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Abstract

We discuss qualitative aspects of a continuum theory for thin films
rigorously derived in [21]. The stored energy density is examined for con-
vexity properties and limiting behavior under large and small strains. A
study of the dependence of the theory on relaxation parameters leads to
the result that the scale of convergence used in [21] is the only scale for
which a limiting theory that also accounts for atomic relaxation effects is
non-trivial.
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1 Introduction

The aim of this paper is to examine qualitative features of a macroscopic theory
for thin films that was derived as an effective continuum theory from atomic
models in [21]. Deriving thin film limits from three-dimensional elasticity is still
an active area of research, see, e.g., [17, 18, 19, 13, 14, 16] and, most recently, [15]
where a whole hierarchy of different scaling limits is discussed. For the more
classical developments see, e.g., [20]. On the other hand, by now there are
also rigorous Γ-convergence results for the passage from discrete to continuum
theory: for suitable pair interaction models, especially in one dimension, see
[5, 6, 7]; more complicated potentials under additional assumptions as, e.g., the
Cauchy-Born rule are considered in [2, 3, 4].

In [12], starting from reference configurations

Lk = Z
3 ∩ [0, k] × [0, k] × [0, ν − 1]

for fixed ν ∈ N, the number of film layers, and k ∈ N, a limiting continuum
theory for the energy of deformations was proposed in the limit k → ∞ taking
into account atomistic relaxations effects. In [21], this effective theory was
obtained rigorously as a variational limit of the elastic energy functional E(y(k))
of deformations y(k) : Lk → R

3. This continuum theory was expressed in terms
of the gradient of a map u : [0, 1]2 → R

3 and ν−1 director fields bi : [0, 1]2 → R
3,

i = 1, . . . , ν − 1:
Theorem (cf. [21]) Under suitable assumptions on the energy function E, and
for an appropriate definition of convergence of deformations, there exists ϕ :
R

3·2 × (R3)ν−1 → R such that

E(y(k)) “Γ”→
∫

[0,1]2
ϕ(∇u, b1, . . . , bν−1) as k → ∞.

In section 2, after introducing the model, we will recall the precise state-
ments from [21]. Also we will gather some preparatory material that was proved
in [21] and will be needed in the sequel.

The following sections are devoted to studying this continuum theory, i.e.
the macroscopic energy density ϕ qualitatively. First, cf. section 3, we examine
the dependence of ϕ on the relaxation parameter c0 and study the limiting cases
c0 → ∞ and c0 → 0. Moreover, we will see that the physically motivated rate
of convergence for which continuum theory was derived in [21] is the only scale
that leads to a non-trivial limiting theory.

In the following two sections 4 and 5, we derive the limiting behavior under
large extensive and compressive strains, and explore the convexity properties
and symmetries of the limiting energy functional.

Finally, in section 6, the scaling behavior of certain systems near O(2, 3) is
examined. We still find non-trivial energy response to compressive strains in
this regime. It is, however, weaker than calculated without taking into account
atomic relaxation effects. In order to prove this result we are led to study
the one-dimensional version, an atomic chain, in detail. The results of this
paragraph might be of independent interest.
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2 The passage from atomic to continuum theory

We give a brief account of the results obtained in [21] on the passage from
atomic models to a continuum theory for thin films. For details, motivations of
the concepts, and proofs of the results of this section we refer to [21].

2.1 The model

Kinematics

We consider a film of ν atomic layers whose reference configuration will be

Lk = L ∩ (Sk × [0, h]),

where Sk := [0, k]× [0, k] for k ∈ N, h := ν − 1 is the height of the film and, for
sake of simplicity, L = Z

3.
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The deformations of this configuration will be denoted by

y = y(k) : Lk → R
3.

In order for y to be defined not only on the atomic positions, we will assume
some interpolation between the atomic positions: for a deformation y : Lk → R

3

let x̄ = x+ (1/2, 1/2) for x ∈ {0, . . . , k − 1}2 and set

y(x̄, i) =
1
4

∑
z∈Z2,

|z−x̄|=1/
√

2

y(z, i), i = 0, . . . , ν − 1.

Now on each of the four triangles with corners (x̄, i), (z, i), (z′ , i), where z, z′ ∈
Z

2 with |z − x̄| = 1/
√

2, |z − z′| = 1 interpolate linearly to obtain y(x, i) for
x ∈ Sk. Interpolating in between the layers is not so subtle, for definiteness
we choose y to be linear on the segments [(x, i − 1), (x, i)]. By this particular
choice we guarantee that (local) averages depend only on atomic positions.

Our aim being to study the limit k → ∞, it is natural to introduce the
rescaled functions ỹ defined on the common domain S1 × [0, h]:

ỹ(k)(x) :=
1
k
y(k)(kx1, kx2, x3).

Considering weak*-limiting points of ỹ as natural variables for a continuum
theory, we are led to elements u ofW 1,∞([0, 1]2; R3) as limiting deformations. In
our regime of thin films of fixed atomic height, we also introduce the quantities

∆iỹ(k)(xp) = ỹ(k)(x1, x2, i) − ỹ(k)(x1, x2, 0), i = 1, . . . ν − 1,

xp = (x1, x2), to measure the relative shift of the layers of our film. Also these
have weak*-limits in L∞.

As in [21] we define:

3



Definition 2.1 Let u ∈W 1,∞(S1; R3) and b = (b1, . . . , bν−1) ∈ L∞(S1; (R3)ν−1).
We say that (u,b) is admissible (for given c0 > 0), i.e. (u,b) ∈ A, if there exists
c1 > 0 such that

|u(x) − u(z)| ≥ c1|x− z| ∀x, z ∈ S1 (1)

(minimal strain hypothesis), and there exists b0 ∈ L∞ such that

‖b0‖∞, ‖bi − b0‖∞ ≤ c0, i = 1, . . . , ν − 1. (2)

The un-rescaled version of u is denoted U , i.e. Ũ = u. An easy consequence of
our interpolation is the following

Lemma 2.2 Suppose u is admissible and y : Lk → R
3 some deformation with

supx∈Lk
|y(x) − U(xp)| ≤ c. Then y is Lipschitz. For any (rescaled) Lipschitz

interpolation y : Sk × [0, h] → R
3 (ỹ : S1 × [0, h] → R

3) there are constants
C1, C2, C3 > 0 such that,

(i) supx∈S1×[0,h] |ỹ(x)| ≤ C2,

(ii) C1|x− z| − C3 ≤ |y(x) − y(z)| ≤ C2|x− z| ∀x, z ∈ Sk × [0, h],

We next define in what sense we understand deformations to converge to
the limiting quantities u and b.

Definition 2.3 Let u ∈ W 1,∞(S1; R3), b ∈ L∞(S1; R3). Choose c0 > 0 a
constant. We say that y(k) → (u,b) (w.r.t. c0) if

‖ỹ(k) − u‖ ≤ c0/k and k∆iỹ(k) ∗
⇀ bi in L∞.

Here and in the sequel we denote by ‖f‖, respectively ‖f̃‖ in rescaled variables,

‖f‖ := sup
x∈Lk

|f(x)|, resp. ‖f̃‖ := sup
x∈Lk

|f̃(xp/k, x3)|.

As detailed in [21], this corresponds to a relaxation scheme where the indi-
vidual atoms are allowed to move in a region comparable to atomic dimensions.

Energy

The energy of a system of N atoms at positions y1, . . . , yN ∈ R
3 shall be a

function E : (R3)N → R only depending on atomic positions. To study E we
will endow the configuration space (R3)N with the norm

‖(y1, . . . , yN )‖ = sup
1≤i≤N

|yi|2.

The elastic energy of a deformation y, i.e. the energy of the system (y(x) : x ∈
Lk) respectively a subsystem M = y(K), K ⊂ Lk, is denoted

E(y) = E(y(x) : x ∈ Lk) resp. E(M) = E(y(x) : x ∈ K).

We normalize E so that E(∅) = 0.
The two main assumptions on E are firstly the following splitting estimate.
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Assumption 2.4 Suppose u is admissible. There exists a function ψ : [0,∞) →
R such that

|ψ| ≤M and ψ(r) ≤Mr−q (3)

where M, q are constants, M > 0, q > 3, such that for disjoint sets M and N
of atoms we have

|E(M∪N ) − E(M) −E(N )| ≤
∑

v∈M,w∈N
ψ(|v − w|),

whenever ‖y−U‖∞ ≤ C. (The function ψ may depend on C and on u through
c1 and c2 where c1|x1 − x2| ≤ |u(x1) − u(x2)| ≤ c2|x1 − x2|.)
Secondly, we need to assume some regularity of E:

Assumption 2.5 Let u be admissible. We assume that E is locally Lipschitz
and in a C-neighborhood of U ∣∣∣∣ ∂∂yi

E(y)
∣∣∣∣ ≤ L

where L might depend on C and on U through c1, c2.
Furthermore, we assume E to be frame indifferent and only depending on

the atomic positions, i.e. E remains unchanged after renumbering of atoms and
rigid motion of the configuration y(K).

For some results we will have to impose an additional restriction:

Assumption 2.6 Assume that ψ and L of assumption 2.4 resp. 2.5 depend
only on C1 and C3 where y satisfies |y(x) − y(z)| ≥ C1|x− z| − C3.

2.2 Convergence theorems

Suppose E satisfies assumptions 2.4 and 2.5, and a relaxation parameter c0 > 0
is chosen. The main result of [21] is the following variational convergence result:

Theorem 2.7 There exists a macroscopic stored energy function ϕ such that
(in the spirit of Γ-convergence, cf. [10]),

(i) if y(k) → (u,b), (u,b) admissible, then

lim inf
k→∞

E(y(k)) ≥ E(u,b),

(ii) and for all admissible (u,b) there exists a sequence y(k) → (u,b) such
that

lim
k→∞

E(y(k)) = E(u,b).

Here E(u,b) is the macroscopic energy

E(u,b) =
∫
S1

ϕ(∇u, b1, . . . , bν−1). (4)
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To compute ϕ more directly than by the associated cell problem, set

N̂ 0,1
k (A,b) =

⎧⎨
⎩y : Lk → R

3 : ‖y −A‖ ≤ c0 and
1

(k + 1)2
∑

x∈Z2∩Sk

∆iy(x) = bi

⎫⎬
⎭ .

(5)
where L′

k = Z
2 ∩ Sk.

Theorem 2.8 The macroscopic energy density ϕ of theorem 2.9 is given by

ϕ(A,b) = lim
k→∞

ϕk(A,b) (6)

where for later use we have introduced the quantities

ϕk(A,b) =
1
νk2

inf
y∈N̂ 0,1

k (A,b)
E(y). (7)

This limit is uniform on compact subsets of Ahom and depends continuously on
A,b.

Here, Ahom ⊂ R
3·2 × (R3)ν−1, the set of admissible (A,b), is defined by

Ahom := {(A, b1, . . . , bν−1) : rank(A) = 2,
∃ b0 ∈ R

3 s.t. |b0|, max
1≤i≤ν−1

|bi − b0| ≤ c0}

for matrices A ∈ R
3·2 and vectors b1, . . . , bν−1.

