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The algebraic matrix Riccati equation AX + XAT — XFX 4+ C = 0, where the
matrices A, B,C, F € R™" are given and a solution X € R™*" is sought, plays a
fundamental role in optimal control problems. Large scale systems typically appear if
the constraint is described by a partial differential equation. We provide a nonlinear
multigrid algorithm that computes the solution X in a data-sparse low rank format and
has a complexity of O(n), subject to the condition that F' and C' are of low rank and
A is the finite element or finite difference discretisation of an elliptic PDE.

We indicate how to generalise the method to H-matrices C, F' and X that are only
blockwise of low rank and thus allow a broader applicability with a complexity of
O(nlog(n)P), p a small constant. The method can as well be applied for unstructured
and dense matrices C and X in order to solve the Riccati equation in O(n?).

Data-sparse approrimation, Riccati equation, low rank approrimation, multigrid method, hierar-
chical matrices

1 INTRODUCTION

The (algebraic matrix) Riccati equation
ATX + XA—-XFX +C =0, A, C F, X € R™™, (1)

plays an important role in many areas of practical interest, especially optimal control problems
[3, 8, 32]. If the constraint of the control is governed by a (linear) partial differential equation, then
the discretisation of the PDE will naturally lead to a large scale system. Even for two-dimensional
problems a reasonable mesh-width of 1/1000 yields a system matrix of size n = 10°.

The standard discretisation techniques for PDEs lead to sparse n x n system matrices A that
contain only O(n) non-zero entries. This can be exploited for the solution of the linear system
Az = b by iterative methods, e.g., multigrid (cf. [25, 45] and the references therein). The system
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is not solved exactly, but with an approximation error in the size of the discretisation error. This
allows to compute the approximation in optimal complexity O(n).

The situation is different for the algebraic matrix Riccati equation where the (typically dense)
matrix X contains O(n?) entries so that an algorithm for the solution of (1) is regarded optimal
if it has a complexity of O(n?). In Section 3 we shall prove (based on the results from [2, 15, 38])
that under moderate assumptions on the matrices A, F and C the solution X can be approximated
by a matrix X of rank k = O (log(n)log(1/¢)) so that || X — X||2 < €]/ X||2 holds in the spectral
norm | - ||. In this scenario an algorithm can be considered optimal if it computes X in O(nk).
The (iterative) algorithm that we propose computes an approximate solution in O(nk?) per step,
i.e. almost optimal complexity, provided the matrices C' and F' are of low rank and the matrix A
allows for a multilevel treatment (the precise assumptions will be stated later). Numerical examples
suggest that the number of steps is O(1).

The following Section 2 introduces the linear quadratic optimal control problem that serves as
our standard example for the structures arising in the Riccati equation. Omne possible method
to solve the nonlinear Riccati equation is to linearise it by Newton’s method. This is called the
Newton-Kleinman iteration [26]:

Xo = 0 (or an appropriate stabilising initial guess)  and for i € N>
X; solves (A — FXl',l)TXi + XZ(A — FXifl) +C+ X, 1FX;_1=0. (2)

In Section 4 we consider the linear multigrid algorithm (and nested iteration) applied to the Lya-
punov equations (2) arising in each Newton-Kleinman step. This is an extension of the linear
multigrid algorithm that was analysed in [16, 37].

Section 5 contains the nonlinear multigrid algorithm where we theoretically compare the nonlinear
Richardson iteration with the linear Richardson iteration in a Newton-Kleinman step. Possible
generalisations are collected in Section 6 and the last Section 7 shows the efficiency of our solver
applied to the model problem where the matrices are of the size 4190209 x 4190209. We compare
our method with the Newton-Kleinman iteration using linear multigrid to solve the Lyapunov
equations in each step, and we compare the linear multigrid with the Cholesky factor ADI algorithm
2, 21, 39, 44].

2 MODEL PROBLEM

The model problem introduced in this Section is the (distributed) control of the two-dimensional
heat equation (cf. [28] and the references therein) which is used, e.g., in optimal control problems
for the selective cooling of steel [35]. This is a simple academic model problem where one can study
many effects of the resulting Riccati equation. In particular, the linear part L(X) := ATX + XA
corresponds to the stiffness matrix of a 2d-dimensional elliptic partial differential operator [16],
i.e., the linear operator L is ill-conditioned in the sense that the condition number grows with
increasing size n of the matrix A € R™*". Therefore, standard iterative solvers (e.g., Richardson,
Jacobi, Gauss-Seidel and SOR) will need a number of iterations that increases with the condition
of L.

We will focus on fast solution techniques for a large scale Riccati equation where the underlying
partial differential equation is well understood. The domain where the PDE is posed is the unit
square. Using a uniform tensor mesh, it allows for a simple discretisation. Of course, the method
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that we propose is in no way limited to regular grids or simple PDEs, but it simplifies both the
implementation and presentation.

2.1 Continuous Model

We fix the domain Q := (0,1) x (0,1) C R? and the boundary T' := 9. The goal is to minimise
the quadratic performance index

J(u) == /000 (y()* +u(t)?) dt

for the control u € L?(0,00) and the output 3 € L?(0,00) of the corresponding control system

Opx(t,€) = OFx(t,€) + 0Zx(t,€) + 260e,2(t, &) + n(&)ult), £€Q, t>0,
x(t, &) = 0, Eel, t>0,
(3)
Jf(o,f) = $0(§)7 § S Q,
y(t) = Jqw(&)x(t,€)dE, t>0.

The values of n and w are

n(€) = { g &1 <1/2 w(€) = { (1) €9 > 1/2,

otherwise. otherwise.

The two parameters 3,k € Ry can be varied, where 3 steers the non-symmetry of the system
and k the cost of the control. For 8 = 0 we are back at the heat equation. Here we focus on a
single-input-single-output system, but a generalisation to multiple inputs and multiple outputs is
straight-forward.

We seek the optimal control v* in linear state feedback form
u*(t,-) = x(t, ),

but since an analytic solution is only for special cases available, we construct a sequence of (semi-)
discretisations. For each discretisation level £ = 0,1, ... an approximation II, to the operator II is
computed so that II, — II [4, 28].

2.2 Semidiscretisation by Finite Differences

The differential equation (3) is discretised by finite differences on a uniform mesh of (0,1)2. On
level £ the mesh consists of n = n, = (2°+1 — 1)? interior grid-points (7)1, and a mesh width
h=2"t"1 cf Figure 1.

We omit the level index £ in the following but bear in mind that all vectors, matrices etc. depend
on the level £. By ¢; we denote the piecewise bilinear interpolant on the mesh with ¢;(x;) = 1 and
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Figure 1: Level £ = 1,2, 3,4 of the regular mesh with ny = 9,49, 225,961 interior nodes.

¢i(x;) = 0 for j # i. The corresponding space-discrete system is

Ox(t) = Axz(t) + Ku(t), t >0,
z(0) = o, (4)
y(t) = WTx(t), t>0,

where A € R™*™ is the standard finite difference discretisation of the partial differential operator
(entries A;; = —4h~? on the diagonal, A;; = h™2 for neighbouring nodes 4, j in the & direction
and A;; = h™2 & Bh~! for neighbouring nodes 4, j in the & direction), z(t) € R™, u(t),y(t) € R
and the vectors K € R" and W € R" are

Ki=n(w)., W= /Q w(€)d;(€)dE. (5)

Lemma 1 For 8 = 0 the stiffness matriz A is symmetric negative definite. For 3 > 0 the matrix
A is non-symmetric; the spectrum of A is contained in the left complex halfplane and real-valued
as long as B < h™1.

Proof: The matrix A has the Kronecker product representation A = A1 ® I + I ® Ay where Ay
and Ay are tridiagonal matrices and ® the Kronecker-product (see [16] for more details). Due
to [11, 43] the spectrum of A is the sum of the spectra of A; and As. In [47] the respective
spectra of both A; and As are explicitly given: that of A; corresponding to the one-dimensional
discretisation of 8521 is negative real-valued. That of Ay corresponding to 8?2 + 230, is located in
the left complex half-plane, and it is real-valued if 8 < h~1. [ |

The matrix A from the finite difference discretisation is sparse but ill-conditioned.

