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SUFFICIENT CONDITIONS FOR THE
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Abstract. The Cauchy-Born rule provides a crucial link between
continuum theories of elasticity and the atomistic nature of matter.
In its strongest form it says that application of affine displacement
boundary conditions to a monatomic crystal will lead to an affine
deformation of the whole crystal lattice. We give a general con-
dition in arbitrary dimensions which ensures the validity of the
Cauchy-Born rule for boundary deformations which are close to
rigid motions.

This generalizes results of Friesecke and Theil [J. Nonlin. Sci.
12 (2002), 445–478] for a two-dimensional model. As in their work
the key idea is to use a discrete version of polyconvexity (ordinary
convexity of the elastic energy as a function of the atomic posi-
tions is ruled out by frame-indifference). The main point is the
construction of a suitable discrete null Lagrangian which allows
one to separate rigid motions. To do so we observe a simple iden-
tity for the determinant function on SO(n) and use interpolation
to convert ordinary null Lagrangians into discrete ones.

1. Introduction

The continuum theory of elasticity has been very successful in the
study of crystalline microstructure [BJ87, CK88, Mü99, JH00, Bh03,
Do03]. The link between the continuum theory and the atomistic na-
ture of matter is usually made by an appeal to the Cauchy-Born rule
(also called Cauchy-Born hypothesis or Born rule, see, e.g., the discus-
sion in [Er82, PZ03]). It states, loosely speaking, that a macroscopic
affine deformation x �→ Fx corresponds to an affine deformation of the

1991 Mathematics Subject Classification. 74B20, 74N05.
Key words and phrases. Cauchy-Born rule, atomistic models, null Lagrangian.
G.D. gratefully acknowledges partial support by the Max Planck Society and

by the NSF through grants DMS0104118 and DMS0405853; S.C. and S.M. were
supported by the DFG priority programme SPP 1095; S.C., S.M and B.K. were
also supported by the EU programme MRTN-CT-2004-505226.

1



2 S. CONTI, G. DOLZMANN, B. KIRCHHEIM, AND S. MÜLLER

individual atomic positions. In the context of solid-solid phase transfor-
mations there is an extensive literature on the validity and relevance of
the Cauchy-Born rule (see [Pa80, Er82, Za92, Er97, FT02, PZ03, CZ04,
BCZZ04] and the references therein), mostly based on symmetry con-
siderations. Until very recently, however, there has been no analysis of
the validity of the Cauchy-Born rule starting from a suitable atomistic
theory. In this context we interpret the Cauchy-Born rule in the spirit
of [FT02] in the following way: Consider a Bravais lattice L ⊂ R

n. To
a subset Λ ⊂ L and a deformation y : Λ → R

n we associate an elastic
energy EΛ(y). We say that the Cauchy-Born rule holds for a matrix
F if for all bounded Λ the minimizer of EΛ(y) subject to the affine
boundary condition

y(x) = Fx for x ∈ ∂Λ(1.1)

is given by the affine deformation y(x) = Fx, for all x ∈ Λ (see (2.1)
and (2.2) below for the precise definition of the boundary ∂Λ). In
the case of multilattices, this corresponds to focussing on the skeletal
lattice, with an energy EΛ which has already been minimized over the
motif (i.e., the displacements of the atoms inside the unit cell).

Friesecke and Theil [FT02] studied a two-dimensional mass-spring
model with nearest and next nearest neighbour interactions and showed
that the Cauchy-Born rule holds (in the above sense) for a suitable
range of parameters and for F which are close to a rotation R ∈ SO(2).
Such a stability result is remarkable since a realistic atomistic energy
cannot be a convex function of y, in view of frame indifference (i.e.,
invariance under rotations). The main point is to show that if the
energy of a single cell is minimized at the identity and is positive definite
after removal of rigid motions then the Cauchy-Born rule holds for all
F near the identity.

Here we extend these results to general dimensions and to general
finite range mass-spring models, see Theorem 4.2 and Theorem 5.1 be-
low. As in [FT02] the main point is, roughly speaking, to construct a
suitable discrete null Lagrangian, i.e., a discrete energy N(y) which de-
pends only on the boundary values, such that E+N always lies above
a convex function H and equals H if y(x) = Fx (by discrete energy
we mean an energy defined on the discrete space, in contrast to the
continuum energy which is defined on vector fields). Our construction
relies on two ingredients: first a systematic way to obtain discrete null
Lagrangians from ordinary ones by interpolation (see Theorem 3.2 be-
low) and secondly, a simple, yet powerful identity to separate points on
SO(n) by a continuous null Lagrangian (see (H5’) in Section 4 below).
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Then one can easily conclude by a perturbation and compactness ar-
gument. In this way one also obtains a slightly streamlined version of
the original proof in [FT02].

