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Abstract

Let VI and V¥ be simple vertex operator algebras satisfying cer-
tain natural uniqueness-of-vacuum, complete reducibility and cofinite-
ness conditions and let F' be a conformal full field algebra over VI ®
Vi We prove that the ¢,-G;-traces (natural traces involving ¢, =
e?™7T and @; = e2™7) of geometrically modified genus-zero correlation
functions for F' are convergent in suitable regions and can be extended
to doubly periodic functions with periods 1 and 7. We obtain neces-
sary and sufficient conditions for these functions to be modular in-
variant. In the case that V' = VF and F is one of those constructed
by the authors in [HK], we prove that all these functions are modular
invariant.

0 Introduction

In this paper, we construct genus-one full conformal field theories (genus-one
conformal field theories with both chiral and anti-chiral parts) from genus-
zero full conformal field theories. More precisely, we construct genus-one
correlation functions from genus-zero correlation functions for a conformal
full field algebra over VI @ VI in the sense of [HK], where VI and VF
are vertex operator algebras satisfying certain natural uniqueness-of-vacuum,
complete reducibility and cofiniteness conditions (see below).

Since Kontsevich and Segal (see [S1], [S2] and [S3]) gave a geometric def-
inition of (two-dimensional) conformal field theory in 1987 by axiomatizing
the properties of path integrals used by physicists, constructing conformal
field theories satisfying this definition became an important unsolved mathe-
matical problem. Around the same time, E. Verlinde [V] and Moore-Seiberg



IMST] [MS2] (see also [MS3]) made a major breakthrough by discovering the
relation between fusion rules and modular transformations and the modu-
lar tensor category structures associated to rational conformal field theories,
assuming that these theories had been constructed.

For some of the applications of conformal field theories (for example,
for the construction and study of knot and three-manifold invariants and
the proof of the Verlinde formula in algebraic geometry), a construction of
modular functors introduced by Segal [S2] [S3] is enough. See, for example,
[Tu] and [BK] for the construction of some examples of modular functors. In
[H11] (see also [HE] for an announcement and [H9] for an exposition), the first
author constructed modular tensor categories from representations of vertex
operator algebras satisfying the conditions mentioned above. Combining with
the results in [Tu] and [BK], this result of [H11] in fact gives a construction
modular functors from representations of vertex operator algebras satisfying
the conditions alluded above.

However, for some other applications, modular functors are far from
enough. One extreme example is the conformal-field-theoretic construction
used in Frenkel-Lepowsky-Meurman’s proof of the McKay-Thompson con-
jecture on the existence of the moonshine module [FLM] and in Borcherds’
proof of the Monstrous moonshine conjecture [B]. In this example, the mod-
ular functor associated to the moonshine module vertex operator algebra is
actually trivial and thus does not play any role. On the other hand, we know
that the construction of the moonshine module vertex operator algebra by
Frenkel-Lepowsky-Meurman and the proof of the Monstrous moonshine con-
jecture by Borcherds can be interpreted as one of the deepest applications of
conformal field theory.

A program to construct conformal field theories was first initiated by
I. Frenkel even before Kontsevich and Segal gave their geometric definition of
conformal field theory. Under the direction of I. Frenkel, He [I's] constructed
genus-zero and genus-one parts of conformal field theories associated to tori.
Tsukada constructed not only chiral theories but also full theories which con-
tain both chiral and antichiral parts. In [HI], [H2], [H3], [H4], [H5], [H6] and
[H7], the first author constructed chiral genus-zero and genus-one conformal
field theories from representations of vertex operator algebras satisfying suit-
able conditions. In [HK], the authors constructed genus-zero full conformal
field theories from representations of vertex operator algebras satisfying the
conditions mentioned above and given precisely below and in Section 3 (see
also [KI] and [K2]).