In the case that a finite element discretisation is applied we get the space-discrete system
Edux(t) = Ax(t)+ Ku(t), t>0, (6)
where the entries of the FEM stiffness matrix A, mass matrix E and K are

A= /Q (V60,V6;) + Boidady,  Eiy = /Q ity K= /Q ndi.

Since the matrix E is well-conditioned (and symmetric) we can write (6) in the form (4) with
A:= E'A and K := E7'K. Later we will only need to be able to perform the matrix vector
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multiplication z = Az that can be realised by first multiplying v := Az and afterwards solving
the system Fz = y. Alternatively, one can formulate the following algorithms for the generalised
Riccati equation of the form ATXE + EXA — XFX + C = 0. In the following, in order to
simplify the presentation, we do not consider the finite element formulation anymore. However,
the algorithms that we present work in the same way for finite elements.

2.3 Linear State Feedback Control

In the model problem that we consider, the pair (A4, K) is stabilisable and (A, W7) detectable.
(The spectrum of A is already contained in the left complex halfplane so that both conditions are
trivially fulfilled). Therefore, the discrete optimal control u can be realised in linear state feedback
form [4, 9, 12, 27]

u(t) = —KTXx(t), t €1]0,00),

where X is the — in the set of symmetric positive semidefinite matrices — unique solution to the
algebraic matrix Riccati equation

ATX + XA-XFX+C=0, F:=KK' c=wwt. (7)

The matrix A is of size n x n. The matrices F' and C are of size n X n and data-sparse in the
sense that only K and W have to be stored, i.e., 2n entries. The matrix —K7 X is the discrete
representation of the feedback operator II, on level £.

Remark 1 The discretisation by finite differences or finite elements will yield a stiffness matrix
A that is ill-conditioned, i.e., lim, o conda(A) = co. This has two consequences: first, the Riccati
equation is ill-conditioned [7], i.e., small perturbations in the input data may yield large perturba-
tions in the solution. Here, we assume that all the input data is given exact. Second, the Riccati
equation will be hard to solve by iterative solvers, and that is why we develop a fast multigrid solver.
In Section 7.4 we shall see that the difficulties are even more pronounced when the parameter 3
governing the non-symmetry of the matriz A is large.

3 Structure of the Solution

Since the discrete system (4) involves a discretisation error, it is reasonable to solve the Riccati
equation only up to an accuracy ¢ (e.g., of the size of the discretisation error), i.e., we seek an
approximation X to the solution X of (1) such that

1X = Xll2 < el X]l2.

The idea now is to choose a matrix X that allows for a data-sparse representation. In the multilevel
setting we shall see in Section 4, Remark 2, that the discretisation error can be estimated by the
solutions X, 1, X, on two subsequent grid levels. A rough estimate suffices because the accuracy &
enters only logarithmically in Theorem 1.

Definition 1 (R(k)-matrix representation) Let k,n € N. A matriz M € R™™" is called an
R(k)-matriz (given in R(k)-representation) if M is represented in factorised form

M=UVT, U,V e R™F, (8)
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with U,V in full matriz representation.

The R(k)-matrix format is a suitable representation for matrices of rank at most k: each matrix
of rank at most k can be written in the factorised form (8) by use of a (reduced) singular value
decomposition and each matrix of the form (8) is of rank at most k. The next Theorem proves the
existence of a low rank approximant X to the solution X of equation (1), where the rank & is much
smaller than the size n of the matrix.

The two factors in the representation (8) of an R(k)-matrix involve 2kn values to be stored. The
matrix-vector multiplication y := Mz can be done in two steps involving the two matrix-vector
products z := V7 and y := Uz that consist of O(kn) basic arithmetic operations. For k < n this
is a considerable saving in both memory consumption and computational complexity.

Figure 2: The spectra 04 and op of A and B are separated.

Theorem 1 (Existence of a low rank approximant) Let A € R"*" and B € R™*™ be ma-
trices with spectra contained in two disjoint convex sets o4,0p of distance § := dist(oa,0p). Let
zo,v,w € C, |[v| = |w| =1, (v,w) € [0,1), such that (cf. Figure 2)

o4 C {xeCl(x—x0,v) <0 and (z —xo,w) < 0},

op C {zxeC|(x—xp,v) >0 and (x — xo,w) > 0}.
Let T 4,T'p be paths around the spectrum of A and B with distance at least §/3 to oa,0p and
between I' 4, 'R,

1 1

o= g o IET = A, =g T~ B) e

Let F € R™*™ gnd C € R™™ be of rank at most kp and kc. Then for each 0 < ¢ < 1 and any
matriz X € R™™ that solves
AX -XB-XFX+C=0

there exists a matriz X € R™™ that approzimates the solution X by
1X = X2 < e X2, (9)
where the rank of X is bounded by rank(X) < k.k, (k¢ + kr),

h o~ o (1og (1 L (Al + HBHQ)wB)) |

o
diam(T"4) Jg diam(I'p) )) ‘

ke = O<<1+tan(g<v,w>))log<

For the model problem (4) from Section 2 (8 = 0) we have k.k, = O(log?n + lognloge).
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level £=3,n, =961 {=4,n,=3969 £=5n,=16129 £ =6,ny =65025
k e EKTX e EKTX £ EKTX 3 EKTX

1 |3x1072 7x1073 3x1072  7x107% | 3x1072 7x107% |3x1072 7x1073
6x107° 1x107° 1x107%  2x107° | 1x107*% 2x107° |1x10~% 2x107°
10 | 5x10™2  1x1079 7Tx107%  1x107% | 2x1077 3x107% |4x107" 5x1078
15| 3x10713 1x10715 3x1071 8x10713 | 410710 4x107! | 2x107? 4x10710

Table 1: The relative error € := || X —~)~(H2/HXH2 (and epry = |KTX — KTX||o/|| KT X||2) of a
rank k best approximation X of X on different discretisation levels ¢ € {3,4,5,6}.

Proof: We define the matrix D := C'— X FX. Then X solves the Sylvester equation AX — X B +
D = 0. Let kp := k¢ +kp. According to [15, Theorem 1] (see also [38] for the symmetric Lyapunov

case and [2] for a generalisation) there exists a matrix X of rank at most

rank(X) < k.kokp,

ke = {logz (1 L 804l +(¥f\|2)fu/€3)-‘ |

ky = O <(1 +tan(5 < v,w >)) log, (2 . diam(T'a) + diam(rB))) ,

J

that approximates X with relative accuracy || X — X || < ¢||X||2. The term k, shows the dependency
on the location of the spectra of A and B, whereas both k. and k, are independent of D and X.
For the model problem (with § = 0) the matrix A is symmetric so that [15, Corollary 1] yields

ke = O(logy(1/¢) +logy (2 +2[|Al|2/6)) = O (loga(1/e) +logy (n)),

by = O <log2 <2 . diam(Ta) ;diam(rB))) — O (logy (n)).

|
The dependency of k. on log(n) can be seen in Table 1 where we computed best approximations
X of rank k € {1,5,10,15} to the solution X of the Riccati equation (1) for our model problem
from Section 2.3 with parameter 8 = 0 and k£ = 1000. We observe that for a fixed rank the relative
approximation error increases as the level number (and hence the system size n) increases.

The dependency on the location of the spectrum can be seen in Table 2, where we fix the level
¢ =4 (ny = 3969) and increase the parameter § so that the spectrum of A becomes complex and
approaches the imaginary axis. Still, there is an exponential decay in the singular values of the
solution X so that it can be approximated by rank k < n.