We finally briefly comment on the interpretation of the Cauchy-Born
rule discussed above and the relevance of mass-spring models. The
above form of the Cauchy-Born rule is rather stringent. Since we re-
quire the affine map to be the unique minimizer for affine boundary
conditions for arbitrarily large subsets Λ we effectively exclude both
atomistic and mesoscopic oscillations (e.g., twinning). A weaker re-
quirement would be obtained by restricting the condition to sets Λ
which are small multiples of the lattice unit cell. However, there does
not seem to be a natural choice of the cut-off length. This is related to
the question of whether a certain non-affine minimizing arrangement
should be considered a phase (i.e., an atomistic pattern with a possibly
large unit cell) or whether it should be considered a microstructure
(i.e., a mesoscopic mixture of different phases).

In the mass-spring models the type of interaction between different
atoms (e.g., nearest neighbour, next-nearest neighbour, ...) is deter-
mined by the position of the atoms in the reference lattice L. Thus the
energy is not invariant under the noncompact groupGL(Z, 3) of lattice-
preserving linear transformations. If one includes invariance under all
elements in GL(Z, 3), then a crystal has no resistance to macroscopic
shears, at least in a purely static variational approach as considered
in this paper (for a sharp result in the continuum setting see [Fo87]).
Sheared states do not correspond to energy minimizers but rather to
metastable states. A full analysis of their behaviour (which would have
to include a detailed discussion of the nucleation and motion of disloca-
tions and other lattice defects) seems currently to be out of reach. The
mass-spring models stabilize the metastable state by fixing the neigh-
bourhood relations and imposing suitable growth conditions on the
potential (see, e.g., hypothesis (H6) in Section 4 below) which enforce
that, given suitable energy bounds, the local structure of the reference
lattice is preserved, at least near most points. For uniformly small
deformation gradients E and Ming [EM05] have studied the relation
between the time-dependent discrete and continuous equations under
suitable ellipticity assumptions on the continuous energy density and
assumptions on the phonon spectrum of the discrete model.

2. Notation and assumptions on the cell energy

Throughout this paper we assume that the underlying lattice is given
by L = Z

n, i.e., the lattice is cubic with lattice parameter equal to
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one (we could equally consider a general Bravais lattice, but we pre-
fer the cubic lattice for notational convenience). Let x1, . . . , x2n be
the enumeration of the vertices of the unit cube [0, 1]n such that the
coordinates of xi in the standard basis of R

n correspond to the dig-
its in the binary representation of i − 1, i.e., i − 1 =

∑n
j=1(xi)j2

j−1.
In particular, x1 corresponds to the origin. For simplicity we write
x = (x1, . . . , x2n) ∈ (Rn)2n ∼ R

n×2n
. Finally, it is convenient to in-

troduce the mapping π : R
n → R

n×2n
by π(c) = (c, . . . , c). Thus

x + π(c) =
(
x1 + c, . . . , x2n + c

)
describes a translation of the unit cell

by the vector c. In our analytical calculations we are basically inter-
ested in the orthogonal complement of the space V0 := π(Rn) of all
such shift directions.

If A ∈ M
n×n represents a linear mapping from R

n into R
n, then we

set Ax =
(
Ax1, . . . , Axn

)
.

For a subset Λ of points in L we define the set of interior points

(2.1) Λ◦ = {x ∈ Λ : x− xi ∈ Λ for i = 1, . . . , 2n}.
The reason for this particular choice will become clear in the proof
of Theorem 3.2. It is also convenient to consider Dirichlet boundary
conditions to be given on

(2.2) ∂Λ = L \ Λ◦

i.e., we consider deformations that are local perturbations of a given
deformation of the lattice. Here an elastic deformation of the lattice
is a map y : L → R

n that assigns to each point x ∈ L a new position
y(x) in the deformed lattice. We call the vector D′y(x) defined by

D′y(x) =
(
y(x+ x1) − y(x), . . . , y(x+ x2n) − y(x)

)
= y − y

the discrete gradient of y. Here

y(x) =
1

2n

2n∑
i=1

y(x+ xi) and y = π(y(x)).

For affine deformations y(x) = Fx of the lattice we define

F ′ = D′y = F
(
x − x

)
.

Notice that the subspace of discrete gradients coincides with the or-
thogonal complement of the shift directions in R

n×2n
.

The energy that is required to deform a unit cell in the lattice by
mapping the corners xi onto the new positions yi is given by Ecell(y),
where Ecell is a mapping from R

n×2n
into R. Lattice deformations
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that correspond to rigid rotations will be important in the proof of the
validity of the Cauchy-Born rule, and we define therefore

SO(n)′ =
{
R′ ∈ R

n×2n

: ∃R ∈ SO(n) such that R′ = R(x − x)
}
.

We assume that Ecell has the following properties:

(H1) Invariance under rotations and translations: We have

Ecell(Ry) = Ecell(y) for all R ∈ SO(n)

and

Ecell

(
y − π(c)

)
= Ecell(y) for all c ∈ R

n.

