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Abstract

The problem of self-tuning a system to the Hopf bifurcation in the presence of noise and periodic

external forcing is discussed. We find that the response of the system has a non-monotonic

dependence on the noise-strength, and displays an amplified response which is more pronounced

for weaker signals. The observed effect is to be distinguished from stochastic resonance. For the

feedback we have studied, the unforced self-tuned Hopf oscillator in the presence of fluctuations

exhibits sharp peaks in its spectrum. The implications of our general results are briefly discussed

in the context of sound detection by the inner ear.
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1. Introduction

An extensive literature exists on the role of noise in dynamical systems (see, for example, [1]). Critical

systems subject to external forces and noise are especially interesting and manifest novel effects in

diverse situations — in pattern formation in chemical reaction-diffusion systems, fluid mechanics and

turbulence, electrical engineering, lasers and biological systems. In several of these situations, it is

desirable to control the operating point at an optimally convenient level to get the desired dynamics.

The deceptively simple act of balancing a stick is an example of a situation where one has to continually

self-tune the system to the stable point [2].

In this paper we study the problem of self-tuning a dynamical oscillatory system subject to fluctuations

from the environment and periodic forcing, to the Hopf bifurcation. This exercise is motivated by

examples from biological systems, such as the spiking of neurons and especially by the problem of

hearing and sound detection by the inner ear.

We use a general feedback equation in which the control parameter is partly generated by the dynamics

of the system. Since the dynamical system we study is very general and generic, one can use our results

for specific cases, such as for the system of the hair cell, which is the mechanoreceptor cell in the inner

ear, responsible for detecting sound.

The paper is organised as follows. Section 2 consists of two subsections: in the first, we give a brief

discussion of a biological example of sound detection by the ear to motivate our study. The second

subsection is a small discussion of a generic Hopf oscillator and introduces the form of the feedback we

have considered in the paper. Section 3 discusses the dynamics of a resonantly forced self-tuned generic

Hopf oscillator in the presence of additive white noise. A solution of the Fokker-Planck equation in a

particular frequency regime is given in Section 4, and some ideas and speculations presented on the

possible applications of our results in the context of signal detection and hearing.

We obtain several new and interesting results — the system exhibits a highly amplified response which

has a non-monotonic dependence on the noise-strength and which is more pronounced for weaker sig-

nals. In the biological context, this feature, of sharper sensitivity to weaker signals, is in accord with
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observations made of the inner ear [5]. The underlying mechanism seems to be some kind of a stochastic

“filtering” effect and is unrelated to stochastic resonance.

The distance of the control parameter from its critical value at the bifurcation for the system is com-

puted as a measure of self-tuning. In the weak-noise limit, for the unforced self-tuned noisy Hopf

oscillator, we find that for each noise-strength it is periodically modulated. Also, at certain frequencies,

the oscillator makes sudden large departures from the bifurcation point. For the forced oscillator this

distance increases with increasing noise strength in the weak noise limit, first very rapidly, and then

gradually plateaus off.

We also find that the self-tuned unforced Hopf oscillator subject to fluctuations would exhibit delta

peaks in its spectrum. In the context of hearing, we suggest that this could be the origin of the sharp

peaks observed in the spontaneous otoacoustic emission spectra.

Finally in the Conclusion, we summarize the main results obtained in the paper. Some of the lengthy

derivations have been presented in two Appendices.

2. Spontaneous oscillations & Hopf bifurcation

A. An example from biology: Sound detection by the ear

To motivate the study carried out in the paper, we provide here a brief outline of an interesting example

found in a recent stream of research in biology which models the mechanotransducer cells in the ear

which detect sound, as Hopf oscillators arranged along the cochlea.

The sensory receptors of the inner ear are the hair cells. In the cochlea these are responsible for our

sensitivity to sound, and in the vestibule, to our sense of balance. Mechanical stimuli are received by

hair bundles — assemblies of 20-300 cylindrical processes called the stereocilia (each consisting of an

actin cytoskeleton ensheathed by a plasma membrane) located at the apex of the hair cell, and at their

basolateral surfaces the hair cells make synapses with axons. Mechanical stimuli result in the rapid

opening of ion channels located in the hair bundles, letting in an influx of current which results in

electrical signals being conveyed to the nerve cells (see [3-6] for example, and references therein).

As the ear is able to respond to a wide range of stimuli, varying by several orders of magnitude [5],

its responsiveness must therefore be nonlinear. At the lower end, the mammalian cochlea can respond
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to sound-driven vibrations of atomic dimensions, even as low as about ±0.3nm. In order to amplify

such low intensity stimuli, it is believed that the ears have developed active force-generating dynamical

processes [7-13]. The presence of such elements would also help to understand the recorded otoacoustic

emissions (both spontaneous & evoked) from the hearing organ of all organisms [8,9].

Active hair bundle motion can account for many properties of the observed active processes, such as am-

plification, distortion tone production, spontaneous oscillations, otoacoustic emissions, high frequency

selectivity and sharp sensitivity. A recent stream of research in the biophysics literature [10-14] identi-

fies these features with signatures of a dynamical system operating near a Hopf bifurcation. The system

acts in the immediate vicinity of the bifurcation as a nonlinear amplifier for sinusoidal stimuli close to

the characteristic frequency. As the control parameter is varied, the system changes behaviour from a

quiescent state and exhibits self-sustained oscillations. Effective amplification is achieved by tuning the

system to operate close to the bifurcation. The concept of a “self-tuned Hopf bifurcation” was invoked

in [11], emphasizing that a self-regulatory mechanism exists which enables the hair cell to operate in

the proximity of the critical point, whatever its characteristic frequency. This work did not, however,

discuss the mechanism of self-tuning. Using two adaptation mechanisms, it was demonstrated in [13]

that the hair cell can produce “self-tuned critical oscillations”.

In [15], a mathematical study of feedback tuning to the bifurcation was discussed for a neural integrator

and for the hair cell in the absence of fluctuations. Their feedback for the system of the hair cell differs

from that in [13], and from what is normally found in the biophysically-oriented literature.

In their very interesting work, Jaramillo & Wiesenfeld [16], inspired by the seminal experiments

reported in [17] and the work in [18-23], proposed that Brownian motion of the hair bundle enhances

the sensitivity of mechanoelectrical transduction by the inner hair cells, overcoming the huge viscous

drag force of the fluid in which they are immersed and amplifying limitingly low-amplitude stimuli

through stochastic resonance [22-26]. Their mechanism was based on the well-established gating-spring

model [3] of mechanotransduction, and they provided as an example, the two-state model, the open

and closed states of the transduction channels in the stereocilia representing the two stable states

within the framework of the bistable models of stochastic resonance [22,23].
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While their conjecture is highly attractive, it is still interesting to see how an active system like a

single hair cell as a unit by itself responds to fluctuations and stimuli from outside, since its dynamics

is controlled by feedback mechanisms – the calcium dynamics through the transduction channels being

one such example. The hypothesis that the activity of the hair-cell is due to the operation of its

kinematical constituents at the edge of a Hopf instability, was first worked out explicitly in [10]. If one

was to accept this line of thinking, it would be of interest to see how well a generic Hopf oscillator,

whose operating point is controlled through a feedback mechanism, would act as a detector. This is

our motivation for studying self-tuning in a forced Hopf oscillator subject to noise.

The form of the feedback we have studied, which is partly generated by the dynamics of the system

is motivated by the biological system of the hair bundle. Studying a generic system enables us to

capture the essential behaviour of the simplified system dynamics and to offer possible explanations

of various phenomena without having to deal with the vastly cluttered and often messy equations

in complex biological systems. Thus as with all models of biological systems, substitution of actual

parameters coming from the mechanoelectrical and chemical properties of a hair cell in the results we

have obtained for a generic system could be expected to give better and more realistic estimates of

how well a Hopf oscillator models the real biological hair cell.