The present paper is a continuation of the paper [HK] and the results
obtained in the present paper can be viewed as one step in a program of
constructing conformal field theories from representations of vertex operator
algebras. As is mentioned above, we construct genus-one full conformal field
theories in this paper. More precisely, let V¥ and V¥ be simple vertex
operator algebras satisfying the following conditions for a vertex operator
algebra V: (i) For n < 0, V(,,) = 0, Vjg) = C1 and W = 0 for irreducible
V-module W not isomorphic to V. (ii) Every N-gradable weak V-module
is completely reducible. (iii) V' is Cy-cofinite, that is, dim V/Cy(V) < oo,
where C(V') is the subspace of V' spanned by elements of the form u_sv
for u,v € V. Let F be a conformal full field algebra over VI @ V (see
[HK] or Section 1 for the definition and basic properties). We construct
genus-one correlation functions using ¢,-g,-traces (natural traces involving
¢ = > and g = €*™7) of geometrically modified genus-zero correlation
functions for F. We prove that these functions are doubly periodic and we
obtain conditions which are equivalent to the modular invariance of these
functions. When V* = VE = V and F is the conformal full field algebras
over V@V constructed by the authors in [HK], we prove that these conditions
are satisfied and thus all these functions are modular invariant.

We note that based on the existence of the structure of a modular ten-
sor category on the category of modules for a vertex operator algebra, the
existence of conformal blocks with monodromies compatible with the mod-
ular tensor category and all the necessary convergence properties, Felder,
Frohlich, Fuchs and Schweigert [FEES], Fuchs, Runkel, Schweigert and Fjel-
stad [FRST] [FRSY] [FRS3| [FRS4] [FRSH [FiFRSI] [FiFRS2], and Fréhlich,
Fuchs, Runkel and Schweigert [FrFRS] studied open-closed conformal field
theories (in particular full (closed) conformal field theories) using the the-
ory of tensor categories and three-dimensional topological field theories. In
particular, they constructed correlation functions as states in some three-
dimensional topological field theories. In [HK] and the present paper, what
we need in our work are theorems proved by the first author in [H6], [H7],
[HI0] and [HIT] when the vertex operator algebras we start with satisfy some
natural conditions. Our work in [HK] and the present paper not only re-
placed these fundamental but hard-to-verify assumptions by natural, purely
algebraic and easy-to-verify conditions on vertex operator algebras, but also
constructed explicitly genus-zero and genus-one correlation functions from
intertwining operators for the vertex operator algebras.

The present paper depends heavily on the results obtained in [HT], even
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more heavily than the papers [HI0] and [H11]. In [HI0] and [HII], we need
only the properties of certain special two-point genus-one chiral correlation
functions obtained in [H7], namely, those obtained from iterates of inter-
twining operators with the intermediate modules being the vertex operator
algebra itself. In this paper, we need the full strength of the results obtained
in [H7]. In particular, using the results of [H7], we prove a symmetry property
of the matrix elements of the actions of the modular transformation 7 — —%
on the space of one-point genus-one correlation functions (Theorem EI3),
which is a generalization of the symmetry property of the matrix elements of
the action of the same modular transformation on the space of vacuum char-
acters (Theorem 5.6 in [H10]). This generalization is exactly what we need
in Section 5 to prove the modular invariance of the genus-one correlation
functions for the conformal full field algebras constructed in [HK]. To prove
Theorem BT, we prove an explicit formula ([E24]) for these matrix elements.
In the case that a = e, we recover the formula for the matrix elements of the
action of the same modular transformation on the space of vacuum charac-
ters, obtained first by Moore-Seiberg from the Verlinde formula and proved
for vertex operator algebras satisfying the conditions above by the first au-
thor in [H7]. Note that in the case a = e this formula [EZ4) was shown
in [HTI] to be equivalent to the nondegeneracy property of the semisimple
ribbon (tensor) category of modules for the vertex operator algebra. In the
special case of discrete series, a formula for these matrix elements was given
in [MS3].

