i)

for Q a square in S1. For a deformation y : Lk → R
3 let x̄ = x+ (1/2, 1/2) for

x ∈ {0, . . . , k − 1}2 and set

y(x̄, i) =
1
4

∑
z∈Z2,

|z−x̄|=1/
√

2

y(z, i), i = 0, . . . , ν − 1.

Now on each of the four triangles with corners (x̄, i), (z, i), (z′ , i), where z, z′ ∈
Z

2 with |z − x̄| = 1/
√

2, |z − z′| = 1 interpolate linearly to obtain y(x, i) for
x ∈ Sk. Interpolating in between the layers is not so subtle, for definiteness we
choose y to be linear on the segments [(x, i − 1), (x, i)].

Note that this choice guarantees that for Qx̄ = {z ∈ S1 : |z − x̄|∞ ≤ 1/2k}

−
∫

Qx̄

ỹ(z, i)dz =
1
4

∑
z∈ 1

k
L∩Qx̄

|z−x̄|=1/
√

2k

ỹ(z, i).

Now let D ⊂ S1 be some square of fixed side-length l and consider the measure ρ
on R

2 defined by ρ =
∑

x∈Z2 δx/k, where δz is the Dirac-measure at z. Supposing
|k∆iỹ(k)| is bounded uniformly in k, we get that∣∣∣∣−

∫
D
k∆iỹ(z1, z2)dρ−−

∫
D
k∆iỹ(z1, z2)dz1dz2

∣∣∣∣ ≤ C
1
kl
.

This shows that the limits bi are in fact only depending on atomic positions.
In the sequel we will assume that y (resp. ỹ) are interpolated precisely in

this manner. As a consequence of the next definition and the previous lemma,
all deformations that will be taken into account for atomistic relaxation are
Lipschitz with a common Lipschitz constant independent of k.

Definition 2.3 Let u ∈ W 1,∞(S1; R3), b ∈ L∞(S1; R3). Choose c0 > 0, a
constant. We say that y(k) → (u,b) (w.r.t. c0) if

‖ỹ(k) − u‖ ≤ c0/k and k∆iỹ(k) ∗
⇀ bi in L∞.

Here and in the sequel we denote by ‖f‖, respectively ‖f̃‖ in rescaled variables,

‖f‖ := sup
x∈Lk

|f(x)|, resp. ‖f̃‖ := sup
x∈Lk

|f̃(xp/k, x3)|.
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Indeed, ‖ỹ(k) − u‖ → 0 and ‖∇ỹ(k)‖L∞ ≤ const. imply ỹ(k) ∗
⇀ u in W 1,∞.

Also note, if ‖ỹ(k) − u‖ ≤ c0/k, then in fact k∆iỹ(k) is bounded, so we can
describe weak*-convergence in L∞ by convergence of averages. In order to shed
light on the compatibility assumption made for admissible b, we first prove the
following lemma.

Lemma 2.4 Suppose |ỹ(k)(z, i)−u(z)| ≤ c0/k for all z ∈ 1
kZ

2∩S1. Then there
exist w(k) ∈ L∞(S1; R) with ‖w(k)‖L∞ ≤ C and w(k) → 0 pointwise a.e. as
k → ∞ such that

|ỹ(k)(x) − u(xp)| ≤ c0 + w(k)(xp)
k

.

Proof. Since there is a common Lipschitz constant for all deformations and
|ỹ(x, i) − u(x)| ≤ c0/k whenever x ∈ 1

kZ
2, we immediately get a constant

C > c0 such that
|ỹ(x, i) − u(x)| ≤ C/k ∀x ∈ S1. (6)

Let x ∈ S1 such that ∇u(x) exists and define u′(x, z) = u(x)+∇u(x)(z−x).
Choose z0 ∈ ( 1

kZ
2 + (1/2, 1/2)) ∩ S1 such that |x − z0| is minimal and let

{z ∈ 1
kZ

2 : |z0 − z| = 1/
√

2} = {z1, z2, z3, z4}. Suppose x lies in the triangle
with corners z0, z1, z2. By our interpolation and since u′(x, ·) is affine,

|ỹ(z0, i) − u′(x, z0)| =

∣∣∣∣∣∣
1
4

4∑
j=1

ỹ(zj , i) − 1
4

4∑
j=1

u′(x, zj)

∣∣∣∣∣∣
≤ 1

4

4∑
j=1

|ỹ(zj , i) − u(zj)| + |u(zj) − u′(x, zj)|

≤ c0
k

+
1
4

4∑
j=1

|u(zj) − u′(x, zj)|

Also, for j = 1, 2, 3, 4,

|ỹ(zj , i) − u′(x, zj)| ≤ c0
k

+ |u(zj) − u′(x, zj)|.

Now since ỹ(·, i) and u′(x, ·) are affine on the triangle with corners z0, z1, z2
we deduce from these inequalities that

|ỹ(x, i) − u(x)| = |ỹ(x, i) − u′(x, x)| ≤ max
j∈{0,1,2}

|ỹ(zj , i) − u′(x, zj)|

≤ c0
k

+ max
j∈{1,2,3,4}

|u(zj) − u′(x, zj)|. (7)

Choosing
w(x) = min{C − c0, k max

i∈{1,2,3,4}
|u(zj) − u′(x, zj)|}.

we see by (6) and (7) and our choice of interpolating linearly between the film
layers

|ỹ(xp, x3) − u(xp)| ≤ max
0≤i≤ν−1

|ỹ(xp, i) − u(xp)| ≤ c0
k

+
w(xp)
k

8



for a.e. (x1, x2). To finish the proof just observe that zj → x as k → ∞ and
|u(zj) − u′(x, zj)| = o(|x− zj |) = o(1/k), since |x− zj | ≤

√
2/k. �

As a consequence we obtain the following lemma.

Lemma 2.5 Suppose u ∈ W 1,∞(S1,R
3). There exists a sequence of deforma-

tions y(k) → (u,b) for b ∈ L∞(S1; (R3)ν−1) if and only if (4) holds.

Proof. Assume y(k) → (u,b) and consider f (k)(z) = ku(z) − kỹ(k)(z, 0). By
the previous lemma, f (k) is bounded in L∞, so there is a weak*-convergent
subsequence f (kj) ∗

⇀ b0, say. Now if χ ∈ L1(S1) with ‖χ‖L1 = 1, then, by
lemma 2.4,∫

χ · b0 = lim
j→∞

∫
χ · f (kj) ≤ lim

j→∞

∫
|χ| · |c0 + w(kj)| = c0

by dominated convergence since the w(k) are uniformly bounded and converge
to zero pointwise. It follows that ‖b0‖L∞ ≤ c0.

Now considering kj∆iỹ(kj)−f (kj) ∗
⇀ bi−b0, |kj∆iỹ(z)−f (kj)(z)| = |kỹ(z, i)−

ku(z)| ≤ c0 + w(k)(z), the same reasoning shows that ‖bi − b0‖L∞ ≤ c0.
Conversely, suppose b0 satisfying (4) exists. For 0 ≤ i ≤ ν − 1 set

b̄i(x) = −
∫

Q(x)
bi(z)dz, (8)

where Q(x) = x + [−1/2k, 1/2k]2 . (Extend bi boundedly (constantly if bi is
constant) outside S1.) Now consider the function v (V in un-rescaled variables)
defined by (interpolation of)

v(x1, x2, i) =
{

u(x1, x2) − 1
k b̄

0(x1, x2) for i = 0
u(x1, x2) + 1

k (b̄i(x1, x2) − b̄0(x1, x2)) for 1 ≤ i ≤ ν − 1
(9)

for (x1, x2) ∈ 1
kZ

2 ∩ S1.
Clearly, ‖v − u‖ ≤ c0/k, since for x ∈ 1

kZ
2 ∩ S1∣∣b̄0(x)∣∣ ≤ ∥∥b0∥∥

L∞ ,
∣∣b̄i(x) − b̄0(x)

∣∣ ≤ ∥∥bi − b0
∥∥

L∞ .

Also, for each square D of side-length 0 < l ≤ 1, −
∫
D k∆

iỹ = bi + O(l/k) which
implies that k∆iỹ

∗
⇀ bi. �

2.2 Energy

The energy of a system of N atoms at positions y1, . . . , yN ∈ R
3 shall be a

function E : (R3)N → R only depending on atomic positions. To study E we
will endow the configuration space (R3)N with the norm

‖(y1, . . . , yN )‖ = sup
1≤i≤N

|yi|2.

The energy of a deformation y is denoted

E(y) = E(y(x) : x ∈ Lk).
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More generally, the energy of the subset y(K), K ⊂ Lk, (counted with multi-
plicities) of all the atoms is

E(y(K)) = E(y(x) : x ∈ K)

We normalize E so that E(∅) = 0.
Consider deformations y : K → R

3, where K = L ∩ (Ω × [0, h]), Ω ⊂ Sk. As
before, the configuration space is endowed with the norm ‖y‖ = maxx∈K |y(x)|2,
and ‖y − U‖ = maxx∈K |y(x) − U(xp)|2. The main assumption on E is the
following – physically reasonable – decay hypothesis.

Assumption 2.6 Suppose u is admissible. There exists a function ψ : [0,∞) →
R such that

|ψ| ≤M and ψ(r) ≤Mr−q (10)

where M, q are constants, M > 0, q > 3, such that for disjoint sets M and N
of atoms we have

|E(M∪N ) − E(M) −E(N )| ≤
∑

v∈M,w∈N
ψ(|v − w|),

whenever ‖y − U‖ ≤ C. (The function ψ may depend on C and on u through
c1 and c2 where c1|x1 − x2| ≤ |u(x1) − u(x2)| ≤ c2|x1 − x2|.)

The energy functionals E act on different spaces because of the different
number of atoms involved. The following assumption guarantees that locally
near admissible u’s we have control of ∂

∂yi
E(y1, . . . , yN ) uniformly in k.

Assumption 2.7 Let u be admissible. We assume that E is locally Lipschitz,
and in any C-neighborhood of U we have∣∣∣∣ ∂∂yi

E(y)
∣∣∣∣ ≤ L

where L might depend on C and on U through c1, c2 but is independent of the
number of atoms involved.

Furthermore, we assume E to be frame indifferent and only depending on
the atomic positions, i.e. E remains unchanged after renumbering of atoms and
rigid motion of the configuration y(K).

So in particular E({y}), the (finite) self-energy of a single atom at y ∈ R
3,

is the same for all y ∈ R
3.

Remarks:

(i) By assumption 2.7 we could restrict to injective y. This would result in
energy errors as small as we wish.

(ii) The last requirement can be weakened to situations where E is merely
translational invariant and more than one species of atoms is involved. In
the latter case one has to assume some periodicity condition. Also systems
of distinguishable particles as arise e.g. in nearest neighbor models can be
treated. We will come back to this in paragraph 3.6.

10



(iii) Energy functions E satisfying 2.6 and 2.7 will be called admissible in the
sequel. Note that the set of admissible E forms a vector space.

(iv) The assumption on the Lipschitz continuity can be rephrased by requiring
that ‖∇E‖l∞(N) be bounded, i.e. there be a universal Lipschitz constant
when the state space R

N is equipped with the l1(N)-norm rather than
with the l∞(N)-norm. Then the Lipschitz constant (for the usual norm)
in a C-neighborhood of U can be chosen as L ·#K, where L might depend
on C, c1, c2, but is independent of K.

(v) In paragraph 3.5 we will see that the boundedness assumptions on ψ and
∂E/∂yi can be weakened. Then also energies that become infinitely large
as the distance between two atoms tends to zero can be considered.

In lemma 2.2 we saw how the condition ‖y − U‖ ≤ C led to a “far field
minimal strain hypothesis” |y(x)−y(z)| ≥ C1|x−z|−C3 (with C1, C3 depending
on C). In fact, many interesting systems satisfy the above assumptions in a
more restrictive sense (see section 4):

Assumption 2.8 Assume that ψ and L of assumption 2.6 resp. 2.7 depend
only on C1 and C3 where y satisfies |y(x) − y(z)| ≥ C1|x− z| − C3.

This assumption has far reaching consequences as will be detailed in [28].
For the derivation of continuum theory, we will not make use of this.

3 Passage to continuum theory

Having defined the variables of continuum theory u and b1, . . . , bν−1, our aim is
to calculate a limit energy E(u,b) as a variational limit of E(y(k)) as y(k) tends
to (u,b). We will prove that this limit exists and give an integral expression
in terms of some macroscopic energy density ϕ. Furthermore, we will prove
a representation formula for ϕ. The results will be extended to other atomic
systems, in particular to systems with unbounded (pair-) interaction potential.

3.1 Results

Suppose E satisfies assumptions 2.6 and 2.7, and a relaxation parameter c0 > 0
is chosen. Our main result is the following variational convergence result:

Theorem 3.1 There exists a macroscopic stored energy function ϕ such that
(in the spirit of Γ-convergence),

(i) if y(k) → (u,b), (u,b) admissible, then

lim inf
k→∞

E(y(k)) ≥ E(u,b),

(ii) and for all admissible (u,b) there exists a sequence y(k) → (u,b) such
that

lim
k→∞

E(y(k)) = E(u,b).

11



Here, E(u,b) is the macroscopic energy

E(u,b) =
∫
S1

ϕ(∇u, b1, . . . , bν−1). (11)

In proving this theorem our strategy will be to first reduce to homogeneous
conditions and study the limit for affine u and constant bi. Assuming this in
(11) leads to defining ϕ by solving a cell problem

ϕ(A,b) = lim inf
1
νk2

E(y(k)) as y(k) → (A,b) (12)

for matrices A ∈ R
3·2 of rank 2 and admissible vectors bi ∈ R

3. However, it
turns out that there is a more explicit formula for ϕ. Let

N̂ 0,1
k (A,b) =

⎧⎨
⎩y : Lk → R

3 : ‖y −A‖ ≤ c0 and
1

(k + 1)2
∑

x∈Z2∩Sk

∆iy(x) = bi

⎫⎬
⎭ .

(13)
Then we have the following representation result:

Theorem 3.2 The macroscopic energy density ϕ of theorem 3.3 (and formula
(12)) is given by

ϕ(A,b) = lim
k→∞

1
νk2

inf
y∈N̂ 0,1

k (A,b)
E(y). (14)

This limit is uniform on compact subsets of Ahom and depends continuously on
A,b.

