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Abstract

Let L be a lattice in R
d, d ≥ 2, and let A ⊂ R

d be a Lipschitz
domain which satisfies some additional weak technical regularity as-
sumption. In the first part of the paper we consider certain lattice
sums over points which are close to ∂A. The main result is that these
lattice sums approximate corresponding surface integrals for small lat-
tice spacing. This is not obvious since the thickness of the domain of
summation is comparable to the scale of the lattice.

In the second part of the paper we study a specific singular lattice
sum in d ≥ 2 and prove that this lattice sum converges as the lat-
tice spacing tends to zero. This lattice sum and its convergence are
of interest in lattice-to-continuum approximations in electromagnetic
theories—as is the above approximation of surface integrals by lattice
sums.

This work generalizes previous results [10] from d = 3 to d ≥ 2
and to a more general geometric setting, which is no longer restricted
to nested sets.
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1 Introduction

Lattice approximations of continuum theories have a long history and have re-
cently regained interest, e.g., in connection with hybrid atomistic-continuum
models [11] and martensitic phase transformation in shape-memory alloys [5].
One motivation is to link phenomenological models in the continuum setting
to properties of materials given at a lattice scale, which is in particular of
interest for the design of materials.

The motivation for the work in the first part of this paper goes back to
Cauchy’s work in elasticity [1]. In his molecular theory of stress, cf. also [Lo,
Note B], a key step in his arguments is based on the following basic geometric
fact: The volume of a (degenerate) cylinder equals the area of its base times
its height. Let Cz be the cylinder in Figure 1 with base I (a ‘nice’ subset of
R

2) and height n ·z, where n is the normal to I and z ∈ R
3. Then the volume

of Cz equals the area of I times n · z. In what follows we are in particular
interested in cylinders of small height/thickness, i.e., small |z|.

n

z

I

Figure 1: A (degenerate) cylinder Cz with base I and of height n · z, where
n denotes the normal to I.

Now assume that there is a three dimensional (Bravais) lattice L of atoms
given. Moreover assume that there acts an elastic force between any pair of
atoms. Cauchy calculated the force which is exerted by all atoms on one side
of a planar interface I on all atoms on the other side. A crucial step in his
study is related to the following sum over all lattice points in a cylinder Cz∑

x∈Cz∩L
g(x), (1)

where g is some smooth function that reflects physical properties related to
the elastic force [Lo, p. 619].

Cauchy then argued as follows: If Cz is large enough, the number of lat-
tice points in Cz is bounded by the volume of Cz divided by the volume of
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a unit cell. For this argument he assumed that I is contained in a plane of
lattice points and z is a lattice vector. Then, the number of lattice points in
Cz is bounded by the area of I times n · z divided by the volume of a unit
cell. To link this observation to the results of this paper, where in particular
I does not need to be flat, we rephrase the observation as follows: Cauchy
estimated the number of lattice points in Cz by the surface integral

∫
I n · z ds

divided by the volume of a unit cell.

In this article we consider conceptually the same problem but in a more
general setting. In our case, I is the interface, i.e., the common boundary, of
two Lipschitz domains A and B which satisfy some regularity assumptions,
see Assumption A1 in Section 2 for details. In particular, I is not required to
be flat as in Cauchy’s work. Therefore, the interface need not be contained in
a plane of lattice points and thus may intersect the interior of unit cells, which
makes the problem mathematically interesting. To overcome the difficulties,
we use the concept of so-called modified unit cells which was introduced in
[7, 9, 10], cf. also (13) and Lemma 11 below.

Close to edges and corners of A and B and close to points of I where
n · z is almost zero, Cauchy’s observation about the number of points in a
cylinder Cz is not useful anymore. However, it turns out that the volume of
neighbouring regions about those points converges like |z|2 and is therefore
of lower order, cf. Definitions 6 and 7 and Lemmas 9 and 10.

The main result is Theorem 8. Generalizing the representation of (1)
by a surface integral, we obtain an approximation of lattice sums by sur-
face integrals for all dimensions d ≥ 2. Analogous statements under stronger
assumptions are given in [7, 9, 10] in the context of magnetic forces in contin-
uous media. There it is in particular assumed that d = 3 and ∂A∩∂B = ∂A,
i.e., A and B are nested sets. Estimates as in Proposition 1 were already
given under stronger assumptions; the finer estimates in Theorem 8 are new.

The more general setting in this article is motivated by work on magnetic
forces between two permanent magnets A and B of cuboidal or rectangular
shape at distance greater or equal to zero as studied in [8]. If the distance be-
tween two magnets A and B is zero, these sets satisfy Assumption A1 below,
but do not satisfy the assumptions of the previous result in [10, Proposi-
tion 1], even if d = 3 since the magnetic domains A and B are not nested.

The new geometrical setting requires a new formulation of the previous
assumptions on the regularity of the domains. In particular, we need to
adapt the so-called non-degeneracy condition (S), compare Definition 3 and
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[10, Definition 2].
In [8], not only three-dimensional problems but also two-dimensional

problems are considered; Theorem 8 is applied in the cases d = 2 and d = 3
to prove a magnetic force formula. This is the main motivation for proving
Theorem 8 in two and three dimensions. However, in dimensions d ≥ 4,
Theorem 8 is for the time being only interesting from a mathematical point
of view.

The first and the second part of this article are linked by their applica-
tions to the calculation of so-called short range forces, cf. [8]. See also the
comment after Theorem 13.

In the second part of this article we prove the convergence of a singular
lattice sum as the lattice spacing tends to zero. This continuum limit arises
for instance in the context of magnetic forces, cf. [10]. In [10, Lemma 5] the
convergence result is proved for d = 3. Here we prove the convergence also
for d = 2 and for d ≥ 4, see Theorem 13. The result of the former case is
again of interest in [8] and is applied in the derivation of a so-called short-
range part of a magnetic force formula. The case d ≥ 4 is first of all only of
mathematical interest.

The terms in the sum consist of derivatives of the fundamental solution
of Laplace’s equation, cf. (25). In particular, the terms are of order |z|−d in d
dimensions. Thus the sum cannot converge absolutely. It only converges due
to cancellations. In the study of sums of this type, methods from number
theory, in particular form the theory of modular forms can be used, see,
e.g., [12]. However, for the purpose of this article a more naive approach is
sufficient: We follow the ideas from [10]. That is, we replace the sum by an
integral and show that the error terms are of higher order. These estimates
as well as the appropriate definition of the terms of the sum in dimensions
d = 2 and d ≥ 4 are new.

2 Approximation of surface integrals by lat-

tice sums

In this section we consider the approximation of some surface integrals by
certain lattice sums. Let the dimension d ≥ 2 be fixed and let L be a Bravais
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lattice, i.e.,

L =
{
x ∈ R

d : x =
d∑

i=1

µiei, µi ∈ Z

}
, (2)

where (e1, . . . , ed) is a basis of R
d. For simplicity we assume that the unit

cell U = {x ∈ R
d : x =

∑d
i=1 λiei, λi ∈ [0, 1)} has unit volume. We call 1

�
L,

� ∈ N, the scaled Bravais lattice, where 1
�
L := {y : y = 1

�
x for some x ∈ L}.