Blockwise low rank structures (H-matrices) will be considered in Section 6. In the following section
we shall develop an iterative solver (a multigrid method) that computes an approximation X to
the solution X of the Riccati equation without ever forming the exact solution. Instead, all iterates
are kept in the R(k)-matrix format.
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E|B=20 B =40 B =280 B =160 (=320

1 |5.7x1072 8.1x1072 1.0x10~! 1.1x107! 1.1x107!
8.1x107% 1.7x1073 3.0x1073 4.4x1073 6.0x1073
10 | 3.0x107% 1.4x107° 6.7x107° 2.3x10~* 5.8x10~*
15 [ 5.5%1079 4.1x107% 6.4x1077 8.0x107% 5.8x107°

Table 2: The relative error € := || X — X||2/||X|]2 of a rank k best approximation X of X for
different parameters g € {20, 40, 80, 160, 320} and fixed £ = 1000.

4 LINEAR MULTIGRID

The multigrid method to solve an equation of the form
Mz =b, M e RVXN,

consists of three components (see [25, 45] for an introduction):

1. A hierarchy of discrete problems
Mzg = by, M, e RNexNe, 0=1... lmax,

where N1 < --- < Ny = N so that the coarsest problem of size N; allows for a direct
solution and the finest problem M, = M is the system to be solved.

2. Prolongation and restriction operators
Ppi1eg: RV — RNem Ry_1q: RV — RN,
that transfer a vector from one grid level £ to the next finer or coarser level £+ 1 or £ — 1.

3. A so-called smoothing iteration
38?-1 = Sg(l‘é,bg), £=1,...,0nax,

which is not necessarily a good solver but reduces the high-frequency components of the error
— hence the name smoother.

The smoothing iteration will be introduced in the next section and the prolongation and restriction
operators in Section 4.3. The hierarchy of discretisations of the Riccati equation is given by the
hierarchy of finite difference (or finite element) discretisations of the underlying partial differential
equation. In this section we denote by the subscript £ the level number £ = 0,...,fL.x. On each
level the matrices Ay, Ky, Wy are given and they define the matrices Fy, Cy in the Riccati equation.
As a result we get the solution X, € R™*™ on each level £. The vector representation of the matrix
Xpis xp € RNt Ny = n?, and the large linear system to be solved in each Newton-Kleinman step
(2) is of the form M = (A — FX;)T ® I + I ® (A — FX;)T with right-hand side b, being the vector
representation of the matrix —C' — X; F X;.

The idea of the multigrid method is that on each level ¢ the smoother Sy reduces the high-frequency
components (relative to the level ¢) of the error. If this is done on each level, then all components
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level 4 PrO0th JRoTsagooth
level 3 Prozmonth oo™

level 2 prersergu%?ctth p@oTtsmooth

level 1 solve

Figure 3: One step of the V-cycle multigrid on ¢ = 4 levels.

are reduced. One step of the multigrid algorithm (using v presmoothing steps, v, postsmoothing
steps and 7 coarse-grid corrections) is given in Algorithm 1. The case 7 = 2 is only relevant for
theoretical purposes, in practice we will always use v = 1 (the so-called V-cycle multigrid), which
is schematically depicted in Figure 3 for £ = 4 levels.

Algorithm 1 Linear Multigrid Step
Procedure multigrid_step(My, by, v, vo, v, var xy)

if /=1 then
Solve Myxy = by {coarsest grid solve}
else
for j=1,...,v1 do
xg := Sp(xy, by) {v1 presmoothing steps}
end for
be—1 := Ryp_1¢(Myzy — by) {restriction of the defect to the coarse grid}
Ty—1 ‘= 0
for j=1,...,vdo
Call multigrid _step(My_1, by_1, v1, V2, T4_1) {recursive call}
end for
xp:=x¢— Pry_1(x4_1) {coarse grid correction }
for j=1,...,15,do
xg := Sp(xyg, by) {v2 postsmoothing steps}
end for
end if

4.1 Nested lteration

The so-called nested iteration is used to provide good starting iterates on each level: after computing
an approximate solution x2—1 on level /—1 (e.g., i steps of the multigrid algorithm), one can prolong
it to level £

g = Preg—1(z)_y)
and then apply again ¢ multigrid steps to obtain an approximate solution :U} Starting from level
£ =1 and going up to £ = £y, we thus need to perform only a minimal number of multigrid steps
on the finest level £ ax.

Remark 2 On each level { the discrete solution x, € RNt is the coefficient vector of a function
v(€) = vaél(xg) i(€),€ € Q. We denote the space spanned by these functions by Vy. Then the
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relative discretisation error is defined as
0p := mi —
¢ 1= min [lv —wll/[|v]],
where v = limy_oo vy € V = UpenVy is the continuous solution and || - || a suitable norm on V.

If the (approximate) solutions xp_1,xy on two subsequent grid levels have been computed, then the
relative discretisation error dy_1 on level £ — 1 can be estimated by

op—1 = min |lv—wl/[]v]| = [lv—veall/l|v]] = |lve = ve-r]l/[vell-
weVp_1

The nested iteration alone (without multigrid) based only on a simple iterative solver (e.g. the
smoothing iteration) on each level will not yield a fast algorithm, since the convergence rate of the
simple iterative solver on the fine grid will quickly tend to 1, whereas the multigrid iteration has a
convergence rate p < 1 independent of the level ¢ [24, 25, 45].

4.2 Linear Richardson lteration

A simple iterative solver for large sparse systems Mz = b is the Richardson iteration
= S(a?,b) =2’ + AN(Mz' —b), i=1,... (10)

that converges to the solution z for all negative definite matrices M and a damping factor 0 < A <
2/||M||2, cf. [24]. The optimal damping factor Aopt (Which yields the best convergence rate popt) is
- 1Ml — 1M I5"
Aopt = 2/([M]l2 + 1M 73, popt = =

[M]l2 + [ M1,

Typically, an estimate for || M||2 is known, e.g. by few steps of the power iteration.

(11)

The quite simple Richardson iteration is of special interest because it can easily be performed for
structured matrices, e.g. low rank matrices in the R(k)-matrix format. Other iterative schemes like
Gauss-Seidel, SOR or ILU [24] cannot be easily adapted to rank structured matrices as required
for the solution of large scale matrix equations.

The linear Richardson iteration can be applied to solve the linear matrix equations
Ly(X):=(AT - YF)X + X(A—-FY)=—-C - YFY,

arising in each step of the Newton-Kleinman iteration. However, the linear operator X — Ly (X)
is not necessarily symmetric.

Lemma 2 ([34]) a) The Richardson iteration for a linear operator L converges for a suitable
choice of the damping parameter \ (sufficiently small) if the spectrum of L is contained in the left
complex halfplane.

b) For —%(E + LMY > oI and LU L < —CQ%([: + LM, c1,c2 € Rag, the Richardson iteration
converges monotonically in the Euclidean norm with rate p < \/1 — ¢1/ca for the damping parameter
A= 1/02.

In practice one can use the following strategy: if £ were symmetric negative definite, then (11)
would yield the optimal damping factor A, and this is an upper bound for the damping factor A
that one may use for £. If the Richardson iteration diverges, then one has to reduce (e.g., halve)
the damping factor and restart. In this way, the iteration may become rather slow (due to the fact
that the spectrum requires a small \) but it will eventually converge.

10
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4.3 Prolongation and Restriction

A vector vy € R™ on level ¢ of the grid is the discrete representation of a grid-function

Ty

ve(z) = Z(W)i @i (), z €.

i=1
The so-called prolongation vey1 of vy to the next finer level £ 4 1 is given by evaluating the corre-
sponding grid-function at the grid points z; s41,

(Veg1)i = 00(zi041), TE€{L, .. npp1},

i.e., the grid-data are interpolated as depicted in Figure 4.

Figure 4: The function on the coarse grid (left) is interpolated linearly in the fine grid points.

The prolongation operator pyyi1. ¢ is defined by

peyree: R™ — R g = g1, (veg1)i = 0p(T4041). (12)

The adjoint of the prolongation in the scalar product (z,y), := h‘él >, Ti¥; is the restriction operator
T¢—1—¢. In our model problem (d = 2) this is ry_1.p = ip;zieil : R — R™-1 which is an
averaging of values at fine-grid nodes surrounding the coarse-grid node.