Here, Ahom ⊂ R
3·2 × (R3)ν−1, the homogeneous version of A, is defined by

Ahom := {(A, b1, . . . , bν−1) : rank(A) = 2,
∃ b0 ∈ R

3 s.t. |b0|, max
1≤i≤ν−1

|bi − b0| ≤ c0}

consisting of admissible matrices A and vectors b.
Measuring convergence of k∆iỹ(k) in terms of negative Sobolev norms we

get the following sharper version of theorem 3.1. Having introduced the notion
of weak neighborhoods in the next section, we will see that this amounts to
arbitrarily prescribing the scale of convergence of averages as long as the areas
over which to take averages are large compared to atomic dimensions.

Theorem 3.3 Suppose l = l(k) is such that l(k) → 0 and kl(k) → ∞ as
k → ∞. Let

W l
k(u,b) := {y : ‖ỹ − u‖ ≤ c0/k, ‖k∆iỹ − bi‖W−1,∞ ≤ l}

where ‖f‖W−1,∞ := sup
{∫

f · χ : χ ∈W 1,1
0 , ‖χ‖W 1,1

0
= ‖∇χ‖L1 = 1

}
. Then

lim
k→∞

1
νk2

inf
y∈Wl

k(u,b)
E(y) =

∫
S1

ϕ(∇u(x),b)dx.

12



In 3.6.2 we will sketch how to extend these results to certain finite range
interaction models for distinguishable particle systems.

For many physically interesting models the requirement that the splitting
function ψ be bounded (cf. (10)) is too restrictive. More generally, we should
allow for energy contributions tending to infinity when atoms are getting very
close.

Theorem 3.4 Suppose the energy is of the form

E(y) =
1
2

∑
i�=j

W (|yi − yj|) + E0(y) (15)

where E0 satisfies the usual assumptions (cf. paragraph 2.2, also interactions
as discussed in 3.6.2 are allowed for E0), but W (r) becomes infinitely large as
r tends to zero. For any r0 > 0 we assume that W is Lipschitz on [r0,∞) and
there exist M = M(r0) ∈ R and q = q(r0) > 3 such that for (a.e.) r ≥ r0

|W (r)| ≤Mr−q, |W ′(r)| ≤Mr−q+1,

for r ≥ r0. Then theorem 3.1 extends to energy functions of the form (15)
where, as in theorem 3.2, ϕ : Ahom → (−∞,∞] is given by (14), continuous as
a function with values in R ∪ {∞}.

Considering weak*-converging sequences ỹ(k), it is natural to measure devi-
ations from u in L∞-norm, resp. ‖ · ‖. Our choice

‖ỹ − u‖ ≤ l1(k)

with l1(k) := c0/k corresponds to a relaxation regime where the individual
atoms a allowed to move in a region comparable to atomic dimensions. As is
shown in [28], if assumption 2.8 holds, l1 = c0/k is in fact the only scale which
both accounts for atomistic relaxation and yields a non-trivial continuum the-
ory. Moreover, we can not relax sending the parameter c0 to infinity. This is
due to our physically reasonable decay assumptions on the energy (cf. assump-
tion 2.6). The main point is that finite c0 prevents fracture from happening.
Mathematically this could also be achieved by assuming growth conditions on
the inter-atomic forces tending to infinity as the distance between initially close
atoms becomes large. But this is physically not realistic. In our approach c0
enters as a parameter. By its physical interpretation as an upper bound for the
deviation of atoms from their macroscopic limit, however, applicability of the
theory should be decidable on physical grounds.

Following the proofs in the next paragraphs, it is possible (but tedious) to
give explicit error bounds under suitable regularity assumptions on ∇u and b
(e.g. requiring them to be (Hölder-)continuous).

3.2 Preparations

We are now going to prove these results. Note that in all that follows, k is
understood to be sufficiently large, even if not explicitly stated. The constants
that will appear in the energy estimates for deformations near some limiting
deformation u will depend on u, but only through the constants c1, c2 (cf. below
and assumptions 2.6 and 2.7).
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3.2.1 Splitting lemmas

We begin our derivation by proving some preparatory lemmas on deformations
being close to some admissible u on a part of S1. So let Ω ⊂ S1 (usually
some mesoscopic sub-square) and consider deformations y : kΩ × [0, h] → R

3.
Throughout this paragraph u : Ω → R

3 (U in un-rescaled variables) shall satisfy

c1|x− z| ≤ |u(x) − u(z)| ≤ c2|x− z|

for some 0 < c1 ≤ c2 and all x, z ∈ Ω.
From assumption 2.6, the following lemma is easily proved by induction.

Lemma 3.5 If M1, . . . ,Mn ⊂ y(L ∩ (Ω × [0, h])) are pairwise disjoint sets of
atoms, and ‖ỹ − u‖ ≤ c/k, then the following inequality holds:∣∣∣∣∣∣E(M1 ∪ . . . ∪Mn) −

n∑
j=1

E(Mj)

∣∣∣∣∣∣ ≤
∑

1≤i<j≤n

∑
v∈Mi,
w∈Mj

ψ(|v − w|).

In the sequel, we will use the following statements for lattice sums the proof
of which is elementary.

Lemma 3.6 Let d ∈ N, q > d. In addition, suppose c > 0. Then there is a
constant C (depending on c) such that for a > 0∑

x∈Zd+1, 0≤xd+1≤c

|x|≥a

|x|−q ≤ Cad−q.

The next lemma quantifies the energy for subsets of atoms. It is important
as it allows to control the loss of energy when neglecting a (small) set of atoms
of the configuration. In particular we will see that E(M) = O(#M). Again
we are considering deformations y : kΩ × [0, h] → R

3.

Lemma 3.7 Let y be a deformation satisfying |ỹ − u| ≤ c/k and K ⊂ L ∩
(kΩ × [0, h]). Then there is a constant C (not depending on K) such that if
K = K1 ∪ K2 for disjoint K1 and K2, then

|E(y(x) : x ∈ K) − E(y(x) : x ∈ K1)| ≤ C#K2.

Proof. By (remark (ii) after) lemma 2.2 there are constants C1 and C3 such
that

C1|x− z| − C3 ≤ |y(x) − y(z)| ∀x, z ∈ Sk × [0, h].

Set M = y(K),M1 = y(K2),M2 = y(K2). Then, by assumption 2.6,

|E(M) − E(M1) − E(M2)| ≤
∑
x∈K1
z∈K2

ψ(|y(x) − y(z)|).

14



Now fix z0 ∈ K2, y0 = y(z0) ∈ M2. We will estimate
∑

x∈K1
ψ(|y(x) − y0|) by

splitting it into a short-range and a long-range part. Let δ = 2C3/C1. Since
the number of x ∈ K such that |z0 − x| ≤ δ is bounded, we find∑

{x:|x−z0|≤δ}
ψ(|y(x) − y0|) ≤ CM,

M being the global bound on ψ.
Now if |x− z0| > δ, then C1

2 |x− z0| < |y(x) − y0|, and we can estimate

∑
{x:|x−z0|>δ}

ψ(|y(x) − y0|) ≤
∑

{x:|x−z0|>δ}
M |y(x) − y0|−q

≤
∑

{x:|x−z0|>δ}
M

(
C1

2

)−q

|x− z0|−q

≤ C
∑

{x∈L: x �=0,
0≤x3≤h}

|x|−q.

Since q > 2, this last expression is bounded by lemma 3.6 (with a = 1).
It follows that

|E(M) −E(M1)| ≤ E(M2) +
∑
z∈K2

C.

But, by lemma 3.5,∣∣∣∣∣∣E(M2) −
∑

v∈M2

E({v})
∣∣∣∣∣∣ ≤ 1

2

∑
x,z∈K2

x �=z

ψ(|y(x) − y(z)|).

Just as before this sum can be bounded by
∑

z∈K2
C. Hence,

|E(M) − E(M1)| ≤ C#K2 +
∑

v∈M2

E({v}).

Observing that by frame indifference of the energy the term E({v}) is a con-
stant, finishes the proof. �

As an immediate consequence we get

Corollary 3.8 Let y, y′ be two deformations satisfying the hypotheses of lemma
3.7, and K ⊂ L ∩ (kΩ × [0, h]). Then there is a constant C such that∣∣E(y(x) : x ∈ K) − E(y′(x) : x ∈ K)

∣∣ ≤ C#{x ∈ K : y(x) �= y′(x)}.

Proof. Apply lemma 3.7 with K2 = {x ∈ K : y(x) �= y′(x)} to y and y′. �
Suppose Q = [0, a)2, a ≤ 1, is partitioned by squares U1, . . . , Ur of side-

length l where 1/k ≤ l ≤ a plus some rest R with |R| = O(a · l′), l′ � a, as in
the following picture. (Then r ∼ (a/l)2.)
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We need to estimate the error, when replacing the full energy by the sum of
the energies over the sets Ui. Let Ki = L∩ (kUi × [0, h]) and set Mi := {y(x) :
x ∈ Ki}.
Lemma 3.9 Suppose y : kQ× [0, h] satisfies |ỹ− u| ≤ c/k for some admissible
u. Then

E(y(x) : x ∈ L ∩ (kQ× [0, h])) =
r∑

i=1

E(Mi) + O(ka2/l) + O(k2al′).

Proof. By lemma 3.7 we get∣∣∣∣∣E(y(x) : x ∈ L ∩ (kQ× [0, h])) − E(y(x) : x ∈
r⋃

i=1

Ki)

∣∣∣∣∣ = O(k2al′). (16)

Lemma 3.5 implies that∣∣∣∣∣E(y(x) : x ∈
r⋃

i=1

Ki) −
r∑

i=1

E(y(x) : x ∈ Ki)

∣∣∣∣∣ ≤ 1
2

∑
i�=j

∑
x∈Ki
z∈Kj

ψ(|y(x) − y(z)|).

Again we will estimate this error term on the right hand side by splitting it
into a short range term (1) where |x− z| ≤ δ and a long range term (2) where
|x− z| > δ, δ := 2C3/C1.

1. short range term: Since |ψ| ≤M , we have

1
2

∑
i�=j

∑
x∈Ki
z∈Kj

|x−z|≤δ

ψ(|y(x) − y(z)|) ≤ 1
2

∑
i�=j

∑
x∈Ki
z∈Kj

|x−z|≤δ

M.

For fixed x ∈ Ki, the number of z ∈ L with |x−z| ≤ δ is bounded. On the other
hand, in order to have at least one z ∈ Kj with |x− z| ≤ δ and i �= j, we must
have dist(xp, ∂kUi) ≤ δ. For fixed i, the number of these x is bounded by Ckl, C
constant. (The perimeter of kUi is 4kl.) This yields, since r = O((ka)2/(kl)2),

1
2

∑
i�=j

∑
x∈Ki
z∈Kj

|x−z|≤δ

M ≤ 1
2

∑
i

∑
x∈Ki

dist(xp,∂kUi)≤δ

CM

≤ 1
2

∑
i

Ckl

≤ Cka2/l.

16



2. long range term: As in the proof of lemma 3.7, |x − z| > δ implies
|y(x) − y(z)| > C1

2 |x− z|, and thus

1
2

∑
i�=j

∑
x∈Ki
z∈Kj

|x−z|>δ

ψ(|y(x) − y(z)|) ≤ C
∑
i�=j

∑
x∈Ki
z∈Kj

|x−z|>δ

|x− z|−q,

C some constant. Now for fixed x ∈ Ki with dist(xp, ∂(kUi)) =: d(x) = d we
have by lemma 3.6 (i fixed)

C
∑
j �=i

∑
z∈Kj

|x−z|>δ

|x− z|−q ≤ C
∑

z∈L,0≤z3≤h
|x−z|≥max{δ,d}

|x− z|−q ≤ Cmax{δ, d}2−q .

So we obtain for i fixed:

1
2

∑
j �=i

∑
x∈Ki
z∈Kj

|x−z|>δ

ψ(|y(x) − y(z)|) ≤ C
∑
x∈Ki

max{δ, d(x)}2−q . (17)

The number of x with d(x) ≤ δ is bounded by Ckl. So summing over these x
will give a term of order Cδ2−qkl = Ckl in (17). Now let x be such that d(x) > δ.
There exists a unique m ∈ N0 such that d ∈ (δ +m, δ +m + 1]. The number
of the x corresponding to the same m is bounded by Cν(kl− 2(δ +m)) ≤ Ckl.
So (i fixed) ∑

x∈Ki
with d(x)>δ

d2−q ≤
∑
m

∑
x∈Kiwith

d(x)∈(δ+m,δ+m+1]

(δ +m)2−q

≤
∞∑

m=0

Ckl (δ +m)2−q

≤ Ckl

⎡
⎣δ2−q +

∑
m≥δ

m2−q

⎤
⎦

≤ Ckl[δ2−q + Cδ3−q]

by lemma 3.6 with c = 0. Hence this part of the sum is also bounded by Ckl.
So finally summing over i we get the following upper bound for the long

range term:

Crkl ≤ C

(
ka

kl

)2

kl = Cka2/l.

This is the same bound as for the short range term. We have thus shown that
the remaining error term is indeed O(ka2/l). Together with (16) this yields the
desired estimate. �
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3.2.2 Weak neighborhoods

It is illuminating to describe deformations that we will take into account for
atomic energy relaxation more directly by weak neighborhoods about the limit
points u and b in terms of the atomic positions. While the distance from u is
measured by the maximum norm, the convergence of the relative displacements
of the film layers is in the weak*-sense in L∞. By boundedness of k∆iỹ this is
equivalent to convergence of averages

−
∫

D
k∆iỹ → −

∫
D
bi

for all squares D = a1 + [0, a2]2 ⊂ S1 (cf. [13]).
We now consider mesoscopic local averages. For this we define ρ = ρ(k) to

be the measure
∑

x∈Z2 δx/k where δx/k is the Dirac measure at x/k. Let Q ⊂ S1

be a sub-square of side-length l4, and recall the definition of b̄ from (8). For
admissible u, b define:

Definition 3.10 A deformation y : L ∩ (kQ × [0, h]) → R
3 (resp. its interpo-

lation) belongs to the weak neighborhood

(i) N l1,l2,l3
k,Q (u,b) of (u,b), l3 < l4, if

‖ỹ − u‖ ≤ l1 and
∣∣∣∣−
∫
D
k∆iỹ − b̄idρ

∣∣∣∣ ≤ l2 (18)

for all translates D of [0, l3)2 with D ⊂ S1, or

(ii) N̂ l1,l2,l3
k,Q (u,b) of (u,b), l3 < l4, if

‖ỹ − u‖ ≤ l1 and

∣∣∣∣∣−
∫
Dj

k∆iỹ − b̄idρ

∣∣∣∣∣ ≤ l2 (19)

for all j = 1, . . . , N where {Dj} is a partition of Q into squares Dj of
side-length l3 (up to some rest R of measure |R| = O(l3l4)) as in the
following picture.