A model to describe active hair bundle motion has been presented in the past by several authors [4,11,13]

in the following way. Let x(t) denote the displacement of the hair bundle to a periodic external stimulus

Fext of frequency Ω and y(t) denote the force generated by the active component of the hair bundle

arising from the motion of the channel motor complex along an actin filament in the stereocilium. The

linear behaviour of the hair bundle displacement may be described by the equation:

λ
dx

dt
= −kx+ y + Fext(t)

β
dy

dt
= −y − k̄x (1)

where λ, k and β stand for the drag coefficient, stiffness of the hair bundle and relaxation time of the

active process and k̄ has dimensions of a spring constant. The second equation is obeyed by the force

generated by the active process within the hair bundle. The model (eqn.(1)) is described in Ref.[4,6]

as also in [11,13] and arises from the gating-spring model for regulation of a mechanoreceptive ion
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channel in the stereocilia, in which each channel exists within two conformations – the open and the

closed states, and opening of a channel shortens the associated gating spring and its tension, lowering

the energy of that state in comparison with the closed state.

The nonlinear terms in the equations arise from this swing of the gating spring which depends upon

the channel open probability which is a sigmoidal function of the hair bundle displacement.

A linear stability analysis on this system shows that the system exhibits a Hopf bifurcation when

1
β = − k

λ . These coupled equations can be rewritten as a single equation for a complex variable z

z = x+ i
y

k
. (2)

It is possible to rewrite the resulting equation in z in a canonical normal form through a nonlinear

transformation of the variable.

B. Generic Hopf oscillator

In the presence of an external driving force Fext = F0 cosΩt, the generic normal form for a system

such as eqn.(1) near a Hopf bifurcation has the form [28-31]

dz

dt
= A(ω,C)z −B(ω,C)|z|2z +O(|z|4z) + F0e

iα0eiΩtz̄s−1 (3)

where A and B are complex coefficients which depend upon the characteristic frequency ω of the

Hopf oscillator and on the bifurcation parameter C of the system. The additional factor eiω0 arises

from the transformation of the original equation to the normal form (eqn.(3)) and is independent of z

and z̄ (for the hair bundle, α0 depends upon its mechanical parameters).

Equation (3) describes the system at s : m resonance (s,m being coprime integers), Ω = ω( sm + γ)

where γ is the detuning parameter, and F0 denotes the amplitude of forcing [29].

In this paper, we consider the situation in which the Hopf oscillator is in 1:1 resonance with the driving

frequency, and γ = 0.

The control parameter, C(t), regulates the dynamics of the oscillating system and tunes it to operate

very close to the dynamical Hopf instability. In this paper, we study a Hopf oscillator having a feedback

of the form

dC

dt
= Γ(C, x(t)) (4)
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where Γ(C, x(t)) is, in general, a nonlinear function of C, and one of the dynamical variables x(t) of

the system.

In the case of the hair bundle, the control parameter may be taken as the concentration of the calcium

entering the stereocilia, which regulates the opening and closing of ion channels present on them [13].

Here, the dynamics of the control parameter is intertwined with the dynamical motion and displacement

of the hair bundle so that C = C(t, x(t)). Thus one could apply the results of our analysis for a generic

Hopf oscillator having the feedback control (eqn.(4)) we have considered, to the system of the hair

bundle.

For a generic Hopf oscillator, a solution of eqn.(3) can be found in terms of its normal modes using

Fourier expansions, using the method in [11]. We give the details of this procedure in Appendix-A,

stating the result below. A Fourier expansion of the variable x is made and it is assumed that the

first Fourier mode x1 is the dominant one near the bifurcation. In the absence of external forcing, this

leads to the equation

0 ≈ λ6(C0)x1 + λ8(C0)|x1|2x1 (5)

where λ6(C0) and λ8(C0) are some functions of C0. Spontaneous oscillations occur when

|x1|2 ≈ −λ6(C0)
λ8(C0)

, (6)

for nonzero λ6, when the right hand side of eqn.(6) is positive. This can be rewritten in the form

expressed in [11] as

|x1| ≈ ∆
(Cc − C

Cc

)1/2

, (7)

where ∆ represents a characteristic saturating value for the x variable and Cc is the critical value of

the control parameter. The form expressed in eqn.(7), enables one to keep track of the distance of the

control parameter from its critical value.

In this paper we do not restrict ourself to the specific problem of the hair bundle oscillations, but

rather, we consider a generic Hopf oscillator system in which the control parameter is dependent upon

the dynamics of the system (eqns.(4),(A-3)).
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3. Self-tuned Hopf Oscillator in a fluctuating environment

A general two-variable system in the absence of external forcing, containing a Hopf bifurcation and

perturbed by an external additive noise ξ(t) has the form [32]

dt

⎡
⎢⎣ x

y

⎤
⎥⎦ =

⎡
⎢⎣ µ − ω

ω µ

⎤
⎥⎦

⎡
⎢⎣ x

y

⎤
⎥⎦+

⎡
⎢⎣ f1x

2 + f2xy + f3y
2 + f4x

3 + f5x
2y + f6xy

2 + f7y
3

g1x
2 + g2xy + g3y

2 + g4x
3 + g5x

2y + g6xy
2 + g7y

3

⎤
⎥⎦+

⎡
⎢⎣ σ1

σ2

⎤
⎥⎦ ξ(t)+O(4)

(8)

before reduction to the normal form. Here, ω, the frequency of the oscillator and µ, which unfolds

the bifurcation, are the imaginary and real parts respectively of A(ω,C). The coefficients fi and

gi (i = 1, . . . n) are operators in general – we consider systems which allow for periodic orbits, so the

coefficients are such that the system cannot be rewritten in a gradient form.

We start by observing that very close to the Hopf bifurcation, the coefficients A and B in eqn.(3) for

the system with self-tuning must be understood as being Taylor expansions around the critical value

Cc of the control parameter.

A(ω,C) = A(Cc) +A′(Cc)(C0 − Cc) +
1
2
(C0 − Cc)

2
A′′(Cc) + O(A′′′)

B(ω,C) = B(Cc) +B′(Cc)(C0 − Cc) +
1
2
(C0 − Cc)

2
B′′(Cp) +O(B′′′) (9)

From eqn.(7) we see that for the system described by eqn.(3), spontaneous oscillations become possible

when

C0 − Cc ≈ Cc
∆2

|x1|2 (10)

We substitute this into eqn.(9) and use the resulting expressions in eqn.(3) to write down the following

normal form equation for a generic Hopf oscillator with a feedback control eqn.(4), and perturbed by

an external periodic forcing

dz

dt
= (A(Cc)+A′(Cc)

Cc
∆2

|x1|2 + . . .)z− (B(Cc)+B′(Cc)
Cc
∆2

|x1|2 + . . .)|z|2z+O(|z|4z)+F0e
iα0eiΩtz̄s−1

(11)

As already mentioned, we study only the case of 1:1 resonance with s = 1 in this paper.

We introduce the coefficients

β = Re(A(Cc)); l = Re(B(Cc)); β′(Cc) = Re(A′(Cc))

ω = −Im(A(Cc)); d = −Im(B(Cc)); ω′(Cc) = −Im(A′(Cc)) (12)
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In order to study fluctuations in the system close to the bifurcation, we follow the method developed in

[33] (see also [35]) for the case of the weak-noise limit. The system of equations (11) are then rewritten

in the form

dz

dt
= f(z, z̄, t) + ε1/2ξ(t) (13)

where f(z, z̄, t) includes all the deterministic terms on the right hand side of eqn.(11), ξ(t) = ξ1(t) +

iξ2(t) denotes a (complex) white noise and we study the asymptotic behaviour of this stochastic process

in the limit ε→ 0. We define the noise correlations as

〈ξ1(t)ξ1(t′)〉 = Qaδ(t− t′)

〈ξ2(t)ξ2(t′)〉 = Qbδ(t− t′)

〈ξ1(t)ξ2(t′)〉 = Qabδ(t− t′) (14)

We now write z in polar coordinates

z(t) = r(t)eiφ(t) (15)

We are interested in understanding how a Hopf oscillator having a feedback control behaves differently

from one without self-tuning. To this end, we combine the Fourier expansion of the variable x(t), its

first Fourier mode being the dominant one, with the polar coordinate representation of z in eqn.(15)

to express x1 as

2|x1| cos(Ωt+ α) = r(t) cosφ(t) (16)

for nonzero x, to study the approach to criticality.