Similarly, we define 1
�
U . Furthermore, we denote translated unit cells by

1
�
U(x) := x + 1

�
U .

A domain A ⊂ R
d is said to be Lipschitz, if, locally, the boundary of

A is the graph of a Lipschitz continuous function and A is on one side of
the boundary only. Moreover, let n denote the outer normal to ∂A and let
Hk denote the k-dimensional Hausdorff measure. Throughout the paper, the
sets A and B satisfy the following assumption.

Assumption A1

(i) A and B are bounded Lipschitz domains in R
d such that A ∩ B = ∅.

(ii) A and B have some boundary in common, i.e., Hd−1(∂A ∩ ∂B) > 0.
(iii) Ā ∪ B̄ satisfies the outer cone property, i.e., for each x ∈ ∂(Ā ∪ B̄)
there exists a cone, Cα

x , with opening angle α > 0 pointed at x such that
Cα

x ∩ (Ā ∪ B̄) = {x}.
(iv) ∂A, ∂B and ∂A∩ ∂B satisfy the non-degeneracy condition (S), cf. Def-
inition 3.
(v) ∂A ∩ ∂B satisfies the neighbourhood estimate, see Definition 4 below.

The outer cone property excludes inward pointing cusps and is for in-
stance satisfied if A∪B∪ (∂A∩∂B) is a Lipschitz domain. It is also satisfied
for two domains A, B which are of polygonal shape (and of which the union
might not be Lipschitz); this is of interest from an applicational point of
view, cf. [8].

Note that Assumption A1 includes the case of A and B being nested sets,
which is supposed in [10] for d = 3.

Assumptions A1 (iv) and A1 (v) are restrictions on the shape of ∂A, ∂B
and ∂A ∩ ∂B, respectively. They are for instance satisfied if A and B are
polyhedra which are Lipschitz domains. Before giving the precise definition
of these conditions and commenting on the notions further, we state a first
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result. To this end we fix a vector z ∈ 1
�
L \ {0} and set, cf. Figure 2,

Az := {x ∈ Ā : x + z ∈ B} ≡ Ā ∩ (B − z). (3)

A

∂A ∩ ∂B

B

z

Figure 2: A slice of A and B indicating Az.

We also consider a function f : R
d → R which is assumed to be Lipschitz

continuous on Az. Note that f(x) is in particular defined for each x ∈ 1
�
L.

For later reference we set

Assumption A2 The function f : R
d → R is Lipschitz continuous on Az.

Finally, we set (·)+ = max{0, ·} and are now in a position to state

Proposition 1 Let A, B and f satisfy Assumptions A1 and A2, respectively.
Fix 0 < δ 
 1 and z ∈ 1

�
L \ {0} such that |z| ≤ δ. Then there exists an

�0 ∈ N such that for all � ≥ �0∣∣∣ 1

�d

∑
x∈Az∩ 1

�
L

f(x) −
∫

∂A∩∂B

f(ξ)(n(ξ) · z)+ dHd−1(ξ)
∣∣∣ ≤ C|z|4/3. (4)

The constant C only depends on the dimension d, sup |f |, the Lipschitz con-
stant of f and on A and B.

We give the proof of Proposition 1 below. It is an easy consequence of the
following theorem, Theorem 8, which asserts a sharper error estimate that
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involves also the lattice parameter �. In order to state the theorem, we need
to introduce further notions, which are used in the proof of the theorem.
First we give the precise definition of the non-degeneracy condition (S). For
brevity and notational reasons, we write out the definition only for ∂A∩∂B.
The definitions for ∂A and ∂B satisfying the non-degeneracy condition (S)
go analogously.

Definition 2 We say that ∂A ∩ ∂B is piecewise C1,1 if there exist finitely
many pairwise disjoint sets Ui ⊂ ∂A∩∂B which are relatively open in ∂A∩∂B
and have the following properties:
(i) Ui is a connected, orientable C1,1 submanifold of R

d and the normal n to
∂A restricted to Ui is Lipschitz continuous up to the boundary,
(ii) (∂A ∩ ∂B) ⊂

⋃
i Ūi and

(iii) the relative boundary ∂Ui is a finite union of connected C1,1 submanifolds
of R

d. If d = 2, ∂Ui is required to be a union of finitely many points in R
d.

In d = 3, condition (iii) in Definition 2 can be replaced with: ∂Ui is a
finite union of rectifiable curves, cf. [10, Definition 1].

Definition 3 We say that ∂A ∩ ∂B satisfies the non-degeneracy condition
(S) if it is piecewise C1,1 and if for all z ∈ R

d \ {0} the relative boundary of
the set

(∂A ∩ ∂B)+ =
{

x ∈ (∂A ∩ ∂B) ∩
(⋃

i

Ui

)
: n(x) · z > 0

}
(5)

is a finite union of connected C1,1 submanifolds of R
d of which the number

and the total Hd−2 measure are bounded independently of z. If d = 2, we
simply assume that the boundary of the set in (5) is a finite union of points
of which the number is uniformly bounded in z.

The non-degeneracy condition (S) was introduced in [9, Definition 3.4],
cf. also [10, Definition 2], for the case d = 3. It controls the number of iso-
lated boundary points which have the same tangent. That is, this condition
excludes ‘rough’ boundaries which have an infinite number of indentations
and protrusions. However, it is for instance satisfied for polyhedra which are
Lipschitz. For further examples and a discussion of this notion for d = 3 see
[10, p. 236]. We make use of the non-degeneracy condition (S) in the proof
of Lemma 9.
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Here and in the following, let z ∈ L \ {0} ∩Bδ for some fixed 0 < δ 
 1.
We split the set Az into a bad set B ∩ Az, which essentially gives rise to the
right hand side of (4) and a good set G, which contributes to the surface
integral in (4) (cf. Figure 3). To define these sets, we introduce

Γ := ∂((∂A ∩ ∂B)+) ∪
⋃
i

∂Ui (6)

with (∂A ∩ ∂B)+ as in Definition 3. Note that Γ is a union of finitely many
connected C1,1 submanifolds. These submanifolds are denoted by Γi, i =
1, . . . , k. Then Γ =

⋃k
i=1 Γi. Before we define the good and bad sets, we give

the precise definition of the neighbourhood estimate.

Definition 4 Let ∂A ∩ ∂B satisfy the non-degeneracy condition (S), let Γ
and Γi be as above and let r > 0. The r-neighbourhood of Γi is

Γi(r) =
{
x ∈ R

d : dist(x, Γi) ≤ r
}
. (7)

Its d dimensional Lebesgue measure is denoted by |Γi(r)|. We say that ∂A ∩
∂B satisfies the neighbourhood estimate if there exist constants c > 0 and
r0 > 0 such that for any Γi

|Γi(r)| ≤ cr2 (8)

for all r < r0.