�

�
l4

l4

l3

l3

x1

x2

R

D1

DN

In case l3 = l4 we require that (18) resp. (19) holds with D = Q resp. D1 = Q.

Remark: Clearly, N l1,l2,l3
k,Q (u,b) ⊂ N̂ l1,l2,l3

k,Q (u,b), and V as defined in (9) lies

in N l1,l2,l3
k,Q (u,b) for admissible (u,b) and l1 = c0/k. Since we will mainly deal

with the choice l1 = c0/k, we will drop l1 from our notation.
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Suppose Ω ⊂ S1, and for the next lemma assume b ∈ L∞(Ω; (R3)ν−1)
satisfies a stronger compatibility condition: there exists b0 ∈ L∞(Ω; R3) such
that

‖b0‖∞, ‖bi − b0‖∞ ≤ c3 (20)

for all i ∈ {1, . . . , ν − 1} and some constant 0 < c3 < c0. So v : Ω → R
3 as

defined in (9) satisfies ‖v − u‖ ≤ c3.

Lemma 3.11 Suppose ‖y − U‖ ≤ c0 + δ, 0 ≤ δ ≤ c. Then there exists y′ with
‖y′ − U‖ ≤ c0 such that∣∣∣∣−

∫
D
k∆iỹ′dρ−−

∫
D
b̄idρ

∣∣∣∣ ≤ c0 − c3
c0 − c3 + δ

∣∣∣∣−
∫

D
k∆iỹdρ−−

∫
D
b̄idρ

∣∣∣∣
whenever D ⊂ Ω, ρ(D) > 0, and

|E(y(x) : x ∈ L ∩ (kΩ × [0, h])) − E(y′(x) : x ∈ L ∩ (kΩ × [0, h]))| ≤ Cρ(Ω)δ

where C = Lν c0+c3
c0−c3

, L as in assumption 2.7.

Proof. Let v be as in (9) and define y′ such that

ỹ′ := λỹ + (1 − λ)v, λ =
c0 − c3

c0 − c3 + δ
. (21)

Then indeed by (20),

‖ỹ′ − u‖ ≤ λ‖ỹ − u‖ + (1 − λ)‖v − u‖ ≤ λ
c0 + δ

k
+ (1 − λ)

c3
k

whence ‖y′ − U‖ ≤ c0. For the local averages observe that∫
D
k∆iỹ′ − b̄idρ = λ

∫
D
k∆iỹ − b̄idρ.

Now, since ỹ = 1
λ ỹ

′ − 1−λ
λ v,

‖ỹ − ỹ′‖ ≤ 1 − λ

λ
(‖ỹ′ − u‖ + ‖u− v‖) ≤ δ

c0 − c3
(c0/k + c3/k).

By (remark (iv) after) assumption 2.7 the claim follows. �
In general, such a uniform bound c3 on b does not exist. So we prove:

Lemma 3.12 Let Dj be as in definition 3.10. Suppose |−∫Dj
(k∆iỹ − b̄i)dρ| ≤

δ ≤ 1, j = 1, . . . , N , and ‖y − U‖ ≤ c0 + ε, ε ≤ 1. Then there exists y′ with
‖y′ − U‖ ≤ c0,∣∣∣∣∣−
∫
Dj

(k∆iỹ′ − b̄i)dρ

∣∣∣∣∣ ≤ δ, and |E(y) − E(y′)| ≤ C(ε1/5 + δ1/4)(kl4)2.
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Proof. We may assume that b̄i is constant on the sets Dj (else for x ∈ Dj

replace b̄i(x) by −
∫
Dj
b̄idρ in the sequel). Let ε′ = ε4/5. First consider those Dj

where there do not exist b0 and c3 ≤ c0 − ε′ as in the previous lemma. Choose
b̄0 minimizing

max
{

max
1≤i≤ν−1

|b̄i − b̄0|, |b̄0|
}

(≤ c0).

Set
Bi = b̄i−1 − b̄0 for i = 2, . . . , ν, B1 = −b̄0, (22)

and define Y i and Y i by

Y i(xp) = k(ỹ(xp, i− 1) − u(xp)), Y i = −
∫
Dj

Y idρ (23)

for i = 1, . . . , ν. Then∣∣∣(Y i − Y j) − (Bi −Bj)
∣∣∣ ≤ 2δ for i, j ∈ {1, . . . , ν},

in particular, for a = Y 1 −B1,∣∣∣Y i − (Bi + a)
∣∣∣ ≤ 2δ.

Since |Y i| ≤ c0 + ε, we also have |Y i| ≤ c0 + ε, and it follows that |Bi + a| ≤
c0 + ε + 2δ. By our choice of b̄0 there is an i0 with |Bi0 | ≥ c0 − ε′ such that
a ·Bi0 ≥ 0, so |Bi0 + a|2 ≥ (c0 − ε′)2 + a2. But then |a| = O(

√
ε+ ε′ + 2δ), i.e.∣∣∣Y i −Bi

∣∣∣ ≤ C
√
ε′ + δ for i = 1, . . . , ν. (24)

Now suppose i is such that |Bi| ≥ c0 − ε′. To estimate |Y i − Bi|, assume
without loss of generality that Y i = (Y i

1 , 0, 0), Y
i
1 ≥ c0 − C

√
ε′ + δ. Since

|Y i(z)| ≤ c0 + ε for z ∈ 1
kZ

2 ∩Dj ,∑
z∈ 1

k
Z2∩Dj

∣∣∣Y i
1 (z) − Y i

1

∣∣∣ ≤
∑

z∈ 1
k

Z2∩Dj

Y i
1
(z)>Y i

1

Y i
1 (z) − Y i

1 +
∑

z∈ 1
k

Z2∩Dj

Y i
1
(z)≤Y i

1

Y i
1 (z) − Y i

1

= 2
∑

z∈ 1
k

Z2∩Dj

Y i
1 (z)>Y i

1

Y i
1 (z) − Y i

1 +
∑

z∈ 1
k

Z2∩Dj

Y i
1 (z) − Y i

1

≤ 2
∑

z∈ 1
k

Z2∩Dj

Y i
1
(z)>Y i

1

C
√
ε′ + δ + 0

≤ C(kl3)2
√
ε′ + δ.

The second and third component can be estimated by noting that

|Y i
m(z)|2 ≤ 2(c0 + ε)(c0 + ε− Y i

1 (z)) ≤ C(c0 + ε)(|Y i
1 − Y i

1 (z)| + √
ε′ + δ)
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for m = 2, 3, hence also

∑
z∈ 1

k
Z2∩Dj

∣∣∣Y i
m(z) − Y i

m

∣∣∣ ≤ C
∑

z∈ 1
k

Z2∩Dj

√∣∣∣Y i
1 (z) − Y i

1

∣∣∣+ 4
√
ε′ + δ

≤ C

(
#

1
k

Z
2 ∩ Dj

)1/2

⎛
⎜⎝ ∑

z∈ 1
k

Z2∩Dj

∣∣∣Y i
1 (z) − Y i

1

∣∣∣
⎞
⎟⎠

1/2

+C(kl3)2
4
√
ε′ + δ

≤ Ckl3

(
C(kl3)2

√
ε′ + δ

)1/2
+C(kl3)2

4
√
ε′ + δ

= C(kl3)2
4
√
ε′ + δ.

Together with (24) this proves that∑
z∈ 1

k
Z2∩Dj

∣∣Y i(z) −Bi
∣∣ ≤ C(kl3)2(

4
√
ε′ + 4

√
δ). (25)

Now define a new configuration y′′ by replacing Y i by Bi for those i with
|Bi| ≥ c0 − ε′, i.e. Y ′′i defined analogously to Y i equals to Bi for these i and
equals Y i for the other i. By (remark (iv) after) assumption 2.7,

|E(y′′) − E(y)| ≤ C( 4
√
ε′ + 4

√
δ)(kl4)2.

Finally, exactly as in the proof of lemma 3.11, we choose ỹ′ as a convex
combination of ỹ′′ and v with c3 = c0 − ε′. Noting that

|E(y′) − E(y′′)| ≤ C
ε

ε′
(kl4)2 = Cε1/5(kl4)2

finishes the proof. �
We can now investigate the relationship of the various weak neighborhoods.

Lemma 3.13 Suppose u and b are admissible, and scales 0 ≤ l2, l
′
2 ≤ 1, 1/k ≤

l3, l
′
3 ≤ 1 are given with l′2 � l3/l

′
3. Then

inf
y∈N̂ 0,l3

k,Q (u,b)

E(y) ≤ inf
y∈N̂ l2,l3

k,Q (u,b)

E(y) +O(k2l24l
1/5
2 ),

inf
y∈N l′

2
,l′
3

k,Q (u,b)

E(y) ≤ inf
y∈N̂ 0,l3

k,Q (u,b)

E(y).

Furthermore, if there is c3 < c0 such that (20) holds, then the error term
O(k2l24l

1/5
2 ) may be replaced by O(k2l24l2).

Proof. Let y ∈ N̂ l2,l3
k,Q (u,b) be arbitrary. Write Q as a disjoint union of N

translates of [0, l3)2, D1, . . . ,DN , and a rest R whose area is of order O(l3 · l4) as
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in definition 3.10 (ii). Set mi
j = −
∫
Dj
k∆iỹ− b̄idρ and define y0 : kQ× [0, h] → R

3

by (interpolation of)

ỹ0(xp, i) =

⎧⎨
⎩

ỹ(xp, 0) for i = 0, xp ∈ 1
kL ∩ Dj

ỹ(xp, i) − 1
km

i
j for 1 ≤ i ≤ ν − 1, xp ∈ 1

kL ∩Dj

ỹ0(xp, i) for 0 ≤ i ≤ ν − 1, xp ∈ 1
kL ∩R.

(26)

Then we have
‖y0 − y‖ ≤ max

1≤i≤ν−1
1≤j≤N

|mi
j | ≤ l2 (27)

since y ∈ N̂ l2,l3
k,Q (u,b). In particular, ‖y0 −U‖ ≤ c0 + l2, so invoking lemma 3.12

(resp. 3.11), we find y′ satisfying ‖y′ − U‖ ≤ c0,∣∣∣∣∣−
∫
Dj

k∆iỹ′ − b̄idρ

∣∣∣∣∣ ≤
∣∣∣∣∣−
∫
Dj

k∆iỹ0 − b̄idρ

∣∣∣∣∣ =

∣∣∣∣∣−
∫
Dj

(
k∆iỹ −mi

)
− b̄idρ

∣∣∣∣∣ = 0

by construction of y0, i.e. y′ ∈ N̂ 0,l3
k,Q (u,b), and

|E(y′) − E(y0)| ≤ Cl
1/5
2 (kl4)2 (resp. ≤ Cl2(kl4)2).

Now by (27) and the Lipschitz assumption 2.7 on E we also have

|E(y) − E(y0)| ≤ C(kl4)2l2,

whence

inf
y∈N̂ 0,l3

k,Q (u,b)

E(y) ≤ E(y′) ≤ E(y) + O(k2l24l
1/5
2 ) (resp. ≤ E(y) + O(k2l24l2)).

Since y ∈ N̂ l2,l3
k,Q (u,b) was arbitrary, the first inequality is proven.

In order to proof the second inequality, suppose y ∈ N̂ 0,l3
k,Q (u,b) and D ⊂ S1

is some translate of [0, l′3)2. Let J be those indices of the sets Dj that intersect
D and set

D′ =
⋃
j∈J

Dj .

Then ρ((D′ \ D) ∪ (D \ D′)) ≤ Ck2l3l
′
3, hence, since |k∆iy − bi| is bounded,∣∣∣∣ 1

ρ(D)

∫
D
k∆iy − b̄idρ− 1

ρ(D′)

∫
D′
k∆iy − b̄idρ

∣∣∣∣
≤ C

ρ(D \ D′)
ρ(D)

+ C
ρ(D′ \ D)
ρ(D′)

+
∣∣∣∣
(

1
ρ(D)

− 1
ρ(D′)

)∫
D∩D′

k∆iy − b̄idρ

∣∣∣∣
≤ C

k2l3l
′
3

(kl′3)2
+ C

k2l3l
′
3

(kl′3)2
+ C

k2l3l
′
3

(kl′3)4
(kl′3)

2

= O(l3/l′3).

But
∫
D′ k∆iy − b̄idρ = 0, so∣∣∣∣−

∫
D
k∆iy − b̄idρ

∣∣∣∣ ≤ C
l3
l′3

≤ l′2,
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i.e. y ∈ N l′2,l′3
k,Q (u,b). It follows that N̂ 0,l3

k,Q (u,b) ⊂ N l′2,l′3
k,Q (u,b). �

The connection between W l
k(u,b) (see theorem 3.3) and the neighborhoods

defined in definition 3.10 is described by the following lemma.

Lemma 3.14 Let u,b be admissible. Assume 1/k ≤ l3 � l, and 1/k ≤ l′ �
l′2l

′
3. Then

inf
y∈Wl

k(u,b)
E(y) ≤ inf

y∈N̂ 0,l3
k (u,b)

E(y) and inf
y∈N l′2,l′3

k (u,b)

E(y) ≤ inf
y∈Wl′

k (u,b)
E(y).