Equation (11) can then be expressed as a set of coupled Langevin equations

ṙ = βr −
(
l − β′ Cc

∆2

cos2 φ(t)
4 cos2(Ωt+ α)

)
r3 + F0 cos(Ωt+ α0 − φ(t)) +O(r5) + α1ξr

φ̇ = −ω(Cc) −
(
− d(Cc) + ω′(Cc)

Cc
∆2

cos2 φ(t)
4 cos2(Ωt+ α)

)
r2 + F0

sin(Ωt+ α0 − φ(t))
r

+O(r4) +
α2ξθ
r

(17)

where

α1ξr = (cosφξ1 + sinφξ2)ε1/2

α2ξθ = (cosφξ2 − sinφξ1)ε1/2 (18)
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Thus the noise now becomes process-dependent, as a result of the transformation to polar coordinates.

From here one can write the Fokker-Planck equation equivalent to eqn.(17). We find

∂P (r, φ, t)
∂t

= − ∂

∂r

[
βr − lr3 + F0 cos(Ωt+ α0 − φ) + β′ Cc

∆2

cos2 φ(t)
4 cos2(Ωt+ α)

r3 +
ε

2r
Qφφ

]
P (r, φ, t)

− ∂

∂φ

[
− ω + dr2 +

F0

r
sin(Ωt+ α0 − φ) − ω′ Cc

∆2

cos2 φ(t)
4 cos2(Ωt+ α)

r2 − ε

r2
Qrφ

]
P (r, φ, t)

+
ε

2

[ ∂2

∂r2
Qrr +

∂2

∂φ2

Qφφ
r2

+ 2
∂2

∂r∂φ

Qrφ
r

]
P (r, φ, t) (19)

where

1
2
Qrr = Qa cos2 φ+ 2Qab sinφ cosφ+Qb sin2 φ

1
2
Qrφ = −Qa cosφ sinφ+Qab(cos2 φ− sin2 φ) +Qb sinφ cosφ

1
2
Qφφ = Qa sin2 φ− 2Qab sinφ cosφ+Qb cos2 φ (20)

This is in accordance with Stratonovich calculus.

Let the deterministic part of eqn.(17) have a stable solution (r̄(t), φ̄(t)). In this limit (i.e., with ε→ 0),

the probability density initially centred around (r̄(t), φ̄(t)) reduces for all times to

lim
ε→0

P (r, φ, t) = δ(r − r̄(t))δ(φ − φ̄(t)) (21)

r̄(t) and φ̄(t)) obey

dr̄

dt
= β(Cc)r̄ −

(
l − β′(Cc)

Cc
∆2

cos2 φ̄
4 cos2(Ωt+ α)

)
r̄3 + F0 cos(Ωt+ α0 − φ̄)

dφ̄

dt
= −ω(Cc) −

(
− d(Cc) + ω′(Cc)

Cc
∆2

cos2 φ̄
4 cos2(Ωt+ α)

)
r̄2 +

F0 sin(Ωt+ α0 − φ̄)
r̄

(22)

Thus, the equation for the radial variable is not separable from φ, except for the special case φ =

Ωt + α ± 2nπ, (n = 0, 1, 2, . . .). For this case, one obtains in the absence of the external force, an

orbitally stable periodic solution of circular form with amplitude

r̄s = ±
[ β(Cc)(
l− β′(Cc)Cc

4∆2

)]1/2

, for Cc <
4∆2l

β′ , β > 0, (23)

when

φ̄s = cos−1
(4d(Cc) cos2(Ωt+ α)

ω′(Cc)
∆2

Cc

)1/2

(24)

in the stationary state limit t→ 0.

Thus, when the feedback (eqns.(4),(A-1)) is switched on, the system starts moving on a limit cycle of
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a larger radius. The sign and the magnitude of the critical value of the control parameter determines

the sense of rotation of the limit cycle.

In order to see how fluctuations affect the regulatory role of the control parameter in bringing the

system to operate in the close proximity of the bifurcation, we will define the distance δC of the

control parameter at a given operating point from its critical value. The effect of fluctuations on

δC can be found by determining its noise average. In order to calculate noise averages, we must first

determine the correct form of the probability distribution in the vicinity of the bifurcation. Hence the

solution of the Fokker-Planck equation (19) must be found.

In order to do so, we use the singular perturbation technique as developed by Malek Mansour et al.

[32] for studying fluctuations at the onset of a limit cycle. It was shown by these authors that the

asymptotic properties of a stochastic process in the vicinity of the critical point could be studied by an

appropriate scaling of the variables. In their procedure rescaled variables are introduced by expanding

all quantities in terms of a single noise-smallness parameter ε (which is the inverse of the extensivity

parameter V which denotes the size of the system). Further they showed that the critical variable

exhibits amplified non-Gaussian fluctuations on a slow time scale.

Their arguments stem from their earlier result in the theory of stochastic processes that the stochastic

and the macroscopic trajectories converge to a macroscopically steady state for all times, in the limit

of weak noise (lim ε → 0), if the state is unique and globally stable. This is an extension of the well

known theorem of Kurtz (see, for instance, reference [34]). For a two-variable system such as described

by eqns.(8) and (13), the stochastic variables x(t) and y(t) can then be perturbatively expanded in

powers of ε1−a, and ε1−b, (0 ≤ a, b < 1) around the deterministic steady state x̄(t), ȳ(t). Scaled

variables u and v, can then be defined in terms of the deviations: u = εa−1(x − x̄), v = εb−1(y − ȳ)

and a probability density for the scaled variables helps to study the asymptotic properties of the

process [33]. a and b are chosen so that the probability density remains normalizable in the weak noise

limit.The values of a and b are further restricted to the range 1
2 ≤ a, b < 1 by the requirements that

the moments of the probability density for the scaled variables, if they exist for ε �= 0, remain finite

in the limit ε → 0, and that at least one of them be nonzero. We have a = b = 1
2 when the initial

distribution is Gaussian. The distribution does not depart from Gaussian behaviour if the fluctuations
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of the scaled variables do not diverge in the long time limit. The spectral properties of the matrix

constructed from the linearization of the deterministic part of the general system presented in eqn.(8),

which determines the stability of the macroscopic stationary state, also determines the asymptotic

behaviour of the stochastic process.

The description in terms of scaled variables enables one to determine the departure of the probability

density for the stochastic process from its initial Gaussian behaviour for the macroscopic state [33].

Therefore, the scaling exponents provide, in a way, a measure of how much the fluctuations are

amplified by the marginal stability of the state in the critical regime. We follow this procedure be-

low for the stochastic system in eqns.(17),(19) whose deterministic part (r̄(t), φ̄(t)) satisfies eqns.(21-24).

We consider in this paper only a soft transition leading to a limit cycle. Here also, as in [33], we can

perform a linearization of the macroscopic state given by eqns.(21) and (22) around the stable state

(eqns.(23,24)) and we are interested in the approach to the stationary state t → ∞. It was argued in

[33], that since beyond the critical point, the radius r̄(t) in eqn.(21) may evolve to a constant value

r̄s even though periodicity in the phase variable is retained for all time, one can hence define a scaled

variable ρ as

r = r̄s + ρε1−b , b < 1. (25)

As we already discussed before, for ε = 0, the probability distribution is a Dirac delta function (eqn.(21))

centred around the macroscopic state (r̄, φ̄). We wish to determine the form of the distribution for

ε �= 0.

From eqns.(23) and (24), for β(Cc)(
l− β′(Cc)d(Cc)

ω′(Cc)

) < 0 , r̄s = 0 ; and from eqn.(25) b = 1/2, which leads to

a Gaussian probability distribution.

We now consider the case β(Cc)(
l− β′(Cc)d(Cc)

ω′(Cc)

) ≥ 0 in which eqns.(22) admit an orbitally stable periodic

solution as already discussed in eqns.(23) and (24).