The two grid transfer operators r and p allow for a multilevel representation of vectors defined on
the discrete grid. These vector transfer operators can be generalised to matriz transfer operators

R and P.

Definition 2 (Matrix Prolongation and Restriction) The matriz prolongation operator
Priq g RMXne — RM+1XM41 and matriz restriction operator Ry_1. g : R™*™ — R™-1XM-1 gre
defined by
. T A T
Priico(X) =pop1ce X pppreey Reaee(Y) =m0 Yrp 1y
For an R(k)-matrix M = Zle u;v] on level £, the prolongation and restriction are immediately
given in the R(k)-matrix format :

k

K
Prayo(M) =Y porrrcoti (pryr—evi),  Reieo(M) = re_gcqui (re—y—pvi) " (13)
i=1 i=1

Lemma 3 The complexity of the matriz prolongation and restriction of an n x n R(k)-matriz is
O(nk), i.e., optimal complexity. For a general full matriz the complexity is O(n?).

Proof: The prolongation or restriction operators have to be applied to k vectors each, see (13),
where the vectors are of length n. The vector prolongation and restriction operators peii.¢
and ry_1.¢ are of complexity O(n) since for each entry i (i = 1,...,n) they involve only O(1)
neighbouring nodes in the grid. [ |

11



Nonlinear multigrid for large scale Riccati equations

4.4 Convergence of Linear Multigrid Applied to Newton-Kleinman

In each Newton-Kleinman step for the solution of the Riccati equation
R(X):=ATX + XA - XFX = -C (14)
one has to solve a linear Lyapunov equation
Ly(X):=(AT - YF)X + X(A—-FY)=—-C - YFY, (15)

where the spectrum of A — FY (and thus Ly [43]) is contained in the left complex halfplane. The
matrix Y is the approximation of the Riccati solution X from the previous Newton step. For the
solution of this linear system we will apply the linear multigrid method.

Two conditions for the convergence of the linear multigrid method are sufficient: First, the approx-
imation property and second the smoothing property. The approximation property

1My — Pee1 My Re—y gl < Capp/ || M|

relates two consecutive levels of the discretisation. The operator Lo (Ly for Y = 0) is the finite
difference (finite element, resp.) discretisation of an elliptic partial differential operator [16]. Under
sufficient regularity assumptions (e.g., smooth coefficients and a convex domain like in our model
problem) the approximation property holds for the operator Ly [24].

Remark 3 The system matriz of the operator Ly is
M=A-FY)Y'@I+IeA-FY)'=ATeI+I0AT) - (FY)' @ I+I® (FY)T).

The first term AT @ I +1® AT corresponds to the elliptic part Lo of L. We assume that this part
is dominating, since the second term (FY)T @ I +1® (FY)T is a lower order term. Although we
do not have a proof, it is plausible that the approximation property also holds for Ly .

The smoothing property R
1MeS¢ll2 < n(w)|Mell2,  lim_ n(v) =0,

(with Sy being the iteration matrix of Sy and 7(v) being independent of the level number ) says
that first, the smoothing iteration converges, and second, the rate measured in the My-norm is
level-independent.

Corollary 1 Let Ly denote the Lyapunov operator in the Newton-Kleinman iteration.

a) The Richardson iteration converges for sufficiently small damping parameter X.

b) The Richardson iteration with X\ as in a) fulfils the smoothing property, i.e. it is a smoother
sustable for the multigrid algorithm.

In both cases the hidden constants depend on the location of the spectrum of L, e.g., the convergence
rate p tends to 1 as f — oo in our model problem (cf. Section 7.4).

Proof: Part a) follows from Lemma 2 and the fact that in each Newton-Kleinman step the matrix
A — FY is stable. Part b) follows from the Lemma of Reusken [40]. ]

12
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4.5 Complexity of Linear Multigrid Applied to Newton-Kleinman

We assume that the smoothing iteration Sy is of linear complexity O(Ny). This is fulfilled for the
Richardson iteration provided that the matrix M can be evaluated in O(Ny). Further we assume
that two consecutive grid levels fulfil Ny_; < Ny/Cpeq, Creq > 1. In our model problem this holds
for the constant Cj.q := 4.

Theorem 2 One step of the multigrid iteration (Algorithm 1) applied to Ly on level £ is of linear
complexity O(Ny).

Proof: The smoothing iteration is of linear complexity, i.e., O(Ny) operations are necessary
to perform one step xy +— Sp(zs,br). According to Lemma 3 in Section 4.3 the prolonga-
tion and restriction operator can be applied using O(N;) operations. The system matrix
M=(A-FX)T@I+1®(A- FX)T allows for a matrix by vector multiplication in O(Ny)
due to the fact that F is of rank O(1) and A is sparse (in the FEM case the stiffness matrix A
is sparse and the mass matrix E can be inverted in O(1) iterative steps). According to [24, The-

orem 10.4.2] the multigrid method (with v < C,.¢q coarse-grid corrections) is of linear complexity. m

The linear complexity of the multigrid algorithm to solve Mx = b is optimal when applied for
general right-hand sides b and solutions x. Since we already know that the right-hand side —C' —
Y FY in each Newton-Kleinman step (15) is of rank at most rank(C') + rank(F") (= 2 in our model
problem), and the solution is according to Theorem 1 of low rank kx, we will modify the multigrid
algorithm in such a way that it has complexity O(ny) instead of O(Ny) = O(n2).

4.6 Low Rank Linear Multigrid

We exploit the low-rank structure of the approximate solution X from Theorem 1 by approximating
all iterates X* in the low-rank format from Definition 1.

Lemma 4 Let X' be an n x n-R(k)-matriz, A sparse and F of rank kr and C of rank kc. Then
one step of the linear Richardson iteration

XH = X' N(AT - YF) X'+ XY(A—FY)+C+YFY)

applied to the linear operator Ly appearing in the Newton-Kleinman iteration yields a matric
X € R(2k + k¢ + kp) that can be computed in O(nk).

Proof: The rank of X’ — N(AT — YF)X? = (I — A\(AT — YF))X? is bounded by k, as well as
that of —AX?(A — FY). This proves the rank bound for X**!. Let X' = Z?:l ujv;f. For the
computation of X! we have to compute the 2k matrix by vector products (I — A(AT — Y F))u;
and —AX*(AT — Y F)v; which can each be performed in O(n) because A is sparse and F of rank

kp. |

The exact next iterate X**! after one Richardson step bears a rank that is increased by a factor of at
least 2 so that the rank will rapidly grow if we perform the Richardson iteration in exact arithmetic.

13
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Since we assume that X* tends to the solution X that can be approximated in the R(k)-matrix
format with low rank k, we want to approximate the next iterate X*! by an R(k)-matrix X*+1.
This requires the computation of a projection of X**! to the set R(k).

Lemma 5 Let R=UV7" be an n x n R(k)-matriz. Let U = QuRy and V = Qv Ry be respective
QR decompositions with Qu, Qv € R™* and Ry, Ry € RF¥F . Let

RyV}t =0xvT, > = diag(oy,...,0%),

be a singular value decomposition of RUVg. Then for any k' € {1,...,k} the matriz

R= (QuUs) (vi)T, 5 .= diag(o1, ..., 0,0, .., 0)

is a rank k' best approzimation of R. It can be computed in O(nk?).

Proof: A (reduced) singular value decomposition of R is given by

R=UVT =QuRyRLQY = QuUu x© VvVIQT
~—— ——
orthonormal  orthonormal

so that replacing ¥ by ¥ gives a rank &’ best approximation in the Euclidean and Frobenius norm
[14]. The two QR decompositions can be computed in O(nk?) and the SVD in O(k?®) [14, 5.2.9
and 5.4.5]. The multiplications are again of complexity O(nk?). [

The previous Lemma gives rise to the definition of a truncation operator Tr <k cf., [17].

Definition 3 (Truncation operator Tkl%k) For R(k)-matrices R we define the truncation op-
erator

T¥<F(R) := R,

where R is a best approzimation of R in the set of R(K')-matrices. If R is not unique, then T* <*(R)
18 an arbitrary representative.