We also mention the following quantitative version of theorem 2.7:

Theorem 2.9 Suppose l = l(k) is such that l(k) → 0 and kl(k) → ∞ as
k → ∞. Let

W l
k(u,b) := {y : ‖ỹ − u‖ ≤ c0/k, ‖k∆iỹ − bi‖W−1,∞ ≤ l}

where ‖f‖W−1,∞ := sup
{∫

f · χ : χ ∈W 1,1
0 , ‖χ‖W 1,1

0
= ‖∇χ‖L1 = 1

}
. Then

lim
k→∞

1
νk2

inf
y∈Wl

k(u,b)
E(y) =

∫
S1

ϕ(∇u(x),b)dx.

In fact, theorems 2.7 and 2.8 also apply to the more general case where E
is of the form

E(y) =
1
2

∑
i�=j

W (|yi − yj|) + E0(y) (8)

where E0 satisfies the usual assumptions, but W (r) becomes infinitely large as
r tends to zero. (In particular, the Lennard-Jones potential is covered by these
energy functions.)
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Theorem 2.10 For any r0 > 0 assume that W is Lipschitz on [r0,∞) and
there exists M = M(r0) ∈ R such that for (a.e.) r ≥ r0

|W (r)| ≤Mr−q, |W ′(r)| ≤Mr−q+1,

for r ≥ r0. Then theorem 2.7 extends to energy functions of the form (8)
where, as in theorem 2.8, ϕ : Ahom → (−∞,∞] is given by (6), continuous as
a function with values in R ∪ {∞}.

As another extension we note that the above results also apply to suitable
systems of distinguishable particle systems with finite range interaction. Let
a > 0. To each xi ∈ Lk we assign a neighborhood

Uxi = {xj ∈ L : |xj − xi| ≤ a} = {xi
1, . . . , x

i
ra
}

where the enumeration of elements of Uxi shall be such that xi
1 = xi and if

(xi1)3 = (xi2)3, then

xi1
j − xi1 = xi2

j − xi2 for j = 1, . . . , ra.

Let Sa
k = [a, k − a]2 and suppose the energy of a deformation y is given by

Efr(y) =
∑

xi∈L∩(Sa
k×[0,h])

fxi(y(x
i
2) − y(xi

1), . . . , y(x
i
ra

) − y(xi
1)) + O(k), (9)

where fxi : R
3(ra−1) → R are given functions representing the energy of the

interactions between the i-th atom at its position y(xi) = y(xi
1) and its neigh-

boring atoms in their positions y(xi
2), . . . , y(x

i
ra

). (The term O(k) is introduced
to compensate for boundary effects, since Uxi is not contained in Sk × [0, h] for
xi in a boundary layer of constant width.) We need the following periodicity
assumption: there exist fixed p1, p2 ∈ N such that

f(x1+p1,x2,x3) = fx = f(x1,x2+p2,x3) (10)

for x = (x1, x2, x3) ∈ (Z+)2 × {0, . . . , ν − 1}.

Proposition 2.11 Suppose Efr is defined as in (9) and (10) holds. Assume
that the fxi are locally Lipschitz. Then the limit ϕfr of theorem 2.8 exists and
we have

lim
k→∞

1
νk2

inf
y∈Wl

k(u,b)
Efr(y) =

∫
S1

ϕfr(∇u(x),b(x))dx

as l → 0 and kl → ∞.

Remark: For such systems we do not need to suppose that u satisfies a minimal
strain hypothesis. Thus, ϕ is defined on all of R

3·2 × (R3)ν−1.
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2.3 Technical results

We now gather some of the technical results obtained in [21] that will be useful
in the following sections.

Consider deformations y : kΩ × [0, h] → R
3 for Ω ⊂ [0, 1]2.

Lemma 2.12 Let y be a deformation satisfying |ỹ − u| ≤ c/k and K ⊂ L ∩
(kΩ × [0, h]). Then there is a constant C (not depending on K) such that if
K = K1 ∪ K2 for disjoint K1 and K2, then

|E(y(x) : x ∈ K) − E(y(x) : x ∈ K1)| ≤ C#K2.

Suppose Q = [0, a)2, a ≤ 1, is partitioned by squares U1, . . . , Ur of side-
length l where c0/k ≤ l ≤ a plus some rest R with |R| = O(a · l′), l′ � a, as in
the following picture. (Then r ∼ (a/l)2.)

�

�
a

a

l

l

x1

x2

R

U1

Ur

����
O(l′)

Set M := {y(x) : x ∈ L∩(kQ×[0, h])}, Mi := {y(x) : x ∈ L∩(kUi×[0, h])}.

Lemma 2.13 Suppose y : kQ× [0, h] satisfies |ỹ−u| ≤ c/k for some admissible
u. Then there exists C > 0 such that∣∣∣∣∣E(M) −

r∑
i=1

E(Mi)

∣∣∣∣∣ ≤ C
(
ka2/l + k2al′

)
.

Remark: In both of the previous lemmas, C will only depend on C1 and C3

provided assumption 2.6 is satisfied.
To measure local spatial averages, we define the measure ρ = ρ(k) =∑

x∈Z2 δx/k where δx/k is the Dirac measure at x/k. Also set (after extend-
ing bi boundedly outside S1 (constantly if bi is constant))

b̄i(x) = −
∫

x+[−1/2k,1/2k]2
bi(z)dz. (11)

Let b0 as in (2) be given. For later use we introduce the deformations v = v(k),
defined by (interpolation of)

v(x1, x2, i) =
{

u(x1, x2) − 1
k b̄

0(x1, x2) for i = 0
u(x1, x2) + 1

k (b̄i(x1, x2) − b̄0(x1, x2)) for 1 ≤ i ≤ ν − 1
(12)

for (x1, x2) ∈ 1
kZ

2 ∩ S1. Clearly, v(k) → (u,b). Its un-rescaled version will be
denoted V , i.e. Ṽ = v.
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Lemma 2.14 Suppose y is a deformation with

‖y − U‖ ≤ c0 + δ1 and

∣∣∣∣∣−
∫

[0,1]2
(k∆iỹ − b̄i)dρ

∣∣∣∣∣ ≤ δ2,

δ1, δ2 ≤ 1. Then there exists y′ : Lk → R
3 with

‖y′ − U‖ ≤ c0, −
∫

[0,1]2
k∆iỹ′dρ = b̄i,

and
|E(y) − E(y′)| ≤ C(δ1/5

1 + δ
1/5
2 )k2.

(This combines lemmas 3.11 and 3.13 in [21].)
Instead of bi, it is sometimes more convenient to work with the quantities

Bi defined by choosing b̄0 minimizing

max
{

max
1≤i≤ν−1

|b̄i − b̄0|, |b̄0|
}

(≤ c0)

and setting

Bi := b̄i−1 − b̄0 for i = 2, . . . , ν, B1 := −b̄0. (13)

3 The dependence of ϕ on the relaxation scheme

Our notion of convergence y(k) → (u,b) of atomic deformations to macroscopic
variables u,b depends on the constant c0 (cf. definition 2.3). (To keep track
of this dependence, we will sometimes add c0 as an additional subscript as e.g.
in N̂ 0,1

k,c0
, ϕk,c0.) Our first task is to analyze this dependence of our continuum

theory on the relaxation parameter c0. It will turn out that we can not relax
sending c0 to infinity. This is due to the (physically reasonable) decay assump-
tions on atomic interactions. Moreover, c0/k will prove to be the only scale
which both accounts for atomistic relaxation effects and yields a non-trivial
continuum theory. We start by proving the following regularity result.

Proposition 3.1 Fix (A,b) ∈ Ahom. The mapping c0 �→ ϕc0(A,b) is decreas-
ing and continuous.

Proof. Suppose c0 > c′0. By theorem 2.8, ϕc0(A,b) ≤ ϕc′0(A,b). Conversely,
given y ∈ N̂ 0,1

k,c0
(A,b), by lemma 2.14 we find a deformation y′ ∈ N̂ 0,1

k,c′0
(A,b)

with E(y′) ≤ E(y)+C(c0−c′0)1/5k2 provided (A,b) is admissible for c′0. There-
fore ϕc′0(A,b) ≤ ϕc0(A,b) + C(c0 − c′0)1/5. �

9



3.1 The limit c0 → ∞
Suppose E is an admissible pair potential with purely attractive pair interaction
W ≤ 0, W �≡ 0. Considering deformations with larger and larger periodic cells
where every atom is mapped to a single point, we see that for all admissible A,
b,

lim
c0→∞ϕc0(A,b) = −∞.

In this paragraph we will show that the limit c0 → ∞ in general will be trivial
if assumption 2.6 is satisfied.

Theorem 3.2 Suppose E satisfies assumptions 2.4, 2.5, and 2.6. Define ϕ∞ :=
limc0→∞ ϕc0 . (This limit exists pointwise in [−∞,∞) by proposition 3.1.) Then
ϕ∞(A,b) = ϕ∞(A′,b′) for all admissible A,A′,b,b′.

Proof. Suppose first that A′ = A. By VA,b we denote the un-rescaled version
of v (cf. (12)) corresponding to u = A and b0 set to zero. For b such that the
projection of each bi onto graph(A) has norm less than 2|A|,

|VA,b(x) − VA,b(x′)| = |A(xp − x′p) + bx3 − bx
′
3|

≥ |A(xp − x′p)| − 4|A|
≥ C1|x− x′| − C3,

C1, C3 independent of b. From assumption 2.6 and lemma 2.12 we then find a
constant C such that for those b, E(VA,b) ≤ Ck2. On the other hand, if for
two vectors b1, b2

bj2 = bj1, for j �= i, and bi2 = bi1 +Az, z ∈ Z
2,

then E(VA,b1) = E(VA,b2)+O(|z|k). So for all b we obtain limk→∞ 1
νk2E(VA,b) ≤

C, whence ϕ∞(A, ·) is an upper bounded function on R
3(ν−1) with values in

[−∞,∞). Since it is convex (by proposition 5.3 all ϕc0(A, ·) are convex), it
must be constant.

For the remaining part it suffices to show that

ϕ∞(A′,b) ≤ ϕ∞(A,b).

We proceed similarly as in the proof of proposition 3.16 of the existence of ϕ
under homogeneous conditions in [21].

Fix c0 and δ > 0. Choosing k0 large enough we find by theorem 2.8 y ∈
N̂ 0,1

k0,c0
(A,b) with

1
νk2

0

E(y) ≤ ϕc0(A,b) + δ/2. (14)

We construct a deformation y′ : Lk → R
3, k � k0, by patching together

appropriately translated copies of y: let U1, . . . , Us be translates of [0, k0 + 1)2.
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Let z1, . . . , zs denote the lower left corners of these sets, set f i = A′zi and define

y′(x1, x2, x3) = y(x1 − zi
1, x2 − zi

2, x3) + f i

for x ∈ L ∩ (Ui × [0, h]). Then

‖y′ −A′‖ = sup
x∈Lk0

|y′(x) −A′xp| ≤ sup
x∈Lk0

|y(x)| + sup
xp∈Sk0

|A′xp| =: c̃0.