Remark 5 (i) If d = 2, (8) always holds, trivially.
(ii) If d = 3, we proceed as in [10, p. 238] in order to show: If Γ is a finite
union of rectifiable curves Γi, (8) holds for small enough r. Indeed, let Li

denote the length of Γi. Then we can cover Γi by �Li

4r
+2 balls of dimension 3

and radius 2r, where �a is the integer part of a. Then |Γi(r)| ≤ cr3(�Li

4r
+2).

If r ≤ 3
2
Li, we obtain |Γi(r)| ≤ cr3 Li

r
≤ cr2.

(iii) In d > 3 dimensions, the situation is more subtle. However, under certain
assumptions on the regularity of Γ, we can estimate Γi(r) by the volume of
tubes. Consider R

d as a Riemannian manifold with Euclidean metric and let
P be a smooth submanifold. Then a tube T (P, r) of radius r ≥ 0 about P is
the set

T (P, r) = {x ∈ R
d : ∃ a geodesic ξ of length L(ξ) ≤ r from x

meeting P orthogonally},
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cf. [4, Section 3.1] for details. The volume of such a tube is a polynomial
in r by Weyl’s formula, see, e.g., [4, Eqn. (1.1)]. The smallest power in the
polynomial is d − q where q denotes the dimension of the submanifold P .
Hence, if q = d − 2, we have |T (P, r)| ≤ cr2 for small r.

We apply this estimate to our setting in order to give an example for (8)
in d > 3: Let us assume for a moment that Γi is not only C1,1 but smooth and
that the relative boundary ∂Γi is a finite union of smooth d− 3 dimensional
submanifolds of R

d. Let V be the sum of the volumes of the r tubes about
these submanifolds. By Weyl’s tube formula, V is of the order of r3 for small
r, so, in particular, V ≤ cr2 for small r.

The volume of Γi(r) is bounded by the volume of the tube T (Γi, r) plus V .
If Γi is a smooth d−2 dimensional submanifold in R

d, we have |T (Γi, r)| ≤ cr2

by Weyl’s tube formula. Hence we have (8) for small r.

Now we give the definitions of the so-called good and bad sets of Az, cf.
Figure 3. The bad set B consists of two parts. The first part, called BI

contains points close to Γ, i. e., it contains the lattice points which are close
to edges and corners of A and B which belong to ∂A ∩ ∂B. The remaining
part BII contains the points which are close to those boundary points at
which z is nearly tangential. We always assume z ∈ L \ {0}, |z| ≤ δ.

Definition 6 Let C0 be a suitable large constant, which satisfies in particular
C0 > max{3, diamU}, and let

ρ = C0(|z| + �−β), β ∈ (
1

2
, 1). (9)

The first bad set consists of the following lattice points

BI = {x ∈ 1
�
L : dist(x, Γ) < 8ρ}.

The second bad set is related to those boundary points of which the
normal is almost orthogonal to z. In order to define this set we introduce a
projection

pz : Az → ∂A

which projects each x ∈ Az along the direction and orientation of z on ∂A.
There might be more than one of such boundary points. If this is the case,
we choose that one which is closest to x. Notice that the image of pz need
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not be contained in ∂A ∩ ∂B, see, e.g., Figure 2.

The following technical aside will turn out to be useful later. Let ∂+Az

denote the positive part of ∂Az , i. e. {x ∈ ∂Az : nAz(x)·z > 0}, where nAz(x)
is the outer normal to ∂Az . Notice that there might be points in ∂+Az which
do not belong to ∂+A, the positive part of ∂A, see, e.g., Figure 3.

By construction, ∂+Az \ ∂+A is a subset of ∂(B − z). Thus it is locally
the graph of a Lipschitz continuous function. For small |z|, ∂+Az \ ∂+A
is therefore close to the boundary of (∂A ∪ ∂B)+. Hence we may assume
that the constant C0 above is chosen so large that {x ∈ Az ∩ 1

�
L : pz(x) ∈

∂+A \ ∂+Az} is entirely contained in BI . Then we have pz(x) ∈ ∂Az for all
x ∈ (Az ∩ 1

�
L) \ BI , which is tacitly used in the proof of Lemma 10.

Moreover, we can treat all x ∈ Az whose projection pz(x) belongs to ∂A
but not to ∂B (cf. Figure 3) as elements of BI . Indeed, by the outer cone
property, Assumption A1 (iii), and the regularity assumptions on ∂A, it fol-
lows that dist(pz(x), Γ) ≤ c|z| with a constant c > 0 depending only on the
data related to the regularity assumptions and the cone property. Thus we
can choose C0 so large that dist(pz(x), Γ) ≤ C0|z| < ρ for all x ∈ Az with
pz(x) ∈ ∂A \ ∂B.

The second bad set and the good set are defined as follows, cf. Figure 3.

Definition 7 Let ρ be as in (9) and let C1 be a suitable large constant, which
satisfies in particular C1 > max{12 diamU , 6 Lip(n)}. Then the second bad
set is defined as

BII = {x ∈ (Az ∩ 1
�
L) \ BI : n(pz(x)) · z

|z| ≤ C1(�
β−1 + ρ)}.

The good set is said to be

G = (Az ∩ 1
�
L) \ (BI ∪ BII). (10)

Since z ∈ 1
�
L \ {0} by assumption, there exists a constant c̃ > 0, which

depends only on the given Bravais lattice, such that c̃
�
≤ |z|. Moreover it

holds |z|+ 1
�
diamU < ρ. We always assume that δ is so small and �0 so large

that C1(�
β−1 + ρ) 
 1 and c̃

�
≤ |z| < δ for all � ≥ �0. In particular, we use

|z| < 1; hence |z| < |z|β, β ∈ (1
2
, 1) and ρ < c|z|β .

The main result of this section is:
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∂A ∩ ∂B

⊂ G
z

A

⊂ BI

⊂ BII

B

Figure 3: A slice of A and B indicating the good and bad sets as well as Az.
The bullets indicate the set Γ.

Theorem 8 Let A and B satisfy Assumption A1 and let f satisfy Assump-
tion A2. Fix 0 < δ 
 1 and z ∈ 1

�
L \ {0} such that |z| ≤ δ. Then there

exists an �0 ∈ N such that for all � ≥ �0∣∣∣ 1

�d

∑
x∈Az∩ 1

�
L

f(x) −
∫

∂A∩∂B

f(ξ)(n(ξ) · z)+ dHd−1(ξ)
∣∣∣ ≤ C(ρ2 + �β−1|z|), (11)

where ρ = C0(|z| + �−β) with β ∈ (1
2
, 1) as in (9). The constant C only

depends on the dimension d, sup |f |, the Lipschitz constant of f and on A
and B.