Using the previously defined truncation operator we can formulate the linear low-rank Richardson
iteration by

X = SMX{ -C—-YFY)
The2htkothr (X “MAT YR X+ XA - FY)+C + YFY)) . (16)
The influence of the truncation on the convergence will be studied in the last Section 7. In principle

one can choose a large enough rank k so that the truncation error is of similar size as the machine
precision — but this will increase the computational effort.

Since the exact Richardson step is of complexity O(nk) and the truncation of complexity O(nk?),
we conclude that one step of the low-rank Richardson iteration is of complexity O(nk?). In the
multigrid Algorithm 1 we can now use the low-rank Richardson as a smoother with prescribed rank

14
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k. For the defect by;_1 on the next coarser grid (used in the coarse-grid correction step) we prescribe
a rank of k.g := 2k + k¢ + kp, ie.

be—y = T Fes " thes (Myay — by),
and we truncate the iterate after the coarse-grid correction, i.e.
v =T M2y — Prcgo1(w0-1)).
Lemma 6 The complexity of one multigrid step on level £ is O(ngk?).

So far we have used the multigrid method in order to solve the linear system Ly arising in each
step of the Newton-Kleinman iteration, cf. Algorithm 2.

Algorithm 2 Newton-Kleinman Iteration
Procedure nk_iteration( (Ag)gff‘, (Fg)gfl", (C’g)ﬁi“l", m, var Xy . )

{Xy,.. contains the initial guess and m is the number of Newton steps}
fori=1,...,mdo
Yimax = Xemax
for { = lax,...,2 do
Yi1:= Ry_14(Yy) {restrict current iterate to coarse levels}
end for
X1 = Yl
for / =1,...,lnax — 1 do
Solve Ly, (Xy) = —Cy — Yo FyY, { initial guess X, }
Xoy1 = Prp1—o(Xy) { prolong solution to next level }
end for
Solve Ly, ~ (Xtmax) = ~Clamax = Yemax Fomax Yemax 1 initial guess Xy .}
end for

The total complexity to solve the Riccati equation in low-rank format is thus O(#Newton steps x
#multigrid steps x nk?). In the following Section we present two alternatives that solve the Riccati
equation in O(#multigrid steps x nk?).

5 NONLINEAR MULTIGRID

There are two types of nonlinear multigrid methods to solve the Riccati equation: first, the Newton-
multigrid and second the full nonlinear multigrid.

5.1 Newton-Multigrid

The idea of Newton-multigrid is to use a coarse-grid solution as an initial guess of the Newton
iteration on each level. This is similar to the nested iteration but additionally m Newton steps are
applied on each level. On the finest level /.« we have to apply only a few Newton steps in order
to reduce the error to the size of the discretisation error. For sufficiently fine grids typically m = 2
Newton steps are enough. In order to be able to apply the multigrid method for the linear systems

15
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Algorithm 3 Newton-Multigrid
Procedure nmg_iteration( (Ag)gr:f‘, (Fg)gf:i", (C’g)gzaf‘, m, X1 var X, )
{ X1 is the solution on the coarsest grid, m is the number of Newton steps
per level }
for £ =2,..., l.x do
Xy := Ppy_1(X¢—1) { prolongation of the solution from the coarse grid }

fori=1,...,m do
Yoi=Xy
Solve Ly, (Xy) = —Cy — Yo FyYy { initial guess X }
end for
end for

arising on each level ¢, we have to assume that the approximate solution X, stabilises the system
on the next level:
Apy1 — Fop1 Pry1—o(Xo) is a stable matrix.

5.2 Full Nonlinear Multigrid

The idea of the full nonlinear multigrid is to apply a smoothing iteration that is able to solve
(at least locally) the nonlinear problem. Of course, the convergence might be very slow, but as
long as the iteration has the smoothing property (reduces the high-frequency components of the
error) one can obtain the fast multigrid convergence. The smoothing iteration that we use is
the nonlinear Richardson iteration that will be discussed in Section 5.3. The prolongation and
restriction operators used for the nonlinear multigrid method are the same as in the linear case.
However, the coarse-grid correction has to be modified as described in Section 5.4.

5.3 Nonlinear Richardson

For nonlinear systems of equations R(x) = b the nonlinear Richardson iteration
= &(2,b) := 2t + N(R(z") — b), i=1,... (17)

can be performed, but the damping parameter )\; has to be determined depending on the iterate z*
by estimating the optimal damping parameter of the linearised operator: for the Riccati operator

R(XH) :=ATX'+ X'A - X'FX* (18)
we consider (for the theory) the corresponding linearisation
DR(XH(Y)= (AT — X'F)Y + Y (A - FX").

The linearisation approximates the nonlinear Riccati operator well, at least locally. In the next
theorem we shall prove that the nonlinear Richardson iteration behaves (locally) like the linear
Richardson iteration applied to the linearised problem. The choice of a suitable damping parameter
\; for the linear operator DR(X?) is discussed in Section 4.2. Here, we cannot guarantee that the
matrix A— F X' is stable. However, a stabilising initial guess on each level should be available from
the next coarser grid.

16
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Theorem 3 Let X! denote an approximation to the solution X of the Riccati equation, || X' —X|| <
e. Then the next iterate of nonlinear Richardson (17) with damping parameter \ is the same as
the next iterate of linear Richardson (10) applied to the Lyapunov operator Lx1 (15) appearing in
the Newton-Kleinman iteration (Algorithm 2). The first O(1) iterates Y* of linear Richardson and
X% of nonlinear Richardson fulfil

V- XY <e = |Y'—X <

Proof: The linearised system at X! is
Lxi(X):=(AT - X)X+ X(A-FXY)=-C-X'FXx!
The next iterate of linear Richardson fulfils

S(x,—Cc-X'FXY) = X'+ MLy (XYH+CO+XFXY
= X' ATX XA - X'FX! - X'FX! + C 4+ X'FX?)
= X'+ 2xATX +Xx'A - XIFX! + O)
= &(x4,-0).
By X' we denote the further iterates of nonlinear Richardson and by Y those of linear Richardson.

Let | X — Y| = O(¢?) and || X! — Y?|| = O(¢). Then the damping parameters Ag used for S and
Mg used for & differ by ||(X? — Y¥)F|| = O(e?). The difference of the iterates is thus

(Lx1(Y)+C+X'FXY) - (R(XY) +O)
= ATY' 4 Y A-X'FY' - YV FX' 4+ C+ X'FX' —ATX' - X'A+ X'FX' - C
ATV - X+ (VI - XNA+ (X - YHF(X - Y) - YFY' + X'FX?

-~

=0(e?) =0(e2) =0(e2)

= 0.

|
The previous theorem proves that one step of nonlinear Richardson is exactly linear Richardson
applied to the system linearised at the current iterate. Thus, nonlinear Richardson should behave
like Newton-Kleinman where each Newton step is not solved exactly but only by a single linear
Richardson step.

5.4 Nonlinear Coarse Grid Correction

The idea of the coarse grid correction is as follows. Assume we have computed an approximate
iterate X Zi on level £ so that the error

Epi=Xp— X, Ru(Xy) = AT Xo+ XA — XeFi X = —C,
is fairly smooth (because of the v presmoothing steps). The error Eé fulfills the equation
Ro(X} + E}) = —Cy.

If R were linear, then we could just solve the defect equation R,(E}) = —R¢(X}) — C, and update
the iterate X é by the approximate solution E}f of the defect equation. Since this is not reasonable
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for the nonlinear operator Ry, we have to use a different coarse-grid correction (cf. [33] for the
general defect correction approach).