(H2) Characterization of the ground state: We have Ecell ≥ 0 and
Ecell(y) = 0 if and only if y corresponds to a rigid body rotation,
i.e., there exist R ∈ SO(n) and c ∈ R

n such that y = Rx+π(c).
(H3) Smoothness and convexity: Ecell is smooth in a neighbourhood

of SO(n)′ and the Hessian D2Ecell at the identity I ′ is pos-
itive definite on the orthogonal complement of the subspace
spanned by all shift directions π(c) and infinitesimal rotations
W ′ (which correspond to skew-symmetric affine deformations,
W T = −W ).

(H4) Growth condition at infinity: We assume that

lim inf
G′∈V ⊥

0 ,G′→∞
Ecell(G

′)
|G′|n > 0,

where V0 is the space π(Rn) of shift directions.

Note that in view of (H1) we can define Ecell as a function of the discrete
gradient, Ecell(y) = Ecell

(
y − y

)
= Ecell(D

′y).

3. Discrete null Lagrangians

Null Lagrangians play an important role in the proof of uniqueness of
minimizers subject to affine boundary conditions, and it is not surpris-
ing that an analogue of this definition for lattice functions will prove
pivotal in the verification of the Cauchy-Born rule.

Recall that a function N : M
m×n → R is called a null Lagrangian if

for all F ∈ M
m×n and for all φ ∈W 1,∞

0 (Ω; Rm)∫
Ω

N(F ) dx =

∫
Ω

N(F +Dφ) dx,

where Ω is an open and bounded domain. Equivalently, null La-
grangians can be defined as those functions N for which both N and
−N are quasiconvex in the sense of Morrey [Mo52]. A classical result
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states that N is a null Lagrangian if and only if it is an affine combina-
tion of minors (subdeterminants), see the appendix for further details.
The same characterization holds for null Lagrangians involving higher
derivatives but the argument is much more subtle [BCO81].

We now define the analogue of null Lagrangians for lattice functions.

Definition 3.1. A mapping N ′ : R
n×2n → R is called a discrete null

Lagrangian if for every finite subset Λ ⊂ L and every F ∈ M
n×n,∑

x∈Λ

N ′(D′y(x)
)

=
∑
x∈Λ

N ′(F ′)
whenever y(x) = Fx for all x ∈ L \ Λ◦.

The crucial observation explained below is that any null Lagrangian
in the continuous setting induces in a natural way a discrete null La-
grangian. This will give us sufficiently many null Lagrangians for our
uniqueness result to follow.

It should, however, also be mentioned that not all discrete null La-
grangians can be found this way. Indeed, for m = n = 2 the discrete
null Lagrangian N ′(x1, x2, x3, x4) = (x2 − x1)1 cannot be obtained by
linear interpolation from a null Lagrangian since for cell deformations
with (x1 − x2) �= (x3 − x4) incompatibilities do occur.

Theorem 3.2. Let N : M
n×n → R be a null Lagrangian. Then there

exists a discrete null Lagrangian N ′ : R
n×2n → R which is invariant

under translation and agrees with N on all Cauchy-Born deformations,
i.e.,

N ′(F ′) = N(F ),(3.1)

where F ∈ M
n×n and

F ′ = F
(
x − x

)
is the discrete gradient. Moreover, N ′ is a polynomial of the same
degree as N .

Proof. The discrete null Lagrangian can be constructed from the given
null Lagrangian N by extending a lattice deformation on L to a defor-
mation defined on R

n. A convenient way to do this is by multilinear
interpolation. We describe the construction for the unit cell of the
lattice, the construction on any other cell in the lattice is analogous.

Suppose that yi = y(xi) are the values of the deformation at the
corners of the unit cell in the lattice. Then we define the extension ỹ
as the unique function from the unit cube [0, 1]n into R

n that is affine
in each coordinate direction and satisfies the interpolation conditions
ỹ(xi) = yi. The map y �→ ỹ is linear and one-to-one. Moreover, if



SUFFICIENT CONDITIONS FOR THE CAUCHY-BORN RULE 7

the lattice deformation is compatible with an affine deformation, i.e.,
if there exist F ∈ M

n×n and c ∈ R
n such that y = Fx + π(c), then

ỹ(x) = Fx + c for all x ∈ Q were Q = (0, 1)n. Finally note that the
function ỹ : R

n → R
n that is obtained by constructing the extension

locally in each cell of the lattice, is globally continuous and locally
Lipschitz continuous. This follows from the fact that the values of the
interpolation ỹ restricted to one face of the cube depend only on the
values yi = y(xi) in vertices xi contained in this face.

We now define

N ′(y) =

∫
Q

N
(∇ỹ(x)) dx.