In preparation for the proof of the theorem it is helpful to estimate at
first the number of points in the bad sets BI and BII , respectively. The proof
of the following lemma is along the lines of the proof of Lemma 1 in [10]; it is
adapted here to dimensions d ≥ 2 and is based on the neighborhood estimate
(8) as well as on the non-degeneracy condition (S).
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Here and in the following, c denotes a generic constant that depends at
most on the dimension d, on properties of f and on A and B.

Lemma 9 If Assumption A1 holds, the number of points in BI is controlled
by

#BI ≤ c�dρ2.

Proof: (i) If d = 2, Γ is a collection of single points xi, of which the num-
ber is uniformly bounded by the non-degeneracy condition (S). Let B(xi, ρ)
be the disc with center xi ∈ Γ and radius ρ. Then BI ⊂

⋃
i B(xi, 8ρ). Thus⋃

x∈BI

1
�
U(x) ⊂

⋃
i B(xi, 9ρ). The number of points in BI can be estimated

by the volume of
⋃

x∈BI

1
�
U(x) divided by the volume of a scaled unit cell 1

�
U ,

i.e., divided by 1
�2

. Thus #BI ≤ cρ2�2.

(ii) Now let d > 2. By the non-degeneracy condition (S), Γ is a finite
union of connected C1,1 submanifolds of R

d of which the number and the total
Hd−2 measure is uniformly bounded. Thus it suffices to consider a single of
these submanifolds of Γ, which are, as before, denoted by Γi, i = 1, . . . , k.

We cover Γi by d dimensional balls B(xj , ρ), xj ∈ R
d, such that Γi ⊂⋃

j B(xj , ρ). The smallest number of such balls of radius ρ needed to cover
Γi is

N(Γi, ρ) = min
{

m : Γi ⊂
m⋃

j=1

B(xj , ρ) for some xj ∈ R
d
}
.

Then, cf. [6, Eqns. (5.4), (5.5)],

N(Γi, ρ) ≤
|Γi(

ρ
2
)|

ωd

(
ρ
2

)d
,

where ωd is the volume of the d dimensional unit ball and Γi(
ρ
2
) denotes the

ρ
2
-neighbourhood of Γi, cf. (7). By assumption, the neighbourhood estimate

(8) holds, i.e., |Γi(
ρ
2
)| ≤ cρ2. Hence

N(Γi, ρ) ≤ c

ρd−2
, (12)

where c is a constant which only depends on d, A and B.
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The number of points in BI can be estimated by the volume of
⋃

x∈BI

1
�
U(x)

divided by the volume of the scaled unit cell, 1
�d . We have

⋃
x∈BI

1

�
U(x) ⊂

k⋃
i=1

N(Γi,ρ)⋃
j=1

B(xj , 10ρ).

By (12) and the non-degeneracy condition (S), we obtain #BI ≤ ck 1
ρd−2 ρ

d�d

and thus the statement. �

Lemma 10 Let Assumption A1 hold. Then

#BII ≤ c�d|z|(�β−1 + ρ).

The proof of this lemma essentially follows the proof of Lemma 2 in [10], in
which the analogous statement is given for d = 3. Notice that z is fixed in the
beginning. The vector z thus distinguishes one direction, say the e1-direction
in some coordinate system which is used to parameterize the boundary. The
other directions, e2, . . . , ed, however, do not play an important role. This
allows to generalize the proof in [10] easily to dimensions d ≥ 2.

Proof: By the technical aside before Definition 7, we can assume here
that the projection pz(x) belongs to ∂A ∩ ∂B for all x ∈ BII . Let x ∈ BII

and consider the Hd−1-measure of the set

Bx := B(pz(x), ρ) ∩ (∂A ∩ ∂B),

where ρ = C0(|z|+�−β) as above and B(pz(x), ρ) is the ball of radius ρ about
pz(x). For sufficiently large �0 and sufficiently small δ, the set Bx is connected
for all � ≥ �0. Since x ∈ BII and ∂A ∩ ∂B is piecewise C1,1 by assumption,
the set Bx and even the set B(pz(x), 5ρ)∩(∂A∩∂B) are contained in a single
chart Ui and in (∂A ∩ ∂B)+. (Recall Definition 2 for the definition of Ui.)

As Ui is C1,1 by assumption, the area of Bx can be estimated from below
by the Hd−1-measure of a d−1-dimensional ball of radius ρ. Thus Hd−1(Bx) ≥
cρd−1 for some constant c > 0. Hence

#BII ≤ c

∑
y∈BII

Hd−1(By)

ρd−1
.
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To prove the lemma, it remains to show that
∑

y∈BII
Hd−1(By) ≤ c�d|z|(�β−1+

ρ)ρd−1. Let χy denote the characteristic function of By. Then∑
y∈BII

Hd−1(By) =
∑
y∈BII

∫
∂A∩∂B

χy(x) dHd−1(x)

=

∫
∂A∩∂B

∑
y∈BII

χy(x) dHd−1(x)

≤ Hd−1(∂A ∩ ∂B) sup
x∈BII

∑
y∈BII

χy(pz(x)).

Next we choose an orthonormal coordinate system e1, . . . , ed such that z =
|z|e1 and n(pz(x)) · ei = 0 for all i = 2, . . . , d − 1. Then ∂A ∩ ∂B is locally
represented as a C1,1 graph over the e1, . . . , ed−1-hyperplane.

The remainder of the proof is based on a (lengthy) exploitation of the
condition on n(pz(z)) · z

|z| in the definition of BII . This calculation can be

easily adapted from [10, pp. 239–240] by replacing the 3-component of the
vectors with the d-component and is therefore not repeated here in detail
for brevity. A further small change in the proof concerns the volume of the
scaled unit cell which is now 1

�d . Moreover note that the d − 1 dimensional
ball about the point pz(x)′, which is the projection of pz(x) on the hyperplane
e1, . . . , ed−1, has volume cρd−1. With these replacements in the proof in [10],
Lemma 10 follows. �

Next we study properties of the good set. Let x ∈ G and notice that the
translated scaled unit cell 1

�
U(x) = x + 1

�
U does not need to be contained

in Az, entirely, cf. Figure 4. We therefore construct a modified unit cell
V(x) ⊂ Az with similar properties as 1

�
U(x). In particular we show that

|V(x)| = |1
�
U(x)| = 1

�d and V(x) ∩ V(x̃) = ∅ if x, x̃ ∈ G, x �= x̃.
If the unit cell 1

�
U(x) is entirely contained in Az, we simply set V(x) =

1
�
U(x). In general we define (see Figure 4)

V(x) :=
K⋃

k=−K

1

�
U(x + kz) ∩ Az, (13)

where K := � ρ
|z|. This notion as well as the following Lemma 11 and its

proof are based on [7, 9, 10] for d = 3. Here we generalize the results to
arbitrary dimensions d ≥ 2. Note that we make use of the fact that z is a
lattice vector in the proof below.
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z

x + 2z + 1
�
U (2)x + z + 1

�
U (1)x + 1

�
U (0)

B

V(x) 1
l
U(y)

A

x

x − z + 1
�
U (−1)

y

∂A ∩ ∂B

Figure 4: An example of a modified unit cell V(x). For the definition of U (k),
k = −1, 0, 1, 2 see (16).