Let X;f | denote a stabilising approximation to the solution X,_; on level £ —1 (need not be highly
accurate but stabilising). We define the (coarse) approximation

X7 = P 1 (X))
as the prolongation of a coarse-grid vector and the coarse right-hand side
C)7 = —Re-1(X,%).
Then the error Eé fulfils
R X[+ E)) = RuX{)+Ry(E}) — X{FE, — E;}FX;?
= Re(Xj + By) = Re(X]) + Ro(X(") + (X = X)) FE} + B F (X} - X*)
= —Cr—Ru(X)) + RuX}?)  +(X] = X{)FE} + B F (X} - X[7).
For ¢ := |E}|| and § := | X} — Xech we get the equation
Ro(X{ + E}) = —Cr — Re(X}) + Ro(X[7) + O(6¢)

where Dé =Cp+ R@(Xé) is the computable defect of the iterate X l?. Since both ng and Eé can
be well represented on the coarse grid £ — 1, we can solve the defect equation on the coarse grid

Re1(X{% ) + Bi_y) = —Re_1o(D}) — CF (19)
and obtain the approximation of E} by
Ep =~ Pr g 1(Ej_,).

The corrected iterate is ' ' '
Xp=Xj+ Prg1(Ej_y).

The coarse grid equation (19) will again be solved by the multigrid method where the starting value
is X,7,.

The full V-cycle multigrid algorithm on level ¢ based on coarse grid approximations (X, )f;% with
corresponding right-hand sides (Cf¢)’_1 and an initial approximation X is given in Algorithm 4.
There we perform vy nonlinear Richardson steps before the coarse-grid correction (presmoothing)
and 9 nonlinear Richardson steps after the coarse-grid correction (postsmoothing). The coarse
grid equation is approximately solved by 7 steps of nonlinear multigrid (typically v = 1).

5.5 Positivity preservation

The Newton-Kleinman iteration guarantees that in each step the matrix A — FY (Y being the
stabilising iterate from the previous Newton step) is stable [26]. On the fine-grid ¢ = fpax the
right-hand side Cy + Y;FY; is symmetric positive semidefinite (SPSD) so that the solution Xp is
also SPSD. Due to roundoff errors or the error from the truncation to lower rank, it might happen
that the approximate solution is only approximately SPSD. In order to avoid any instability due
to this we can simply modify the truncation operator to project into the set of SPSD matrices.
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Algorithm 4 Nonlinear Low-Rank Riccati-Multigrid Step
Procedure RMG(Cy, 11, v, 7, var Xy)
R(X;®) = —C}® holds for the coarse-grid approximations X;® of X
0 4 l

if /=1 then
Solve R(Xy) = —Cy {coarsest grid solve}
else
for j=1,...,v1 do
Xy := Thk2ktko (S(X,, Cy)) { v1 presmoothing steps }
end for
Dy = R(Xy) + Cy { compute the defect }
Cy_q 1= Tho—2kthke (—Cﬁl — Rg,h;g(Dg)) { compute the coarse-grid right-hand side }
X¢1:= X§§1
for j=1,...,7do
Call RMG(Cy_1, 11, V2, 7, Xo—1) {recursive call}
end for
Xoo=TF3% (Xp+ Prg1 (Xoo1 + X8))) { coarse-grid correction }
for j=1,...,15do
Xy := Th2k+ko (S(X,, Cy)) { v2 postsmoothing steps }
end for
end if

Let R = UVT be a symmetric n x n R(k)-matrix. Let U = Qu Ry be a QR decompositions with
Qu € R™* and Ry € R¥**. Then

R=UVT = QuRyVT 2™ QuRyVTQuQ};
and thus the matrix Ry V7T Qp is symmetric. Let
RyVTQu =UAUT, A = diag(A1, ..., \e),

be the eigenvalue decomposition of Ry V7T Qu with eigenvalues )\; in descending order. Then for
any k' € {1,...,k} the matrix

R= (QUI?[\) (QUU)T, A = diag(M i, ..., A, 0,0, 0)

is a rank k' best approximation of R in the set of SPSD matrices. It can be computed in O(nk?)
by the steps described above. If only symmetry but no positivity is needed then one can take the
largest eigenvalues in modulus for the definition of A.

The SPSD truncation can be used for the fine-grid level ¢ = £p,,x, but on the coarse-grid levels the
defect is not definite so that the solution is not SPSD. Still, symmetry can be preserved by the
symmetric truncation.

For the fully nonlinear multigrid algorithm based on the nonlinear Richardson iteration the SPSD
truncation on the fine-grid level £ = ¢4, is helpful, because the Richardson iteration does per se
not guarantee that the positivity is preserved.
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Figure 5: The H-matrix format consists blockwise of R(k)-matrices (light grey blocks) and small
full matrices (dark grey blocks). On level 1 (left) there is only a single full matrix block,
whereas on level 4 (right) there are many R(k)-matrix blocks of varying size.

6 Hierarchical Matrices

A straight-forward generalisation of the low rank format is the blockwise low rank format. When the
blocks are organised in a hierarchical way so that standard matrix arithmetics (addition, multipli-
cation, inversion) are possible in almost optimal complexity, then we call such a matrix hierarchical
matrix or short H-matrix [17, 22], cf. Figure 5. The precise definition of an H-matrix is given in
the following.

Let J :={1,...,n} denote the set of indices with corresponding basis functions (¢;);ecs defined on
some grid used in the discretisation of the domain Q C R?. The so-called cluster tree is a multilevel
partition of the index set J so that indices of corresponding geometrically connected basis functions
are grouped together [17]. The formal definition is as follows.

Definition 4 (Cluster tree) Let J = {1,...,n} be an index set with n elements. A tree Ty =
(Vy, Ey) with vertices Vy > v C J, v # 0, and root(Ty) = J is called a cluster tree of J, if

YVoeVy: {weVy|(v,w)€E;}=0 or v= U w.
{’LUEVJ ‘ (U>w)€EJ}

Example 1 Let p € N and n = 2P be the cardinality of the index set J = {1,...,n}. We define
a cluster tree Ty of J as follows: the root of the tree is J. The successors of J are {1,...,n/2}
and {n/2 +1,...,n}. Each of the vertices v has the form v = {j2t +1,...,(j + 1)2!} for some
i €{0,...,p} and j € {0,...,2P~" — 1} and the successors s1,s2 of such a vertex are (see Figure 6)

s10= {5204+ 1,...,(j +1/2)2"}, s={(+1/2)20+1,...,(j +1)2'}.

The cluster tree constructed in this way is a binary tree, which means that each vertex is either a
leaf or has exactly two successors.

The cluster tree defines candidates for blocks v x w C J x J so that the corresponding matrix block
M |yxy for a matrix M € R7*7 can be approximated by low rank. The trivial tree would be of
cardinality one where the root is the only node and J x J the only candidate for a low rank block.
In this case we are back at the R(k)-matrices discussed in the previous sections. Blocks v x w that
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Figure 6: The cluster tree T;: the index set J = {1,...,8} is successively partitioned.

are suitable for low rank approximation are characterised by the so-called admissibility condition

min{diam(€,), diam(Qy)} < dist(Qy, Qw), Q= | Jsuppy; C Q. (20)
JjEv

The cluster tree Ty together with the admissibility condition (20) defines the block cluster tree
whose leaves will yield the partition of the matrix into low rank blocks.

Definition 5 (Block cluster tree) A block cluster tree T = (V, E) corresponding to a cluster
tree Ty = (Vy,Ey) is a cluster tree of the index set J x J where each vertex t € V is of the form
t = v x w with vertices v,w € V. Fach leaf t € V is either admissible, i.e. v and w fulfil (20), or
one of the two clusters v or w is a leaf of the cluster tree T';.

The construction of the block cluster tree is straight-forward. We start with the root J x J and
further on define the sons of a node v x w € V by either the empty set (if it is admissible) or by
the product of the sons of v and w. The leaves of the block cluster tree yield a partition and this
partition is used to define the block structure of an H-matrix.

Definition 6 (H-matrix) Let T' = (V, E) be a block cluster tree (index set J) and k € N. A
matriz M € R7*7 is said to be an H-matriz corresponding to T with blockwise rank k if for all
leaves (vertex with no successor) v X w € V' the submatriz M |,y fulfils rank(M |yxq) < k.