Proof. Suppose y ∈ N̂ 0,l3
k and f ∈ W 1,1

0 (S1; R3) with ‖f‖
W 1,1

0
= 1, w.l.o.g. f

smooth. Choose xj ∈ Dj such that |∇f(xj)| · |Dj | ≤
∫
Dj

|∇f(xj)|. Then∫
S1

f · (k∆iỹ − bi)

=
1
k2

∫
S1

f · (k∆iỹ − b̄i)dρ+ O(1/k)

=
1
k2

∑
j

∫
Dj

f · (k∆iỹ − b̄i)dρ+ O(1/k + l3)

=
1
k2

∑
j

∫
Dj

(
f(xj) + ∇f(xj)(x− xj) + o(l3)

)
· (k∆iỹ − b̄i)dρ+ O(l3)

≤ 1
k2

∑
j

∫
Dj

|∇f(xj)||x− xj| · |(k∆iỹ − b̄i)|dρ+ O(l3)

≤ 1
k2

∑
j

∫
Dj

C|∇f(xj)|
√

2l3 + O(l3)

≤ C(1 + ‖∇f‖L1)l3 ≤ Cl3 � l,

i.e. y ∈ W l
k(u,b). This proves N̂ 0,l3

k (u,b) ⊂ W l
k(u,b).

Now suppose y ∈ W l′
k (u,b) and let D be some translate of [0, l′3)2 ⊂ S1.

Consider the function fa with support in D and

fa(x) =
1

4l′3
min{1, 1

a
dist(x, ∂D)}e

for x ∈ D, e ∈ R
3 a unit vector. Then, for a ≤ l′3/2,

‖f‖
W 1,1

0
= ‖∇f‖L1 =

1
4l′3a

· 4(l′3 − a)a ≤ 1.

In particular, sending a→ 0,∣∣∣∣ 1
4l′3

∫
D
e · (k∆iỹ − bi)

∣∣∣∣ = lim
a→0

∣∣∣∣
∫
fa · (k∆iỹ − bi)

∣∣∣∣ ≤ l′.

This implies∣∣∣∣−
∫
D

(k∆iỹ − b̄i)dρ
∣∣∣∣ ≤
∣∣∣∣−
∫
D
(k∆iỹ − bi)

∣∣∣∣+ C

kl′3
≤ Cl′

l′3
+

C

kl′3
� l′2,

i.e. y ∈ N l′2,l′3
k (u,b). Therefore, W l′

k (u,b) ⊂ N l′2,l′3
k (u,b). �
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3.3 Proof of theorem 3.2

In this paragraph we will prove theorem 3.2, the representation formula for ϕ.
Setting

ϕk(A,b) =
1
νk2

inf
y∈N̂k(A,b)

E(y), (28)

we need to show that ϕk converges uniformly on compact subsets of Ahom to
some continuous function ϕ.

In the first part of this paragraph we will show that ϕ exists as a pointwise
limit (cf. proposition 3.16), while the in second we will investigate the continuity
properties of the functions ϕk (cf. corollary 3.20) leading to the final result.

Existence

We start with a preparatory lemma. Throughout this paragraph A ∈ R
3·2

is some admissible matrix and b ∈ (R3)ν−1 some admissible vector. Let y ∈
N̂k0(A,b) for k ≥ k0 and cover Sk by translates of [0, k0+1)2, denoted U1, . . . , Us

as in the following picture:

�

�
k

k

k0 + 1

k0 + 1

x1

x2

�
zs

U1

Us

Let zj ∈ Z
2 be the lower left corner of Uj and set f j = Azj . Then define

y′ : S × [0, h] → R
3 by (interpolation of)

y′(x) := y(x− (zj
1, z

j
2, 0)) + f j

for x ∈ L ∩ ((Uj ∩ S) × [0, h]), 1 ≤ j ≤ s.
For y′ constructed this way it is easy to see that

‖y′ −A‖ ≤ c0 and
1

(k + 1)2
∑

x∈Z2∩Sk

∆iy′(x) = bi + O
(
k0

k

)
. (29)

From lemma 3.9 and (29) we derive the main ingredient into the proof of
the next proposition:

Lemma 3.15 Suppose k0 ∈ N. Then there is a constant C (independent of
k0) such that for k > k0 sufficiently large for every y ∈ N̂k0(A,b) there is a
ŷ ∈ N̂k(A,b) with∣∣∣∣∣ 1

νk2
E(ŷ(x) : x ∈ Lk) − 1

νk2
E(y(x) : x ∈ Lk0)

∣∣∣∣∣ ≤ C

(
1
k0

+
k0

k

)1/5

.
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Proof. For y ∈ N̂k0(A,b) we define y′ as above. From (29) we deduce

‖y′ −A‖ ≤ c0 and
∣∣∣∣−
∫
S1

k∆iỹ′dρk − bi
∣∣∣∣ = O

(
k0

k

)
. (30)

So by lemma 3.13 (and N̂ 0,l3
k ⊂ N̂ l2,l3

k ) there exists ŷ ∈ N̂k(A,b) with

∣∣∣∣ 1
k2
E(ŷ) − 1

k2
E(y′)

∣∣∣∣ ≤ C

(
k0

k

)1/5

. (31)

We estimate the energy of y′. Using lemma 3.9 for translates of [0, k0+1
k )2

and denoting the set of indices i for which Ui ⊂ Sk by I, we see that

E(y′(x) : x ∈ Lk) =
r∑

i∈I
E(y′(x) : x ∈ L ∩ (Ui × [0, h])) + O(k2/k0 + kk0).

By the periodic construction of y′ we get

E(y′(x) : x ∈ Lk) = #I ·E(y(x) : x ∈ Lk0) + O(k2/k0) + O(k0k). (32)

Since #I = �k/k0�2 = (k/k0)2(1 + O(k0/k)), we obtain from (32), noting that
E(y(x) : x ∈ Lk0) = O(k2

0) by lemma 3.7,

1
νk2

E(y′(x) : x ∈ Lk) =
1
νk2

0

E(y(x) : x ∈ Lk0) + O
(

1
k0

)
+ O

(
k0

k

)
.

This finishes the proof by (31). �
Recall the definition of ϕk from (28).

Proposition 3.16 The limit

ϕ(A,b) := lim
k→∞

ϕk(A,b)

exists in R for all admissible A,b.

Proof. By lemma 3.7 (cf. the remark above that lemma) we have for y ∈
N̂k(A,b)

1
νk2

E(y(x) : x ∈ Lk) = O(1),

so (ϕk(A,b))k is a bounded sequence. We may therefore define ϕ by

ϕ(A,b) := lim inf
k→∞

ϕk(A,b).

For δ > 0 we may choose arbitrarily large k0 such that ϕk0(A,b) < ϕ(A,b)+
δ/3. By definition of ϕk0 , there also exists y ∈ N̂k0(A,b) satisfying 1

νk2
0
E(y) ≤

ϕk0(A,b) + δ/3. Now let k > k0 be so large that

C

(
1
k0

+
k0

k

)1/5

< δ/3
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where C is the constant from lemma 3.15. Then there is ŷ ∈ N̂k(A,b) such
that

1
νk2

E(ŷ(x) : x ∈ Lk) ≤ 1
νk2

0

E(y(x) : x ∈ Lk0) + C

(
1
k0

+
k0

k

)1/5

< ϕ(A,b) + δ/3 + δ/3 + δ/3.

It follows ϕk(A,b) ≤ 1
νk2E(ŷ(x) : x ∈ Lk) ≤ ϕ(A,b) + δ.

Since, by definition of ϕ, also ϕk(A,b) ≥ ϕ(A,b)− δ for k sufficiently large,
the proposition is proven. �

Continuity

Here we investigate the remaining parts of theorem 3.2, namely if ϕk → ϕ
uniformly on compact subsets of Ahom and if (A,b) �→ ϕ(A,b) is continuous.
We start by investigating the continuity properties of ϕk, first with respect to
the variables bi.

Lemma 3.17 Let (A,b), (A,b′) ∈ Ahom. Then

|ϕk(A,b) − ϕk(A,b′)| ≤ C

(
max

1≤i≤ν−1
|bi − b′i|

)1/5

,

C a constant (independent of k, and on A only depending through c1, c2 if the
singular values s1(A) ≤ s2(A) of A lie in [c1, c2]).

Proof. For y ∈ N̂k(A,b),
∣∣∣−∫S1

k∆iỹdρ− b′i
∣∣∣ ≤ ∣∣∣−∫S1

k∆iỹdρ− bi
∣∣∣ + |bi − b′i| =

|bi − b′i|. So y ∈ N̂ l2,1
k,S1

(A,b′) for l2 = maxi |bi − b′i| fixed. By lemma 3.13,

ϕk(A,b′) =
1
νk2

inf
y′∈N̂k(A,b′)

E(y′) ≤ 1
νk2

E(y) + Cl
1/5
2 ,

so, since y was arbitrary, we get

ϕk(A,b′) ≤ ϕk(A,b) + C

(
max

1≤i≤ν−1
|bi − b′i|

)1/5

.

Now interchanging the roles of b and b′ finishes the proof. �
In the next lemma we investigate continuity with respect to A.

Lemma 3.18 Let (A,b), (A′,b) ∈ Ahom. Then there exist constants c, C > 0
such that

|ϕk(A,b) − ϕk(A′,b)| ≤ k|A−A′|
for |A−A′| < c/k.
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Proof. Let y ∈ N̂k(A,b) and define y′ by

y′(x) = y(x) −Axp +A′xp.

Then ‖y′ − y‖ ≤ |A−A′|√2k2 + h2 ≤ C|A−A′|k, so by assumption 2.7

|E(y′) − E(y)| ≤ Ck2|A−A′|k. (33)

On the other hand, we clearly have y′ ∈ N̂k(A′,b). Together with (33) it follows
that ϕk(A′,b) ≤ 1

νk2E(y) + C|A−A′|k. Since y was arbitrary we get

ϕk(A′,b) ≤ ϕk(A,b) + C|A−A′|k.

Interchanging the roles of A and A′ finishes the proof. �
This lemma proves continuity of the ϕk with respect to A. The condition

that |A − A′| ≤ c/k can easily be dropped considering intermediate points
between A and A′. However, the Lipschitz constant Ck obtained this way
blows up as k → ∞. In order to prove the main continuity result, we therefore
need another preparatory lemma:

Lemma 3.19 Let (A,b), (A′,b) ∈ Ahom. Suppose 1/k ≤ l = l(k) ≤ 1. Then
there are constants c, C > 0 such that

|ϕk(A,b) − ϕk(A′,b)| ≤ C(1/kl + l + kl|A−A′|)

for |A−A′| ≤ c/kl.

Proof. Cover S1 by translates U1, . . . , Us of [0, l)2 with |⋃Ui \ S1| = O(l) as in
the following picture:

�

��

�

1

1

l

l

x1

x2


z1

zs

U1

Us

Let zi ∈ Z
2 be the lower left lattice point of kUi and set f i = (A − A′)zi.

For y ∈ N̂k(A,b) we define y′ by (interpolation and)

y′(x) = y(x) −Axp +A′xP + f i

if x ∈ L ∩ (kUi × [0, h]). Then

‖y′ − y‖ ≤ |A−A′|
√

2(kl)2 + h2 ≤ C|A−A′|kl ≤ Cc,

so assumption 2.7 shows that

|E(y′) − E(y)| ≤ Ck2kl|A−A′|. (34)
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Now let I denote the set of those indices i for which Ui ⊂ S1. Applying lemma
3.9 to y′ first, then using frame indifference, and finally applying lemma 3.9 to
y′′(x) = y(x) −Axp +A′xp gives

E(y′(x) : x ∈ Lk) =
r∑

i=1

E(y′(x) : x ∈ L ∩ (kUi × [0, h])) + O(k/l + k2l)

=
r∑

i=1

E(y′′(x) : x ∈ L ∩ (kUi × [0, h])) + O(k/l + k2l)

= E(y′′(x) : x ∈ Lk) + O(k/l + k2l).

Since clearly y′′ ∈ N̂k(A′,b), this shows that

ϕk(A′,b) ≤ 1
νk2

E(y′′) ≤ 1
νk2

E(y) + C(1/kl + l + kl|A−A′|)

by (34). Since y was arbitrary we get

ϕk(A′,b) ≤ ϕk(A,b) + C(1/kl + l + kl|A−A′|).
Again interchanging the roles of A and A′ concludes the proof. �

As a consequence of lemmas 3.17, 3.18 and 3.19 we get:

Proposition 3.20 The set {ϕk} is equicontinuous.

Proof. Let δ > 0 be given. Choose constants c, C as in the previous lemma,
and let l = 3C/kδ. Then for k so large that

Cl = 3C2/δk ≤ δ/3

we get from the above lemma for |A−A′| ≤ c/kl, i.e. |A−A′| ≤ cδ/3C

|ϕk(A,b) − ϕk(A′,b)| ≤ C(1/kl + l + kl|A−A′|)
≤ δ/3 + δ/3 + 3C2|A−A′|/δ.

So, for |A − A′| ≤ min{δ2/9C2, cδ/3C}, we have for sufficiently large k, say
k > k0,

|ϕk(A,b) − ϕk(A′,b)| ≤ δ.

This shows equicontinuity of {ϕk(·,b) : k ∈ N}, since the remaining finitely
many ϕ1(·,b), . . . , ϕk0(·,b) are continuous by lemma 3.18. By lemma 3.17
the family {ϕk(A, ·) : A admissible with s1(A), s2(A) ∈ [c1, c2], k ∈ N} is also
equicontinuous for all c2 ≥ c1 > 0. The claim follows. �

From propositions 3.16 and 3.20 we can now easily finish the proof of theo-
rem 3.2.
Proof of theorem 3.2. By proposition 3.16 ϕk(A,b) → ϕ(A,b) pointwise and by
proposition 3.20 {ϕk} is equicontinuous. This implies that ϕk(A,b) → ϕ(A,b)
uniformly on compact subsets of Ahom, in particular that ϕ is continuous, since
by Arzela-Ascoli every subsequence has a further subsequence that converges.
By the pointwise convergence its limit must be ϕ. �
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3.4 Proof of theorems 3.1 and 3.3

First note that theorem 3.1 is an immediate consequence of theorem 3.3. So we
only have to prove the latter result.