Lemma 11 Let V(x), x ∈ G, be the modified unit cell defined in (13) and
let Assumption A1 hold. Then

|V(x)| =
1

�d
(14)

and

V(x) ∩ V(x̃) = ∅ if x, x̃ ∈ G and x �= x̃. (15)

Proof: To show (14), we introduce the truncated unit cells (cf. Figure 4)

U (k) := {y ∈ U : x + kz + 1
�
y ∈ Az}. (16)

Notice that the x-dependence is suppressed in the notation. Since z is a
lattice vector, U (k) ∩ U (k̃) = ∅ if k �= k̃. Thus, if we know that

K⋃
k=−K

U (k) = U , (17)
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we have

V(x) =
K⋃

k=−K

(
x + kz + 1

�
U (k)

)
and hence (14) follows. To prove (17), we first consider the case n(x)· z

|z| ≤ 1/2
and choose the same coordinate system as in the proof of Lemma 10. That
is, ∂A∩ ∂B is locally represented as a C1,1 graph over the e1, . . . , ed−1 plane.
Set x′ = (x1, . . . , xd−1) and let u : R

d−1 → R be a parameterization of the
boundary.

By making use of the assumption x ∈ G, i.e., in particular, x /∈ BII , we
can show in a close analogy to the proof of equation (19) in [10] (with the
3-component replaced with the d-component) that the map

λ �→ u(x′ + λz′ +
1

�
y′) (18)

is strictly increasing. Moreover one can show analogously that there exists a
unique λ̃(y) ∈ (−K, K) such that

u(x′ + λz′ + 1
�
y′) − (x + 1

�
y)d

⎧⎨
⎩

> 0 if λ > λ̃(y)

= 0 if λ = λ̃(y)

< 0 if λ < λ̃(y)

.

Thus

x + kz + 1
�
y ∈ Az ⇐⇒ k = k̃(y) := �λ̃(y), (19)

which yields (17) and thus (14).
The statement in (15) is proved by contradiction: If V(x) ∩ V(x̃) �= ∅ for

x �= x̃, then there would exist k �= k̃(y) ∈ {−K, . . . , K} such that x, x̃ ∈ G
and x + kz = x̃ + k̃(y)z, i. e. x̃ = x + (k − k̃(y))z. But the map in (18) is
strictly increasing. Thus k �= k̃(y) cannot hold in view of the definition of
Az.

If n(x) · z
|z| > 1

4
, similar arguments apply. In this case we choose the

coordinate system such that z
|z| = ed and such that ∂A ∩ ∂B is locally a

graph over the e1, . . . , ed−1 plane. �

As a final preparation for the proof of Theorem 8, we estimate the number
of points in the good set.
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Lemma 12 Let Assumption A1 hold. Then the number of points in G is
bounded by

#G ≤ c�d|z|.

Proof: The proof is in the lines of [10, p. 244] and is based on the notion
of modified unit cells and Lemma 11. Define

V :=
⋃
x∈G

V(x). (20)

By construction, #G = �d|V|. Thus it remains to estimate |V|, which we do
with the help of the coarea formula, see, e.g., [2, Theorem 3.2.12].

If x ∈ G, then pz(x) =: ξ is the projection of x on ∂A ∩ ∂B along
the direction and orientation of z. Let T denote the image of V under
pz. Since ∂A ∩ ∂B can locally be represented as a C1,1 graph, the lines
t �→ x + tz intersect ∂A ∩ ∂B locally at most once. Let F : V → R be the
map x �→ t. Then ∇F (x) is parallel to n(pz(x)) and it holds z ·∇F (x) = −1.
Thus ∇F (x) = − 1

n(pz(x))·zn(pz(x)) and the Jacobian of F equals |∇F |, i.e.,

|n(ξ) · z|−1. Hence the coarea formula yields

|V| =

∫ 1

0

∫
F (x)=t

1

|∇F (x)| dHd−1(x) dt =

∫ 1

0

(∫
T
|n(ξ) · z| dHd−1(ξ)

)
dt

=

∫
T
|n(ξ) · z| dHd−1(ξ) ≤ |z|Hd−1(∂A ∩ ∂B).

Thus #G = c�d|z| as asserted. �

We are now ready to prove Theorem 8.

Proof of Theorem 8: By Lemma 9 and Lemma 10, we have

#BI + #BII ≤ c�d(ρ2 + |z|(�β−1 + ρ)) ≤ c�d(ρ2 + |z|�β−1) (21)

as |z| < ρ by assumption. Thus∣∣∣ ∑
x∈BI∩Az

f(x)
1

�d
+

∑
x∈BII

f(x)
1

�d

∣∣∣ ≤ c�d sup |f(x)| (ρ2 + |z|�β−1)
1

�d

≤ c(ρ2 + �β−1|z|).
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Therefore, in (11), it remains to consider the sum over the points x ∈ G. To
estimate this sum, we make use of the modified unit cell V(x), cf. (13). Let
x ∈ G, then V(x) is contained in B(x, 2ρ) as K|z|+ diamU

�
≤ ρ

|z| |z|+
diamU

�
≤

2ρ. By (14), (15), (20), the Lipschitz continuity of f and Lemma 12, we
obtain∣∣∣ ∑

x∈G
f(x)

1

�d
−

∫
V

f(y) dy
∣∣∣ =

∣∣∣ ∑
x∈G

(∫
V(x)

f(x) dy −
∫
V(x)

f(y) dy
)∣∣∣

≤ c
∑
x∈G

|V(x)|Lip(f)ρ ≤ c#G 1

�d
ρ

≤ c|z|ρ ≤ c|z|1+β (22)

since ρ ≤ c|z|β. It thus remains to show that the integral approximation∫
V f(x) dx of the lattice sum can itself be estimated by a surface integral of

the asserted form.
As before, we denote the image of the projection of V = ∪x∈GV(x) along

z on ∂A ∩ ∂B by T . We obtain with the help of the coarea formula (cf. the
proof of Lemma 12)∫

V
f(x) dx =

∫ 1

0

∫
T

f(ξ − tz)|n(ξ) · z| dHd−1(ξ) dt

=

∫ 1

0

∫
T

f(x)|n(ξ) · z| dHd−1(ξ) dt

+

∫ 1

0

∫
T

(
f(ξ − tz) − f(x)

)
|n(ξ) · z| dHd−1(ξ) dt.

By the Lipschitz continuity of f , the second term on the right-hand side can
be bounded by a constant times |z|2 times Hd−1(∂A ∩ ∂B). Thus it remains
to estimate∣∣∣ ∫

T
f(ξ)|n(ξ) · z| dHd−1(ξ) −

∫
∂A∩∂B

f(ξ)(n(ξ) · z)+ dHd−1(ξ)
∣∣∣

≤
∣∣∣ ∫

(∂A∩∂B)\T
f(ξ)(n(ξ) · z)+ dHd−1(ξ)

∣∣∣
≤

∫
(∂A∩∂B)\T

|f(ξ)|(n(ξ) · z)+ dHd−1(ξ).