With this definition, (3.1) follows immediately from the compatibility
of the extension with affine functions. Since N is a polynomial and the
map y �→ ∇ỹ is linear, N ′ is a polynomial with degN ′ ≤ degN and in
view of (3.1) the degrees must be equal.

To see that N ′ is a discrete null Lagrangian, consider a lattice func-
tion y : L → R

n and the associated multilinear extension ỹ : R
n → R

n.
Let Λ ⊂ L and suppose that y satisfies y(x) = Fx for x ∈ L\Λ◦. Then∑

x∈Λ

N ′(D′y) =
∑
x∈Λ

∫
x+Q

N(∇ỹ) dx =

∫
U

N(∇ỹ) dx

where U =
⋃

x∈Λ x+Q. The boundary of Q consists therefore of faces
Fj of unit cubes contained in the lattice, and by definition no vertex
in Λ◦ can be contained in ∂U . Therefore ỹ(x) = Fx on ∂U , and since
N is a null Lagrangian,∫

U

N(∇ỹ) dx =

∫
U

N(F ) dx =
∑
x∈Λ

N(F ) =
∑
x∈Λ

N ′(F ′).

The foregoing two identities imply the assertion of the theorem. �

4. Validity of the Cauchy-Born rule

In this section we establish the validity of the Cauchy-Born rule for
lattice deformations that are close to deformations that correspond to
rigid rotations. The key ingredient is the existence of a discrete null
Lagrangian N ′ with the following two properties that will be important
in the proof:

(H5) There exists a constant c > 0 such that

N ′(H ′) −N ′(G′) −∇N ′(G′) : (H ′ −G′) ≥ c|H ′ −G′|2

for all G′, H ′ ∈ SO(n)′.
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(H6) We have

lim sup
H′∈V ⊥

0 ,H′→∞

|N ′(H ′)| + |DN ′(H ′)H ′|
|H ′|n <∞.

It turns out that in fact the determinant of an n× n-matrix is suffi-
cient to construct a discrete null Lagrangian with the foregoing prop-
erties.

Proposition 4.1. Let N ′ be the discrete null Lagrangian constructed
from N(F ) = detF for F ∈ M

n×n using Theorem 3.2. Then N ′ satis-
fies (H5) and (H6).

Proof. First we observe, that N itself satisfies the corresponding iden-
tity

(H5’) N(H)−N(G)−∇N(G) : (H−G) =
1

2
|H−G|2 if G,H ∈ SO(n).

Indeed, since ∇N(G) = cof G for all G ∈ M
n×n and cof G = G on

SO(n) the left hand side of (H5’) equals

−G : (H −G) = −1

2
(|H|2 + |G|2 − |H −G|2) + |G|2 =

1

2
|H −G|2

for G,H ∈ SO(n). Because |F (xi−x)|2 = |F |2/4 for every i = 1, . . . , 2n

if F is orthogonal, we see that F → F ′ maps SO(n) into SO(n)′ multi-
plying all distances by the factor 2(n−2)/2. Thus (H5’) gives the follow-
ing more precise version of (H5):

N ′(H ′) −N ′(G′) −∇N ′(G′) : (H ′ −G′) = 21−n|H ′ −G′|2
for H ′, G′ ∈ SO(n)′. Condition (H6) follows from the fact that in view
of Theorem 3.2 N ′ is a polynomial of degree n. �

The following statement gives a sufficient condition for the validity
of the Cauchy-Born rule.

Theorem 4.2. Suppose that the cell energy Ecell satisfies (H1)-(H4)
and consider a discrete null Lagrangian N ′ ∈ C2(Rn×2n

) with the prop-
erties (H5)-(H6). Then there exists a convex function Hcell : R

n×2n →
R, an ε > 0, and an open neighbourhood U ′ of SO(n)′ with the following
properties:

(a) The function Hcell is invariant under translations and strictly
convex on the subspace of all discrete gradients (i.e., the orthog-
onal complement of shift directions).

(b) We have

Ecell = Hcell − εN ′ in U ′
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and

Ecell ≥ Hcell − εN ′ on R
n×2n

.

In particular, for each Λ ⊂ L and each F ∈ M
n×n with F ′ ∈ U ′ the

variational problem

Minimize
∑
x∈Λ

Ecell

(
D′y(x)

)
subject to

y(x) = Fx for all x ∈ L \ Λ◦

has the unique solution

y(x) = Fx for all x ∈ L.
Proof. We divide the proof into several steps.