Fix admissible u ∈ W 1,∞(S1),b ∈ L∞(S1) and constants c1, c2 > 0 as in
(5). We will show that, for l3 → 0, kl3 → ∞,

lim
k→∞

1
νk2

inf
N̂ 0,l3

k (u,b)

E(y) = E(u,b). (35)

This will be sufficient since from lemmas 3.13 and 3.14 we obtain the following
corollary which precisely describes our relaxation procedure in terms of weak
neighborhoods.

Corollary 3.21 Suppose (35) holds. Then in fact

lim
k→∞

1
νk2

inf
y∈Uk(u,b)

E(y) = E(u,b)

where the minimum is taken over Uk(u,b) = N̂ l2,l3
k (u,b) with l2, l3 → 0 and

kl3 → ∞, or Uk(u,b) = W l
k(u,b) with l → 0 and kl → ∞, or over Uk(u,b) =

N l2,l3
k (u,b) with l2, l3 → 0 and kl2l3 → ∞.

If Q ⊂ S1 is some square in S1 of side-length l = l(k) we write N̂Q(u,b) :=
N̂ 0,l

k,Q(u,b).
Fix σ > 0 and 0 < δ < min{1/2, c1/2}. Since u ∈W 1,∞(S1), we may choose

a measurable set B ⊂ S1 and ū ∈ C1(S1) such that |B| ≤ σ and

S1 \B = {x ∈ S1 : u(x) = ū(x),∇u(x) = ∇ū(x)}.
Furthermore, there exists c̄2 only depending on c2 such that supx∈S1

|∇ū(x)| ≤
c̄2 (cf. [16]).

In order to pass from microscopic to macroscopic dimensions, we will intro-
duce a mesoscale 1/k � ε� 1. As detailed below, we will consider a partition
of S1 by mesoscopic squares Qi of side-length ε plus some rest R whose area is
of the order O(l3), see the next picture.

�

�
1

1

ε

ε

x1

x2

R

Qi

Then, ū ∈ C1(S1) can be approximated by a piecewise affine function uε. More
precisely, there is an increasing and continuous function g only depending on
the modulus of continuity of ∇ū such that g(ε) → 0 as ε→ 0 and

‖ū− uε‖∞ < εg(ε) (36)

where uε is affine on each of the squares Qi. (If ū ∈ C1,α, one can e.g. choose
g(ε) = Cεα.) We fix such a function g satisfying (36) from now on.
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Let 0 < γ < 1 be a constant. We choose ε′ = ε′(k) such that

kε′g(ε′)γ ≡ c0. (37)

Note that (36) and (37) imply that

‖ū− uε‖∞ � c0/k if ε ≤ ε′ (38)

while ε′ → 0 and kε′ → ∞.

Lemma 3.22 Let Q ⊂ S1 be one of the squares Q1, . . . , Qmε (on which ∇uε is
constant). Suppose c1 − δ ≤ s1(∇uε) ≤ s2(∇uε) ≤ c2 + δ on Q, and let b be a
constant admissible vector in R

3(ν−1). Then, if ε ≤ ε′,∣∣∣∣∣ inf
y∈N̂Q(u,b)

E(y) − inf
y∈N̂Q(uε,b)

E(y)

∣∣∣∣∣ ≤ C

(
δ1/5|Q| + |B ∩Q|

δ3

)
k2.

Proof. Let y ∈ N̂Q(u,b). We set

rQ := #
{
x ∈ 1

k
Z

2 ∩Q : |u(x) − ū(x)| > δ/k

}

and define y′ by

ỹ′(x) =
{
ỹ(x) if |u(xp) − ū(xp)| ≤ δ/k
vε(x) else

for xp ∈ 1
kZ

2 ∩Q and interpolation (vε defined analogously to (9) with respect
to uε and b.). Then by (38) for ε ≤ ε′,

‖ỹ′ − uε‖ ≤ (c0 + δ + o(1))/k ≤ (c0 + 2δ)/k

and, since k∆iỹ′ is bounded,∣∣∣∣−
∫

Q

(
k∆iỹ′ − b̄i

)
dρ

∣∣∣∣ =
∣∣∣∣−
∫

Q
k∆iỹ′dρ−−

∫
Q
k∆iỹdρ

∣∣∣∣ ≤ CrQ
|kQ| .

Furthermore, by corollary 3.8,

|E(y) − E(y′)| ≤ CrQ. (39)

Invoking lemma 3.13 (with c0 replaced by c0 + 2δ and c3 by c0) we find a
deformation y′′ on Q with

‖ỹ′′ − uε‖ ≤ (c0 + 2δ)/k and −
∫

Q
∆iỹ′′dρ = b̄i

satisfying

E(y′′) ≤ E(y′) +
1
δ

CrQ
|kQ| |kQ|. (40)
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(Note that the constant found in the proof of lemma 3.13 by applying lemma
3.11 is – in the terminology of this lemma – Cl2/(c0 − c3). Here, this equals
CrQ/|kQ|δ.) Finally, by lemma 3.12, there is yet another deformation y′′′ with

‖ỹ′′′ − uε‖ ≤ c0/k and −
∫

Q
∆iỹ′′ = b̄i

and
|E(y′′′) − E(y′′)| ≤ Cδ1/5|kQ|. (41)

Since y′′′ ∈ N̂Q(uε,b) and y ∈ N̂Q(u,b) was arbitrary, we deduce from (39),
(40) and (41)

inf
y∈N̂Q(uε,b)

E(y) ≤ inf
y∈N̂Q(u,b)

E(y) + C
(
δ1/5|kQ| + rQ

δ

)
.

Interchanging the roles of u and uε (but defining rQ as before and only replacing
vε by v in the definition of y′) gives an analogous inequality.

To finish the proof, it remains to estimate rQ. For δ small enough, the balls
B(x, δ/(c2 + c̄2)k) with x ∈ 1

kZ
2 are disjoint. Since |∇u| ≤ c2 and |∇ū| ≤ c̄2,

we have B(x, δ/(c2 + c̄2)k) ∩ (S1 \B) = ∅ if |u(x) − ū(x)| > δ/k. So indeed

Cδ2

k2
rQ ≤ |B ∩Q|.

�
Now consider a partition of S1 with squares Dj of side-length l3 and R,

|R| ≤ 2l3 (see the next picture). Since kl3 → ∞ and kε′ → ∞ (cf. (37)), we
may choose ε = ε(k) ≤ ε′ → 0 with kε → ∞ as k → ∞ such that eventually
l3/ε ∈ N. This also induces a partition of S1 into squares Qi of side-length ε
and R as in the picture below.

�

�
x1

x2

1

1

Qi
Uj

R

�

�� l3

�
�
ε��l3

Proof of Theorem 3.3. Define G to be the union of those Dj where c1 − δ <
s1(∇ū) ≤ s2(∇ū) < c2 + δ. Since ∇ū is continuous, for k large enough, G ⊃
{x : c1 ≤ s1(∇ū(x)) ≤ s2(∇ū(x)) ≤ c2} \ R ⊃ S1 \ (B ∪ R), whence |G| ≥
1 − |B| ≥ 1 − σ − 2l3.

Let Mj = y(L ∩ (kDj × [0, h])). It follows from lemmas 3.9 and 3.7 that∣∣∣∣∣∣ inf
y∈N̂ 0,l3

k (u,b)

E(y) − inf
y∈N̂ 0,l3

k (u,b)

∑
Dj⊂G

E(Mj)

∣∣∣∣∣∣ ≤ C

(
k

l3
+ k2l3 +

|S1 \G|
l23

(kl3)2
)

≤ Ck2

(
1
kl3

+ l3 + σ

)
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where, by definition of N̂ 0,l3
k ,

inf
y∈N̂ 0,l3

k (u,b)

∑
Dj⊂G

E(Mj) =
∑
Dj⊂G

inf
y∈N̂Dj

(u,b)
E(y).

Now, using lemma 3.9 again,∣∣∣∣∣∣ inf
y∈N̂Dj

(u,b)
E(y) − min

∑
Qi⊂Dj

inf
y∈N̂Qi

(u,bj,i)
E(y)

∣∣∣∣∣∣ ≤ C
kl23
ε

(42)

where the minimum is to be taken over admissible vectors bj,1, . . . ,bj,(l3/ε)2

such that
∑

i
ρ(Qi)
ρ(Dj)

bj,i = bj := −
∫
Dj

b̄.
Since ∇uε → ∇ū uniformly, we may choose matrices Aj such that supj |Aj−

∇uε| = o(1) on Dj. We now want to replace u by Aj in the right hand side of
(42). First replacing u by uε on Qi leads to an error bounded by C(δ1/5|Qi| +
|B∩Qi|/δ3)k2 by lemma 3.22. Now replacing ∇uε by Aj leads to an additional
error of order o(|kQi|) because for matrices A,

inf
y∈N̂Qi

(A,bj,i)
E(y) = ϕm(A,bj,i)ν|kQi| + O(kε)

where m = �kε� or �kε�−1 (use translational invariance) and (ϕk)k is equicon-
tinuous by proposition 3.20. It follows that∣∣∣∣∣∣ inf

y∈N̂ 0,l3
k (u,b)

E(y) −
∑
Dj⊂G

⎛
⎝min

∑
Qi⊂Dj

inf
y∈N̂Qi

(Aj ,bj,i)
E(y)

⎞
⎠
∣∣∣∣∣∣

≤ C
∑

Qi⊂G

((
δ1/5 + o(1)

)
|Qi|k2 +

|B ∩Qi|
δ3

k2

)
+ Ck2

(
1
kε

+ l3 + σ

)
.

Now, reasoning as above, for n = n(k) = �kl3� or �kl3� − 1,

min
∑

Qi⊂Dj

inf
y∈N̂Qi

(Aj ,bj,i)
E(y) = inf

y∈N̂Dj
(Aj ,bj)

E(y) + O(kl23/ε)

= ϕn(Aj ,bj)ν|kDj | + O(kl23/ε+ kl3)

Summarizing (using theorem 3.2 to choose n = �kl3� uniquely), we obtain∣∣∣∣∣∣
1
νk2

inf
y∈N̂ 0,l3

k (u,b)

E(y) −
∑
Dj⊂G

ϕn(Aj ,bj)|Dj |
∣∣∣∣∣∣ ≤ C(δ1/5 + |B|/δ3 + σ + o(1))

≤ C(δ1/5 + σ/δ3).

Let Ω = {x : c1 − δ < s1(∇ū) ≤ s2(∇ū) < c2 + δ)}. Then lim infk G ⊃ Ω.
The piecewise linear resp. constant approximations Aj resp. bj converge to
∇ū uniformly resp. to b boundedly in measure. (This is not hard too see:
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approximate b by continuos functions in measure.) So we deduce from lemma
3.23 and theorem 3.2∑

Dj⊂G

ϕn(Aj ,bj)|Dj ∩ Ω| →
∫

Ω
ϕ(∇ū,b).

Since S1\Ω ⊂ B, B ≤ σ, and ϕ is bounded on compact subsets of admissible
matrices, we finally deduce that

lim sup
k→∞

∣∣∣∣∣ 1
νk2

inf
y∈N̂ 0,l3 (u,b)

E(y) −
∫
S1

ϕ(∇u,b)

∣∣∣∣∣ ≤ C(δ1/5 + σ/δ3).

Now let σ → 0, δ → 0. �
Remark: Assuming regularity for ∇u, b, e.g. requiring them to lie in some
Hölder class, the above proof gives explicit error estimates.

Lemma 3.23 Let Ω ⊂ R
n be of finite measure, vk : Ω → K, k = 1, 2, . . .,

measurable, K some compact subset of R
m, and fk : K → R such that fk ◦vk is

integrable. Furthermore suppose that Ωk ⊂ Ω is measurable with |Ω \ Ωk| → 0
as k → ∞. If fk → f , uniformly on K, f : K → R continuous, and vk → v in
measure, then

lim
k→∞

∫
Ωk

fk(vk) =
∫

Ω
f(v).

The proof of this lemma is a straight forward ε/4-argument.

3.5 Extension to infinite pair-interaction

We will now prove theorem 3.4. For this paragraph we assume that proposition
4.1 is already proven.

Suppose E is given as in (15). For given δ we choose

Eδ(y) =
1
2

∑
i�=j

Wδ(|yi − yj|) + E0(y) (43)

where Wδ ≤W satisfies the hypotheses of proposition 4.1, and

Wδ(r) = W (r) for r ≥ δ, Wδ(r) ≥ min
0<s≤δ

W (s) for r ≤ δ. (44)

Proposition 4.1 implies that Eδ is an admissible energy function. If δ is small
enough, we may assume that W (r) > 0 for r ≤ δ. Note also that there exists
C = C(δ, c) such that for all z ∈ Lk and y with ‖ỹ − u‖ ≤ c/k (u admissible)∑

x∈Lk
x �=z

|Wδ(|y(x) − y(z)|)| ≤ C (45)

This follows from lemma 3.7 (with K2 = {z}) applied to the (admissible) pair
potential given by |Wδ|.
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Definition 3.24 Let δ > 0.

(i) We call (yi, yj), i �= j, a δ-critical bond if |yi − yj| < δ.

(ii) We say that y satisfies a minimal distance hypothesis with δ if

|yi − yj| ≥ δ for all i �= j.

Lemma 3.25 Suppose y is a deformation with ‖ỹ − u‖ ≤ c/k, u admissible

(i) The number of atoms in a ball B of radius R is bounded by a constant
n = n(R).

(ii) There exists C > 0 such that if (y(x), y(z)) is 1-critical, then |x− z| ≤ C.

Proof. (i) Suppose yi = y(xi) ∈ B. Choose δ = 2C3/C1 as in the proof of
lemma 3.7. Then for |x− z| ≥ δ we have C1

2 |x− z| ≤ |y(x) − y(z)| and thus

|y(x) − y(z)| ≤ 2R⇒ |x− z| ≤ δ or |x− z| ≤ 4R/C1.

So #{j : yj ∈ B} ≤ #{j : |xi − xj | ≤ max{2C3/C1, 4R/C1}} =: n(R).
(ii) Just note that, by lemma 2.2 (ii), |x− z| ≤ (|y(x) − y(z)| + C3)/C1. �
We will prove theorem 3.4 by reducing to the case of admissible energy

functions already treated. The main point is to show that we may impose an
additional minimal distance hypothesis on the deformations. To this end for
given y, we have to find a new configuration y′ satisfying this hypothesis whose
energy does not exceed E(y) too much. The main difficulty comes again from
the condition on local spatial averages.