So c̃0 depends on k0 (and A,A′) but is independent of k. Since

−
∫

[0,1]2

(
k∆iỹ′ − bi

)
dρ = −

∫
S

Uj

(
k∆iỹ′ − bi

)
dρ+ O

(
k2
0

k

)

=
1
sk2

s∑
j=1

∫
Uj

(
k∆iỹ′ − bi

)
dρ+ O

(
k2
0

k

)

= O
(
k2
0

k

)

(note |k∆iỹ′| ≤ 2c̃0), by lemma 2.14 we find a deformation

ŷ ∈ N̂ 0,1
k,c̃0

(A′,b). (15)

such that ∣∣∣∣ 1
νk2

E(y′) − 1
νk2

E(ŷ)
∣∣∣∣ ≤ C(c̃0)

(
k2
0

k

)1/5

. (16)

Using lemma 2.13 and translational invariance, we would now like to split
the energy to find that∣∣∣∣ 1

νk2
E(y′(x) : x ∈ Lk) − 1

νk2
0

E(y(x) : x ∈ Lk0)
∣∣∣∣ ≤ C

(
1
k0

+
k0

k

)
. (17)

If this is possible, we find that by (17), (15), (16) and (14) for k � k0 � 1

ϕk,c̃0(A
′,b) ≤ 1

νk2
E(ŷ(x) : x ∈ Lk)

≤ 1
νk2

0

E(y(x) : x ∈ Lk0) + δ/2

≤ ϕc0(A,b) + δ.

11



Letting first k → ∞, then c̃0 → ∞, we deduce from proposition 3.1

ϕ∞(A′,b) ≤ ϕc0(A,b) + δ.

Since δ was arbitrary we finally get sending c0 → ∞

ϕ∞(A′,b) ≤ ϕ∞(A,b).

It remains to justify the application of lemma 2.13. The problem is that c̃0
depends on k0. (For nearest neighbor models as discussed in proposition 2.11,
this splitting in (17) will in general not be possible: for y′ as described above
neglecting the bonds between sets y(Ui × [0, h]) could result in neglecting an
essential part of the energy.) By the remark after lemma 2.13, however, this will
be possible if we can replace y′ by some y′′ such that still ‖y′′−A‖ ≤ c̃0 depends
only on k0 and y′′ consists of translates of y(Lk0), but in addition satisfies a
far-field minimal strain hypothesis with constants C1, C3 independent of k0, i.e.

|y′′(x1) − y′′(x2)| ≥ C1|x1 − x2| − C3. (18)

We re-enumerate the squares U1, . . . , Us as depicted in the following dia-
gram.

�

�

S
j U1,j

S
j U2,j

S
j Ui,j

r(k0 + 1)
| {z }

�

� � �

�
�
�

�
�
�

�
�
�

� � �

Ui,1 Ui,2 Ui,r

Ui,r2

(r ∈ N to be specified later.) Depending on A,A′, k (and c0, c̃0) we choose a unit
vector e ∈ R

3 perpendicular to the graph of A′ and numbers 0 < a1 < . . . < ar2

(to be specified later), and define

y′′(x1, x2, x3) = y′(x1, x2, x3) + aje

if x ∈ L ∩ Ui,j × [0, h], j ∈ {1, . . . , r2}.
We will now find C1, C3 independent of k0 such that (18) holds. Since still,

on each of the sets Ui,j × [0, h], y′′ is a translated copy of y, we may replace y′

by y′′. Applying (17) then finishes the proof.
If x1 and x2 lie in the same Ui,j × [0, h] this is clear from lemma 2.2 since

y ∈ N̂ 0,1
k0,c0

(A,b).
Now suppose this is not the case, but still |x1 − x2|∞ < r(k0 + 1). Then

x1 ∈ Ui1,j1 × [0, h], x2 ∈ Ui2,j2 × [0, h] with j1 �= j2. But then

|y′′(x1) − y′′(x2)| ≥ |aj1 − aj2 | − |y′(x1) − y′(x2)|

12



≥ |aj1 − aj2 | − |f i1,j1 − f i2,j2| − |y(x1 − zi1,j1) − y(x2 − zi2,j2)|
≥ |aj1 − aj2 | − |f i1,j1 − f i2,j2| − 2c0

−|A(x1 − zi1,j1) −A(x2 − zi2,j2)|
≥ |aj1 − aj2 | − C ′rk0 − 2c0 − Ck0

≥ 2rk0 for |aj1 − aj2 | sufficiently large
≥ |x1 − x2|.

So we assume that |aj1 − aj2 |, j1, j2 ∈ {1, . . . , r2}, are large enough to justify
the above calculation.

Finally, let x1 ∈ Ui1,j1 × [0, h], x2 ∈ Ui1,j2 × [0, h] and |x1−x2|∞ ≥ r(k0 +1).
Since e is perpendicular to the graph of A′ and y′ lies in a c̃0-neighborhood of
that graph we find that for r not too small

|y′′(x1) − y′′(x2)| = |(aj1 − aj2)e+ y′(x1) − y′(x2)|
≥ |(aj1 − aj2)e+A′(x1 − x2)|

−|y′(x1) −A′x1| − |y′(x2) −A′x2|
≥ |A′x1 −A′x2| − 2c̃0
≥ |y′(x1) − y′(x2)| − 4c̃0
≥ |f i1,j1 − f i2,j2| − |y(x1 − zi2,j1) − y(x2 − zi2,j2)| − 4c̃0
≥ |f i1,j1 − f i2,j2| − 2c0 − 2|A|k0 − 4c̃0
≥ c|zi1,j1 − zi2,j2| − 2c0 − 2|A|k0 − 4c̃0

≥ c

2
|zi1,j1 − zi2,j2|

≥ c

6
|x1 − x2|,

where c = min|x|=1 |A′x|. The last but one inequality follows from the fact that
for i1 �= i2

c

2
|zi1,j1 − zi2,j2| ≥ crk0

4
≥ 2c0 + 2|A|k0 + 4c̃0,

if we choose r sufficiently big.
Setting ˜̃c0 = c̃0 + max1≤j≤r2 |aje| we furthermore have ‖y′′ − A′‖ ≤ ˜̃c0. So

by possibly enlarging c̃0 to ˜̃c0, we can indeed split the energy to obtain (17),
and the proof is finished. �

For systems that do not satisfy assumption 2.6, ϕ∞ may be nontrivial (for
an example see proposition 4.5 in [21]). In paragraph 5.1 we will prove that ϕ∞
is quasiconvex with respect to the first variable and convex with respect to the
second.

3.2 The limit c0 → 0

In our definition of convergence y(k) → (u,b), it does not make sense to consider
the limiting case of very restricted relaxation, i.e. c0 → 0, unless all bi are zero.
Instead of asking ‖ỹ−u‖ in definition 2.3 to be less than c0/k one could demand
that

‖ỹ − v‖ ≤ c0/k (19)

13



where v is as in (12) corresponding to u,b with b0 set to zero. (Condition (2)
is not needed for this definition of convergence.) This alternative set-up leads
to analogous results in the passage to continuum theory, as shown in [21].

It is not hard to calculate the limit

ϕ0(A,b) := lim
c0→0

ϕc0(A,b)

which exists in (−∞,∞] since c0 �→ ϕc0(A,b) is decreasing.

Proposition 3.3 Let VA,b be as in (12) for constant ∇u = A and b. Then

ϕ0(A,b) = lim
k→∞

1
νk2

E(VA,b(x) : x ∈ Lk).

In particular, the limit on the right hand side exists (in R under the usual
assumptions 2.4 and 2.5, in (−∞,∞] for energies of the form (8)).

Proof. Suppose first E is of the form (8) and there are i �= j ∈ {0, . . . , ν − 1}
such that bi ∈ bj +AZ

2. Then, if ‖y − VA,b‖ ≤ r,

E(y) ≥ k2

4
inf

0<s≤r
W (s) −Ck2 → ∞

as r → 0. For the remaining cases note that E(VA,b) is bounded by lemma 2.12
and, if ‖y − VA,b‖ ≤ r,

|E(y) −E(VA,b)| ≤ Lνk2r.

Therefore,

lim sup
k→∞

sup
y∈N 0,1

k (A,b)

∣∣∣∣ 1
νk2

E(y) − 1
νk2

E(VA,b)
∣∣∣∣ ≤ Lc0.

Now letting c0 → 0 proves the claim. �
Example: For admissible pair potentials (i.e. W satisfies the conditions of
theorem 2.10)

Epp(y) =
1
2

∑
i�=j

W (|yi − yj|), (20)

we get

ϕ0(A,b) = lim
k→∞

1
2νk2

∑
x,z∈Lk

x �=z

W (|VA,b(x) − VA,b(z)|).

Restricting this sum to those x such that dist(xp, ∂[0, k]2) > kl, where 1 �
l � k yields an error term of order O(kl/k2) = o(1). Then summing over all
z ∈ Z

2 × {0, 1, . . . , ν − 1}, z �= x, instead of Lk \ {x} gives another error term
of order O(l2−q) = o(1). This sum now being independent of xp we obtain

ϕ0(A,b) =
1
2ν

ν−1∑
i=0

∑
z∈L∩(R2×[0,h])

z �=(0,0,i)

W (|VA,b(z) − VA,b(0, 0, i)|)

=
1
2ν

ν−1∑
i,j=0

∑
zp∈Z2

(zp,j) �=(0,0,i)

W (|Azp + bj − bi|).

14



By theorems 2.7 resp. 2.9, the macroscopic energy is given by

E(u,b) =
∫

S1

1
2ν

ν−1∑
i,j=0

∑
z∈Z2

(z,j) �=(0,0,i)

W (|∇u(x)z + bj(x) − bi(x)|)dx.

This expression can be seen as a thin-film version with directors b1, . . . , bν−1 of
a formula derived in [4].

3.3 Triviality for slowly converging deformations

By our definition of convergence, the effective continuum theory depends on
the scale l1 = c0/k measuring the rate of uniform convergence of ỹ(k) to u. This
paragraph serves to prove that in fact only the physically motivated choice
l1(k) = const./k yields non-trivial results.

It is easy to see that for l1 � 1/k we reproduce the limit obtained in
proposition 3.3. So suppose now l1 = l1(k) � 1/k. (Then all b ∈ (R3)(ν−1) will
be admissible.) In analogy to W l

k (cf. theorem 2.9) we define

W l1,l2
k (u,b) := {y : ‖ỹ − u‖ ≤ l1, ‖k∆iỹ − bi‖W−1,∞ ≤ l2}.

Theorem 3.4 Suppose E satisfies assumptions 2.4, 2.5, and 2.6. Assume
l1(k), l2(k) satisfy kl1(k), kl2(k) → ∞. Then for all admissible u (cf. (1))
and all b the limit

E = E(u,b) = lim
k→∞

1
νk2

inf
y∈Wl1,l2

k (u,b)

E(y)

exists in [−∞,∞) and is the same for all (u,b).

Proof. The proof follows along the lines of the proof of theorem 3.2. We indicate
the necessary modifications.

Let E(u,b) = lim infk→∞ 1
νk2 inf

y∈Wl1,l2
k (u,b)

E(y). Choosing a suitable large

k0, we find y ∈ W l1,l2
k (u,b) with

1
νk2

0

E(y) ≤ E(u,b) + δ/2

(resp. ≤ −1/δ for E(u,b) = −∞). Construct y′ as in the proof of theorem
3.2 with A′ replaced by u′. Considering local spatial averages we still find
ŷ ∈ W l1,l2

k (u′,bi) such that∣∣∣∣ 1
νk2

E(y′) − 1
νk2

E(ŷ)
∣∣∣∣ ≤ g(k, k0)

with limk→∞ g(k, k0) = 0. (To prove this, one may use the estimates for W l1,l2
k

obtained in [21], lemma 3.14.) Letting k tend to infinity gives

lim sup
k→∞

inf
y∈Wl1,l2

k (u′,b)

E(y) ≤ E(u,b).
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For the construction of y′′ we can only guarantee that

|y′′(x1) − y′′(x2)| ≥ C1|x1 − x2| − C3

for x1 and x2 that do not lie in the same Ui,j. But lemma 2.13 still works in
this more general case. r now might not be a fixed number, but still it only
depends on k0, the same being true for a1, . . . , ar2 .