Step 1: We first show that the assumptions (H5) and (H6) on N ′ imply
that there exists constants cN > 0 and CN such that

N ′(H ′) −N ′(G′) −DN ′(G′)(H ′ −G′) ≥ cN |H ′ −G′|2
− CN

(
dist2(G′, SO(n)′) + distn(G′, SO(n)′)

)
(4.1)

− CN

(
dist2(H ′, SO(n)′) + distn(H ′, SO(n)′)

)
for all G′, H ′ ∈ V ⊥

0 , where V ⊥
0 is the orthogonal complement of shift

directions π(Rn) in R
n×2n

. To see this, denote the left-hand side in (4.1)
by f(G′, H ′). In view of (H6), the expression |f(G′, H ′)| is of order
|G′|n + |H ′|n near infinity and hence controlled by distn(G′, SO(n)′) +
distn(H ′, SO(n)′) if the latter becomes large. We may therefore assume
that |G′|2 + |H ′|2 ≤ 2R2 for a sufficiently large R. We notice that

f(G′, G′) = 0, Df(G′, G′) = 0.(4.2)

Indeed, the first of these two identities is immediate and it implies
that Df(G′, G′)(X ′, X ′) = 0. In order to prove the second identity, we
observe that Df(G′, G′)(0′, Y ′) = 0 and this establishes the assertion.
Now choose Ḡ′, H̄ ′ ∈ SO(n)′ such that

dist(G′, SO(n)′) = |G′ − Ḡ′|, dist(H ′, SO(n)′) = |H ′ − H̄ ′|.
Since |G′|2 + |H ′|2 ≤ 2R2 we deduce by a Taylor expansion that

f(G′, H ′) ≥ f(Ḡ′, H̄ ′) +Df(Ḡ′, H̄ ′)(G′ − Ḡ′, H ′ − H̄ ′)

− C
(|G′ − Ḡ′|2 + |H ′ − H̄ ′|2)
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where the constant C depends only on R. In view of (4.2) and the
mean value theorem,

|Df | (Ḡ′, H̄ ′)(G′ − Ḡ′, H ′ − H̄ ′)

≤ C
∣∣Ḡ′ − H̄ ′∣∣ (|G′ − Ḡ′∣∣2 + |H ′ − H̄ ′∣∣2)1/2

.

The assertion (4.1) follows now from (H5), Young’s inequality ab ≤
α
2
a2 + 1

2α
b2 for α > 0, and the estimate |G′ − H ′|2 ≤ 3(|Ḡ′ − H̄ ′|2 +

|G′ − Ḡ′|2 + |H ′ − H̄ ′|2).
Step 2: We define for ε > 0

g(F ′) = Ecell(F
′) + εN ′(F ′).

The parameter ε will be chosen below, see (4.4) and (4.6). We now as-
sert that there exists a neighbourhood U ′ of SO(n)′ (which may depend
on ε) and c(ε) > 0 such that

g(H ′) − g(G′) −Dg(G′) : (H ′ −G′) ≥ c(ε)|H ′ −G′|2(4.3)

for all H ′ ∈ V ⊥
0 and G′ ∈ V ⊥

0 ∩ U ′. This follows indeed by a standard
perturbation and compactness argument. We first show the assertion
for G′ ∈ SO(n)′. As in [FT02] we distinguish two cases.

Case 1: |G′ − H ′| is small. In this case it suffices to verify that
D2g(G′) is positive definite (on V ⊥

0 ). Fix G ∈ SO(n). We denote
by P the orthogonal projection onto the tangent space TG′SO(n)′ and
by P⊥ the orthogonal projection onto the orthogonal complement of
TG′SO(n)′ ⊕ V0. Since Ecell attains its minimum on SO(n)′ + V0, we
have DEcell = 0 on SO(n)′+V0 and thus by (H3) and frame indifference

D2Ecell(G
′)(X ′, X ′) = D2Ecell(G

′)(P⊥X ′, P⊥X ′) ≥ cE|P⊥X ′|2.
On the other hand, (4.1) implies that for X ′ ∈ V ⊥

0

D2N ′(G′)(X ′, X ′) ≥ cN |X ′|2 − CN |P⊥X ′|2.
If we choose

ε ≤ cE
CN

(4.4)

then we conclude that

D2g(G′)(X ′, X ′) ≥ εcN |X ′|2

for all X ′ ∈ V ⊥
0 and all G′ ∈ SO(n)′.

Case 2: |G′ − H ′| is not small. For G′ ∈ SO(n)′ the left-hand side
in (4.3) reduces to

Ecell(H
′) + ε

(
N ′(H ′) −N ′(G′) −DN ′(G′) : (H ′ −G′)

)
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since the elements in SO(n)′ are the minima of Ecell. We assert that
for H ′ ∈ V ⊥

0

Ecell(H
′) ≥ c̃E

(
dist2(H ′, SO(n)′) + distn(H ′, SO(n)′)

)
(4.5)

for some constant c̃E > 0. Since by (H2) we have Ecell(H
′) > 0 for

H ′ �∈ SO(n)′, we only need to verify this inequality in the limiting
cases dist(H ′, SO(n)′) → ∞ and dist(H ′, SO(n)′) → 0. In the former
case the assertion follows from the growth condition (H4), in the latter
case it is implied by the coercivity condition (H3). Now (4.3) follows
(for G′ ∈ SO(n)′) from (4.5) and (4.1) as long as