Let (A,b) ∈ Ahom. As in the proof of lemma 3.12 we choose

b0 ∈ argmin
b0

max
{

max
1≤i≤ν−1

|bi − b0|, |b0|
}

(46)

and set
Bi = bi−1 − b0, i = 2, . . . , ν, B1 = −b0. (47)

We will first assume that there is some θ > 0 such that, if |Bi|, |Bj | ≥ c0 − θ
and there is z ∈ Z

2 with |Bi −Bj −Az| ≤ θ, then i = j and z = 0.
Now suppose y ∈ N̂ l2,l3

Q (A,b) where Q is a square of side-length l3 � 1/k.
We construct a new deformation y′ : L ∩ kQ× [0, h] → R

3 in two steps. Let

0 < δ1 < δ′1 <
δ2

6n(2δ2)
, 3δ2 < δ′2 ≤ min{1, c1} (48)

be small enough (n(2δ2) as in the previous lemma, c1 = s1(A)).
Step 1. We first derive an intermediate deformation from y successively moving
the atoms around. At each intermediate step we are dealing with deformations
ŷ such that ‖ŷ −A‖ ≤ c0, so lemma 3.25 is applicable.

We will reorder layer by layer of the film starting with i = 0. Suppose the
first i−1 layers and the firstm atoms of the i-th layer y(·, i) have been reordered
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in the way described below. Let x = (x1, x2, i) be the (m + 1)-th atom. We
reorder in the following way:

If y(x) has a distance greater or equal δ1 to all the other atomic positions,
it remains unchanged.

Now suppose y(x) takes part in a δ1-critical bond. If there exists another
atom at y(x′), x′ = (x′p, i), and a unit vector e ∈ R

3 such that

y(x) + re ∈ Bc0(Axp) and y(x′) − re ∈ Bc0(Ax
′
p)

for 0 ≤ r ≤ δ2, then both of the atoms y(x) and y(x′) will be moved in opposite
directions. Let L = {y(x) + re : 0 ≤ r ≤ δ2}, L′ = {y(x′) − re : 0 ≤ r ≤ δ2}.
Claim: There are points Y (x) ∈ L, Y (x′) ∈ L′ with

y(x) + y(x′) = Y (x) + Y (x′)

such that
|Y (x) − Y (x′)|, |Y (x) − y(z)|, |Y (x′) − y(z)| ≥ δ′1

for all z ∈ Lk, z �= x, x′.
Proof of the claim: Let B,B′ be balls of radius 2δ2 centered at y(x) resp. y(x′).
Clearly, dist(z, z̄) ≥ δ2 > δ1 if z ∈ L and z̄ /∈ B (resp. if z ∈ L′ and z̄ /∈ B′). By
the preceding lemma there are at most n(2δ2) atoms in these balls. Consider
balls Bl, resp. B′

l′ with radius δ′1 around the atoms in the balls B, resp. B′. Since
by assumption δ′1 < δ2/6n(2δ2) we get (H1 denoting one-dimensional Hausdorff
measure)

H1(L \
⋃
l

Bl) ≥ 2δ2/3, H1(L′ \
⋃
l′
B′

l′) ≥ 2δ2/3.

Since the mapping L → L′ with z �→ z′ such that z + z′ = y(x) + y(x′), i.e.
z′ = y(x) + y(x′) − z is isometric, we find that

H1({z ∈ L \
⋃
l

Bl : z′ /∈
⋃
l′
B′

l′}) ≥ δ2/3.

Noting that |z − z′| ≤ δ′1 ⇒ |y(x) + y(x′) − 2z| ≤ δ′1 we also get that

H1({z ∈ L : |z − z′| ≤ δ′1}) ≤ δ′1,

so we have shown that

H1({z ∈ L \
⋃
l

Bl : z′ /∈
⋃
l′
B′

l′ , |z − z′| ≥ δ′1}) ≥ δ2/3 − δ′1 > 0.

In particular, there exist points Y (x) = z ∈ L, Y (x′) = z′ ∈ L′ as claimed.
We now update the deformation by replacing y(x) by Y (x) and y(x′) by

Y (x′). If each atom has been considered this way we arrive at a new configura-
tion again denoted y. We repeat the process until there are no more δ1-critical
bonds that can be removed this way. (There may still be δ1-critical bonds left.)
Step 2. If there are no more δ1-critical bonds, we are done. If there still are,
using the new configuration constructed in step 1 (again called y), we now
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construct y′. Suppose y(x) takes part in a δ1-critical bond. Then it is not
possible to find another atom in the same film layer and the unit vector e as
described above. But then, for all x′ ∈ L ∩ (kQ× [0, h]) with x3 = x′3,

|y(x′) −Ax′p − [y(x) −Axp]| ≤ δ2, (49)

for otherwise we could define

e =
y(x′) −Ax′p − [y(x) −Axp]
|y(x′) −Ax′p − [y(x) −Axp]| .

In particular, there are no δ1-critical bonds within the set y(kQ × {i}). (If
(y(x′), y(x′′)) was critical, then, by

|y(x′) −Ax′p − [y(x′′) −Ax′′p]| ≤ 2δ2,

we had
|Ax′p −Ax′′p| ≤ 2δ2 + δ1 < c1

in contradiction to (48).)
Now suppose (y(x), y(x′)) is critical where x′ = (x′p, i′), i′ �= i. Then again

as in (49) for all zp, z′p ∈ Z
2 ∩ kQ,

|y(zp, i) −Azp − [y(x) −Axp]| ≤ δ2 and
|y(z′p, i′) −Az′p − [y(x′) −Ax′p]| ≤ δ2.

In particular for z′p − zp = x′p − xp∣∣∣∣y(z′p, i′) −Az′p − [y(x′) −Ax′p] −
(
y(zp, i) −Azp − [y(x) −Axp]

)∣∣∣∣ ≤ 2δ2,

so

|y(z′p, i′) − y(zp, i)| ≤ |y(x) − y(x′) +Ax′p −Axp +Azp −Az′p| + 2δ2
≤ δ1 + 2δ2 ≤ 3δ2.

Since |xp−x′p| ≤ C (cf. lemma 3.25 (ii)), we find (up to a constant boundary
layer) at least one 3δ2-critical bond per atom of the i-th layer. If this case
occurs, i.e. we have more than (kl3)2 − Ckl3 3δ2-critical bonds, we reorder all
the atoms in kQ× [0, h], first by placing atom x at position V (x) (V such that
Ṽ = v, cf. (9)). Now suppose δ′2 is small enough. Then, since |Bi| < c0 − θ or
|Bj| < c0 − θ if |Bi −Bj −Az| ≤ θ for i �= j and some z ∈ Z

2, we can eliminate
all 3δ2-critical bonds as in step 1, arriving at a new deformation y such that no
atom in y(kQ× [0, h]) takes part in a δ′2-critical bond.

Lemma 3.26 Suppose |Bi| = |Bj| = c0 and Bi − Bj ∈ AZ
2 only for i = j.

(So θ as above can be chosen.) There are 0 < δ1, δ
′
1, δ2, δ

′
2 (only depending on

W , E0, and θ) such that (48) holds and (cf. (43)) for all y ∈ N̂ l2,l3
Q (A,b)

Eδ1(y
′) ≤ Eδ1(y)

where y′ is derived from y as described above. In fact, y′ ∈ N̂ l2,l3
Q (A,b) with

E(y′) ≤ Eδ1(y).
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Proof. We prove that each step of the above construction lowers energy. Assume
δ′2 is so small that W (r) ≥ 0 on (0, δ′2] and thus also Wδ ≥ 0 on (0, δ′2] for δ ≤ δ′2
(cf. (44)). Suppose ŷ, ŷ′ are intermediate configurations in step 1 above and
ŷ′ arises from ŷ by moving the atoms x and x′. By corollary 3.8 changing the
position of two atoms yields an energy error in E0 bounded by some constant
C. For given (small) δ′1, δ2 choose δ1 so small that

Wδ1(r) > C + 5 sup
‖ỹ−u‖≤c0/k

sup
z

∑
z′ �=z

|Wδ′1(|y(z′) − y(z)|)|

for all r ≤ δ1 (which is possible by (45) and (44)). Now, y(x) having a critical
bond of length r < δ1,

Eδ1(ŷ) −Eδ1(ŷ
′) =

∑
z �=x,x′

Wδ1(|ŷ(z) − ŷ(x)|) +
∑

z �=x,x′
Wδ1(|ŷ(z) − ŷ(x′)|)

−
∑

z �=x,x′
Wδ1(|ŷ′(z) − ŷ′(x)|) −

∑
z �=x,x′

Wδ1(|ŷ′(z) − ŷ′(x′)|)

+Wδ1(|ŷ(x) − ŷ(x′)|) −Wδ1(|ŷ′(x) − ŷ′(x′)|) + C

≥
∑

z �=x,x′
|z−x|≥δ′

1

Wδ′1(|ŷ(z) − ŷ(x)|) +
∑

z �=x,x′
|z−x′|≥δ′

1

Wδ′1(|ŷ(z) − ŷ(x′)|)

−
∑

z �=x,x′
Wδ′1(|ŷ′(z) − ŷ′(x)|) −

∑
z �=x,x′

Wδ′1(|ŷ′(z) − ŷ′(x′)|)

+Wδ1(r) −Wδ′1(|ŷ′(x) − ŷ′(x′)|) − C

≥ 0.

Now consider the construction of y′ in step 2 and suppose there are (kl3)2−
Ckl3 > (�kl3� + 1)2/2 3δ2-critical bonds between the i-th and i′-th layer in
y(L ∩ (kQ × [0, h])). The energy change due to the E0-term is bounded by
C(kl3)2. So if, for given δ′2, δ1 and δ2 are chosen such that

Wδ1(r) > 2C + sup
‖ỹ−u‖≤c0/k

sup
x

2ν
∑
x′ �=x

|Wδ′2(|y(x′) − y(x)|)|

for all r ≤ 3δ2, then

Eδ1(y) − Eδ1(y
′)

=
1
2

∑
x′ �=x

Wδ1(|y(x′) − y(x)|) − 1
2

∑
x′ �=x

Wδ1(|y′(x′) − y′(x)|)

+E0(y) − E0(y′)

≥ 1
2

∑
x′ �=x

|y(x)−y(x′)|≤3δ2

Wδ1(|y(x) − y(x′)|) +
1
2

∑
x′ �=x

|y(x)−y(x′)|>δ′
2

Wδ′2(|y(x′) − y(x)|)

−1
2

∑
x′ �=x

Wδ′2(|y′(x′) − y′(x)|) + E0(y) − E0(y′)
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≥ (�kl3� + 1)2

2

⎛
⎝2C + 2ν sup

‖ỹ−u‖≤c0/k
sup

x

∑
x′ �=x

|Wδ′2(|y(x′) − y(x)|)|
⎞
⎠

−1
2
ν�kl3�2 sup

x

∑
x′ �=x

|Wδ′2(|y(x′) − y(x)|)|

−1
2
ν�kl3�2 sup

x

∑
x′ �=x

|Wδ′2(|y′(x′) − y′(x)|)| − C(kl3)2

≥ 0.

Now ‖ỹ′ − u‖∞ ≤ c0/k. Since step 1 leaves −
∫
Q k∆

iỹdρ unchanged and

k∆iv = b̄i, we have indeed y′ ∈ N̂ l2,l3
Q (A,b). By construction y′ satisfies a

minimal distance hypothesis with δ1, so Eδ1(y
′) = E(y′). �

Write N̂ l2,l3
k,c0

(u,b) to highlight the dependence of the weak neighborhoods
on c0. In the non-homogeneous setting, we will need the following

Lemma 3.27 For all y ∈ N̂ l2,l3
k,c0−δ2

(u,b) there exists y′ ∈ N̂ l2,l3
k,c0

(u,b) with
E(y′) ≤ Eδ1(y) if δ1 is sufficiently small.

Proof. Derive y′ from y similarly as in step 1 of the procedure described above
applied to the sets L ∩ (Dj × [0, h]) for j = 1, . . . , N individually. If the unit
vector e is taken to be the same for each atom to be considered, we may choose
x′ to be the next (the (m+ 2)-th) lattice point, resp. the first if x was the last
one of the points in kDj ∩Z

2. Clearly, y′ ∈ N̂ l2,l3
k,c0

(u,b). As before, we see that
E(y′) ≤ Eδ1(y). �

We first analyze ϕ. The first part of theorem 3.4 is contained in the following
proposition.

Proposition 3.28 Suppose A and b are admissible. Then the limit

ϕ(A,b) = lim
k→∞

1
νk2

inf
y∈N̂ 0,1

k (A,b)
E(y)

exists in (−∞,∞], ϕ is continuous on Ahom (as a function with values in R ∪
{∞}), and ϕ(A,b) = ∞ iff there are z ∈ Z

2, i �= j ∈ {1, . . . , ν} such that
Bi −Bj = Az and |Bi| = |Bj| = c0. (Bi as in (47), (46).)

Furthermore, ϕδ denoting the limiting energy density corresponding to Eδ

(cf. (43)), ϕδ ↗ ϕ pointwise on Ahom as δ ↘ 0.

Proof. Suppose first that Bi − Bj /∈ AZ
2 if |Bi| = |Bj| = c0, i �= j. By lemma

3.26
inf

y∈N̂ 0,1
k (A,b)

E(y) ≤ inf
y∈N̂ 0,1

k (A,b)
Eδ1(y)

for δ1 sufficiently small. But Eδ1 ≤ E, so the reverse inequality it true, too. We
may therefore replace E by Eδ1 and infer from theorem 3.2 that ϕ(A,b) exists
in R, and ϕ is continuous at these A,b.

For 0 < θ ≤ 1 given, suppose now there are z ∈ Z
2 and i �= j such that

|Bi|, |Bj | ≥ c0 − θ, |Bi −Bj −Az| ≤ θ. We define Y i and Y i as in the proof of
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lemma 3.12. There it was shown that for |Bi0| ≥ c0 − θ we have (cf. (24) and
(25) with ε′ = θ and δ = 0)∣∣∣Y i0 −Bi0

∣∣∣ ≤ C
√
θ,

∑
x∈ 1

k
Z2∩S1

∣∣∣Y i0(x) − Y i0

∣∣∣ ≤ Ck2 4
√
θ.