Now first setting u′ = u this proves that in fact

E(u,b) = lim
k→∞

inf
y∈Wl1,l2

k (u′,b)

E(y).

Secondly, for b fixed and general u, u′ we obtain

E(u,b) = E(u′,b).

Independence of b is seen as in the proof of theorem 3.2. Note that if in the
above construction y′ is patched together from translates of two deformations y1

and y2 in a checker-board pattern where yi ∈ W l1,l2
k (u,bi) with b = 1

2 (b1 +b2),
then the argument shows that for u = u′

E

(
u,

b1 + b2

2

)
≤ 1

2
(E(u,b1) + E(u,b2)).

As in the proof of theorem 3.2 we see that b �→ E(u,b) is bounded from above.
Hence it must be constant. �

4 Extremal strains

In this section, we examine ϕ(A,b) for A with very large (cf. paragraph 4.1)
or small (cf. paragraph 4.2) singular values. Physically, the limit A → ∞ is
of limited relevance since we do not allow for fracture in our model. However,
it is mathematically not difficult, so we include this discussion for the sake of
completeness. The limit A→ 0 is more interesting. Our relaxed atomic to con-
tinuum limit leads to an intermediate energy regime between purely continuum
membrane theory, for which all short maps yield zero energy, and pointwise
discrete to continuum limits that assume the Cauchy-Born rule.

4.1 Strongly extensive deformations

Again in this paragraph we suppose that ψ satisfies assumption 2.6.
For a system y of ν atoms at positions y0, . . . , yν−1 we define Ē by

Ē(y) =
{
E(y) for y ∈ Bc0

∞ else

where Bc0 = {y ∈ (R3)ν : |yi| ≤ c0} is the ball of radius c0 centered at 0 in
configuration space. Ē∗∗ denotes the convex envelope of Ē.
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Proposition 4.1 The large strain limit limA→∞ ϕ(A,b) exists, and

lim
A→∞

ϕ(A,b) =
1
ν

min
a∈R3

Ē∗∗(a, b1 + a, . . . , bν−1 + a).

Here, A → ∞ means that both singular values s1(A) and s2(A) of A tend to
infinity.

Proof. Let y ∈ N̂ 0,1
k (A,b) and yxp = (y(xp, 0), . . . , y(xp, ν − 1)), ∆yxp =

(y(xp, 1) − y(xp, 0), . . . , y(xp, ν − 1) − y(xp, 0)). By assumption 2.4,∣∣∣∣∣∣E(y) −
∑

xp∈Z2∩Sk

E(yxp)

∣∣∣∣∣∣ ≤
1
2

∑
x,z∈Lk : xp �=zp

ψ(|y(x) − y(z)|).

By definition of N̂ 0,1
k , if c1 ≤ s1(A), then |y(x)− y(z)| ≥ c1|xp − zp|− 2c0 which

is ≥ c1
2 |xp − zp| for c1 large, xp �= zp.

If the singular values of A tend to infinity, we may choose c1 as large as we
want and find that∣∣∣∣∣∣E(y) −

∑
xp

E(yxp)

∣∣∣∣∣∣ ≤ M

2

∑
x,z : xp �=zp

|y(x) − y(z)|−q

≤ M

2

(c1
2

)−q ∑
x,z : xp �=zp

|xp − zp|−q

=

⎛
⎝2q−1Mν2

∑
xp �=zp

|xp − zp|−q

⎞
⎠ c−q

1

≤ Ck2c−q
1 ,

so ∣∣∣∣∣∣
1
k2
E(y) − 1

k2

∑
xp

E(yxp)

∣∣∣∣∣∣ → 0

as c1 → ∞.
We thus have to minimize 1

k2

∑
xp
E(yxp) subject to y ∈ N̂ 0,1

k (A,b). By
frame indifference this is the same as minimizing

1
k2

∑
xp

E(yxp) subject to yxp ∈ Bc0 and
1

(k + 1)2
∑
xp

∆yxp = b.

Now the claim is an elementary consequence of Carathéodory’s theorem (cf. [9]
Cor. 2.9, p. 42). �
Remarks:

(i) If in definition 2.3 we request that ‖ỹ−vA,b‖ ≤ c0/k instead of ‖ỹ−A‖ ≤
c0/k as in (19), the result is analogous if we replace Bc0 by Bc0(b) =
{y ∈ (R3)ν : |yi − bi| ≤ c0} (b0 := 0). Then, while holding c0 fixed,
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we may send (A,b) → ∞ in the following sense. Let A → ∞ as above.
If e is a unit normal to graph(A), suppose that |〈bi − bj, e〉| → ∞ for
i �= j ∈ {0, . . . , ν − 1}. Clearly, this leads to

lim
A,b→∞

ϕ(A,b) = 0.

(ii) It is necessary to require that assumption 2.6 be satisfied. If ϕnn is
the continuum energy density for an interaction potential given by har-
monic springs between nearest neighbors in the reference configuration
(see proposition 4.5 in [21]), then we clearly have

lim
A→∞

ϕ(A,b) = lim
A,b→∞

ϕ(A,b) = ∞.

4.2 Strongly compressive deformations

In this paragraph we consider the limiting behavior of the macroscopic energy
for strongly compressive strains, in particular, if the energy diverges or remains
bounded in this regime. If the energy of two particles at distance r scales like
r−α as r → 0, it turns out that α = 3 – not α = 2 as expected from taking
pointwise limits – is a critical exponent for typical values of A and b. This is
due to our allowance for atomic relaxation.

Recall the definition of B1, . . . , Bν from (13). We consider pair potentials
with interaction function W as in (20) satisfying the conditions of theorem 2.10.
The main result of this paragraph is the following

Theorem 4.2 (i) Assume that r3W (r) → ∞ as r → 0. Then

lim
det(Sp)→0

|Sp|≤C<∞

ϕ(A,b) = ∞.

(ii) For each β < 3 there are examples of pair potentials, with pair-interaction
W (r) ∼ r−β → ∞ as r → 0, such that

lim sup
det(Sp)→0

|Sp|≤C<∞

ϕ(A,b) <∞

for b such that |Bi| < c0.

We first prove two preparatory lemmas, the first is a refined version of the far
field minimal strain property (cf. lemma 2.2). For A ∈ R

3·2, let Sp =
√
ATA ∈

R
2×2,

S′ =

⎛
⎝ (Sp)11 (Sp)12 0

(Sp)21 (Sp)22 0
0 0 1

⎞
⎠ , S =

⎛
⎝ (Sp)11 (Sp)12

(Sp)21 (Sp)22
0 0

⎞
⎠ .

Define A′ ∈ R
3·3 by A′ = A ⊗ e, where e is the unit vector perpendicular to

graph(A) such that det(A′) > 0. By the singular value decomposition there is
an orthogonal matrix R ∈ SO(3) such that

A = RS, A′ = RS′.
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We will investigate the limit det(Sp) → 0 while the singular values of A, i.e.
the eigenvalues of Sp, remain bounded, which we will assume for the rest of this
paragraph.

Lemma 4.3 Suppose ‖y−A‖ ≤ c0 and x, x′ ∈ Lk are such that |y(x)−y(x′)| ≥
a > 0. Then for c such that 1−c

c a ≥ 2c0 + 2h:

|y(x) − y(x′)| ≥ c|S′x− S′x′|.

Proof. Clear, if |S′x− S′x′| ≤ a/c. If |S′x− S′x′| ≥ a/c, then

|y(x) − y(x′)|
≥ |A′x−A′x′| − |y(x) −Axp| − |Ax′p − y(x′)| − |Axp −A′x| − |A′x′ −Ax′p|
= |S′x− S′x′| − |y(x) −Axp| − |Ax′p − y(x′)| − |Sxp − S′x| − |S′x′ − Sx′p|
≥ |S′x− S′x′| − 2c0 − |x3| − |x′3|
≥ c|S′x− S′x′| + (1 − c)a/c− 2c0 − 2h
≥ c|S′x− S′x′|.

�
In the second lemma we estimate the number of atoms that are close to

other atoms.

Lemma 4.4 Given ρ > 0 and N atoms at positions y1, . . . , yN in a bounded
region U ⊂ R

3. Let Uρ be the ρ-neighborhood of U . Then

#{(yi, yj) : i �= j, |yi − yj| ≤ ρ} ≥ N − 6
πρ3

|Uρ|.

Proof. We place one atom after the other into U . If an atom has distance larger
than ρ from all the previous atoms it shall belong to M ⊂ {y1, . . . , yN}. Now,
since atoms in M have pairwise distances greater than ρ, we find that

#M4π
3

(ρ
2

)3 ≤ |Uρ|.

It follows that

#{(yi, yj) : i �= j, |yi − yj| ≤ ρ} ≥ N − #M ≥ N − 6
πρ3

|Uρ|.

�
Proof of theorem 4.2. (i) If y ∈ N̂ 0,1

k (A,b), then all the atoms lie in the c0-
neighborhood of A([0, k]2). The volume of the r0-neighborhood of this set is
2(c0 + r0) det(Sp)k2 + O(k). By lemma 4.4 we have

#{(yi, yj) : i �= j, |yi − yj| ≤ r0} ≥ νk2 − 6
πr30

(2(c0 + r0) det(Sp)k2 + O(k))

≥ k2/2,
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provided r30 � det(Sp), and therefore (fix a > 0 such that W is positive on
(0, a] and suppose that r0 ≤ a)

Epp(y) =
1
2

∑
i�=j

W (|yi − yj|)

≥ 1
2

∑
i�=j

|yi−yj |≤r0

W (|yi − yj|) +
1
2

∑
i�=j

a<|yi−yj |

W (|yi − yj|)

≥ k2

4
inf

0≤ρ≤r0

W (ρ) − Ck2

det(Sp)

(see below). Now since W (r) � r−3, we also have inf0<ρ≤r W (r) � r−3, and
we may choose r0 → 0 as det(Sp) → 0 such that

inf
0≤ρ≤r0

W (ρ) � 1
det(Sp)

� r−3
0 .

Then indeed Epp(y) ≥ γk2 for γ = γ(A) independent of y and k with γ(A) → ∞
as det(Sp) → 0. This proves

lim
det(Sp)→0

inf
y∈N̂ 0,1

k (A,b)

1
νk2

Epp(y) = ∞.

It remains to show that∣∣∣∣∣∣
∑

|y(x)−y(x′)|≥a

W (|y(x) − y(x′)|)
∣∣∣∣∣∣ ≤

Ck2

det(Sp)
.