In order to facilitate analysis of (19), we rewrite it in an autonomous form by extending the phase space

through the transformation

λ = Ωt+ α (26)
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so that

λ̇ = Ω (27)

Close to the bifurcation, we scale r as in eqn.(25) and the other quantities as

β = β̃ε2c

r̄s ∼ O(εc) = r̂sε
c , r̂s ∼ β̃1/2

l1/2
(because of eqn.(22))

φ = φ

F0 = ˆ̂
F0β̃

3/2εc = F̂0ε
3c , (28)

where β̃ > 0 and is independent of ε, c > 0, and in the close vicinity of the bifurcation c > 1 − b. In

terms of the scaled variables, eqn.(19) can be rewritten as

∂℘(ρ, φ, λ, t)
∂t

= − ∂

∂ρ

[ ε2b−1Qφφ
2(ρ+ r̂sεb+c−1)

+ F̂0ε
b+3c−1 cos(λ− φ+ α0 − α) + β̃r̂sε

b+3c−1 + β̃ρε2c

− ρ3
(
l − β′ Cc

∆2

cos2 φ(t)
4 cos2 λ

)
ε2−2b − 3ρ2

(
l − β′ Cc

∆2

cos2 φ(t)
4 cos2 λ

)
r̂sε

−b+c+1

− 3ρ
(
l − β′ Cc

∆2

cos2 φ(t)
4 cos2 λ

)
r̂2sε

2c −
(
l − β′ Cc

∆2

cos2 φ(t)
4 cos2 λ

)
r̂3sε

b+3c−1
]
℘(ρ, φ, λ, t)

− ∂

∂φ

[
− ω + dε2−2bρ2 + 2dρr̂sε−b+c+1 + dr̂2sε

2c +
F0 sin(λ− φ+ α0 − α)εb+3c−1

(ρ+ r̂sεb+c−1)

− ω′ Cc
∆2

cos2 φ(t)
4 cos2 λ

(
ρ2ε2−2b + 2ρr̂sε−b+c+1 + r̂2sε

2c
)
− ε2b−1Qrφ

(ρ+ r̂sεb+c−1)2
]
℘(ρ, φ, λ, t)

+
1
2

[
ε2b−1 ∂

2

∂ρ2
Qrr + ε2b−1 ∂

2

∂φ2

Qφφ

(ρ+ r̂sεb+c−1)2
+ 2ε2b−1 ∂2

∂ρ∂φ

Qrφ
(ρ+ r̂sεb+c−1)

]
℘(ρ, φ, λ, t)

− Ω
∂

∂λ
℘(ρ, φ, λ, t) (29)

We must now determine the appropriate values of b and c which would lead to a nontrivial form of the

probability density of the scaled variables. Following the argument in [33], for b ≤ 1/2, to dominant

order in ε, one finds from eqn.(29) that

∂t〈ρ2〉 =
Qrr
ε1−2b

> 0 (30)

which diverges as ε→ 0, so that fluctuations in the long time limit of the radial variable are divergent.

This leads to the conclusion that close to the bifurcation the long time regime must be described by

b > 1/2.

Using this result and integrating eqn.(29) with respect to φ we find that

∂t℘(ρ, λ, t) = O(ε2b−1, ε2−2b, ε1−b+c, ε2c, εb+3c−1) ∼ Q(1) (31)
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For a given ρ if we denote the conditional probability of φ by ℘(φ|ρ, λ, t), then from equations (29)-(31)

we see that

∂t℘(φ|ρ, λ, t) + Ω
∂

∂λ
℘(φ|ρ, λ, t) = ω

∂

∂φ
℘(φ|ρ, λ, t) + Q(1). (32)

This has the solution

lim
ε→0

℘(φ|ρ, λ, t) = δ(t+
φ

ω
− λ

Ω
) (33)

for all times, if this is the initial conditional probability. For the non-deterministic case ε �= 0,

the probability distribution for the 2+1-dimensional problem approaches a stationary distribution

℘as(φ|ρ, λ, t) for large values of the time. So in this case, the t → ∞ limit is taken before the ε → 0

limit. Then one finds that

lim
ε→0

lim
t→∞℘(φ|ρ, λ, t) = lim

ε→0
℘st(φ|ρ, λ) =

1
2π
. (34)

Integrating eqn.(29) over φ, and using eqn.(34) to calculate the conditional averages, we obtain for the

marginal density ℘(ρ, λ, t)

(∂t + Ω∂λ)℘(ρ, λ, t) = − ∂

∂ρ

[ ε2b−1Q

2(ρ+ r̂sεb+c−1)
+ νF̂0ε

b+3c−1 + β̃r̂sε
b+3c−1 + β̃ρε2c

− ρ3
(
l− β′ Cc

∆2

µ

8 cos2 λ

)
ε2−2b − 3ρ2

(
l − β′ Cc

∆2

µ

8 cos2 λ

)
r̂sε

−b+c+1

− 3ρ
(
l − β′ Cc

∆2

µ

8 cos2 λ

)
r̂2sε

2c −
(
l − β′ Cc

∆2

µ

8 cos2 λ

)
r̂3sε

b+3c−1
]
℘(ρ, λ, t)

+
1
2
ε2b−1 ∂

2

∂ρ2
Q℘(ρ, λ, t) (35)

where the constants ν and µ take the values

ν =

⎧⎪⎨
⎪⎩

1 for φ(t) = Ωt+ α± 2nπ

0 otherwise

µ =

⎧⎪⎨
⎪⎩

2 cos2 λ when ν = 1

1 otherwise

and

Q = Qa +Qb. (36)

We observe that the integration over φ immediately gives rise to an unexpected situation: the driving

term vanishes unless φ = λ±2nπ. Thus we are led to the important result that for an external periodic
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force to have any effect at all on the dynamics of a system with fluctuations near a Hopf bifurcation,

the imaginary part (which is the fast variable) of the original two-dimensional Hopf oscillator (eqn.(3)),

must be phase-locked to the frequency of the external periodic force.

For the system of the hair bundle, this translates to the condition that the “effective active force” of

the hair bundle system or “effective phase” of the Hopf oscillator, (φ − α) is in synchrony with the

frequency of the periodic external stimulus:

φ(t) − α = Ωt± 2nπ . (37)

A little reflection shows that this situation stems from the existence of orbitally stable periodic

solutions for the phase-locked condition in the absence of noise as in eqn.(23).

The drift and the diffusion terms in eqn.(35) should contribute equally to the probability density in

the deterministic limit (ε → 0) for all values of c and thus should be of the same order in ε. This

necessitates that b = 3/4, from where one finds the value c = 1/4 separating the critical regime

from the Gaussian one. Substituting these values into eqn.(35), we get

1
ε1/2

(∂t + Ω∂λ)℘(ρ, λ, t) = −∂ρ
[
− 2ρβ̃ − 3β̃1/2l1/2ρ2 − lρ3 +

Q

2
(
ρ+ β̃1/2

l1/2

) + νF̂0

+
(
ρ+

β̃1/2

l1/2

)3
µβ′Cc

8∆2 cos2 λ

]
℘(ρ, λ, t) +

1
2
Q
∂2

∂ρ2
℘(ρ, λ, t). (38)

The last term in the square bracket is the contribution from self-tuning.

The scaling of the time by ε−1/2 on the left hand side shows that the dynamics of the critical,

radial variable evolves at a different, slower time scale as compared with the phase variable, repre-

senting the reduction of the original system in the presence of noise to the center manifold dC
dt = 0 [36].

In general, even if a system is autonomous to begin with, a feedback control can turn it to a non-

autonomous one. The normal form reduction for deterministic non-autonomous systems can be carried

out as in [37] (see also [38,39]) and in the limit of weak noise, its reduction to the normal form can be

done as in [35,40].

Finally, having found the appropriate scaling for the variables, we now re-express eqn.(38) in terms
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of the original variables. We obtain

(∂t + Ω∂λ)P(r, λ, t) = − ∂

∂r

[
βr −

(
l − µβ′Cc

8∆2 cos2 λ

)
r3 + νF0

]
P(r, λ, t)

− ∂

∂r

(Qε
2r

)
P(r, λ, t) + ε

Q

2
∂2

∂r2
P(r, λ, t)

= (L0 + LI)P(r, λ, t) (39)

where

L0 = − ∂

∂r

[
βr −

(
l − µβ′Cc

8∆2 cos2 λ

)
r3

]
− ∂

∂r

(Qε
2r

)
+ ε

Q

2
∂2

∂r2

LI = −νF0
∂

∂r
(40)

Using equations (29) to (35), the probability distribution for the full system is given by

P (r, φ, λ, t) = P(φ|r, λ)P(r, λ, t) (41)

Thus, as a first step, we have reduced the original 2+1-dimensional autonomous Hopf system (equation

29) to a 1+1-dimensional problem, i.e., to a 1-dimensional system in the slow variables in the extended

phase space. The self-tuned system differs from the system without feedback in that the nonlinear part

is modified in the drift term.