For |Bi −Bj −Az| ≤ θ this implies (modulo boundary terms)∑
x∈ 1

k
Z2∩S1

k |ỹ(x, i− 1) − ỹ(x+ z/k, j − 1)|

=
∑

x∈ 1
k

Z2∩S1

∣∣Y i(x) − Y j(x+ z/k) −Az
∣∣

≤
∑

x∈ 1
k

Z2∩S1

∣∣∣Y i(x) − Y i
∣∣∣+ ∣∣∣Y i −Bi

∣∣∣+ ∣∣Bi −Bj −Az
∣∣

+
∣∣∣Bj − Y j

∣∣∣+ ∣∣∣Y j(x) − Y j(x)
∣∣∣

≤ Ck2 4
√
θ.

Now if i �= j, then this shows that the number of 4C 4
√
θ-critical bonds is at

least k2/2. This holds for all y ∈ N̂ 0,1
k (A,b), so by (28)

ϕk(A,b) ≥ 1
2ν

inf
0<s≤4C

4√
θ
W (s) −C,

and thus
ϕ(A,b) ≥ 1

2ν
inf

0<s≤4C
4√

θ
W (s) − C → ∞ as θ → 0.

It remains to prove that ϕδ ↗ ϕ. This is clear on the set {b : Bi − Bj /∈
AZ

2 for i �= j} since there ϕ = ϕδ for δ sufficiently small as just shown. If
Bi −Bj ∈ AZ

2, then the above calculations show that

ϕ(A,b) ≥ ϕδ(A,b) ≥ 1
2ν
Wδ(0) − C → ∞ as δ → 0.

�
Define

Mθ := {x ∈ S1 : ∃z ∈ Z
2, i �= j ∈ {1, . . . , ν} s.t. |Bi(x)|, |Bj(x)| ≥ c0 − θ,

|Bi(x) −Bj(x) −∇u(x)z| ≤ θ}.

Proof of theorem 3.4. By proposition 3.28 it remains to prove upper and lower
bounds for general admissible (u,b). This is done in four steps:
1. It is easy to get lower bounds. Since E ≥ Eδ1 , we have for y(k) → (u,b)

lim inf
k→∞

1
νk2

E(y(k)) ≥ lim inf
k→∞

1
νk2

Eδ1(y
(k)) ≥

∫
S1

ϕδ1(∇u,b),
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for all δ1 > 0. Now, by proposition 3.28, ϕδ1 ↗ ϕ pointwise as δ1 → 0, so

lim inf
k→∞

1
νk2

E(y(k)) ≥
∫
S1

ϕ(∇u,b)

by monotone convergence.
2. First suppose that |Bi(x)| ≤ c0 − θ a.e. for some θ > 0. Then by lemma 3.27
for appropriately chosen δ1, δ2 small

inf
y∈N̂ l2,l3

k,c0
(u,b)

E(y) ≤ inf
y∈N̂ l2,l3

k,c0−δ2
(u,b)

Eδ1(y).

Now by theorems 3.2 and 3.3 (see also corollary 3.21), denoting the macroscopic
energy density corresponding to Eδ by ϕδ ,

lim
k→∞

1
νk2

inf
y∈N̂ l2,l3

k,c0−δ2
(u,b)

Eδ1(y) =
∫
S1

ϕδ1
c0−δ2

(∇u,b) ≤
∫
S1

ϕc0−δ2(∇u,b)

for l2, l3 → 0, kl3 → ∞, and hence also

lim sup
k→∞

1
νk2

inf
y∈N̂ l2,l3

k,c0
(u,b)

E(y) ≤
∫
S1

ϕc0−δ2(∇u,b).

Now this holds for all δ2, therefore

lim sup
k→∞

1
νk2

inf
y∈N̂ l2,l3

k,c0
(u,b)

E(y) ≤
∫
S1

ϕc0(∇u,b)

by dominated convergence, provided ϕc0−δ → ϕc0 boundedly on {|Bi| ≤ c0−θ}
as δ → 0. To see this, note first that on this set we may replace ϕ by ϕδ0 for
δ0 > 0 small enough only depending on θ (see the proof of proposition 3.28).
Now an easy consequence of lemma 3.12 is that |ϕδ0

k,c0−δ − ϕδ0
k,c0

| ≤ Cδ1/5. It

remains to note that y(k) ∈ N̂ l2,l3
k,c0

(u,b) for all k implies y(k) → (u,b).

3. Now drop the assumption |Bi| < c0, but still suppose that |Mθ| = 0 for some

fixed θ > 0. Define approximating bη
η→0−→ b in L∞ by

Bi
η =

{
Bi if |Bi| ≤ c0 − η

(c0 − η) Bi

|Bi| if |Bi| > c0 − η.

By continuity and boundedness of ϕ,

lim
η→0

∫
S1

ϕ(∇u,bη) =
∫
S1

ϕ(∇u,b).

Now choose an appropriate diagonal sequence y(k) → (u,b) with

lim sup
k→∞

1
νk2

E(y(k)) ≤
∫
S1

ϕ(∇u,b).
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4. For general (u,b) we may suppose that |M0| = 0 (for |M0| > 0 the upper
bound is trivial). For given b ∈ L∞(S1; R3(ν−1)) we define bθ by bθ(x) = b(x)
if x /∈ Mθ, bθ ≡ 0 else. By the previous results, |ϕ(∇u(x),0)| ≤ C. Since
bθ

∗
⇀ b, we again find y(k) → (u,b) such that

lim sup
k→∞

1
νk2

E(y(k)) ≤
∫
S1

ϕ(∇u,b).

�

3.6 Extensions & variants

We discuss some extensions of the theory and possible changes of our set-up.

3.6.1 Basic extensions

More general Bravais lattices and domains

More generally, we could deal with Bravais-lattices

L = {x ∈ R
3 : x = µiei, µi ∈ Z},

where (e1, e2, e3) are linearly independent in R
3 and Sk := {x1e1+x2e2 : x1, x2 ∈

[0, k]} for k ∈ N. Then our reference configuration will be L ∩ (Sk × [0, h]e3)
where h := (ν − 1), and ∆iy(xp) = y(xp + ie3)− y(xp), xp ∈ Sk. This amounts
to a simple coordinate change in the physical space R

3.
Covering S with mesoscopic squares up to a negligible error at the boundary,

it is not hard to see that the convergence scheme in fact applies to bounded
Lipschitz domain S ⊂ R

2 (where ϕ is given as in theorem 3.2).

Alternative definition of convergence

In our definition of convergence y(k) → (u,b), it is not possible to consider
the limiting case of very restricted relaxation, i.e. c0 → 0, unless all bi are zero.
Instead of asking ‖ỹ−u‖ in definition 2.3 to be less than c0/k one could demand
that

‖ỹ − v‖ ≤ c0/k (50)

where v is as in (9) corresponding to u,b with b0 set to zero. (Condition (4) is
not needed for this definition of convergence.) The results are analogous.

Different types of atoms

The theory developed so far may be generalized to films consisting of more than
one species of atoms. Then E does not only depend on the positions yi of the
atoms but also on their type, labeled by, say, t(i) ∈ {1, . . . , s},

E = E(y1, t(1), . . . , yN , t(N)).

Note that in our derivation we only made use of translational invariance
of E. The theory still applies, if the atoms of different type are arranged
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periodically on the lattice with some fixed (microscopic) period, i.e. there exist
p1, p2 ∈ N such that for all x the atoms at (x1, x2, x3), (x1 + p1, x2, x3) and
(x1, x2 + p2, x3) are of the same type.

3.6.2 Distinguishable particle systems

Similarly, the convergence scheme also applies to certain systems with distin-
guishable particles. In this paragraph we will state a general result for systems
with finite range interaction. The basic assumption is that only atoms that
are close in the reference configuration are supposed to interact. This violates
assumption 2.7 since the energy is not a function of atomic positions in the
deformed configuration any more. It rather also depends on the reference con-
figuration, i.e. the atoms are distinguishable. It will be clear, however, that the
convergence scheme of section 3 still applies.

Let a > 0. To each xi ∈ Lk we assign a neighborhood

Uxi = {xj ∈ L : |xj − xi| ≤ a} = {xi
1, . . . , x

i
ra
}

where the enumeration of elements of Uxi shall be such that xi
1 = xi and if

(xi1)3 = (xi2)3, then xi1
j − xi1 = xi2

j − xi2 for j = 1, . . . , ra.
Let Sa

k = [a, k − a]2 and suppose the energy of a deformation y is given by

Efr(y) =
∑

xi∈L∩(Sa
k×[0,h])

fxi(y(x
i
2) − y(xi

1), . . . , y(x
i
ra

) − y(xi
1)) + O(k) (51)

where fxi : R
3(ra−1) → R are given functions representing the energy of the

interactions between the i-th atom at its position y(xi) = y(xi
1) and its neigh-

boring atoms in their positions y(xi
2), . . . , y(x

i
ra

). (The term O(k) is introduced
to compensate for boundary effects since Uxi is not contained in Sk × [0, h] for
xi in a boundary layer of constant width.) We do not assume fxi to satisfy any
symmetry conditions. However, as noted earlier, we do need some periodicity,
so we suppose there exist fixed p1, p2 ∈ N such that

f(x1+p1,x2,x3) = fx = f(x1,x2+p2,x3) (52)

for x = (x1, x2, x3) ∈ (Z+)2 × {0, . . . , ν − 1}.

Proposition 3.29 Suppose Efr is defined as in (51) and (52) holds. Assume
that the fxi are locally Lipschitz. Then the limit ϕfr of theorem 3.2 exists and
we have

lim
k→∞

1
νk2

inf
y∈Wl

k(u,b)
Efr(y) =

∫
S1

ϕfr(∇u(x),b(x))dx

as l → 0 and kl → ∞.

(Adopting the notion of δ-criticality suitably (cf. definition 3.24), also un-
bounded pair-interaction parts can be treated analogously to theorem 3.4.)
Sketch of Proof. First note that by (52) there are only finitely many different
functions fx. Due to lemma 2.2, a bound on the distance of two atoms in the
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reference configuration implies a bound on their distance in the deformed state.
So by a cut-off argument we may suppose that the functions fxi are uniformly
bounded and have common local Lipschitz constants. It is then clear that the
decay-assumptions on E are sufficient. By the periodicity assumption (52) the
passage scheme of section 3 is applicable once we have shown that E satisfies
the Lipschitz property of assumption 2.7. But each atom occurs in at most ra
summands of (51). The claim is proven. �
Remark: Dealing only with energies whose range is bounded in the reference
configuration, there is no need for a minimal strain hypothesis on u, i.e. for
these interactions we might set c1 = 0 in (3).

4 Examples/applications

In this section we will investigate some examples of atomic interactions and
explore under what circumstances these models fit into the theory developed
in the last section. The first three models will satisfy assumptions 2.6 and
2.7 even in the more restrictive sense of assumption 2.8. For the last one
this will be obviously false. Throughout this discussion we will assume that
u ∈W 1,∞(S1; R3), bi ∈ L∞(S1; R3) are admissible.

4.1 Pair potentials

As a first example we consider pair potentials, i.e. energy functions of the form

Epp(y) =
1
2

∑
i�=j

W (|yi − yj|), (53)

where W : [0,∞) → R.

Proposition 4.1 Suppose Epp is defined as in (53). Assume that W : [0,∞) →
R is Lipschitz. If there exist M > 0 and q > 3 such that for a.e. r ≥ 0

|W (r)| ≤Mr−q and |W ′(r)| ≤Mr−q+1,

then Epp is admissible.

Proof. We need only check that Epp satisfies assumptions 2.6 and 2.7. Clearly,
Epp only depends on atomic positions, is frame indifferent, and satisfies as-
sumption 2.6 with ψ(r) = |W (r)|. Furthermore, W Lipschitz (with Lipschitz
constant M ′, say) implies that E is Lipschitz and we have for each l whenever
ym �= yl for all m �= l and W ′(|yl − yj|) exists, i.e. almost everywhere,

∣∣∣∣∂E∂yl
(y)
∣∣∣∣ =

∣∣∣∣∣∣
1
2

∑
i�=j

W ′(|yi − yj|) · yi − yj

|yi − yj| · (δil − δjl)

∣∣∣∣∣∣
≤
∑
j �=l

∣∣W ′(|yl − yj|)
∣∣ . (54)
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We have to find a bound on this quantity assuming ‖ỹ − u‖ ≤ C/k. But then,
as in lemma 2.2, y satisfies |y(x)− y(z)| ≥ C1|x− z| −C3 and we can apply the
technique of splitting the sum into long-range and short-range terms as in the
proof of lemma 3.7. From |W ′(r)| ≤M ′ and |W ′(r)| ≤Mr−q+1, q > 3, we then
deduce that the right hand side of (54) is bounded (independently of k and l).

�
As an example consider the Morse potential with interaction function

WM(r) := W0(e−2a(r−r0) − 2e−a(r−r0))

for positive parameters W0, a and r0 (cf. [27]). By theorem 3.4 we also see that
our convergence scheme applies to, e.g., the Lennard-Jones potential given by

WLJ(r) = W0 ·
((σ

r

)12
−
(σ
r

)6
)
,

W0 > 0 and σ constants (cf. [27]), and the Pettifor-Ward pair potentials (cf.
[30]) given by

WPW(r) =
W0

r

3∑
n=1

an cos(knr + αn)e−κnr,

W0 > 0, an, kn, αn, κn constants such that
∑

n an cos(αn) > 0.