This follows from lemma 4.3: the left hand side can be estimated by∑
|y(x)−y(x′)|≥a

|S′x−S′x′|≤a

|W |(|y(x) − y(x′)|) +
∑

|y(x)−y(x′)|≥a

|S′x−S′x′|>a

|W |(|y(x) − y(x′)|)

≤
∑

|y(x)−y(x′)|≥a

|S′x−S′x′|≤a

Ma−q +
∑

|y(x)−y(x′)|≥a

|S′x−S′x′|>a

M |y(x) − y(x′)|−q

≤ ν(k + 1)2Ma−q#{x ∈ Z
3 : |S′x| ≤ a} +Mc−q

∑
|S′x−S′x′|≥a

|S′x− S′x′|−q

≤ Cνk2

det(S′)
+ Cνk2

∑
|S′x|≥a

|S′x|−q

≤ Ck2

det(S′)
+ Ck2

∫
|S′x|≥a

|S′x|−qdx

=
Ck2

det(S′)
+ Ck2

∫
|z|≥a

|z|−q dz

det(S′)

=
Ck2

det(Sp)
.
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This finishes the proof of the first part of theorem 4.2.
(ii) As before, e denotes a unit vector perpendicular to the graph of A. By

convexity in b (cf. proposition 5.3) and maxi |Bi| := c3 < c0 we may assume
that

〈bi, e〉 �= 〈bj , e〉
for i �= j and choose constants c > 0 and l small such that

min
i�=j

|〈bi − bj, e〉| ≥ c and c0 ≥
√

2l2 + (c/2)2 + c3. (21)

Consider (k + 1)2 points zij = A(i, j, 0) at positions A({0, . . . , k}2). Since
the singular values of Sp are bounded, for each of these points there is another
one closer than d to it for d sufficiently large. Now partition the graph of A
by disjoint translates of a square of side-length l, such that every such point is
covered. The number those points in such a square Q is bounded by C/det(Sp).

On the other hand, if A = RS, each set Qe = {z ∈ R
3 : ∃λ ∈ [0, c/2] :

z − λe ∈ Q} contains at least Cr−3 points of the lattice rRZ
3, if r is small.

Choosing r such that r3 = c̃ det(Sp), c̃ sufficiently small, we can move the
original points zij within the sets Qe onto distinct lattice points z′ij of rRZ

3

such that |zij − z′ij | ≤
√

2l2 + (c/2)2.
Now define a deformation y by

y(x1, x2, x3) = z′x1x2
+Bx3+1.

By (21) and |Bi| ≤ c3, y lies in N̂ 0,1
k (A,b). y satisfies a minimal distance

hypothesis with r: |y(x) − y(x′)| ≥ r for x �= x′. If x3 = x′3 this follows from
the definition of y. If x3 �= x′3 this follows from

|y(x) − y(x′)| ≥ |〈y(x) − y(x′), e〉|
= |〈z′x1x2

+Bx3+1 − z′x′
1x′

2
−Bx′

3+1, e〉|
≥ |〈Bx3+1 −Bx′

3+1, e〉| − |〈z′x1x2
− z′x′

1x′
2
, e〉|

≥ |〈bx3 − bx
′
3 , e〉| − c/2

≥ c/2

by (21) and construction of y.
Now suppose W is admissible and as in the picture below,

�

�

r

W (r)

-1

a b
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i.e. |W (r)| ≤ Cr−α, with α < 3, for r ≤ a, and W (r) ≤ 0 for r ≥ a, moreover
W (r) ≤ −1 for a ≤ r ≤ b, 0 < a < b given. Then for x fixed∑

x′ �=x

W (|y(x) − y(x′)|)

≤
∑

|y(x)−y(x′)|≤a

W (|y(x) − y(x′)|) +
∑

a<|y(x)−y(x′)|≤b

W (|y(x) − y(x′)|)

≤ C
∑

|y(x)−y(x′)|≤a

|y(x) − y(x′)|−α +
∑

a<|y(x)−y(x′)|≤b

(−1)

≤ C
∑

x′∈Z3 : 0<|rx′|≤a

|rx′|−α − #{x′ : a < |y(x) − y(x′)| ≤ b}

= Cr−α
∑

0<|x′|≤a/r

|x′|−α − #{x′ : a < |y(x) − y(x′)| ≤ b}

≤ Cr−αrα−3 − #{x′ : a < |y(x) − y(x′)| ≤ b}

Now, since the singular values of Sp are bounded, the number of atoms that lie
in {z : a < |z − y(x)| ≤ b} is bounded below by C(b − a)/det(Sp), if b − a is
not too small, and we find that

#{x′ : a < |y(x) − y(x′)| ≤ b} ≥ C
b− a

det(Sp)
.

Together with the above estimate and our choice r3 = c̃det(Sp), this shows that∑
x′ �=x

W (|y(x) − y(x′)|) ≤ Cr−3 − C̃r−3(b− a).

So if b− a is chosen sufficiently large, this energy is negative. Now sum over all
x to deduce that also the overall energy is negative. �
Remarks:

(i) It is not hard to see that if (cf. (2)) b0 is uniquely determined and there
are Bi (cf. (13)) with |Bi| = c0, then α = 2 is the critical exponent for
limdet(Sp)→0 ϕ(A,b).

(ii) Part (i) of theorem 4.2 applies to more general energies E is of the form

E(y) = Epp(y) + E0(y),

where Epp is an admissible pair potential with interaction function W
as in (8) satisfying the conditions of theorem 4.2 (i) and E0 ≥ −Ck2

independent of c1 or assumption 2.4 is satisfied with ψ not depending on
c1. The latter follows from applying theorem 4.2 (i) to the right hand side
of

E(y) ≥ 1
2

∑
i�=j

(W (|yi − yj|) − ψ(|yi − yj|)) − Ck2.
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5 Qualitative properties of ϕ

In this short section we discuss convexity and symmetry properties of ϕ. The
proofs of the following results are rather elementary.

5.1 Convexity properties

In this paragraph, we explore if ϕ satisfies certain convexity properties. By
frame indifference of the model, convexity of ϕ is in general not to be expected
(cf. [8], p. 170, and recall theorem 4.2 (i)). First, we show that, under the usual
assumptions, even rank-one convexity fails in general. This is due to the re-
strictions made in the relaxation process. Convexity in b depends on the ‘right’
definition of convergence. Finally, for systems as in (9) where the c0-relaxed
energy density may be non-trivial, we show quasiconvexity resp. convexity of
ϕ∞ in the first resp. second component.

Loss of rank-one convexity

In this paragraph we again suppose assumption 2.6 holds. Recall the notion of
rank-one convexity:

Definition 5.1 Suppose f : Ω → R, where Ω ⊂ R
m·n is a set of m×n-matrices.

We say that f is rank-one convex on Ω, if

λ �→ f(λA+ (1 − λ)B), λ ∈ [0, 1],

is convex whenever λA+ (1 − λ)B ∈ Ω for all λ ∈ [0, 1] and rank(A−B) = 1.

The following result shows that ϕ will typically not be globally rank-one
convex. Fix b and consider ϕ(·,b) : Ab := {A ∈ R

3·2 : rank(A) = 2} → R.

Proposition 5.2 Suppose ϕ(·,b) is rank-one convex. Then for all A ∈ Ab

ϕ(A,b) ≥ lim
A→∞

ϕ(A,b).

Here, limA→∞ ϕ(A,b) is the large strain limit discussed in proposition 4.1.

Proof. First note that ϕ is in fact bounded on each Ab(c1) := {A ∈ R
3·2 :

s1(A) ≥ c1}, c1 > 0, by lemma 2.12 and assumption 2.6. Let δ > 0. Set

f(λ1, λ2) := ϕ(A · Λ,b), Λ =
(

λ1 0
0 λ2

)
, λ1, λ2 ≥ 1.

Note that

inf
|x|=1

|AΛx|2 = inf
x �=0

〈AΛx,AΛx〉
〈x, x〉 = inf

x �=0

〈Ax,Ax〉
〈Λ−1x,Λ−1x〉

≥ min{λ2
1, λ

2
2} inf

x �=0

〈Ax,Ax〉
〈x, x〉 = min{λ2

1, λ
2
2} inf

|x|=1
|Ax|2.
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From proposition 4.1 we infer that for λ1, λ2 sufficiently large f(λ1, λ2) ≥
Ē∗∗(b)− δ. Fix such λ1, λ2. By convexity of λ �→ f(λ1, λ) on [1,∞] we deduce
that

f(λ1, 1) ≥ Ē∗∗(b) − δ.

Now convexity of λ �→ f(λ, 1) implies that

f(1, 1) ≥ Ē∗∗(b) − δ.

�

Convexity in b

Discussing convexity in b we now insist on y(k) → (u,b) being defined as usual,
i.e. not as proposed in (19) in terms of v instead of u. Then, k∆iỹ

∗
⇀ b is

weak*-convergence without explicit constraints with respect to b. So by lower
semicontinuity of Γ-limits we obtain:

Proposition 5.3 For A fixed, the map b �→ ϕ(A,b) is convex.

A direct proof is straight forward:
Proof. ϕ(A, ·) is continuous. Suppose b = 1

2 (b1+b2). Divide S1 into four equal
squares Q11, Q12, Q21, Q22 choose y(k)

ij ∈ N̂ 0,1/2
k,Qij

(A,bj) satisfying

1
ν(k/2)2

E(y(k)
ij ) ≤ ϕ(A,bj) + o(1), i, j = 1, 2,

by theorem 2.8 and frame indifference. Defining y(k) by

y(k)(x) = y
(k)
ij (x) for x ∈ L ∩ (kQij × [0, h]),

it is easily seen that y ∈ N̂ 0,1(A,b) and

lim inf
k→∞

E(y(k)(x) : x ∈ Lk) ≤ 1
2
(ϕ(A,b1) + ϕ(A,b2)).

�
Remark: Defining convergence as in (19), it is not clear (and for c0 small
enough false) that y constructed in the previous proof satisfies ‖y− vA,b‖ ≤ c0.
Consider the example from paragraph 3.2. For ν = 2 and A = Id

ϕ0(A,b) =
1
2ν

1∑
i,j=0

∑
z∈Z2

(z,j) �=(0,0,i)

W (|Az + bj − bi|)

=
1
2

⎛
⎝ ∑

z∈Z2\{0}
W (|Az|) +

∑
z∈Z2

W (|Az + b1|)
⎞
⎠ .

Now if W : [0,∞) → R satisfies W (0) > 0 and W (r) = 0 for r ≥ 1, then
ϕ0(Id2,3, 0) > 0, while ϕ0(Id2,3, (0, 0,±1)) = 0. Hence, ϕ0 is not convex in b.
Since ϕ0 = limc0→0 ϕc0 , convexity also fails for values of c0 bigger than 0.
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Quasiconvexity of ϕ∞

For energy functions that do not satisfy assumption 2.6, the limit c0 → ∞ can
be non-trivial. In the following proposition we examine this limit for convexity
properties. As in proposition 3.2 we define ϕ∞ = limc0→∞ ϕc0 . If assumption
2.6 holds, the following is trivial by proposition 3.2. We therefore treat only
finite range energies given by (9). For such energies, ϕ∞ is defined on all of
R

3·2 × R
3(ν−1), cf. [21].

Recall the definition of quasiconvexity (cf., e.g., [1], p. 350):

Definition 5.4 A continuous function f : R
m·n → R is said to be quasiconvex

if

−
∫

Ω
f(F + ∇ζ)dx ≥ f(F )

for every bounded open subset Ω ⊂ R
n, ζ ∈ C∞

c (Ω), and all F ∈ R
m·n.

Proposition 5.5 Suppose that E is of the form (9). Then ϕ∞ is quasiconvex
with respect to the first variable and convex with respect to the second.