L0 denotes the unperturbed Fokker-Planck operator. One would normally expect the periodic

time dependence to be visible in the perturbation term LI , but in the centre-manifold reduction

procedure the averaging over the fast variable has eliminated this time-dependence through phase-

locking. We observe another interesting phenomenon. The self-tuning term exhibits the periodic

time-dependence in the Fokker-Planck equation which is absent only: (i) in the presence of an

external force and (ii) when there is no feedback in the system. This is seen by substituting the

values of µ and ν from eqn.(36) into eqn.(39) and comes about because of the averaging done over

the fast variable which is entrained with the external driving frequency and rotates with it. In

the absence of external forcing, the system is oscillatory with intrinsic frequency ω and the x(t)

variable has a mode expansion with respect to this intrinsic oscillator frequency. In the unforced

system with the kind of feedback we have considered (eqn.(4)), the control parameter has a similar

mode expansion (because of eqns.(A-1) and (A-3)). As the fast variable for the unforced system is

not phase-locked with any frequency, averaging over the fast variable does not eliminate the time

periodicity in the Fokker-Planck equation. Thus, even in the absence of an external force, the effect of a
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feedback as in equations (4) and (A-3) is felt as a periodic modulation in the full Fokker-Planck equation.

We assume the following physical boundary condition for r: P(r → ∞, λ, t) = 0. Since λ is periodic,

Pt(r, λ) = Pt(r, λ + 2π), we can perform a Fourier expansion of P(r, λ, t) in λ to find the general

asymptotic solution of eqn.(39)

Pas(r, λ, t) =
+∞∑

n=−∞
Wn(r, λ)einΩt =

+∞∑
n=−∞

wnPst(r, λ)e−in(λ−Ωt) (42)

where Pst is the solution of the stationary problem for uniformly distributed phases α and the Fourier

coefficients obey

[
L0 + LI − Ω

∂

∂λ
− inΩ

]
Wn(r, λ) = 0, (43)

wn denoting the weight of the initial probability P(r, λ, t = 0) on the eigenfunction e−inλ with

eigenvalue inΩ.

4. Adiabatic limit

We solve for the probability distribution for the simplest case, for very small values of the frequency.

In this limit, λ varies very slowly with time so that we can consider the simplified problem

∂tPad(r, λ, t) = − ∂

∂r

[
βr −

(
l − µβ′Cc

8∆2 cos2 λ

)
r3 + νF0

]
Pad(r, λ, t)

− Qε

2
∂

∂r

(1
r

)
Pad(r, λ, t) +

Qε

2
∂2

∂r2
Pad(r, λ, t). (44)

For this case, we find that the solution of the stationary problem for this situation is

lim
t→∞Pad(r, λ, t) = Ner exp

{
− 2
Qε

[
(l − µβ′Cc

8∆2 cos2 λ
)
r4

4
− β

r2

2
− νF0r

]}
(45)

where the normalization constant Ne is given by

Ne = N0

{ ∞∑
n=0

Γ(n2 + 3
2 )

n!

( 2νF0

(Qε)
3
4
(
l − µβ′Cc

8∆2 cos2 λ

) 1
4

)n
D−n

2 − 3
2

( −β
[Qε(l− µβ′Cc

8∆2 cos2 λ )]
1
2

)}−1

, (46)

where

N0 = 4π
((l − µβ′Cc

8∆2 cos2 λ)
Qε

) 3
4

exp
[
− β2

4Qε(l− µβ′Cc

8∆2 cos2 λ )

]
(47)

and D−n are parabolic cylinder functions.
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When the fast variable is phase-locked to the external periodic force we obtain the time-independent

stationary probability density for the forced system to be

lim
t→∞Pad(r, λ, t) = NF r exp

{
− 2
Qε

[
(l − β′Cc

4∆2
)
r4

4
− β

r2

2
− F0r

]}
(48)

where

NF = 4π
((l − β′Cc

4∆2 )
Qε

) 3
4

exp
[
− β2

4Qε(l− β′Cc

4∆2 )

]{ ∞∑
n=0

Γ(n2 + 3
2 )

n!

( 2F0

(Qε)
3
4
(
l− β′Cc

4∆2

) 1
4

)n
D−n

2 − 3
2

( −β
[Qε(l − β′Cc

4∆2 )]
1
2

)}−1

.

Thus even in the presence of external driving, the probability density evolving on the time scale of the

slower critical variable is stationary because the fast variable over which averaging has been performed

is phase locked with the driving frequency and rotates with it.

Fig.1 shows the effect of self-tuning on a plot of the probability distribution as a function of the

radial variable. The presence of the self-tuning term increases the width of the distribution, increases

the height of its peak and moves it to the right. This is enhanced much more in a forced system since

the driving term increases the overall heights of the peaks and shifts these more towards the right

(than for the unforced system). This is seen in Fig.2 which is the solution of eqn.(44) for the forced

system in the long time limit. The sensitivity of the distribution to the angle is much larger at its

decreasing side after the peak, the probability distribution not being symmetric.

The trajectories in the x-y plane for the original system (eqn.11) (written in terms of polar coordinates

in eqn.(17)) are shown in a representative simulation (Fig.3). The closed orbit of unforced deterministic

Hopf oscillator is shown in the solid line while the dashed orbit is for the deterministic Hopf oscillator

perturbed by an external driving force. The dotted curve shows how the path gets completely changed

in the presence of a very small additive noise. The effect of the feedback we have considered is seen in

the figure (dash-dotted orbit) which “controls” the deviation of the path of the noisy system, bringing

it towards the deterministic trajectory.

In the absence of an external driving force (when ν = 0) or when the condition of phase-locking to the

external force eqn.(37) is not satisfied, we observe a new feature — the long-time limit of the probability

distribution for the self-tuned unforced system is not stationary:

lim
t→∞Pad(r, t) = N r exp

{
− 2
Qε

[
(l − β′Cc

8∆2 cos2(ωt+ α)
)
r4

4
− β

r2

2

]}
. (49)
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In the above expression,

N =
2
π

1
2

( (l − β′Cc

8∆2 cos2(ωt+α))

Qε

) 3
4

exp
[
− β2

4Qε(l− β′Cc

8∆2 cos2(ωt+α) )

](
D− 3

2

( −β
[Qε(l − β′Cc

8∆2 cos2(ωt+α) )]
1
2

))−1

.

(50)

Thus, a stationary probability distribution in the strict sense of time-independence does not exist

even in the absence of all external forces for ν = 0, when there is a feedback in the system in which

the control parameter is generated by the system dynamics such as in equations (4), (A-1) and (A-3).

In the adiabatic limit, the large time distribution is periodically modulated by the self-tuning term,

always with l > β′Cc

8∆2 cos2(ωt+α) , and exhibits peaks close to

t ≈< 1
ω

(
cos−1

(β′Cc
8∆2l

)1/2

− α
)
± 2π

ω
n , n = 0, 1, 2, 3, . . . (51)

These features are absent when there is no feedback control on the system.

The time-periodicity of the probability density for the self-tuned system in the absence of external

force can be understood if we bear in mind that we are studying the behaviour of a system which can

maintain self-sustained oscillations (even in the absence of external driving), at the onset of a limit

cycle. The feedback term in the self-tuned system makes the system explicitly non-autonomous even

in the absence of external driving and the noise averages of quantities, such as correlation functions

are calculated in this case as for a quasistationary process, just as for the case of a driven system.

But the unforced self-tuned system differs from the driven system in that the fast variable is not

entrained with a particular frequency, in this case with the intrinsic frequency of the limit cycle. Then

an averaging performed over the fast variable does not eliminate the temporal periodicity, and this is

reflected correspondingly in the probability density.

It is known since the work of [42] that dynamical systems (both autonomous and non-autonomous)

showing such periodic behaviour close to instabilities show an enhanced output in the power spectrum

from the transient response before the bifurcation due to an increase in the relaxation time when the

instability is approached, a phenomenon termed coherence resonance. We elaborate a little more on

this for our system, towards the end of this section.
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In the adiabatic limit, the mean value 〈x(t)〉ad of x(t) for the forced system is given by

〈x(t, α)〉ad = cos(Ωt+ α± 2kπ)
(Qε)

1
4

(l − β′Cc

4∆2 )
1
2

×

∑∞
n=0

(n+1)( n
2 +1)

Γ( n
2 + 3

2 )

(
F0

(Qε)
3
4
(
l− β′Cc

4∆2

) 1
4

)n
D−n

2 −2

(
−β

[Qε(l− β′Cc
4∆2 )]

1
2

)

∑∞
n=0

(n+1)
Γ( n

2 +1)

(
F0

(Qε)
3
4
(
l− β′Cc

4∆2

) 1
4

)n
D−n

2 − 3
2

(
−β

[Qε(l− β′Cc
4∆2 )]

1
2

) (52)

Details of the derivation of eqn.(52) are given in Appendix B. In the weak noise limit the asymptotic

expansions of the parabolic cylinder functions may be used [41]. A few terms of the expansion are

displayed below

〈x(t, α)〉ad =
r̄

1
2
s

β
3
4

cos(Ωt+ α± 2kπ)

×

{
1

(Qε)
1
2

[
(β

1
2 r̄s + 3F0

4β
1
2
) − F 2

0 r̄s

2β
1
2Qε

− F0β
1
2 r̄3s

2(Qε)2
+ . . .