Morse potential

�

�

r

W (r)

Lennard-Jones potential

�

�

r

W (r)

Pettifor-Ward potential

�

�

r

W (r)

Pettifor-Ward potential

�

�

r

W (r)

4.2 Pair functionals

More generally, in this paragraph we will discuss pair functionals as examples of
the embedded atom method. These models have the advantage of also covering
some environmental dependence of the bond strength between the nuclei at
positions {yi} (cf. [27]). We let

Epf(y) =
1
2

∑
i�=j

W (|yi − yj|) +
∑

i

F (ρi), (55)
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where W : [0,∞) → R as above, F : [0,∞) → R and ρi is given by

ρi =
∑
j �=i

f(|yi − yj|), (56)

f : [0,∞) → [0,∞).
The interpretation of such an energy function is the following (cf. [27]). As

always {yi} denotes the positions of the nuclei of some material. These nuclei
are supposed to be embedded in some electron gas consisting of the valence
electrons of the atoms of that material. Now suppose that the total energy
associated with y can be split into two parts: one that describes the interaction
of the various nuclei, leading to the first summand in (55), and the sum of the
energy it costs to embed a single nucleus into an electron gas of some density
ρ. Denoting this energy

Eembedding = F (ρ),

where ρ denotes the electron density at the point the nucleus is embedded, and
assuming that the electron density at yi depends on the positions of the other
nuclei through

ρi =
∑
j �=i

f(|yi − yj|),

this embedding energy of a single nucleus at yi is indeed F (ρi).
We aim at exhibiting conditions on W , F and f such that Epf satisfies

assumptions 2.6 and 2.7. First note that since

Epf(y) =
1
2

∑
i�=j

W (|yi − yj|) +
∑

i

F

⎛
⎝∑

j �=i

f(|yi − yj|)
⎞
⎠ ,

Epf only depends on atomic positions and, depending in fact only on the inter-
atomic distances, is frame indifferent.

Lemma 4.2 Suppose Epf is defined as in (55) and W is as in proposition 4.1
(resp. theorem 3.4). Assume F : [0,∞) → (−∞, 0] is convex and Lipschitz,
f : [0,∞) → [0,∞) is Lipschitz and for a.e. r ≥ 0

|F ◦ f(r)| ≤Mr−q, |f ′(r)| ≤Mr−q+1.

Then Epf is admissible (resp. theorem 3.4 applies).

Note that, as is plausible, by the decay hypothesis and assumptions on F ,
necessarily f(r) → 0 as r → ∞ (if F is not trivial). In the following proposition
we will see that F need not be Lipschitz. While the decay assumption on f ′ is
in the spirit of the previous result, |F ◦ f(r)| ≤Mr−q poses quite severe decay
conditions on f , if we take e.g. F (a) ∼ √

a. This will be remedied in proposition
4.3.
Proof. First note F ≤ 0 convex implies that −F is subadditive. By propoition
4.1 it remains to verify assumptions 2.6 and 2.7 for the embedding termEemb(y) =∑

i F (ρi). So let M and N be disjoint sets of atoms. Setting

ρKv =
∑
w∈K
w �=v

f(|v −w|)
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we find

|Eemb(M∪N ) − Eemb(M) − Eemb(N )|

=

∣∣∣∣∣
∑

v∈M∪N
F (ρM∪N

v ) −
∑
v∈M

F (ρMv ) −
∑
v∈N

F (ρNv )

∣∣∣∣∣
≤
∣∣∣∣∣
∑
v∈M

(F (ρM∪N
v ) − F (ρMv )) +

∑
v∈N

(F (ρM∪N
v ) − F (ρNv ))

∣∣∣∣∣ .
Consider the first sum: f ≥ 0 implies that

ρM∪N
v =

∑
w∈M∪N

w �=v

f(|v − w|) ≥
∑
w∈M
w �=v

f(|v − w|) = ρMv .

So since F is decreasing (because it is convex and non-positive), we have∣∣∣∣∣
∑
v∈M

(F (ρM∪N
v ) − F (ρMv ))

∣∣∣∣∣ =
∑
v∈M

(−F (ρM∪N
v ) + F (ρMv ))

≤
∑
v∈M

([
− F

( ∑
w∈M
w �=v

f(|v − w|)
)

+
∑
w∈N

−F (f(|v − w|))
]

+ F (ρMv )

)

=
∑
v∈M

∑
w∈N

−F (f(|v − w|))

by subadditivity of −F . Treating the term |∑v∈N (F (ρM∪N
v ) − F (ρNv ))| anal-

ogously and summing up we have shown that

|Eemb(M∪N ) − Eemb(M) − Eemb(N )| ≤
∑
v∈M,
w∈N

−2F ◦ f(|v − w|),

so we may choose ψ(r) = −2F ◦ f(r). Note that since f is bounded, F ◦ f is
bounded, too. Clearly the decay hypothesis on ψ(r) as r → ∞ is satisfied. This
concludes the first part of the proof.

For the remaining part we again only need to consider the embedding term
of the energy. (The first one is dealt with as in the proof of proposition 4.1.) F
is Lipschitz, say ‖F ′‖∞ ≤M ′. So almost everywhere∣∣∣∣∣∣

∂

∂yl

∑
i

F

⎛
⎝∑

j �=i

f(|yi − yj|)
⎞
⎠
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

i

⎛
⎝F ′

⎛
⎝∑

j �=i

f(|yi − yj|)
⎞
⎠ ·
∑
j �=i

f ′(|yi − yj|) · yi − yj

|yi − yj| · (δil − δjl)

⎞
⎠
∣∣∣∣∣∣

≤ M ′

∣∣∣∣∣∣
∑
i�=j

f ′(|yi − yj|) · yi − yj

|yi − yj| · (δil − δjl)

∣∣∣∣∣∣
≤ 2M ′∑

j �=l

∣∣f ′(|yl − yj|)
∣∣ . (57)
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Just as before for ỹ in a C/k-neighborhood of u the decay and boundedness
hypotheses on f ′ allow us to split this sum into long-range and short-range
terms. We find a bound on this quantity independent of k and l. �

Proposition 4.3 Suppose W is as in proposition 4.1 (resp. theorem 3.4). As-
sume now F : [0,∞) → (−∞, 0] is convex, f : [0,∞) → (0,∞) is Lipschitz,
and, for a.e. r ≥ 0,

|f(r)| ≤Mr−q, |f ′(r)| ≤Mr−q+1.

Then theorems 3.1, 3.2, and 3.3 (resp. 3.4) apply to Epf as given in (55).

Remark: Before we prove this proposition we would like to comment on the
plausability of the various assumption made. F is non-positive since placing
a positively charged particle into an electron cloud yields energy. The non-
negativity of f is clear, since f is supposed to be a density. Strict posivity is
plausible, since perfect screening is not to be expected. The convexity condition
on F can be understood as reflecting the fact that due to screening adding
more electrons (i.e. raising the electron density) results in smaller and smaller
effects. This seems to match experimental data (cf. [27], p. 171). A qualitatively
reasonable scaling would be given by F (a) ∼ −√

a as e.g. in the Finnis-Sinclair
model where F (a) ∝ −√

a (cf. [27]). The remaining are decay assumptions on
f as those for W .
Proof. If y is some deformation satisfying ‖ỹ − u‖ ≤ C/k. Then for each
yi = y(xi) there is yj = y(xj) with j �= i and |yi − yj| ≤ 2C + c2 (choose xj to
be a neighbor of xi). So

∑
j �=i f(|yi − yj|) (i fixed) is bounded from below by

some δ > 0. Defining F̂ suitably by

F̂ (ρ) =

⎧⎨
⎩

0 for ρ = 0
linear for 0 ≤ ρ ≤ δ
F (ρ) for ρ ≥ δ

,

F̂ is convex and Lipschitz. Furthermore, |F̂ ◦ f(r)| ≤ |F (δ)|
δ |f(r)| ≤ CMr−q. So

the corresponding energy Êpf(y) is admissible. Since for all y with ‖ỹ − u‖ ≤
c0/k

Epf(y) = Êpf(y),

theorems 3.1, 3.2, and 3.3 also apply to E. �
Remark: Epf is not admissible in the usual sense, since e.g. for two atoms y1,
y2

Epf(y1, y2) = W (|y1 − y2|) + 2F
(
f(|y1 − y2|)

)
and F ◦ f(r) is in general not O(r−q) for some q > 3.
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4.3 Angular forces

In this paragraph we consider energy functions that may also depend on the
angles between atomic bonds. For a physical motivation of such models we refer
to [27]. Mathematically, this leads to consideration of potentials depending on
triplets of atomic positions:

Eaf(y) =
1
2

∑
i�=j

W (|yi − yj|) +
1
6

∑
i,j,k

i�=j �=k �=i

Ŵ (yi, yj , yk), (58)

where W : [0,∞) → R and Ŵ is given by

Ŵ (yi, yj , yk) = h(|yi − yj|, |yj − yk|, θijk) + h(|yj − yk|, |yk − yi|, θjki)
+h(|yk − yi|, |yi − yj|, θkij), (59)

θijk denoting the angle between yi − yj and yk − yj, and

h :
{

[0,∞) × [0,∞) × R → R

(r1, r2, θ) �→ h(r1, r2, θ)

is 2π-periodic and symmetric in the last variable.
Again we are seeking for conditions on W and Ŵ (resp. h) such that Eaf

satisfies assumptions 2.6 and 2.7. As before it is easy to see that Eaf(y) depend-
ing only on interatomic distances and angles is determind by atomic positions
and is frame indifferent.

Proposition 4.4 Suppose Eaf is defined as in (58). Assume that W is as in
proposition 4.1 (resp. theorem 3.4) and h is Lipschitz. Furthermore, there are
bounded functions χ1, χ2, α1, α2 : [0,∞) → [0,∞) with

χµ(r) ≤Mr−q, αµ(r) ≤Mr−q+1, µ = 1, 2

such that
|h(r1, r2, θ)| ≤ χ1(r1)χ2(r2)

and (a.e.) ∣∣∣∣ ∂h∂rµ (r1, r2, θ)
∣∣∣∣ ≤ α1(r1)α2(r2), µ = 1, 2

and ∣∣∣∣∂h∂θ (r1, r2, θ)
∣∣∣∣ ≤ α1(r1)α2(r2)min{r1, r2}.

Then Eaf is admissible (resp. theorem 3.4 applicable).

Remark: Note that it is plausible to require that ∂h/∂θ vanish as r1 → 0
or r2 → 0, since Ŵ (yi, yj, yk) should depend continuously on yi, yj , yk, but the
angle θijk does not, when the triangle becomes degenerate.

The proof is tedious but not very hard. Splitting into long- and short-range
terms, all sums occuring in the error terms can be bounded appropriately. ψ
can be chosen as ψ(r) = |W (r)| + Cmax{χ1(r), χ2(r)}.
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Example: If h splits into

h(r1, r2, θ) = f1(r1)f2(r2)g(θ),

as e.g. for Stillinger-Weber-type energies (cf. [27]). Then h satisfies the condi-
tions of proposition 4.4 if fµ, f

′
µ are bounded, |fµ| ≤ Mr−q, |f ′µ| ≤ Mr−q+1 for

µ = 1, 2, f1(r1)f2(r2) ≤ min{r1, r2} and g and g′ are bounded. This is satisfied
e.g. for the angular term

g(θ) = (cos(θ) + 1/3)2

discussed in [27].

�

�

0 2ππ

1

θ

g(θ)

4.4 A simple example

Even for fairly elementary microscopic energies as e.g. given by pair poten-
tials, not much is known about their ground state deformations. (Some one-
dimensional results in this direction can be found in [5], a recent two-dimensional
result for certain pair potentials is proved in [31].) We conclude this section
calculating ϕ explicitly for a simple nearest neighbor model. Although it lacks
some physical requirements (e.g. shear resistance), it captures some realistic
features as e.g. quadratic energy growth near the reference configuration (a
natural state) for pure extensions. The model consisting of two different types
of bonds, the energy minimizer will not be a simple crystal. A pointwise limit
would overestimate the energy.

Suppose the atoms of our reference configuration interact only with nearest
neighbors and the interaction potential is harmonic, i.e. given by springs of
strength d1 and d2 with equilibrium at distance 1.

� x1
� � �

� � �

� � �

� � �

� � �

� � �� � �

� � �

� � �

� � �

� � �

� � �

We assume that bonds in the reference configuration parallel to the x2- or
x3-axes have d1 = 1 while bonds parallel to the x1 axis have alternating d1 = 1
and d2 = 2 as in the previous picture. So the energy is given by

Enn(y) =
1
2

∑
|xi−xj |=1

dij(|yi − yj| − 1)2, (60)

dij = 1 or 2 as described above.
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Proposition 4.5 Enn is admissible in the sense of proposition 3.29. In partic-
ular, the limit ϕnn of theorem 3.2 exists for Enn and

Enn(u,b) =
∫
S1

ϕnn(∇u(x),b(x))dx.

Furthermore (set b0 = 0), if c0 is not too small,

ϕnn(A,b) =
4
3
(max{0, |a·1| − 1})2 + (max{0, |a·2| − 1})2

+
ν−1∑
i=1

(max{0, |bi − bi−1| − 1})2.

where a·j denotes the jth column of A.

This is clearly a special case of (51) with a = 1 and periodicity p1 = 2, p2 =
1. So we only have to prove the representation formula for ϕnn.
Sketch of Proof. The main observation in the elementary but tedious proof is
that the energy decouples into energies of one dimensional atomic chains

i �→ y(x1 + i, x2, x3), resp. i �→ y(x1, x2 + i, x3)

with k+ 1 atoms, and ν − 1 chains with (k + 1)2 + 1 atoms whose difference of
successive atoms is given by y(x1, x2, i) − y(x1, x2, i− 1), i fixed:

E(y) =
∑

0≤x2≤k
0≤x3≤ν−1

∑
0≤x1≤k−1

d(x1)(|y(x1 + 1, x2, x3) − y(x1, x2, x3)| − 1)2

+
∑

0≤x1≤k
0≤x3≤ν−1

∑
0≤x2≤k−1

(|y(x1, x2 + 1, x3) − y(x1, x2, x3)| − 1)2

+
∑

0≤x3≤ν−2

∑
0≤x1,x2≤k

(|y(x1, x2, x3 + 1) − y(x1, x2, x3)| − 1)2

where d(x1) = d1 = 1 if x1 is even, d(x1) = d2 = 2 if x1 is odd. Now the energy
can be bounded from below by minimizing the energy of these chains separately
subject to boundary conditions ỹ = v on ∂S1× [0, h] resp. −

∫
∆iỹ = bi. Allowing

for negligible error terms, these configurations can be patched together to yield
the desired result. �
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