Remark: This reflects the fact that the limit c0 → ∞ corresponds to the
unconstrained limit y ∗

⇀ u in W 1,∞, i.e. the full (lower semicontinuous) Γ-limit
of E.

The proof is very similar to the proof of proposition 3.2. We indicate the
modifications.
Sketch of Proof. Convexity in b is clear since by proposition 5.3 all ϕc0 , c0 > 0,
are convex. Let f ∈ C∞

c (S1; R3) and set u := A+ f . We need to show that

ϕ∞(A,b) ≤
∫
S1

ϕ∞(A+ ∇f,b)dx.

Let δ > 0 and c0 be given. By theorem 2.7, for arbitrarily large k0 we find
a deformation y : Lk0 → R

3 with ‖ỹ − u‖ ≤ c0/k0 and |−∫[0,1]2(k0∆iỹ − bi)dρ| as
small as we wish such that

1
νk2

0

E(y) ≤
∫
S1

ϕc0(∇u,b) + δ/2

Using lemma 2.14, we may even assume that −
∫
[0,1]2(k0∆iỹ − bi)dρ = 0.

Proceeding as in theorem 3.2 we construct a deformation y′ : Lk → R
3 for

k � k0 by patching together appropriately translated copies of y, so that

sup
x∈Lk

|y′(x) −Axp| = sup
x∈Lk0

|y(x) −Axp|

The crucial point to observe is that, since y ∈ N̂ 0,1
k0,c0

(u,b) and u satisfies the
same boundary conditions as A, in contrast to proposition 3.2 the energy split-
ting works without further assumptions. First, since we are dealing with sys-
tems of finite range interaction, the energy error stems only from neglecting
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interactions between the boundary layers of the regions that were patched to-
gether. Second, since u satisfies the same boundary conditions as A, this error
is negligible.

So again we find y′ ∈ N̂ 0,1
k,c̃0

(A,b) (c̃0 depending on f, k0) with

1
νk2

E(y′) ≤ 1
νk2

0

E(y) + δ/3

if k0 and k are large enough. Taking the limit k → ∞, it follows that

ϕ∞(A,b) ≤ ϕc̃0(A,b) ≤ 1
νk2

E(y′) ≤
∫
S1

ϕc0(∇u,b) + δ.

Now sending c0 → ∞ the claim follows from monotone convergence and the
arbitrariness of δ. �

5.2 Symmetry

In this paragraph we discuss general symmetry properties of ϕ and indicate –
for ν = 1 or 2 – their implications for a linearized theory.

By frame indifference of E,

ϕ(A, b1, . . . , bν−1) = ϕ(RA,Rb1, . . . , Rbν−1) (22)

for all R ∈ SO(3). So to evaluate ϕ(A,b) we may only look at matrices

A =

⎛
⎝ a11 a12

a12 a22

0 0

⎞
⎠ (23)

whose last row is 0 and whose top part is symmetric. Moreover, for systems of
indistinguishable particles we have

Proposition 5.6 ϕ satisfies the following symmetry properties:

(i) If σ is a permutation of {1, . . . , ν − 1}, then

ϕ(A, b1, . . . , bν−1) = ϕ(A, bσ(1), . . . , bσ(ν−1)).

(ii) For 1 ≤ j ≤ ν − 1

ϕ(A, b1, . . . , bν−1) = ϕ(A, b1−bj , . . . , bj−1−bj,−bj , bj+1−bj, . . . , bν−1−bj).

(iii) If ν ≤ 2, then for all R ∈ O(3)

ϕ(A, b1, . . . , bν−1) = ϕ(RA,Rb1, . . . , Rbν−1).

(iv) If R =
(

0 −1
1 0

)
, then

ϕ(A, b1, . . . , bν−1) = ϕ(AR, b1, . . . , bν−1).
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(v) If P =
(

0 1
1 0

)
, then

ϕ(A, b1, . . . , bν−1) = ϕ(AP, b1, . . . , bν−1).

Proof. Without loss of generality we may switch to the reference configuration

L ∩ ([−k/2, k/2]2 × [0, h]).

Then (xp, x3) �→ (Pxp, x3) and (xp, x3) �→ (Rxp, x3) are lattice restoring, so (iv)
and (v) follow. Also (i) is clear, since this only amounts to a renumbering of
the film layers, the 0-layer held fixed. Interchanging the 0th and the jth layer
gives (ii). Finally, (iii) is trivial for ν = 1, and for ν = 2 it follows from (22)
since by (ii) and (iv)

ϕ(A, b1) = ϕ(AR2, b1) = ϕ(AR2,−b1) = ϕ(−A,−b1).
�

Remarks:

(i) Note that the reflection P and R, rotation about 90◦, span the set of
symmetry operations of [−1/2, 1/2]2 .

(ii) If ν ≤ 1, then (i) and (ii) are trivial. For ν = 2, (ii) states that

ϕ(A, b1) = ϕ(A,−b1).

(iii) The above statements only hold for systems of indistinguishable atoms.
For situations as in (9) we can not permute the bi or rotate the lattice.

Suppose now our reference configuration is a natural state. By the results in
section 6 and proposition 5.3 we can not expect that there is a unique quadratic
form approximating ϕ for small strains. (An example of a macroscopic energy
density ϕ which is zero on contractions is given in proposition 4.5 of [21].)
However (as e.g. in proposition 4.5 of [21]), for purely extensive deformations,
i.e. s1(A) ≥ 1, |bi − bj| ≥ 1 for i �= j, there can be a symmetric quadratic form
Q such that for A (of the form (23)) and bi with

A ≈ Id2,3 =

⎛
⎝ 1 0

0 1
0 0

⎞
⎠ , bi − bi−1 ≈ e3 =

⎛
⎝ 0

0
1

⎞
⎠

the energy can be written as

E(A,b) ≈ Q(A− Id2,3, b
1 − e3, b

2 − b1 − e3, . . . , b
ν−1 − bν−2 − e3).

Then Q is a symmetric form on R
3 × (R3)ν−1 = R

3ν leading to (9ν2 + 3ν)/2
elastic constants.

In the following we examine the cases ν = 1 and ν = 2 to show how
symmetry reduces this number. We only treat the case ν = 2 and comment on
the much easier case ν = 1 thereafter. Here, (9ν2 + 3ν)/2 = 21.
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Set b := b1 and let Q be given by

Q(ε, ε) = qijεiεj,

where 1 + ε1 = a11, 1 + ε2 = a22, ε3 = a12, ε4 = b1, ε5 = b2 and 1 + ε6 = b3.

Proposition 5.7 Under these hypotheses

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

q11 q12 q13 q14 q15 q16
q21 q22 q23 q24 q25 q26
q31 q32 q33 q34 q35 q36
q41 q42 q43 q44 q45 q46
q51 q52 q53 q54 q55 q56
q61 q62 q63 q64 q65 q66

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

q11 q12 0 0 0 q16
q12 q11 0 0 0 q16
0 0 q33 0 0 0
0 0 0 q44 0 0
0 0 0 0 q44 0
q16 q16 0 0 0 q66

⎞
⎟⎟⎟⎟⎟⎟⎠
.

In particular, there are only six elastic constants.

Sketch of Proof. First note that by symmetry of Q

qij = qji. (24)

Define

S =

⎛
⎝ 1 0 0

0 1 0
0 0 −1

⎞
⎠ , P̃ =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ and R̃ =

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠ .

From (iii) and (ii) of proposition 5.6 we get that ϕ(A, b) = ϕ(SA,Sb) =
ϕ(SA,−Sb) which implies

q4j = q5j = 0 for j = 1, 2, 3, 6. (25)

Next from from (iii) and (v) of proposition 5.6 we deduce ϕ(A, b) = ϕ(P̃AP, P̃ b)
and hence

q11 = q22, q44 = q55, q13 = q23, q16 = q26. (26)

Finally by (22) and (iv) of proposition 5.6 we have ϕ(A, b) = ϕ(R̃AR, R̃b) which
leads to

q13 = −q23, q45 = q36 = 0. (27)

Summarizing (24) – (27) yields the result. �
If ν = 1, (9ν2 + 3ν)/2 = 6, a similar reasoning shows that

Q =

⎛
⎝ q11 q12 q13
q21 q22 q23
q31 q32 q33

⎞
⎠ =

⎛
⎝ q11 q12 0
q12 q11 0
0 0 q22

⎞
⎠ .

In particular, there remain three elastic constants.
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6 Small strains

In this section, we study the response of our continuum theory to deforma-
tions that are locally close to rigid motions. For a simple mass-spring model
with nearest neighbor interaction discussed in [21], we could give an explicit
formula for ϕ which turned out to give zero energy response under contrac-
tive boundary conditions due to microscopic ‘crumpling’. This model, however,
lacks some physically desirable features, in particular it has no shear resistance.
We will examine more realistic models which also include next-nearest neighbor
interactions or angular-dependent terms. In particular, we find that ϕ shows
resistance to compressive deformations which may, however, be weaker than to
extensive strains. Again, the crucial parameter is c0. Still, the relevant scaling
of energy with respect to dist(A,O(2, 3)) turns out to be quadratic. At first we
study a one-dimensional atomic chain in detail, which might be of independent
interest modeling a polymer chain in a confined region. Using these results we
also obtain estimates for thin films.

6.1 Energy scaling of an atomic chain

Consider L+ 1 atoms at y0, . . . , yL ∈ R
3 whose energy is given by

E(y) =
L∑

i=1

W1(|yi − yi−1|) +
L−1∑
i=1

W2(φi),

where φi ∈ (−π, π] denotes the angle between yi+1 − yi and yi − yi−1. Assume
that W1 is locally bounded, W2 bounded and symmetric, W1(1) = 0 = W2(0),
and there are α1, α2 > 0 and ρ > 0 such that

W1(r) ≥
{
α1(r − 1)2 for |r − 1| ≤ ρ

α2 for |r − 1| ≥ ρ
, W2(φ) ≥

{
α1φ

2 for |φ| ≤ ρ
α2 for ρ ≤ |φ| ≤ π

.

For given a > 0, we want to examine

ϕ(a) := lim
L→∞

1
L

inf
NL(a)

E(y), NL(a) = {y : |yi − (ia, 0, 0)| ≤ c0}. (28)

(NL(a) is a one-dimensional version of N̂ 0,1
k .) In particular, we are interested

in the energy scaling for deformations near the zero-energy state yk = (k, 0, 0),
i.e. a ≈ 1.

Lemma 6.1 For each a > 0 the limit in (28) exists.

Proof. This is just an easy one-dimensional special case of theorem 2.8. We
include a proof for sake of completeness. First note that since W1 restricted to
[0, 2c0 + a] and W2 are bounded, say by C > 0, we have |E(y)/L| ≤ 2C, so

ϕ(a) := lim inf
L→∞

1
L

inf
y∈NL(a)

E
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exists in R. For ε > 0 choose L0 such that

1
L0

inf
y∈NL0

(a)
E(y) ≤ ϕ(a) + ε and

1
L

inf
y∈NL(a)

E(y) ≥ ϕ(a) − ε ∀L ≥ L0.

Then choose y0 ∈ NL0(a) such that

1
L0
E(y0) ≤ ϕ(a) + 2ε.

We may assume that y0
0 = (0, 0, 0) and y0

L0
= (L0a, 0, 0) if L0 is large enough.