Recall that we deal with the good set G here. For ξ ∈ (∂A ∩ ∂B) \ T we
therefore either have n(ξ) · z ≤ C1(�

β−1 + ρ)|z| or dist(x, Γ) < 8ρ for all

18



x ∈ p−1
z (ξ) ∩ Az. Since |x − pz(x)| ≤ ρ, the latter case can be estimated by

dist(ξ, Γ) < 9ρ for all ξ ∈ (∂A ∩ ∂B) \ T .
We write Γ =

⋃k
i=1 Γi, as in the comment following (6). The neighbour-

hood estimate (8) implies |Γi(9ρ)| ≤ cρ2. Thus Hd−1(Γ(9ρ) ∩ (∂A ∩ ∂B)) ≤
kHd−1(Γi(9ρ) ∩ (∂A ∩ ∂B)) ≤ k|Γi(9ρ)| ≤ cρ2. Hence we have∫

(∂A∩∂B)\T
|f(ξ)|(n(ξ) · z)+ dHd−1(ξ)

≤ sup |f |
(∫

Γ(9ρ)∩(∂A∩∂B)

|z| dHd−1(ξ) +

∫
∂A∩∂B

C1(�
β−1 + ρ)|z| dHd−1(ξ)

)
≤ cρ2|z| + c(�β−1 + ρ)|z|. (23)

In summary, (21), (22) and (23) yield∣∣∣ 1

�d

∑
x∈Az∩ 1

�
L

f(x) −
∫

∂A∩∂B

f(ξ)(n(ξ) · z)+ dHd−1(ξ)
∣∣∣

≤ c(ρ2 + �β−1|z| + ρ|z| + ρ2|z|) ≤ c(ρ2 + �β−1|z|),

since |z| < ρ < 1. �

It remains to prove Proposition 1. As mentioned before, this proof is an
easy consequence of Theorem 8.

Proof of Proposition 1: We recall from above: There exists a constant
c̃ > 0 such that c̃

�
≤ |z|. Moreover, |z| < 1 and hence ρ < c|z|β for some

constant c > 0 by definition. Thus the right-hand side of (11) is bounded as
follows

ρ2 + �β−1|z| ≤ c(|z|2β + |z|2−β) ≤ c|z|4/3,

where the last step follows by setting β = 2
3
. This together with Theorem 8

gives Proposition 1. �

In this section we proved an approximation of certain surface integrals by
lattice sums which are taken over lattice points close to the surface (Proposi-
tion 1 and Theorem 8). As mentioned before, these results generalize previous
results [10] to arbitrary dimension d ≥ 2 and to more general geometrical
settings. Now, the above approximations can be applied also to non-nested
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sets, which is of interest in [8] and also for instance for domains as they
typically occur in micromagnetism.

Despite this progress, there remains an open problem which is of inter-
est both for applications and for mathematical analysis. This concerns the
non-degeneracy condition (S), which is a mild assumption on the shape of
the domains. However, as already pointed out after Definition 3, the non-
degeneracy condition (S) excludes ‘rough’ surfaces, i.e., surfaces which have
infinitely many wiggles. A generalization of Theorem 8 and Proposition 1
to domains which have infinitely many indentations and protrusions remains
an open problem.

3 Convergence of a singular lattice sum

In this section we prove the convergence of a singular lattice sum as the lattice
spacing tends to zero. The sum consists of the expressions ∂i∂jP

(δ)
k (z), where

P
(δ)
k (z) is essentially a derivative of the fundamental solution of Laplace’s

equation, see (24) for a precise definition. Thus ∂i∂jP
(δ)
k (z) is of order |z|−d−1.

In the terms of the sum studied below, ∂i∂jP
(δ)
k (z) is multiplied by zp, the

pth component of the lattice vector z. Note that ∂i∂jP
(δ)
k (z)zp is of singular

order. Due to the singularity, the sum in (25) does not converge absolutely;
it only converges due to cancellations, which makes the convergence proof
subtle. Theorem and proof below are inspired by an analogous one for d = 3
in [10, Lemma 5]. See [10] also for an application and the derivation of this
sum in the context of magnetostatics. Here we generalize the result to d = 2
and d ≥ 4. For an application of Theorem 13 to magnetic forces in d = 2 see
[8].

Fix a point y ∈ R
d. Then the normalized fundamental solution of

Laplace’s equation −∆u = 0 is given by (see, e.g., [3, p. 17])

N(x − y) =

{
− 1

2π
ln |x − y|, if d = 2

1
d(d−2)ωd

|x − y|2−d, if d ≥ 3
for all x ∈ R

d, x �= y,

where ωd denotes the volume of the unit ball in R
d (with ωd = 2πd/2

d Γ(d/2)
, where

Γ(·) is the Gamma-function—unlike in Definition 4).
The sum we study here is a sum over a scaled lattice 1

�
L, � ∈ N, restricted

to a ball, Bδ, of radius δ about 0. The sum becomes a series by letting the
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lattice spacing tend to zero, i.e., � → ∞. Subsequently, we take the limit
δ → 0.

It turns out to be useful not to work with a sharp cut-off but a smooth
cut-off ϕ(δ), cf. the derivation of (29) below. Let ϕ(1) : R

d → [0, 1] be a C∞
0

function such that

ϕ(1)(z) =

{
1, if |z| < 1

2

0, if |z| > 1
.

Moreover, let δ > 0 and set ϕ(δ)(z) = ϕ(1)( z
δ
). Notice that |∂αϕ(δ)(z)| ≤ c

δ|α|
for some constant c > 0 and any multi-index α. We set

P
(δ)
k (x − y) =

{
(ϕ(δ)∂kN)(x − y), if d = 2

∂k(ϕ
(δ)N)(x − y), if d ≥ 3

. (24)

Note that for all dimensions d ≥ 2, the cut-off function ϕ(δ) is multiplied by
a 1-homogeneous function. This fact is used in a scaling argument in the
proof below. Moreover, it is crucial that the cut-off function ϕ(δ) enters in
the definition of P

(δ)
k . If we would simply multiply the hypersingular kernel

∂i∂j∂kN(x − y) with the cut-off function, we did not get (29) below, which
is a key step in the proof of Theorem 13.