ε ≤ c̃E
CN

.(4.6)

To obtain (4.3) in full generality we first choose ε such that (4.4) and
(4.6) hold. Then we conclude from Case 1 that D2g is positive definite
(on V ⊥

0 ) in a neighbourhood U ′
1 of SO(n)′. Hence there exists η > 0

such that (4.3) holds for all G′ in U ′
1 and all H ′ with |H ′−G′| < η. Now

suppose |H ′−G′| ≥ η. If G′ ∈ SO(n)′ the inequality (4.3) holds by the
considerations in Case 2. Hence it continues to hold (with a slightly
smaller constant on the right hand side) for G′ in some neighbourhood
U ′

2 of SO(n)′. The assertion follows by taking U ′ as the intersection of
the two neighbourhoods.

Step 3: We are now in a position to prove the assertion of the theo-
rem. We define

h(F ′) = sup
G′∈U ′∩V ⊥

0

{
g(G′) +Dg(G′) : (F ′ −G′) +

c(ε)

2
|F ′ −G′|2}

for all F ′ ∈ V ⊥
0 . Then h = g on U ′ ∩ V ⊥

0 and h ≤ g. Moreover, h
is uniformly convex on V ⊥

0 as a supremum over quadratic functions
with fixed positive definite quadratic part. Extending h so that it is
constant in the shift directions V0 we obtain Hcell.

Uniqueness of the minimizer y is easy to see by the following ar-
gument. We know from the definition of the discrete null Lagrangian
that

0 ≥
∑
x∈Λ

Hcell

(
D′y(x)

) − ∑
x∈Λ

Hcell

(
F ′)

≥
∑
x∈Λ

DHcell

(
F ′)(D′y(x) − F ′) = DHcell

(
F ′)( ∑

x∈Λ

D′y(x) − F ′) = 0.

Since we consider discrete gradients only, the second inequality is sharp
whenever D′y(x) �= F ′. Thus we conclude that z(x) := y(x) − Fx
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satisfies D′z(x) = 0 for every x ∈ Λ. For x /∈ Λ we have x + xi /∈ Λ◦

and thus by the boundary conditions

z(x) = z(x+ xi) = 0, ∀x ∈ L \ Λ, i = 1, . . . , 2n.(4.7)

Hence D′z(x) = 0 for all x ∈ L. This implies that there exist c(x) such
that z(x + xi) = c(x) for all i. Hence z is constant and by (4.7) we
conclude that z = 0 on L. �

5. Mass-spring models

We now briefly indicate how mass-spring models fit into the above
framework. As a warm-up consider the situation discussed in [FT02],
i.e., n = m = 2 and an energy involving nearest and next-nearest
neighbour interactions

E(y) =
∑

|x−x′|=1

V1(y(x) − y(x′)) +
∑

|x−x′|=√
2

V2(y(x) − y(x′)).(5.1)

Since each nearest neighbour bond belongs to two unit cells the corre-
sponding cell energy (which involves the values y(x1), . . . , y(x4) of y on
the corners of the unit square) is given by

Ecell(y) =
1

2

∑
|xi−xj |=1

V1(y(xi) − y(xj)) +
∑

|xi−xj |=
√

2

V2(y(xi) − y(xj)).

(5.2)

For general finite-range interactions it is in general not possible to
write the total energy as a sum of contributions each of which only
involves values on a single cell. This difficulty can, however, easily
be overcome by passing to larger building blocks. Thus instead of
Ecell : R

n×2n → [0,∞) we consider

EA : Rn×A → [0,∞),

where A ⊂ L is a finite set which satisfies

xi ∈ A, for i = 1, . . . , 2n,

where the xi are the vertices of the (cubic) unit cell. We adjust the
definition of interior points accordingly by defining

Λ◦ = Λ◦
A := {z ∈ Λ : z − a ∈ Λ ∀a ∈ A} .

Note that the boundary Λ \ Λ◦ can now consist of several layers of
lattice points – this is, however, in full accordance with the physical
intuition of a finite-range interaction. As before we define the constant
embedding π and the subspace of shift directions V0 (whose orthogonal
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complement is the space of the discrete gradients) by considering vec-
tors with coordinates in R

n but with index set A instead of {1, . . . , 2n}.
For a general map y : L → R

n we define the discrete gradient at the
point x ∈ L

(D′
Ay)a(x) = y(x+ a) − 1

card(A)

∑
b∈A

y(x+ b), a ∈ A

In particular,

ā =
1

card(A)

∑
a∈A

a, and F ′
a = F (a− ā) for a ∈ A,F ∈ M

n×n

is the discrete gradient of the affine map x→ Fx, constant on all of L.
The assumptions (H1),. . . , (H4) remain then completely unchanged,

just substituting EA for Ecell. It has to be observed, however, that the
verification of (H3) becomes more difficult with growing size of A.