For L ≥ L0 we can break the atomic chain into pieces of length L0 plus a
remaining part of length smaller than L0 and define y by (0 ≤ r < L0)

ykL0+r = (kL0a, 0, 0) + y0
r .

Clearly, y is in NL(a) and, by translational invariance,

E(y0, . . . , yL) ≤ �L/L0�E(y0
0 , . . . , y

0
L0

) + 2CL0 + 2C�L/L0�.
So

1
L
E(y0, . . . , yL) ≤ 1

L0
E(y0

0 , . . . , y
0
L0

) +
2CL0

L
+

2C
L0

.

Choosing L0 large enough, this shows that for L sufficiently large indeed

ϕ(a) − ε ≤ 1
L
E(y0, . . . , yL) ≤ ϕ(a) + 3ε.

�
It is easy to get upper bounds for ϕ(a):

Lemma 6.2 Suppose that in addition there exists α3 ≥ α1 such that W1(r) ≤
α3(r − 1)2 if |r − 1| ≤ ρ, and W2(0) = 0. Then for |a− 1| ≤ ρ

ϕ(a) ≤ α3(a− 1)2.

Proof. Just insert the Cauchy-Born state yk = (ka, 0, 0) and let L→ ∞. �
We will now prove lower bounds for ϕ. Suppose first 1 ≤ a ≤ 2. Noting

that imposing the additional constraint that y0 = 0 and yL = La leads only to
negligible energy errors (of order O(1/L)) we define EL by

EL(a) = inf{E(y) : |yi − (ia, 0, 0)| ≤ c0 and y0 = 0, yL = (La, 0, 0)}.
But if |yi − (ia, 0, 0)| ≤ c0, then |yi+1 − yi| ≤ a+ 2c0 ≤ 2(c0 + 1), so we have

EL(a) ≥ inf

{
L∑

i=1

f(zi) : z1, . . . , zL ∈ R
3 and z1 + . . . + z = (La, 0, 0)

}
,

where f : R
3 → R ∪ {∞} is given by

f(z) =
{
W1(|z|) for |z| ≤ 2c0 + 2

∞ for |z| > 2c0 + 2
.
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Now clearly there exists α4 > 0 such that

f∗∗(z) ≥
⎧⎨
⎩

0 for |z| ≤ 1
α4(|z| − 1)2 for 1 < |z| ≤ 2c0 + 2

∞ for |z| > 2c0 + 2
.

It follows that

ϕ(a) = lim
L→∞

1
L
EL(a) ≥ lim

L→∞
f∗∗((a, 0, 0)) ≥ α4(a− 1)2. (29)

Suppose now a < 1. Since the inter-atomic distances |yi − yi−1| remain
bounded, by rescaling E we may assume that

W1(r) ≥ (r − 1)2, W2(φ) ≥ φ2.

If y is any deformation with E(y) ≤ δ, then

L∑
i=1

(|yi − yi−1| − 1)2 ≤ δ,

L−1∑
i=1

φ2
i ≤ δ

and hence by Cauchy-Schwarz

L∑
i=1

||yi − yi−1| − 1| ≤
√
L
√
δ,

L−1∑
i=1

|φi| ≤
√
L− 1

√
δ.

Noting that the absolute value of the angle between yi − yi−1 and yj − yj−1 is
bounded by

∑L−1
k=1 |φk| we find that for δL ≤ 1

|yL − y0|2 =

∣∣∣∣∣
L∑

i=1

yi − yi−1

∣∣∣∣∣
2

=
∑

1≤i≤L
1≤j≤L

〈yi − yi−1, yj − yj−1〉

≥
∑

1≤i≤L
1≤j≤L

|yi − yi−1||yj − yj−1| cos(
√
Lδ)

=

⎛
⎝ ∑

1≤i≤L

|yi − yi−1|
⎞
⎠

2

cos(
√
Lδ)

≥
(
L−

√
Lδ

)2
(1 − Lδ),

in particular, choosing δ = δ(L) = L−3, we obtain

|yL − y0|2 ≥ L2(1 − 3L−2). (30)

If y satisfies |yi − (ia, 0, 0)| ≤ c0 for i = 0, . . . , L, then La − 2c0 ≤ (yL)1 −
(y0)1 ≤ La + 2c0. So, for |a − a′| ≤ 2c0/L, we define EL depending on two
parameters a, a′ by

NL(a, a′) := {y ∈ NL(a) : (yL)1 − (y0)1 = La′}
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and
EL(a, a′) = inf

NL(a,a′)
E(y).

Also, let m =
⌈√

3 + 4c20 + 1
⌉

and define a1, a2, . . . and L1, L2, . . . by

1 − an = 4−1−n and Ln =
4m√
1 − an

= 23+nm.

Lemma 6.3 There exists c > 0 such that for all k ∈ N,

1
kLn

EkLn(a, a′) ≥ c(1 − a′)2 ∀ a′ ∈ [3/4, an], |a− a′| ≤ 2c0
kLn

.

Proof. The lemma is proved by induction on n. The case n = 0 follows directly
from the following
Claim. There exists C > 0 such that, for all k ∈ N,

1
kL0

EkL0(a, a
′) ≥ C ∀ a′ ∈ [1/2, a0], |a− a′| ≤ 2c0

kL0
.

Suppose it is proven for n and choose c = min{(4m)−4, C}. For a′ ≤ an+2

Ln =
4m√
1 − an

=
m√

1 − an+2
≥ m√

1 − a′

implies
L2

n(1 − a′) > 3 + (2c0)2,

and thus
(Lna

′)2 + (2c0)2 < L2
n(1 − 3L−2

n ).

But if y ∈ NLn(a, a′), then |yLn − y0|2 ≤ (Lna
′)2 + (2c0)2, so (30) can not hold.

It follows that

1
Ln
E(y) ≥ δ(Ln)

Ln
= L−4

n ∀y ∈ N (a, a′), 0 < a′ ≤ an+2. (31)

Now let 3/4 ≤ a′ ≤ an+1, |a−a′| ≤ 2c0
kLn+1

. Considering the first components
of the atoms y0, yLn , . . . , y2kLn (note that Ln+1/Ln = 2) we deduce

EkLn+1(a, a
′) ≥

2k∑
i=1

ELn(a, xi),

where x1 + . . . + x2k = 2ka′ and xi > 1/2, because

Lnxi ≥ Lna− 2c0 ≥ Lna
′ − Ln

2c0
kLn+1

− 2c0 ≥ 3Ln/4 − 3c0 > Ln/2.

So if f : R → R ∪ {∞} is defined by

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

∞ for x ≤ 1/2
c(1 − x)2 for 1/2 < x ≤ an

L−4
n for an < x ≤ an+2

0 for an+2 < x

,
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we have by (31), the above claim (note that C ≥ c(1/2)2), and induction
hypothesis

1
kLn+1

EkLn+1(a, a
′) ≥ 1

2k

2k∑
i=1

1
Ln

ELn(a, xi) ≥ 1
2k

2k∑
i=1

f(xi) ≥ f∗∗(a′).

�

�

x

f(x)

1an+2an+1an

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Small dots show continuation of x �→ c(1 − x)2,
larger dots indicate line through (an, c(1 − an)2)
and (an+2, 0).

Now, since L−4
n = (4m)−4(1− an)2 ≥ c(1− an)2 and 1− an = 16(1− an+2),

f∗∗ is given by

f∗∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

∞ for x ≤ 1/2
c(1 − x)2 for 1/2 < x ≤ an

c(1−an)
15 (16(1 − x) − (1 − an)) for an < x ≤ an+2

0 for an+2 < x

.

So for a′ ≤ an we are done. But also for a′ ∈ [an, an+1]

f∗∗(a′) =
c(1 − an)

15
(16(1 − a′) − (1 − an)) ≥ c(1 − a′)2.

(Set 1 − a′ = λ(1 − an), then this is equivalent to 1
15 (16λ − 1) ≥ λ2 which in

turn is equivalent to λ ∈ [1/15, 1]. This is guaranteed by a ∈ [an, an+1].)
The claim at the beginning of the proof can now be shown by analogous

arguments: y ∈ NL0(a, a
′) implies

1
L0
E(y0, . . . , yL0) ≥

δ(L0)
L0

= L−4
0 ∀y ∈ NL0(a, a

′), 0 < a′ ≤ a1.

Again considering the first components of the atomic sites y0, yL0 , . . . , ykL0,
x1 + . . .+ xk = ka′, xi > 0, we deduce

1
kL0

EkL0(a, a
′) ≥ 1

k

k∑
i=1

1
L0
EL0(a, xi) ≥ 1

k

k∑
i=1

f(xi) ≥ f∗∗(a′) ≥ C > 0

where now f : R → R ∪ {∞} is defined by

f(x) =

⎧⎨
⎩

∞ for x ≤ 0
L−4

0 for 0 < x ≤ a1

0 for a1 < x
.

�
We can now state the main result of our one-dimensional model problem:
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Proposition 6.4 There exist δ, c > 0 such that for all 1 − δ ≤ a ≤ 1 + δ

ϕ(a) ≥ c(1 − a)2.

If in addition W1 and W2 are bounded from above as in lemma 6.2, then there
are C, c > 0 such that

c(a− 1)2 ≤ ϕ(a) ≤ C(a− 1)2.

Proof. The upper bound is immediate from lemma 6.2. The lower bound for
a ≥ 1 was established in (29). The additional constraint in N (a, a′) is negligible,
so the lower bound for a < 1 follows by choosing n such that a = a′ ≤ an and
letting k → ∞ in lemma 6.3 noting that, by lemma 6.1, it suffices to consider
a subsequence in (28). �

So the energy scales quadratically with the distance of a to 1. The following
example shows that even for quadratic energy wells

W1(r) = α1(r − 1)2 resp. W2(φ) = α2φ
2, (32)

ϕ will not be C2 at a = 1.
Examples: 1. Let W1,W2 be as in (32). If a ≥ 1, then, as in the derivation
of (29), we see that the Cauchy-Born state yk = (ka, 0, 0) is asymptotically
optimal, leading to

ϕ(a) = α1(a− 1)2.

For 0 < a < 1 consider the spiral deformation yk = (ka, c0 cos(kψ), c0 sin(kψ)),
k = 1, . . . , L with |ψ| � 1. Then |yk+1 − yk|2 and φk are independent of k. An
elementary calculation shows that φ2

k = c20ψ
4/a2+O(ψ6). Choosing ψ such that

c20ψ
2/(2a) = κ(1− a) and minimizing the corresponding energy with respect to

κ we find ψmin with energy

Emin =
α1α2

α2 + α1c20/4
(1 − a)2 + O((1 − a)3).

This is by a c0-dependent factor smaller than the Cauchy-Born minimizer yk =
(ka, 0, 0) which has mean energy α1(1 − a)2.

Also this shows that the minimal energy is not twice differentiable in a at
a = 1 since for a ≥ 1 the Cauchy-Born state is optimal. Note that for c0 → ∞
this expression converges to 0 reflecting the fact that without this constraint we
would expect pure bending energies for a < 1 that occur only at lower energy
scales.