]
+ 2F0

Qε

(
r̄s + F 2

0 r̄s

4βQε + 2F 2
0

3(Qε)2
+ . . .

)}
{

1

(Qε)
1
2

[
(β

1
2 r̄s + 3F 2

0 r̄s

4β
1
2Qε

) + F 2
0 r̄sβ

1
2

(Qε)2
(2r̄2s + 5F 2

0
4β2 ) + . . .

]
+ 2F0

Qε r̄s

(
1 − 2F 2

0
3βQε −

2F 2
0 r̄

2
s

3(Qε)2
+ . . .

)}

(53)

where r̄s is defined in eqn.(23).

We find the response of the system in the weak noise limit following [24,25] by expanding 〈x(t, α)〉ad
in a Fourier series

〈x(t, α)〉ad =
∞∑
−∞

Mne
in(Ωt+α) ≈ 2|M1| cos(Ωt+ α) (54)

A plot of the response versus the noise strength in the weak noise limit shows a non-monotonic behaviour,

with very steep peaks at certain values of the noise strength, reminiscent of stochastic resonance (Fig.4).

It is also possible to compute the resulting spectrum in the asymptotic limit following [25], from the

phase-averaged asymptotic correlation function K̄as(t, t′)

K̄as(t, t′) = 2
∞∑
n=1

|Mn|2 cosnΩt (55)

The asymptotic spectral density which contains the delta spikes is defined from

S̄as(ψ) =
∫ ∞

−∞
dτK̄as(τ)e−iψτ = 2π

∞∑
n=1

|Mn|2δ(ψ − nΩ). (56)

Also as in [25], the spectral power amplification η can be calculated by dividing the power Pn in the

nth frequency component by the total input power P0 in the modulation

η =
P1

P0
=

4π|M1|2
πF 2

0

= 4(
|M1|
F0

)
2

. (57)
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We observe that η depends upon the amplitude for each frequency (Fig.5). Because of phase-locking,

the frequency dependence is not apparent in our formalism employing centre-manifold reduction. As

the amplitude of the forcing increases, the amplification of the response of the system moves towards

increasing values of the noise strength, diminishing rapidly in magnitude (Fig.5). Thus, a noisy Hopf

oscillator amplifies better weak signals. This is reminiscent of the response of the ear — — the ear

is more responsive to weak signals, cochlear amplification being most pronounced at the auditory

threshold and falling steeply with increasing stimulus intensity [5,10].

It is very important to note, however, that the underlying phenomenon in a noisy Hopf oscillator

with external periodic forcing is completely different from that in stochastic resonance, and rather

unrelated to it. In a Hopf oscillator, even though the periodic forcing is imposed from outside, in

the 1:1 resonance we have considered here, the oscillator has the same frequency of oscillation as the

external periodic force. More important, in the presence of noise, there is phase-locking of the fast

variable of the oscillator with the external frequency. Thus, there are no oscillations in the sense of

stochastic resonance. However, in this case also, the sharply enhanced response appears to be the

consequence of the interaction of the two kinds of perturbations with the stable periodic orbits of the

unperturbed system, the noise always trying to kick the system out of the orbit while the applied

phase-locked force kicks it back again towards the orbit.

In the presence of noise, the bifurcation point is disturbed (see [1] & references therein). In order to

tune the system close to the critical point, the distance of the control parameter from its critical value

Cc must be minimal

δC = C − Cc ≈ Cc
∆2

|x1|2 → 0. (58)

For the system with noise, the quantity of interest is the noise averaged distance 〈δC〉 from the critical

point.

In the presence of an external stimulus, we find on using eqn.(16)

〈δC〉e ≈ Cc
4∆2 cos2(Ωt+ α)

NF

2π

∫ 2π

0

dφ

∫ ∞

0

drr4 cos2 φδ(φ − Ωt− α± 2nπ) exp
{
− 2
Qε

[
(l − β′Cc

4∆2
)
r4

4
− β

r2

2
− F0r

]}
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≈ Cc
4∆2

(Qε)
1
4

2(l− β′Cc

4∆2 )
1
2

∑∞
n=0

(n+1)(n+3)
Γ( n

2 +1)

(
F0

(Qε)
3
4
(
l− β′Cc

4∆2

) 1
4

)n
D−n

2 − 5
2

(
−β

[Qε(l− β′Cc
4∆2 )]

1
2

)

∑∞
n=0

(n+1)
Γ( n

2 +1)

(
νF0

(Qε)
3
4
(
l− β′Cc

4∆2

) 1
4

)n
D−n

2 − 3
2

(
−β

[Qε(l− β′Cc
4∆2 )]

1
2

)

≈ Ccβ

4∆2(l − β′Cc

4∆2 )
3
2

[1 − 4F0

(βQε)
1
2

+ 2 F 2
0

βQε − 4
3 ( F0

(βQε)
1
2
)
3

+ . . .]

[1 + 2F0

(βQε)
1
2

+ 2 F 2
0

βQε + 4
3 ( F0

(βQε)
1
2
)
3

+ . . .]
. (59)

In this case, the feedback reduces the real part of the cubic term of the original Hopf system by a

constant amount. Also 〈δC〉e increases with the noise, first rapidly, and then gradually plateaus off

for larger values of the noise (Fig.6).

For the unforced self-tuned system, we obtain

〈δC〉 ≈ Cc
4∆2 cos2(ωt+ α)

N
2π

∫ 2π

0

dφ

∫ ∞

0

drr4 cos2 φ exp
{
− 2
Qε

[
(l − β′Cc

8∆2 cos2(ωt+ α)
)
r4

4
− β

r2

2

]}

≈ 3Cc
64π∆2 cos2(ωt+ α)

( Qε

l − β′Cc

8∆2 cos2(ωt+α)

) 1
2

D− 5
2

(
−β

[Qε(l− β′Cc
8∆2 cos2(ωt+α)

)]
1
2

)

D− 3
2

(
−β

[Qε(l− β′Cc
8∆2 cos2(ωt+α)

)]
1
2

)

≈ Cc
32π∆2

r̄20
cos2(ωt+ α)

(
1 +

Qε

2β
1
r̄20

+
15
16

(
Qε

2β
)
2 1
r̄40

+ . . .
)

(60)

where

r̄0 =
( β

l − β′Cc

8∆2 cos2(ωt+α)

) 1
2

, (61)

and asymptotic expansions of the parabolic cylinder functions have been used in the weak noise limit

as before. In this limit, the contributions from higher order noise terms progressively diminish and can

be neglected. We observe that the contribution from the feedback equation for a fixed noise strength

modulates δC periodically (Fig.7), spiking at specific frequencies. Thus, when one tries to tune the

system close to the critical point for a given noise strength, at certain frequencies of the oscillator, it

suddenly departs, far from the bifurcation. This behaviour essentially arises because of the dependence

of the control parameter on the system dynamics. The large departures at certain frequencies reflect

the role of the fluctuations in perturbing the system away from the stable limit cycle.

The sign of 〈δC〉 would determine whether the fluctuations have delayed or advanced the bifurcation.

It is known in general that fluctuations smear and advance the bifurcation in an uncoupled system. For

a generic resonantly forced Hopf oscillator, we see from eqn.(59) that 〈δC〉 would always be positive.
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In an unforced system subject to the feedback in eqn.(4) however, we see from eqn.(60) that the sign

of 〈δC〉 would depend upon whether l is greater than or less than β′Cc

8∆2 cos2(ωt+α) .