For a map y : A → R
n we consider again its coordinatewise affine

extension to [0, 1]n and use this extension as before to transform null
Lagrangians for the continuous system into discrete null Lagrangians
on (Rn)A. These discrete null Lagrangians only involve the values of
y at the vertices of the unit cell (and not at all points of A) but this
turns out to be enough (essentially, we only need the discrete null
Lagrangian to control rigid motions and these are already determined
by their values on the vertices of the unit cell). The crucial step in
the argument is, as before, that for any x ∈ Λ◦ we have x − xi ∈ Λ,
i = 1, . . . , 2n and hence

x ∈ int(
⋃
i

(x− xi) + [0, 1]n) ⊂ int(Λ + [0, 1]n).

We also note that (H5) and (H6) are again satisfied for the discrete
null Lagrangian N ′ obtained from the determinant.

Theorem 5.1. Suppose that the cell energy EA satisfies (H1)-(H4) and
consider a discrete null Lagrangian N ′ ∈ C2(Rn×A) with the properties
(H5)-(H6). Then there exists a convex function HA : R

n×A → R, an
ε > 0, and an open neighbourhood U ′ of SO(n)′ with the following
properties:

(a) The function HA is invariant under translations (i.e., under
adding shift directions) and strictly convex on the subspace of
all discrete gradients.

(b) We have

EA = HA − εN ′ in U ′



14 S. CONTI, G. DOLZMANN, B. KIRCHHEIM, AND S. MÜLLER

and

EA ≥ HA − εN ′ on R
n×A.

In particular, for each Λ ⊂ L and F ∈ M
n×n with F ′ ∈ U ′ the varia-

tional problem

Minimize
∑
x∈Λ

EA

(
D′

Ay
)
(x)

subject to

y(x) = Fx for all x ∈ L \ Λ◦

has the unique solution

y(x) = Fx for all x ∈ L.
The proof of the theorem is identically with the one of Theorem 4.2.

6. Appendix

For the convenience of the reader we give a proof for the characteriza-
tion of null-Lagragians which does not go through the Euler-Lagrange
equations (and which is shorter than the one in [Da89]). For proofs
starting from the Euler-Lagrange equations see [La42, Er62, Ed 62,
DF64, Ru66, Ru74], where also more general Lagrangians of the form
N(x, u,∇u) are treated.

Theorem 6.1. Let N : M
m×n → R be a continuous null-Lagrangian.

Then N(F ) is the sum of a constant term and linear combination of
minors (subdeterminants) of F .

Proof. First, considering essentially one-dimensional test functions φ
of the form φ(x) = εη(x)ah(x·b

ε
), where a ∈ R

m, b ∈ R
n and where η is

a smooth cut-off function, we infer that N is affine along any rank-one
line in M

m×n, i.e., on all lines of the form t �→ F + ta ⊗ b (see, e.g.,
[Da89]; in fact, if one uses test functions which take only finitely many
gradients, then continuity of N is not needed to reach the conclusion
[Fo88, Mü99]).

It follows that the second (distributional) derivative of N in any
rank-one direction A is zero. To see this we write A⊥ for the subspace
of M

m×n perpendicular to A and we obtain for ϕ ∈ C∞
0 (Mm×n) and



SUFFICIENT CONDITIONS FOR THE CAUCHY-BORN RULE 15

ψF (t) := ϕ(F + tA)〈
D2N(·)(A,A) , ϕ

〉
=

∫
Mm×n

N(G)D2ϕ(G)(A,A) dG

=

∫
A⊥

∫
R

N(F + tA)D2ϕ(F + tA)(A,A) |A| dt dHn−1(F ),

=

∫
A⊥

∫
R

N(F + tA)
d2

dt2
ψF (t) |A| dt dHn−1(F ) = 0,

since the inner integral vanishes as t→ N(F + tA) is affine.
Taking further derivatives of the distribution D2N(·)(A,A) we get

(6.1) DkN(·)(A,A,H3, . . . , Hk) = 0 if rank(A) ≤ 1.

The crucial observation is that this implies that

(6.2) DkN(·)(F, . . . , F ) = 0 if rank(F ) < k.

Indeed F can be written as a sum of at most k − 1 rank-one matrices,
F =

∑k−1
i=1 Ai, and by multilinearity the left hand side of (6.2) can be

expressed as a sum of terms of the form DkN(·)(Aj1 , . . . , Ajk
). Thus

at least two of the indices j1, . . . , jk must coincide and by (6.1) and the
symmetry of the derivative all these terms must vanish. Applying this
for k = d+1, where d = min(m,n) we see that Dd+1N(·)(F, . . . , F ) = 0
for all F ∈ M

m×n. Since Dd+1N(·) is a symmetric multilinear map this
implies that it vanishes identically (see Proposition 6 below). Hence N
is polynomial of degree at most d and the previous identities hold also
pointwise. We obtain from Taylor’s formula that

(6.3) N(F ) =

d∑
k=0

Pk(F ) with Pk(F ) =
1

k!
DkN(0)(F, . . . , F ),

the Pk’s being homogeneous polynomials of degree k over M
m×n.