An H-matrix is stored blockwise in R(k)-matrix format. The storage requirements are O(knlogn)
and the matrix by vector multiplication can be performed in O(knlogn) [17]. However, the set of
‘H-matrices with fixed blockwise rank limit k& is not closed with respect to addition. In analogy to
the R(k)-matrix truncation operator we define the H-matrix truncation T/{‘:*k/ by applying in each
admissible block the R(k)-matrix truncation 7%~* . The formatted addition @ is then defined by

A® B :=Tk"2(A+B).

The formatted addition of two H-matrices is of complexity O(k?n logn)[17].

6.1 Existence of H-matrix solutions

Theorem 1 can be generalised as follows. Let C' be an H-matrix of the format defined in [15] or
[18] (depicted in Figure 5) instead of a low rank matrix. The matrix A is the finite difference or
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finite element stiffness matrix and F' is of rank kp = O(1). Let k¢ denote the blockwise rank of C'.
Then the solution X to (1) can be approximated by an H-matrix X with blockwise rank

kj( = k.(kc + kr), ke = O(log(l/&)é),

up to a relative error of €, where 6 = 2 for the H-matrix format from [15] and § = 6 for the
H-matrix format from [18]. In practice one observes the same dependency of k¢ on the spectrum
of A and the approximation quality ¢ as for the low rank case.

6.2 Nonlinear H-matrix Richardson

The (formatted) Richardson iteration (16) is also applicable for H-matrices C' and corresponding H-
matrix solutions X. The quadratic low rank term XFX = X Zfﬁl uvl X = Zfﬁl (Xu))(XTv)T is
blockwise given in R(kp)-matrix representation and therefore compatible with the format of X and
C. The matrices AT X and X A can be converted to the H-matrix format by the techniques from
[17]. Even non-local H-matrices A that stem, e.g., from some boundary element discretisation, can
be treated in this way. For a (local) sparse matrix A the complexity of the matrix multiplications
ATX and XA is O(k?nlogn) so that the total complexity of one Richardson step is O(k*nlogn).

6.3 Prolongation and Restriction of H-matrices

The matrix prolongation and restriction are geometrically local operations and can be treated in
the same way as the sparse system matrix A, i.e., the prolongation of an H-matrix M,_; from level
¢ — 1 to level £ can be done in O(k*>nlogn). This can even be simplified using the following trick:
Let My_1]y,_, xw,_, be some matrix block of M,_; in R(k)-matrix format. The corresponding fine-
grid block is My|y, xw,- Instead of the interpolation of values at fine-grid nodes between coarse-grid
nodes, we use the interpolation only for the interior nodes of vy_1,wy_1 and extrapolate the values
at the boundary. Thereby, the prolongation avoids to combine entries from different blocks and
thus the R(k)-matrix format is retained as in the global low-rank case (no truncation necessary).
The restriction is again the adjoint of the prolongation. The simplified matrix prolongation and
restriction is of optimal complexity O(knlogn) (because the truncation is avoided).

7 NUMERICAL EXAMPLES

The numerical tests in this Section serve three purposes: first, we investigate the influence of the
nonlinearity X F X that can be steered by the parameter £ in our model problem (3). Second, we
use the low-rank format in the multigrid method and observe the dependency of the convergence
rate on the truncation rank. Third, we compare the fully nonlinear multigrid (Algorithm 4) with
the Newton-multigrid (Algorithm 3) and the Newton-Kleinman iteration based on linear multigrid
(Algorithms 2 and 1) for large-scale Riccati equations. At last we shall compare the Cholesky
factor ADI iteration [21] to the linear multigrid method (Algorithm 1) for the symmetric Lyapunov
equation.
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7.1 Influence of the Nonlinearity

We consider the model problem from Section 2.3 for different parameters s used in the definition
of the matrix F' of the quadratic term in the Riccati equation (1). We fix the level £ := 6 with ny, =
16129 interior grid-points and the parameter 3 := 20 for the non-symmetry of the matrix A. In the
multigrid Algorithm 4 we use vy := 2 presmoothing, v := 1 postsmoothing and ~ := 1 coarse-grid
steps. The error £(i) := || X*—X||2/|| X ||2 and convergence rates || X*— X ||2/|| X"~ — X||2 during the

k=1 k=100 x = 10000 x = 1000000
7 € rate | € rate | € rate | € rate
0 |3.1x1072 3.0x102 4.6x102 5.4%102
1 |1.0x1072 0.32|1.0x1072 0.34 | 1.4x1072 0.30 | 3.8x10™3 0.07
2 |3.8x107% 0.38 [3.7x1073 0.37|3.9x107% 0.29 [ 6.1x107* 0.16
3 [1.3x1073 0.34 | 1.3x1073 0.35 | 1.1x107% 0.29 | 4.1x10~%* 0.68
4 [ 7.8x107% 0.60 | 7.4x10~* 0.58 | 3.5x10~* 0.31 | 3.2x10~% 0.78
5 [3.5x107% 0.45 | 3.2x107* 0.43|1.2x107% 0.35|2.5x107* 0.80
6 |1.5x107% 0.41]1.3x107* 0.39 | 7.2x107° 0.59 | 1.9x10~* 0.76
Table 3: The relative error ¢ of the iterate X* after ¢ = 0, ..., 6 nonlinear multigrid iterations.

first six iterations are contained in Table 3. As a reference solution X we compute a rank 30 solution
using 50 Newton-multigrid steps (Algorithm 3) so that the relative defect |R(X) — C||/||C|| of the
symmetric positive semidefinite solution (cf. Section 5.5) is less than 5 x 1072 for x = 1, 100, 10000
(the relative approximation error should be of similar size).

For very large values of x the convergence rate tends to 1. However, in the first two steps the
convergence rate is always much smaller so that the discretisation error is met even for large k
after two steps. We conclude that the nonlinear multigrid method is suitable even for large &, i.e.
a large scaling of the nonlinearity.

7.2 Comparison between Newton-Kleinman and Nonlinear Multigrid

The Newton-Kleinman iteration (with initial guess X := 0) suffers from the increasing dominance
of the nonlinearity. On the fine-grid the error is roughly halved in each Newton step so that many
steps are necessary to find an approximation with accuracy of the size of the discretisation error.
The number of multigrid steps for the solution of the linear Lyapunov equation in each step is
completely irrelevant.

The Newton-multigrid Algorithm 3 from Section 5.1 can overcome the first obstacle, namely the
bad initial guess, by using the prolonged coarse-grid solution as an initial guess. Therefore, the
number of Newton steps is reduced. In principle we would have to solve the linear systems in each
Newton step exactly, or at least highly accurate. In the numerical tests we observe that the number
of multigrid steps necessary in each Newton step is just one. This is much less than the number of
steps required for an almost exact solve. Using just a single multigrid step yielded the best results
for the Newton-multigrid which are summarised in Table 4. We observe that the convergence of
Newton-multigrid is quite similar to that of the fully nonlinear multigrid. A Newton-multigrid
step is slightly more expensive than a nonlinear multigrid step. However, both methods yield the
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k=1 k=100 k = 10000 x = 1000000
1 | Ex rate | €x rate | €x rate | €x rate
0 [3.1x1072 3.0x10~2 4.6x1072 5.4x102
1 |1.0x1072 0.32 | 1.0x1072 0.34 | 2.4x1072 0.52 | 4.4x1072 0.08
2 | 3.6x107% 0.37 [ 3.6x1072 0.35 | 6.0x10™2 0.25 | 1.5x1073 0.34
3 [1.3x1073 0.35|1.3x1073 0.35|2.2x1073 0.36 | 1.4x1073 0.89
4 | 75x107% 059 | 7.4x107* 0.59 | 1.5x1073 0.67 | 1.2x1073 0.90
5 | 4.4x107% 0.59 | 4.2x107% 0.57 | 1.2x1073 0.84 | 1.1x1073 0.92
6 |2.7x107% 0.60 | 2.4x107* 0.57 | 9.5x107* 0.68 | 1.1x1073 0.93
Table 4: The relative error ex of the iterate X* after i = 0,...,5 Newton-multigrid iterations.
k=2
14} er S
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Figure 7: Convergence rates after ¢ = 1,...,9 iterations on level £ = 6 using a rank k = 2,4, 6, 8, 20.

solution after a few steps in O(n) complexity.