The lattice L is defined as in (2). We set L∗ = L \ {0}. The main result
of this section is

Theorem 13 Let a ∈ R
d. Then the limit

Sijkp = − lim
δ→0

lim
�→∞

∑
z∈Bδ∩ 1

�
L∗

(
∂i∂jP

(δ)
k

)
(z) zp

1

�d
(25)

exists in R and it holds

1

2

d∑
p=1

Sijkpap = − lim
δ→0

lim
�→∞

∑
z∈Bδ∩ 1

�
L∗

(
∂i∂jP

(δ)
k

)
(z) (a · z)+

1

�d
. (26)

The link between this Theorem and the study in the previous section can
be seen in brief as follows. Recall that the integrand in the surface integral in
(11) is f(ξ)(n(ξ) · z)+. In the application of Theorem 13 to magnetic forces
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in d = 2, 3, the term (a · z)+ in (26) becomes (n(ξ) · z)+. In turn, (n(ξ) · z)+

is related to the height/thickness of the set Az in equation (3). For details
we again refer to [8, 10] (the notations in [10] and this article are related by

(∂i∂jP
(δ)
k )(z) = ∂k(K − K(δ))ij(z) if d = 3).

Proof: Notice that P
(δ)
k (z) and therefore (∂i∂jP

(δ)
k )(z) are anti-symmetric

in z. Thus
(
∂i∂jP

(δ)
k

)
(z) a · z is symmetric in z. Since L is a Bravais lattice,

z ∈ L implies −z ∈ L. Hence∑
z∈Bδ∩ 1

�
L∗

(
∂i∂jP

(δ)
k

)
(z) (a · z)+

1

�d
=

∑
z∈Bδ∩ 1

�
L∗

a·z<0

(
∂i∂jP

(δ)
k

)
(z) a · z 1

�d

=
1

2

∑
z∈Bδ∩ 1

�
L∗

(
∂i∂jP

(δ)
k

)
(z) a · z 1

�d
.

Before we change variables from z to z′ = �z in the previous formula, we
show that (

∂i∂jP
(δ)
k

)
(
z′

�
) = ∂i∂jP

(�δ)
k (z′)�d+1. (27)

Indeed, if d = 2, we obtain

(
∂i∂jP

(δ)
k

)
(
z′

�
) = ∂i∂j

(
ϕ(δ)(

z′

�
)∂kN(

z′

�
)
)
�3

by the chain rule. Since ϕ(δ)( z′
�
) = ϕ(�δ)(z′) by definition and ∂kN( z′

�
) =

− 1
2π

∂k ln
∣∣z′

�

∣∣ = ∂kN(z′), we obtain (27). In the case d ≥ 3 we have N( z′
�
) =

1
d(d−2)ωd

∣∣ z′
�

∣∣2−d
= �d−2N(z′). Thus

(
∂i∂jP

(δ)
k

)
(
z′

�
) = ∂i∂j∂k

(
ϕ(δ)(

z′

�
)N(

z′

�
)
)
�3 = �d+1∂i∂j∂k

(
ϕ(�δ)(z′)N(z′)

)
,

which yields (27). Hence

1

2

∑
z∈Bδ∩ 1

�
L∗

(
∂i∂jP

(δ)
k

)
(z) a · z 1

�d
=

1

2

∑
z′∈B�δ∩L∗

(
∂i∂jP

(δ)
k

)
(
z′

�
) a · z′

�

1

�d

=
1

2

∑
z′∈B�δ∩L∗

(
∂i∂jP

(�δ)
k

)
(z′) a · z′.
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To prove the theorem, we set S
(�δ)
ijkp =

∑
z∈B�δ∩L∗

(
∂i∂jP

(�δ)
k

)
(z) zp with z in-

stead of z′ by some abuse of notation. First we prove the convergence of S
(�δ)
ijkp

for fixed δ > 0 as � → ∞. In order to do so, we can reduce the proof to a
convergence proof of S

(n)
ijkp, n ∈ N, as n → ∞. The idea is to show that S

(n)
ijkp

is a Cauchy sequence in R. Let m, n ∈ N with m ≤ n < ∞ and notice that
the support of ϕ(n) − ϕ(m) is contained in Bn \ Bm/2. Thus

|S(n)
ijkp − S

(m)
ijkp| =

∣∣∣ ∑
z∈(Bn\Bm/2)∩L∗

(
∂i∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zp

∣∣∣. (28)

The remainder of the proof is driven by the following observation about the
integral corresponding to the sum in (28). Let ν denote the outer normal to
∂(Bn \ Bm/2) and integrate by parts twice.∫

Bn\Bm/2

(
∂i∂j

(
P

(n)
k − P

(m)
j

)
(z)

)
zp ddz

= −
∫

∂(Bn\Bm/2)

(
P

(n)
k − P

(m)
k

)
(z)δipνj(z) dHd−1(z)

+

∫
∂(Bn\Bm/2)

(
∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zpνi(z) dHd−1(z)

= 0, (29)

since P
(n)
k = P

(m)
k on ∂(Bn \ Bm/2).

The observation in (29) suggests to replace the sum in (28) by an integral.
We do so by using piecewise constant step-functions. Let yz denote the base
point of the unit cell to which z belongs. We define the sets

Uout := {z ∈ (Bn \ Bm/2) : yz ∈ R
d \ (Bn \ Bm/2)},

U in := {z /∈ (Bn \ Bm/2) : yz ∈ (Bn \ Bm/2)}.
(30)

(See [10, p. 248] for a figure that indicates these sets.) Moreover, let step(f)
denote the step-function which has the same value as f on lattice points and
which is constantly extended on unit cells. Hence we obtain the equality

|S(n)
ijkp − S

(m)
ijkp| =

∣∣∣ ∫
Bn\Bm/2

step
((

∂i∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zp

)
ddz (31)

+

∫
U in

step
((

∂i∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zp

)
ddz

−
∫
Uout

step
((

∂i∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zp

)
ddz

∣∣∣.
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Since P
(n)
k −P

(m)
k and its derivatives are zero in the complement of Bn\Bm/2,

the third integral is identically zero.
To estimate the second integral, observe that the lattice points of interest

are close to the boundary of Bn \ Bm/2. Let γ denote the diameter of the
unit cell. Then U in ⊂ (Bn+γ \ Bn) ∪ (Bm/2 \ Bm/2−γ) by construction. Thus
|U in| ≤ c

(
(n + γ)d − nd + (m

2
)d − (m

2
− γ)d

)
≤ cγ

(
nd−1 + (m/2)d−1

)
≤ cnd−1.