The present paper is organized as follows: In Section 1, we recall the basic
definition and constructions in the theory of conformal full field algebras
over V¥ @ VE given first in [HK]. In Section 2, we recall the chiral genus-
one theory constructed from intertwining operator algebras in [H7]. These
two sections are given here for the convenience of the reader. The reader
is referred to [HK] and [H7] for more details. In Section 3, we prove the
convergence of g,-g;-traces of genus-zero correlation functions in suitable
regions and show that these can be extended to doubly periodic functions
with periods 1 and 7. We also give conditions which are equivalent to the
modular invariance of these functions in this section. In Section 4, we study
the matrix elements of the action of the modular transformation S : 7 +— —%
on chiral genus-one correlation functions. In particular we obtain an explicit
formula for these matrix elements. This formula allows us to derive a a
symmetry property of these matrix elements. In Section 5, for the conformal
full field algebras constructed in [HK], we prove the modular invariance of
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the correlation functions using the results obtained in Sections 3 and 4.

Acknowledgment The first author is partially supported by NSF grant
DMS-0401302.

1 Conformal full field algebras

In this section, we recall the notion of conformal full field algebra over V' ®
VEE introduced in [HK] and review the construction of conformal full field
algebras over VI @ VEE when VI = V satisfying suitable conditions given
in the same paper. See [HK] for more details and other variants of full field
algebras.

Let F,,(C) = {(z1,...,2,) € C" | 2; # z; it ¢ 7é j}. For an R x R-graded
vector space F' = Hr,seR Fi.g), let F' = ]_[meR (rs) and F = HT ser Fr,s) be
the graded dual and algebraic completion of F', respectively. For r, s € R, let
P, s be the projection from F' or F to Fir.s). A series ) f, in F is said to be
absolutely convergent if for any f' € F, Z |(f', fu)| is convergent. The sums
SIS, fu)| for f € F' define a linear functional on F’. We call this linear
functional the sum of the series and denote it by the same notation Y f,. If
the homogeneous subspaces of F are all finite-dimensional, then F = (F)"
and, in this case, the sum of an absolutely convergent series is always in F.
When the sum is in F', we say that the series is absolutely convergent in F.

Definition 1.1 Let (VL YL 11 wl) and (VE YE 1% wF) be vertex opera-
tor algebras. A conformal full field algebra over V¥ @V is an R x R-graded
vector space F' = Hr,seR Fl,.5) (graded by left conformal weight or simply left
weight and by right conformal weight or simply right weight), equipped with
correlation function maps

My, Fe" x F,(C)

— F
(U1 @+ @ Up, (21,.-.,2n)) — m

n(uh ey Upg Zlvzlv <oy Zny Zn)7

for n € Z,, an injective grading-preserving linear map p from the V' @ V%
to F' satisfying the following axioms:

1. There exists M € R such that I, ) =0if n < M or m < M.

2. dim F{, 5y < oo for m,n € R.



. ForneZy, my(uy,...,up;21,21,...,%n, 2n) is linear in uy, ..., u, and
smooth in the real and imaginary parts of 2y, ..., z,.

. Foru € F, my(u;0,0) = u.
.ForneZy, uy,...,u, € F,

mn+1(u1, ey Up, 1, 21,21, A Zn, Zn+1,2n+1)

=M (U, - ooy Upi 215 215+ -5 Zns Zn)s

where 1 = p(1F @ 1),

. The convergence property. For k,ly,...,ly € Z, and ugl), . ul(ll), . ugk),
ul(:) € I, the series
1 . (1) - _(
Z mk(PTl,Slmll(ug)w' () zi)u’zg)u"'v l(l)uzl(l))v"'v
T1,815+-TksSk
k k _(k k) —(k 0) (0 0) (0
Prk,skmlk(ug ), . ul(k), z§ ), zg ), . zl(k),zl(k)); zg ), zg ) z,g ), z,g ))
(1.1)
converges absolutely to
ml1+...+zk(u§1), ul(k) O z&o), Zgl) + Z(O) ( ) 4 Z(O)
gl(11)+z§)"”’ (k)+zl(€)’ sk )-l-?;(g),-- Zl(k)+zl(€)’zl( )+7(0))
(1.2)

when || + |2] < |zz-(0) - z§0)| for i, = 1,...,k, i # j and for
p=1,...,l;andg=1,...,1;.