7.3 Influence of the Truncation

In this section we set the parameter x := 1000 and S = 20, so that the nonlinearity is well
pronounced, and we vary the rank k for the representation of the iterates X gi between 2, 4, 6 and
20 on level £ := 6. Obviously, a rank of k = 0 will yield the trivial approximation X, = 0, whereas
the full rank k£ = 16129 will yield the exact solution.

The reference solution is — as in the previous section — a rank 30 approximation computed by
50 multigrid steps so that the relative residual is less than 5 x 1072, In Figure 7 we depict the
convergence rates of the relative error ex := || X} — X/||2/|| X¢||2 for the first nine iterates X using a
truncated representation of rank k in Algorithm 4. For k = 20 we can see the standard convergence
rate, just as if we had performed the iteration without any truncation at all. For lower rank
k = 2,4, 6 the convergence breaks down (rate 1.0) as the relative error approaches the relative error
of a best approximation of rank k. The transition is quite sharp in the sense that only one or two
steps during the multigrid iteration have a convergence rate larger than the standard one and less
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than 1.0.

7.4 Influence of the Non-symmetry of A

The non-symmetry of the stiffness matrix A has a strong effect on the convergence of the multigrid
method when it is used as a solver for systems Az = b. The same behaviour is to be expected
when we apply the (nonlinear) multigrid method for the Riccati operator. We test this by varying
the parameter 8 in the setup of the stiffness matrix A between 8 = 20 and 6 = 160. Due to the
fact that in the partial differential equation (3) the term 230¢,x(t, &) is of lower order, we have to
reach a certain minimal level £,;, from which on the term will be harmless, but as £ tends to 1 the
convergence of Richardson as well as the multigrid iteration will tend to 1 or above. This means,
depending on the parameter [, there is a lower bound /i, on the allowable coarse grid where we
have to solve the system by some other means than multigrid. Here, we apply sufficiently many
steps of the smoother on the coarse grid, but the ADI solver from Section 7.6 (for non-symmetric
systems) would also be a good choice. The convergence rates for the nonlinear multigrid Algorithm
4 on level ¢ = 6 with optimal choice of the coarse-grid £y, are contained in Table 5.

B =20 B =40 B =280 B =160

1 | e rate | € rate | € rate | € rate

3.2x1072 3.7x10~2 5.3x1072 8.7x1072

1.0x1072 0.32 | 1.2x1072 0.33 | 2.0x1072 0.37 | 3.5x1072 0.41
3.1x1073 0.30 | 4.8x1073 0.39 | 8.8x1073 0.45 | 1.5x1072 0.43
9.4x10~* 0.30 | 1.4x10™3 0.28 | 3.2x1073 0.37 | 7.6x10~2 0.50
3.0x107% 0.32 | 5.2x107% 0.39 | 2.1x1073 0.64 | 3.2x107% 0.43
1.2x107% 0.40 | 2.0x107* 0.39 | 7.9x10~* 0.38 | 1.8x1073 0.57
4.3x107° 0.36 | 8.3x107° 0.41 | 5.9x10™* 0.75 | 1.3x1073 0.69

ST W N~ O

Table 5: The relative error € of the iterate X} after i € {1,...,6} iterations using a rank k = 10
for the approximation of the iterates in the R(k)-matrix format.

7.5 Large Scale Riccati Equations

For large scale Riccati equations there are two important questions to be answered. First, is the
convergence rate bounded away from one independently of the level, and second, how does the
method scale in n?

For the first question we depict the convergence rates for the first nine iterates of Algorithm 4 on
level £ = 5,6,7,8 in Figure 8. The rank k£ = 20 is used to represent the iterates Xé and we can
see that the convergence rate seems to stabilise as ¢ grows. On level £ = 8 the rate stays below
0.4. Moreover, the convergence rate in the first two steps tends to be less than 0.3 for larger level
numbers (we have used a more conservative damping factor in the Richardson iteration on level 1-3
which influences the convergence rate on smaller levels). In the nested iteration it will therefore
be sufficient to apply two multigrid steps per level and on the final level two multigrid steps are
sufficient so that the relative approximation error of the discrete solution is less than 50% of the
discretisation error.

25



Nonlinear multigrid for large scale Riccati equations

08

0.6
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Figure 8: Convergence rates after ¢ = 1,...,9 iterations on level £ = 5,6, 7, 8.

The answer to the second question is given in Table 6 where we used the nested iteration based
on the nonlinear Riccati-multigrid Algorithm 4 with two steps on the final level. The rank for the
representation of the (approximate) solution Xy is increasing with increasing level number in order

(=6,k=3 (=Tk=4 (=8k=5 (=9k=6 (=10k=7
ne = 161290 n7 = 65025 ng = 261121 ng = 1046529 n19 = 4190209

i=0 3.3x1072 1.5x1072 6.2x1073 2.9x1073 1.2x1073

i=1 1.2x1072 5.1x1073 1.7x1073 7.5x10~% 2.8x1074

i=2 7.1x1073 2.7x1073 9.1x10~* 3.4x10~* 1.3x1074
Time (Sec.) | 1.9 11.5 90 956 6376

Table 6: The table quotes the relative error ¢ of the iterate X} after ¢ iterations on level £ using a
rank k for the approximation of the iterates. The last row reports the computing time in
seconds.

to stay well below the discretisation error with the relative approximation error e. The numerical
tests were all performed on a SUN ULTRASPARC 111 with 900 MHz CPU clock rate and 150 MHz
memory clock rate. We have used the standard BLAS and LAPACK implementations provided by
the machine vendor. The algorithms are implemented in the C' programming language.

7.6 Comparison between Cholesky Factor ADI and Linear Multigrid

The ADI iteration for the solution of a symmetric Lyapunov equation AX + XA 4+ C = 0 reads
X' = =2pi(A+pl) ' C(A+pd) T + (A4 pd) TN A= p )X A= pil)(A+pid) 7

where the shift parameters p; have to be chosen appropriately [31]. As an initial guess we use
X9 := 0. The matrix A is the finite difference stiffness matrix A, € R™*™ on level ¢ defined in
Section 2. The symmetric positive semidefinite matrix C' is of rank k¢ := 6 and the exact solution
X is of rank 3.
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For the comparison with the multigrid method we use the Cholesky factor ADI (CF-ADI) algorithm
[21, Algorithm 3] with (non-cyclic) shift parameters p1,...,pys,,.. as defined in [38]. Additionally,

. , \T
the iterates X' = Z; fadi (Zf:f adl) will be truncated in each step:

K3
Xi - Tka+kC (Xl)

Without the truncation in each step the final rank k of X* after J ADI steps would be k = Jk¢
and a truncation to minimal rank would be rather expensive.

In each step of the CF-ADI iteration we have to invert systems of the form A + p;I. For this,
we use the H-matrix Cholesky factorisation based on a nested dissection clustering technique [19].
The factorisation of the matrix A + p;I (single precision accuracy) on level £ = 8 with n, = 261121
degrees of freedom takes less than 36 seconds and uses less than 240MB main memory. Once the
factorisation is computed, one can solve the system for a given right-hand side in 2.2 seconds via
forward /backward substitution. These results are comparable to those obtained by SuperLU [10].
The factorisations account for roughly 2/3 of the time of the CF-ADI iteration. In Table 7 we
report the time used for the CF-ADI iteration and for the (linear) multigrid iteration on level
£ =6,7,8. We conclude that the multigrid method is by a factor of 10 faster, but in principle both

‘526, e=3x10"3 (=7, e=1x10" (=38, ¢ =3x107*

CF-ADI |26.9 151.7 1037
Multigrid | 2.7 12.3 74.3

Table 7: The table quotes the time required to compute an approximate solution with relative error
€ on level £ = 6,7,8 by the CF-ADI and the multigrid algorithm.

methods scale almost linearly.
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