To tune any dynamical system to operate close to the Hopf bifurcation in the presence of fluctuations,

one would need to adjust the values of the parameters at the operating point so that 〈δC〉 → 0. For

a nonlinear system to act as an efficient detector of signals in the presence of noise, it s necessary to

choose parameters appropriately so that the system neither gets subject to large oscillations, nor is it

far into the quiescent regime, but rather operates as close to the critical point as possible in order to

achieve the maximal value of the spectral power amplification for the signal to be amplified effectively.

If indeed the mechanotransducers in the inner ear, the hair cells, are Hopf oscillators in vivo, then, it

appears that Nature has designed the living system in such a way that despite numerous defects and

anomalies which occur in the organism, the actual biological parameters — the stiffness of the hair

bundle, the length of the stereocilia, the calcium concentration entering them, etc., are all so accurately

regulated to operate close to the oscillatory instability, as to achieve optimal efficiency and detect even

the faintest whisper.

Finally, we would like to mention that the spectrum of the unforced self-tuned system shows very

interesting behaviour. Because of the nature of the feedback in equations (4),(A-1) and (A-3), the self-

tuned system is periodic in time and would therefore, in the presence of noise, be expected to exhibit

the characteristic precursor of the Hopf instability [42]. Noisy precursors of instabilities in nonlinear

systems were first studied and classified systematically in [42] and subsequently noise enhancement of

precursors has been demonstrated in [43].

Using the phase-averaged asymptotic correlation function K̄as(t, t′) = 〈〈x(t)x(t′)〉〉α and after some

simplifications, the asymptotic spectral density has the form (to lowest order approximation)

S̄as(ψ) =
∫ ∞

−∞
dτK̄as(τ)e−iψτ

≈
∫ ∞

−∞
dτ

1
8π

(Qε
2β

+ h(t)
)
e−i(ψ−nω)τ . (62)

Here, τ = t − t′ and the time periodicity of K̄as(τ) arising from the feedback (the self-tuning

terms) is used to expand it in Fourier series. The time-dependent periodic part has been represented

by h(t) = h(t + T ). Approximations such as in eqn.(60) are made in the evaluation of the ratio of
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the parabolic cylinder functions
D− 5

2
(−u)

D− 3
2
(−u) . We can see from here that the spectrum consists of

delta peaks at frequencies (ψ − nω), n = 0, 1, 2, . . . superimposed on the spectrum of a bounded

time-periodic function. The latter arises because of the oscillatory nature of the feedback.

The delta peaks can be identified with contributions from the nonzero Floquet exponents, with the

real part of the Floquet exponent ( Re(A(Cc)) = β) determining the size and shape of the peaks and

the position of the peaks being determined by the imaginary part of the exponents ( Im(A(Cc)) = ω).

The sign of the real part of the Floquet exponents determines the stability of the orbit in phase space,

a stable orbit being characterized by negative values for all the Floquet multipliers [42], a change in

stability being indicated by a change in their sign, the stability of the system therefore being dominated

by the properties of the Floquet exponent with the smallest negative real part. This is captured by the

Lamrey diagrams for the successive iterates of the orbit in phase space, in its corresponding Poincare

return map [44]. A statistical method based on the properties of the behaviour of the return map was

developed in a recent work [45] to detect the onset of bifurcations and their precursors.

Our results and observations above allow us to go a step further and speculate on the implications, in

the biological context of hearing, of feedback for an unforced Hopf oscillator subject to fluctuations.

We suggest that in the context of the Hopf oscillator hypothesis for the sensory hair cells, the self-tuning

mechanism for a noisy Hopf oscillator could be responsible, to a large extent, for the sharp peaks ob-

served in the spectra of otoacoustic emissions emitted spontaneously from the ears of various vertebrates

[8]. This could also be the reason for the corresponding phenomenon of autonomous vibrations observed

in Johnston’s organ [9], the hearing organ of insects where the mechanotransducers are sensory neurons,

rather than hair cells.

The effect of the external noise on the self-tuning at the onset of an instability is thus visible as the

sharp peaks in the spectrum of the otoacoustic emissions.

Of course, in order to determine the frequencies at which the spectrum exhibits the delta peaks for a

given hair bundle (or for the sensory neurons in insects), one would need to know all the parameters

describing its mechanical properties – such as the length of the stereocilia, their stiffness, etc.. However,

the range of the otoacoustic spectrum would be determined by various other factors such as the number

of the mechanotransducers (Hopf oscillators), their characteristic frequencies, their arrangement on the
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basilar membrane, the length of the basilar membrane, the influence of their attachments if any (such

as the tectorial membrane in many organisms), and also, possibly, the influence of the efferent neurons

on them. The scope of our study, however, does not extend to working out the biological details of such

a system.

5. Conclusion

We have discussed how a Hopf oscillator in the presence of additive noise displays an amplified

response in the presence of an external stimulus displaying some kind of a stochastic filtering effect.

The effect is more pronounced for weaker signals and diminishes as the magnitude of the stimulus

increases.

We have considered the case of a feedback which is generated by the system dynamics and have

eliminated the fast oscillations of the system by means of centre manifold reduction, enabling us to

solve the associated Fokker Planck equation in the adiabatic limit.

The fast variable of the Hopf oscillator gets phase-locked to the external frequency in the presence of

periodic driving.

In the presence of an external periodic force, the distance from the bifurcation increases with increasing

noise strength, first very steeply and then plateaus, showing a very gradual but definite increase with

the noise. In the absence of external forces it shows a dependence on the frequency of the limit cycle

for a fixed noise strength, exhibiting sharp peaks at specific frequencies.

The estimate found in our work for the distance from the bifurcation provides a useful measure for

building, for instance, a detector for detecting weak signals in a noisy environment. The parameters

of the actual specific dynamical system must be so adjusted as to have a minimal, if not an almost

vanishing value for 〈δC〉 so that the system operates with maximal efficiency, and with the largest

feasible value of the spectral power amplification so that even the faintest signals can be captured.

Using the actual values of biological parameters from biophysical models of the hair cell in our estimate

would be a useful exercise and test to check the applicability of our theoretical treatment of self-tuning

a Hopf oscillator, to actual biology.
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The phenomenon of stochastic resonance has been proposed as a possible underlying mechanism for

amplification of weak signals by the ear [21,16]. Our analysis shows that if the underlying force

producing elements in the inner ear are indeed Hopf oscillators as has been proposed by several authors

[10-12], then the reason for the amplified response is not because of stochastic resonance, and the

totally unrelated stochastic “filtering” effect which we have demonstrated here might be the underlying

cause.

The important feature which distinguishes these two phenomena is that of entrainment of the phase of

the noisy Hopf oscillator with the stimulus frequency, which does not happen for stochastic resonance.

While for the forced Hopf oscillator the peaks in the spectral power amplification diminish in magnitude

with increasing stimulus amplitude, they do so moving towards increasing values of the noise strength.

In contrast, in the case of stochastic resonance for a bistable potential, this shift is towards decreasing

values of the noise strength [25]. These are results which are also amenable to experimental analysis. A

key point of course is that stochastic resonance does not occur in the absence of an external stimulus.

We found at the end of Section 4 that an unforced Hopf oscillator with feedback, does, however show

the expected coherence resonance.

We suggest that within the framework of the Hopf oscillator hypothesis in hearing research, the sharp

peaks observed in the spectrum of spontaneous otoacoustic emissions of various organisms could be a

signature of the noisy precursor to the Hopf instability for the unforced self-tuned oscillator.

Of course, several alternative views and approaches have been extant in hearing research [46], and

various theories have been proposed for the occurrence of otoacoustic emissions (both spontaneous

and evoked) — see, for instance, ref.[47] and references therein. The description of the individual

hair cells arranged on the cochlea as Hopf oscillators responding to stimulus frequencies resonant

with their individual characteristic frequencies is fairly recent and interesting, and a description

of the hair cell in a generic way aims to broadly capture the essential dynamics common to

that in all organisms — mammals as well as non-mammals. In this framework, our analysis could

give useful insight into the effect of fluctuations on regulatory feedback mechanisms at the cellular level.
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To our knowledge, our work provides the first theoretical analysis on the consequences of feedback

in a Hopf oscillator subject to noise.

A more physically appealing system to consider would be one in which the control parameter

fluctuates — the resulting multiplicative noise could give much richer effects. Studies in this direction

are under progress and will be reported elsewhere.