Let yz denote the lattice point corresponding to z ∈ U in, then either
m/2 ≤ |yz| ≤ m/2 + γ or n − γ ≤ |yz| ≤ n. By applying the product rule,
the definition of ϕ(n) and ϕ(m), and Young’s inequality, we obtain in the case
d = 2∣∣∣∂i∂j

(
P

(n)
k − P

(m)
k

)
(yz)

∣∣∣
≤ c

(( 1

n2
+

1

m2
χBm(yz)

) 1

|yz|
+

(1

n
+

1

m
χBm(yz)

) 1

|yz|2
+

1

|yz|3
)

≤ c
(( 1

n2
+

1

m2
χBm(yz)

) 1

|yz|
+

1

|yz|3
)
. (32)

Hence, if d = 2,∫
U in

step
∣∣∣(∂i∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zp

∣∣∣ d2z

≤ c

∫
U in

( 1

n2
+

1

m2
χBm(z) +

1

|yz|2
)

d2z

≤ c
(∫

Bn+γ\Bn

( 1

n2
+

1

|yz|2
)

︸ ︷︷ ︸
≤ 2

(n−γ)2

d2z +

∫
Bm/2\Bm/2−γ

( 1

n2
+

1

m2
+

1

|yz|2
)

︸ ︷︷ ︸
≤ 3

(m/2)2

dζ
)

≤ c

(n − γ)2
((n + γ)2 − n2) +

3c

(m/2)2
((m/2)2 − (m/2 − γ)2),

which tends to zero as n, m → ∞. Similarly, we obtain for d ≥ 3∣∣∣∂i∂j

(
P

(n)
k − P

(m)
k

)
(yz)

∣∣∣ ≤ c
(( 1

n3
+

1

m3
χBm(yz)

) 1

|yz|d−2
+

1

|yz|d+1

)
. (33)
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and hence∫
U in

step
∣∣∣(∂i∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zp

∣∣∣ ddz

≤ c
(∫

Bn+γ\Bn

( 1

n3

1

|yz|d−3
+

1

|yz|d
)

︸ ︷︷ ︸
≤ 2

(n−γ)d

ddz

+

∫
Bm/2\Bm/2−γ

( 1

n3

1

|yz|d−3
+

1

m3

1

|yz|d−3
+

1

|yz|d
)

︸ ︷︷ ︸
≤ 3

(m/2)d

ddz
)

≤ c

(n − γ)d

(
(n + γ)d − nd

)
+

c

(m/2)d

(
(m/2)d − (m/2 − γ)d

)
,

which tends to zero as m and n tend to ∞. So it remains to estimate the
first integral in (31), which we denote by I.

It holds |stepf(z) − f(z)| = |f(z) − f(yz)| = supη∈U(yz) |∇f(η)|, see, e.g.,
[9, Appendix A]. Here, U(yz) is the unit cell to which z belongs, and yz is
the base point of this unit cell. Hence

|I| ≤ c

∫
Bn\Bm/2

sup
η∈U(yz)

∣∣∣∇(
∂i∂j

(
P

(n)
k − P

(m)
k

)
(η)ηp

)∣∣∣ ddz

+c
∣∣∣ ∫

Bn\Bm/2

(
∂i∂j

(
P

(n)
k − P

(m)
k

)
(z)

)
zp ddz

∣∣∣.
The second term equals zero by (29). To estimate the first term, we consider
the cases d = 2, d = 3 and d ≥ 4 separately. Similarly as in (32) and with
the help of |η| ≥ |z| − (|z| − |η|) ≥ |z| − |z − η| ≥ |z| − γ, we obtain if d = 2
for sufficiently large m

|I| ≤ c

∫
Bn\Bm/2

sup
η∈U(yz)

( 1

n3
+

1

m3
χBm(yz) +

1

|η|3
)

d2z

≤ c

∫
Bn\Bm/2

sup
η∈U(yz)

( 1

n3
+

1

m3
χBm(yz) +

1

(|z| − γ)3

)
d2z

≤ c
{∫ n

m/2

1

n3
r dr +

∫ m

m/2

1

m3
r dr +

∫ n

m/2

r

(r − γ)3
dr

}
,
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where we introduced polar coordinates. Furthermore we get

|I| ≤ c
{ 1

n3
(n2 − (m/2)2)︸ ︷︷ ︸

≤n2

+
1

m3
(m2 − (m/2)2)︸ ︷︷ ︸

≤m2

+
[ −1

|z| − γ
+

−γ

2(|z| − γ)2

]n

m/2

}
≤ c

{1

n
+

1

m
+

1

m/2 − γ
+

γ

2(m/2 − γ)2

}
≤ c

1

m/2 − γ
,

which tends to zero as m, n → ∞. For d = 3 we refer to [10, p. 250]. Now
let d ≥ 4. Then we use a similar statement as in (33) to derive

|I| ≤ c

∫
Bn\Bm/2

sup
η∈U(yz)

(( 1

n4
+

1

m4
χBm(yz)

) 1

|η|d−3
+

1

|η|d+1

)
ddz

≤ c

∫
Bn\Bm/2

sup
η∈U(yz)

(( 1

n4
+

1

m4
χBm(yz)

) 1

(|z| − γ)d−3
+

1

(|z| − γ)d+1

)
ddz

≤ c
{∫ n

m/2

1

n4

rd−1

(r − γ)d−3
dr +

∫ m

m/2

1

m4

rd−1

(r − γ)d−3
dr +

∫ n

m/2

rd−1

(r − γ)d+1
dr

}
=: c(I1 + I2 + I3).

First we estimate I3. It holds

I3 =
[−1

γd

rd

(r − γ)d

]n

m/2
=

1

γd

(( m
2

m
2
− γ

)d −
( n

n − γ

)d
)

=
1

γd

( m
2
n − m

2
γ − nm

2
− γn

(m
2
− γ)(n − γ)

)d

=
γd

γd

( − 1
2n

− 1
m

1
2
− γ

2n
− γ

m
+ γ2

nm

)d

,

which tends to zero as m, n → ∞. To estimate I1 and I2, we first consider
the case d = 4. Then

I1 =

∫ n

m/2

1

n4

r3

r − γ
dr =

1

n4

[
γ2r + γ

r2

2
+

r3

3
+ γ3 ln(r − γ)

]n

m/2

≤ 1

n4

(
γ2n + γ

n2

2
+

n3

3
+ γ3 ln(n − γ)

)
≤ c

1

n
.
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If d > 4, we obtain, since r ≤ n,

I1 ≤
∫ n

m/2

rd−5

(r − γ)d−3
dr =

1

γ(4 − d)

[ rd−4

(r − γ)d−4

]n

m/2

=
1

γ(4 − d)

((m
2
− γ)n − m

2
(n − γ)

(n − γ)(m
2
− γ)

)d−4

=
γd−4

γ(4 − d)

( 1
2n

− 1
m

1
2
− γ( 1

2n
+ 1

m
) + γ2

nm

)d−4

,

which converges to zero as m, n tend to ∞. Analogous but simpler estimates
hold for I2. Hence |I| and therefore the sum in (28) tend to zero as m, n → ∞.

Thus S
(n)
ijkp is a Cauchy sequence in n for every dimension d. So lim�→∞ S

(�δ)
ijkp

exists independently of δ. Hence (25) and also (26) follow. �

Remark 14 (i) If d ≥ 3, one can commute the partial derivatives in the
definition of Sijkp, (25). Moreover, the above proof does not rely on the
order of the partial derivatives. Thus Sijkp is symmetric in i, j and k. This
is also true if d = 2, cf. [8].

(ii) It has been proven in d = 2 [8] and in d = 3 [9, 10] that the value of
Sijkp is in general not equal to zero; moreover, approximate values are given
in the case of the square and the cubic lattice, respectively.
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