0.9 0.95 1.05 1.1

0.002

0.004

0.006

0.008

0.01

Graph of a �→
j

Emin(a) if a ≤ 1
α1(1 − a)2 if a ≥ 1

for α1 = α2 = 1, c0 = 2.
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2. To extend this observation to thin films, we also study the following two
dimensional deformation (E as in the preceding example). Consider a piece of
a circle in the x1-x3-plane with radius R (large):

γ �→ (R sin(γ), 0, R(1 − cos(γ)) − d)

for 0 ≤ γ ≤ γmax, γmax given by R(1− cos(γmax)) = d. We place atoms on this
curve starting at γ = 0 with distances 1 between neighboring atoms:

yk = (R sin(kΦ/L), 0, R(1 − cos(kΦ/L)) − d), k = 0, . . . , L, (33)

where 2R sin(Φ/2L) = 1 and Φ ≤ γmax, Φ + Φ/L > γmax. Now, for given a < 1
(near 1), we choose R so big that

sin(γmax) = aγmax.

An elementary analysis proves that for d < c0 and a sufficiently close to 1,
y ∈ NL(a) and Φ/L = 3(1− a)/d+O((1− a)2). For later use we mention that
(in powers of (1 − a))

Φ ≈ γmax ≈
√

6(1 − a)1/2, R ≈ 3d(1 − a)−1, L ≈
√

2d√
3

(1 − a)−1/2.

The mean energy of y is thus

1
L
E(y) = α2

(
Φ
L

)2

=
9α2

d2
(1 − a)2 + O((1 − a)3).

Now patching together appropriately translated and reflected copies of this
configuration leads to y in NL(a) with arbitrarily large L and mean energy
≈ 9α2

d2 (1 − a)2. Finally, set y′ = āy ∈ NL(aā) for ā ≤ 1 near 1 and, for given
x ≤ 1 near 1 minimize E(y′) subject to aā = x. It follows that

ϕ(x) ≤ 9α1α2

d2α1 + 9α2
(1 − x)2 + O((1 − x)3).

Again, this is is preferable to the Cauchy-Born energy α1(1 − x)2.
Remark: In terms of scaling with c0 the lower and upper bound for ϕ(a)
derived in the preceding examples respectively in proposition 6.4 do not match:
the factors of (1 − a)2 scale like c−2

0 respectively c ∼ m−4 ∼ c−4
0 (cf. lemma

6.3). In fact, the lower bound can be improved as we shall now detail.
Fix c0 and let k ∈ N. Suppose y ∈ NkL,kc0(a) and consider the corresponding

k-step chain Y = (Y0, . . . , YL) defined by Yj = ykj. For the corresponding angles
we obtain

|Φj| ≤
k(j+1)−1∑

i=k(j−1)+1

|φi|.

To estimate |Yj − Yj−1|, let Φ̄j =
∑kj−1

i=k(j−1)+1 |φi|. Then, if Φ̄ ≤ 1, similar as
on page 31, we obtain

|Yj − Yj−1| =

∣∣∣∣∣∣
kj∑

i=k(j−1)+1

(yi − yi−1)

∣∣∣∣∣∣ ≥
kj∑

i=k(j−1)+1

|yi − yi−1|(1 − Φ̄2
j).
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On the other hand, clearly |Yj − Yj−1| ≤
∑kj

i=k(j−1)+1 |yi − yi−1|, so setting

γk :=
∑kj

i=k(j−1)+1 |yi − yi−1|,

(|Yj − Yj−1| − k)2 ≤ max
{

(γk − k)2 ,
(
γk − k − γkΦ̄2

j

)2}
≤ 2 (γk − k)2 + 2

(
γkΦ̄2

j

)2
≤ 10 (γk − k)2 + 2

(
2kΦ̄j

)2
(If γ ≤ 2, this is clear. If γ ≥ 2, it follows from 10(γ − 1)2 ≥ 2(γ − 1)2 + 2γ2

and Φ̄2
j ≤ 1. If Φ̄j ≥ 1, we get such an estimate even easier:

(|Yj − Yj−1| − k)2 ≤ 2((2c0 + a)k)2 + 2k2 ≤ Ck2Φ̄2
j .

Now let y′ := Y/k. Then clearly y′ ∈ NL,c0(a). Without loss of generality
we may assume there exists α3 as in lemma 6.2. By Cauchy-Schwarz,

EL(y′) ≤ α3

L∑
j=1

(|y′j − y′j−1| − 1)2 + α3

L−1∑
j=1

Φ2
j

=
α3

k2

L∑
j=1

(|Yj − Yj−1| − k)2 + α3

L−1∑
j=1

Φ2
j

≤ α3

L∑
j=1

(
10 (γ − 1)2 + CΦ̄2

j

)
+ α3

L−1∑
j=1

Φ2
j

≤ α3

L∑
j=1

⎛
⎝10
k2
k

kj∑
i=k(j−1)+1

(|yi − yi−1| − 1)2

⎞
⎠

+α3

L−1∑
j=1

⎛
⎝Ck k(j+1)−1∑

i=k(j−1)+1

|φi|2
⎞
⎠

≤ C

(
1
k

Lk∑
i=1

(|yi − yi−1| − 1)2 + k

Lk∑
i=1

|φi|2
)
.

It follows that
1
L
EL(y′) ≤ Ck2

Lk
ELk(y)

and since y ∈ NkL,kc0(a) was arbitrary, letting L→ ∞ in fact

ϕkc0(a) ≥ c(c0)k−2ϕc0(a).

This proves that also the lower bound scales like c−2
0 . �

6.1.1 Application: a polymer chain in a confined region

The atomic chain described above can serve as a model of a polymer confined
to a tubular region about itself, e.g. by neighboring chains. The above consid-
erations suggest that its energy, at least for small strains a, can be described
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by a Hamiltonian

H(a) =
{
α1(1 − a)2, for a ≤ 1
α2(1 − a)2, for a ≥ 1

where 0 < α1 < α2. The corresponding Boltzmann distribution of statistical
mechanics is

dPβ(a) =
1
Zβ

e−βH(a)da,

β = 1/kT > 0, where k is Boltzmann’s constant and T temperature. For large
β, i.e. sufficiently small temperature, we may take this as an approximation for
all a.

It is elementary to see that the partition function Zβ is given by

Zβ =
1
2

√
π

β

(√
1
α1

+
√

1
α2

)
.

The mean of this distribution, i.e. the preferred elongation of the atomic chain,
can also be calculated explicitly:∫

adPβ(a) = 1 − 2√
πβ

(√
1
α1

−
√

1
α2

)
.

Since α2 > α1, this is strictly less than 1 and increasing in β, reflecting thermal
contraction as expected for polymers (cf. [23]).

6.2 Energy scaling near O(2,3)

Taking into account only next neighbor interactions leads to zero energy re-
sponse to compressions, as noted earlier (see proposition 4.5 of [21]). Using
the results of the previous paragraph, we will now examine the energy scaling
near the zero energy set O(2, 3) of a thin film. To simplify the discussion, we
consider two related models of nearest and next nearest neighbor interaction
resp. nearest neighbor and angular interaction. We also add an additional en-
ergy penalty for two atoms getting too close to each other, as is physically not
unreasonable.

Suppose W1,W
′
1 : [0,∞) → R, W2 : R → R are continuous, W2 is 2π-

periodic, W1(1) = W ′
1(
√

2) = W2(0) = 0, and there is an α > 0 such that

W1(r) ≥ α(r − 1)2, W1(r) ≥ α(r −
√

2)2, W2(φ) ≥ αφ2

for r in a neighborhood of 1 resp.
√

2, and φ in a neighborhood of 0.
Let δ > 0 and define the energy function Ean by

Ean(y) =
1
2

∑
|xi−xj |=1

W1(|yi − yj|) +
δ

2

∑
|xi−xj |=2

χ[0,r0)(|yi − yj|)

+
1
2

∑
|yi − yk||yj − yk|W2(θikj) (34)

where the third sum runs over all k and all i, j such that xi−xk and xj −xk are
perpendicular and of norm 1. The next-nearest neighbor interaction is given by
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Ennn(y) =
1
2

∑
|xi−xj |=1

W1(|yi − yj|) +
1
2

∑
|xi−xj |=

√
2

W ′
1(|yi − yj|)

+
δ

2

∑
|xi−xj |=2

χ[0,r0)(|yi − yj|). (35)

Proposition 6.5 Both Ean and Ennn are admissible energy functions leading
to continuum limits ϕan resp. ϕnnn. For ν ≥ 2 there exist δ, c > 0 such that for
dist(A,O(2, 3)) ≤ δ,

ϕan(A,b), ϕnnn(A,b) ≥ c dist2(A,O(2, 3)).

Clearly, Ean and Ennn are admissible energy functions (see proposition 2.11).
It remains to prove the lower bound on ϕ in terms of dist2(A,O(2, 3)). To give
a detailed proof is cumbersome, we mention the main ideas.
Sketch of proof. The film contains various atomic chains. For ν ≥ 2, the
film energy can be bounded from below, e.g., by the energies of the chains
y(j, x2, x3), j = 0, . . . , k, where these chain energies also contain angular terms
as in the previous paragraph due to the angular resp. next nearest neighbor
part in E. Similar this holds for the diagonal chains. Since the deviation of A
from O(2, 3) for A in the vicinity of O(2, 3) can be estimated by the deviation
of |A(1, 0)| and |A(0, 1)| from 1 and the deviation of |A(1, 1)| and |A(1,−1)|
from

√
2, applying proposition 6.4 gives the result. �

Remarks:

(i) Proposition 6.5 is false for ν = 1, i.e. films consisting of only one single
layer. (This can be seen by considering folded configurations.)

(ii) Define ϕ̄(A) := infb ϕ(A,b). For ν ≥ 2 this result implies that ϕ̄ (defined
on R

3·2, cf. the remark below proposition 2.11) is not rank-one convex.
This is because ϕ vanishes on O(2, 3), but not on its rank-one convex hull
{A ∈ R

3·2 : s2(A) ≤ 1} (see [11], page 50, corollary 2.3.2).

In the rest of this paragraph we will see that ϕ̄ is not twice differentiable at
A = Id. For sake of simplicity we assume that c0 is not too small.

Recall the construction (33) for the atomic chain. Let R, L and Φ be the
same as in (33). Set R(x3) = R + ν−1

2 − x3. We define a film deformation
patching together appropriately cylindrical configurations

y(x1, x2, x3) = (R(x3) sin(x1Φ/L), x2, (R(x3)(1 − cos(x1Φ/L)) − d),

for x ∈ {0, . . . , L} × {0, . . . , k} × {0, . . . , ν − 1}. The nearest neighbor, next
nearest neighbor lengths and bond angles are approximately

1
R

(
ν − 1

2
− x3

)
,

√
2 +

1√
2R

(
ν − 1

2
− x3

)
+

1√
2

Φ
L
,

Φ
2L
,
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respectively. Since Φ/L ≈ R−1 ≈ 3(1 − a)/d, this implies that, similar as in
(33), for A = (ae1, e2), a ≤ 1 near 1,

ϕ̄(A) ≤ const.
c20

(1 − a)2,

provided there exists β > 0 such that, in a neighborhood of 1 resp.
√

2 resp. 0,
W1(r) ≤ β(r − 1)2, W ′

1(r) ≤ β(r −√
2)2, W2(φ) ≤ βφ2. For a ≥ 1, however, it

is not hard to prove that ϕ̄(A) ≥ α1(1− a)2. (This can be seen considering the
one dimensional atomic chains i �→ y(i, x2, x3).) �
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