On the other hand, we would like to point out that when the system under study is a periodically

forced Hopf oscillator, care must be taken to ensure that the correct equation (3) for the normal form

[28-31] is employed to model it. This is especially essential when the external forcing contains more

than one frequency. Thus it would be instructive to repeat the analysis in [14] using the well-established

normal form equation (3) for a periodically forced system near a Hopf bifurcation [28-31].

Appendix A: Normal mode equation for a Hopf oscillator

We state here the essential outline of the steps followed to derive eqn.(5). For a periodic force

Fext(t) = Fext(t+ 2π
Ω ), x can be expanded in terms of its Fourier modes: x(t) =

∑
n xne

inΩt. Since we

consider a feedback such as in eqn.(4) which depends upon x(t), we can expand C(t) in Fourier modes

C(t) = C0(t) +
∑
n�=0

Cne
inΩt (A-1)

where: C−n = C∗
n.

As in [11], a solution of eqn.(4) can be found by inverting F and expressing it as a polynomial in the

variable x(t) and C(t). In Fourier components, we write this as

Fk = F (1)
kl xl + F (2)

klmxlxm + F (3)
klmnxlxmxn +G

(1)
kl Cl +G

(2)
klmClCm +G

(3)
klmnClCmCn

+ H
(2)
klmxlCm +H

(3)
klmnxlxmCn +M

(3)
klmnxlCmCn + . . . (A-2)

The indices ki in the expansion coefficients F (n)
k,k1,...,kn

, G
(n)
k,k1,...,kn

, etc., are constrained by:

k = k1 + . . .+ kn. All expansion coefficients are symmetric with respect to permutations of ki.
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The dependence of the control parameter on the x variable can then be expressed in a general way,

as a power series in x

Ck = ζ
(1)
kl xl + ζ

(2)
klmxlxm + ζ

(3)
klmnxlxmxn + . . . , k �= 0 (A-3)

where the expansion coefficients ζ
(n)
k,k1,...,kn

are functions of the frequency ω of the limit cycle of the

oscillator, and symmetric with respect to permutations of the indices ki which satisfy: k = k1+. . .+kn.

Substituting eqn.(A-3) into eqn.(A-2) leads to a polynomial equation in x0, xk, (k �= 0), and C0. It

is assumed that close to the Hopf bifurcation, the first Fourier mode of the x variable is the dominant

one. Equating like harmonics on both sides of the resulting equation, one obtains expressions for F0,

F1, F2, etc. In the absence of any external stimulus, the Fi’s vanish, enabling one to obtain explicit

expressions for xis. Since the first Fourier mode x1 is assumed to dominate near the bifurcation, we

obtain :

x0 ≈ p4(C0) + p5(C0)|x1|2 (A-4)

x2 ≈ −λ2(C0)
λ1(C0)

|x1|2 (A-5)

0 ≈ λ6(C0)x1 + λ8(C0)|x1|2x1 (A-6)

where p4 and p5 are real and λl (l= 1, 2, 6, 8) complex, and they are all complicated functions of

C0, and of the expansion coefficients ζ
(n)
k,k1,...,kn

, F (n)
k,k1,...,kn

, G
(n)
k,k1,...,kn

, H
(n)
k,k1,...,kn

and M
(n)
k,k1,...,kn

.

The dependence of the stationary part x0 on |x1| can be eliminated by an appropriate choice of

p5(C0) and p4(C0). We work with the choice p4 = p5 = 0. In the case of the hair bundle, where the

x variable corresponds to the hair bundle displacement, this choice of p4 and p5 would correspond to

the elimination of the undesirable dependence of the constant part x0 on the motion of the system. p4

and p5 in this biological example would depend upon the mechanical properties of the hair bundle —

however, we do not discuss this issue in our paper.

From eqn.(A-6) we arrive at eqn.(6). In general, eqn.(6) has the structure

|x1|2 ≈ −a0 + a1C0 + a2C
2
0 + a3C

3
0 + . . .

b0 + b1C0 + b2C2
0 + b3C3

0 + . . .
(A-7)

where ais and bis depend upon the frequency. Thus, writing eqn.(A-7) in the form of eqn.(7) implies

that

Cc = C0

{
1 +

[a0 + a1C0 + a2C
2
0 + a3C

3
0 + . . .

b0 + b1C0 + b2C2
0 + b3C3

0 + . . .

]}−1

. (A-8)



J. Balakrishnan Self-tuning to the Hopf bifurcation in fluctuating systems 29

Appendix B : Calculation of noise averages

The mean values of functions G(z, z̄) are the noise averages

〈G(z, z̄)〉 =
∫
dzdz̄G(z, z̄)P (z, z̄, t) (B-1)

which may in general be calculated in the polar coordinate representation using the reduction given by

eqn.(41). For instance, the mean value of x(t) can be calculated using eqn.(2) and eqn.(16)

〈x(t)〉 =
∫ ∞

0

rdr

∫ 2π

0

r cosφdφP (r, φ, t). (B-2)

From eqn.(41) and eqn.(42) we can calculate its asymptotic mean value

〈x(t)〉as =
∫ ∞

0

dr

∫ 2π

0

dφr2 cosφP(φ|r, λ)Pas(r, λ, t) (B-3)

In the adiabatic limit we can evaluate this using eqn.(45) for the forced system

〈x(t)〉ad =
NF

2π

∫ ∞

0

dr

∫ 2π

0

dφδ(φ− Ωt− α± 2nπ) cosφ

× r3 exp
{
− 2
Qε

[
(l − β′Cc

4∆2
)
r4

4
− β

r2

2
− F0r

]}
(B-4)

Performing this integral leads to eqn.(52).
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Fig.1. Effect of Self-tuning: Un-normalised probability distribution Pad(r,λ,t)
N as a

function of the radial variable r for increasing values of λ. (l = 2.6 × 10−3; β =

1.5 × 10−3; β′Cc

4∆2 = 1.2 × 10−3; Qε = 1.0 × 10−3; λ1 = 0.05, λ2 = 0.2, λ3 = 0.3, λ4 = 0.4, λ5 =

0.5, λ6 = 0.6, λ7 = 0.8, λ8 = 1.2).
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Fig.2. Probability distribution for a forced Hopf oscillator for different values of the

external forcing F0. ( l = 3.8 × 10−3; β = 1.5 × 10−3; β′Cc

4∆2 = 1.2 × 10−3; Qε = 1.0 × 10−3; F00 =

0.0; F01 = 0.5 × 10−3; F02 = 1.0 × 10−3; F03 = 1.5 × 10−3; F04 = 2.0 × 10−3).
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Fig.3. Trajectories in the x-y plane of the unperturbed and perturbed Hopf os-

cillators for two different amplitudes of periodic forcing : the solid closed curve

is the trajectory of the unforced deterministic Hopf oscillator without feedback control; the

dashed trajectory is of the forced deterministic Hopf oscillator without feedback control; the

dotted one is of the noisy forced Hopf oscillator without feedback control; and the dash-

dotted trajectory shows the effect of the feedback control on the noisy forced Hopf oscillator.

(l = 0.1; β = 0.0; Cc

4∆2 = 0.3; d = 0.4; α = 0.2; α0 = 0.2; ω = 1.6; Ω = 1.6; β′ = 0.00001; ε = 0.0009).

(Fig.3A. F0 = 0.004, Fig.3B. F0 = 0.007.).
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Fig.4. Response |M1| of a resonantly forced self-tuned Hopf-oscillator in the presence

of additive noise Qε (for F0 = 1.5 × 10−3, β = 0.1, l − β′Cc

4∆2 = 1.6 × 10−3 ).
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Fig.5. Spectral power amplification η of a resonantly forced self-tuned Hopf oscillator

as a function of the noise strength Qε (for β = 0.1, l− β′Cc

4∆2 = 0.14 × 10−3).
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Fig.6. Self-tuning in a forced Hopf oscillator subject to additive noise: Distance 〈δC〉e
from the bifurcation as a function of the noise strength Qε (for F0

β = 0.02).
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Fig.7. Self-tuning in a noisy Hopf oscillator in the absence of external force: Distance

〈δC〉 from the bifurcation is periodically modulated for fixed noise strength, spiking at

specific frequencies (β2 = 1.5 × 10−6, l = 2.0 × 10−3, β′Cc

8∆2 = 0.7 × 10−3, Qε = 1.0 × 10−3).