We want to show that Pk contains only those products of matrix
entries that also occur in the definition of the subdeterminants of size
k. To do so we define for arbitrary subsets I ⊂ {1, . . . , m} and J ⊂
{1, . . . , n} the matrix FI,J by

(FI,J)i,j =

{
Fi,j if i ∈ I and j ∈ J,

0 else.

If I = {α1, . . . , αk} with 1 ≤ α1 < . . . < αk ≤ m and J = {β1, . . . , βk}
with 1 ≤ β1 < . . . < βk ≤ n then we define detk FI,J as the determinant
of the k × k matrix G given by Gl,m = Fαl,βm = (FI,J)αl,βm.
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The polynomial Pk(F ) is a linear combination of products Fα1,β1 ·
Fα2,β2 · . . . · Fαk ,βk

. We regroup the sum by collecting those terms for
which the indices αi and βi lie in fixed subsets I and J , of {1, . . . , m}
and {1, . . . n}, respectively. This yields

Pk(F ) =
∑

I⊂{1,...,m}
J⊂{1,...,n}

∑
α=(α1,...,αk)
{α1,...,αk}=I

∑
β=(β1,...,βk)
{β1,...,βk}=J

c̃α,βFα1,β1 · Fα2,β2 · . . . · Fαk,βk
.

We next show that if card(I) < k or card(J) < k then the inner
double sum is zero. We have rank(FI,J) < k and in view of (6.2) and
(6.3) this yields∑

α=(α1,...,αk)
{α1,...,αk}⊂I

∑
β=(β1,...,βk)
{β1,...,βk}⊂J

c̃α,βFα1,β1 · Fα2,β2 · . . . · Fαk,βk
= Pk(FI,J) = 0

for all F ∈ M
m×n. From this we conclude, by separate induction on

card(I) and card(J), that also∑
α=(α1,...,αk)
{α1,...,αk}=I

∑
β=(β1,...,βk)
{β1,...,βk}=J

c̃α,βFα1,β1 · Fα2,β2 · . . . · Fαk,βk
= 0

if card(I) < k or card(J) < k.
Thus we only need to consider index sets I and J which contain ex-

actly k elements. Regrouping terms which are obtained by permutation
within a fixed index set we see that

Pk(F ) =
∑

1≤α1<···<αk≤m
1≤β1<···<βk≤n

Pα,β(F ),

with

Pα,β(F ) =
∑
σ∈Sk

cσα,βFα1,βσ1
· Fα2,βσ2

· · · · · Fαk,βσk
,

where the sum is taken over the group Sk of all permutations. Here
cσα,β =

∑
τ∈Sk

c̃τ(α),(τ◦σ)(β), and τ(α)i = ατi
.

To conclude we only need to show that Pα,β(F ) is a multiple of
detk FI,J . To this end we consider the multilinear form

Qα,β(v1, . . . , vk) =
∑
σ∈Sk

cσα,βv
σ1
1 · vσ2

2 · · · · · vσk
k

on (Rk)k. Let Fv denote the matrix with columns v1, . . . , vk, i.e., Fv =∑k
i,j=1 v

j
i eαi

⊗ eβj
. Then

Qα,β(v1, . . . , vk) = Pα,β(Fv) = Pk(Fv)
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and we conclude from (6.2) and (6.3) that Qα,β(v1, . . . , vk) = 0 if
dim(span({v1, . . . , vk})) = rank(Fv) < k. By multilinearity this implies
thatQα,β is antisymmetric (indeed we have 0 = Q(v1+v2, v1+v2, . . .) =
Q(v1, v2, . . .) + Q(v2, v1, . . .)). Now every antisymmetric multilinear
form is a multiple of the determinant, i.e.,

Qα,β(v1, . . . , vk) = ĉα,β det(v1, . . . , vk) for all v ∈ (Rk)k.

Thus Pα,β(F ) = ĉα,β detk(FI,J) if we choose I = {α1, . . . , αk} and J =
{β1, . . . , βk} and the proof is finished. �

We have used the following well-known fact.

Proposition 6.2. Let V be a finite-dimensional vector space and let
M be a symmetric multilinear map on V k such that M(F, . . . , F ) = 0
for all F ∈ V . Then M vanishes identically.

This is obvious for k = 1. To carry out the induction step from k
to k + 1 one fixes G ∈ V , defines the k-linear form M ′(F1, . . . , Fk) :=
M(F1, . . . , Fk, G) and uses the identity

M ′(F, . . . , F ) =
1

k + 1

d

ds |s=0
M(F + sG, . . . , F + sG) = 0.
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