. The permutation property: For any n € Z, and any o € S,,, we have

M (Uly ooy U 215 215 -+ - 5 2y Zn)

= M (Us(1), - - s Uo(n); Zo(1)s Zo(1)s - - - » Zo(n)s Zo(n)) (1.3)
for uy,...,u, € F and (21,...,2,) € F,(C).
. Let

Y: F®2xC* — F
Y

(u®v,2,2) — Y(u;z 2)v
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be given by
Y(u; 2, 2)v =ma(u ®wv; 2,2,0,0)

for u,v € F'. Then
Y(p(u® @ u'); 2, 2)p(v" @ 0™) = p(YE(ub, 2)u @ Y (uf, Z)0")

for uf, vl € VI, uf v® € VE and there exist operators L¥(n) and
LE(n) for n € Z such that

V(plo' ®1%;2,7) = 3 LHm)= ",

nez
Y(p(1* @w);z,2) = Y Li(n)z
neZ
9. The single-valuedness property: ¢ L O=L%0) — ..

10. The L*(0)- and L%(0)-grading properties: For r,s € R and u € F{, 5,

LE(0u = ru,

L0y = su,
11. The L*(0)- and L%(0)-bracket properties: For u € F,
L — 8 _ L _
[L7(0), Y(u;2,2)] = za—Y(u; 2,2) + Y(L*(0)u; 2,2)  (1.4)
2

[L7(0), Y(u;2,2)] = Z%Y(u;z,i)—i—Y(LR(O)u;z,Z). (1.5)

12. The L*(—1)- and L®(—1)-derivative property. For u € F,

[LM(=1),Y(u; 2, 2)] = Y(L*(-1)u; 2, 2) = %Y(u; z,z), (1.6)

Y(LE(—1)u; 2,2) = gY(u; z,Z). (1.7)

[L7(—1),Y(u; 2, 2)] 5

We denote the conformal full field algebra over VI @ V1 defined above
by (F,m, p) or simply by F. In the definition above, we use the notations

mn(ub cey Uni 21,21 -y 2 Zn)
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instead of

M (Ugy ey U 215+ e s Z0)
to emphasis that these are in general not holomorphic in zq,...,2,. For
uer, u,... ,u, €F,
(W mp (U, e U 21,21 -y 2y Zn))
as a function of zi,...,z, is called a correlation function. The map Y is

called the full vertex operator map and for u € F', Y(u; z, z) is called the full
vertex operator associated to u. The element p(1 ® 1) is called the vacuum
of F. The elements p(w” ® 1%) and p(1* ® w®) are called the left conformal
element p(wl ® 1%) and right conformal element, respectively.

Homomorphisms and isomorphisms for conformal full field algebras over
VL @ VE are defined in the obvious way.

For a conformal full field algebra over VZ @ VE a formal full vertex
operator map

Y/ FQF — F{z,7}
u@v — Yi(u;z,T)v
was obtained in [HK] such that
Y(u;2,2) = Yy(u; 2, 7)|

T —eT log z ’ES:eslog z 7T78€R

for u € F and z € C*. We can also substitute e"1°8% and e*'°8¢ for 2" and 7°
to obtain Y(u; z,() for u € F.
For the operators L%(n) and L%(n) for n € Z, we have the following
bracket formulas: For m,n € Z,
L

[LHm), LHm)] = (m = n) L (m + ) 4 5 (m* = m)duno.
[L2(m), LA (n)] = (m = n)L7(m +n) + T (m* = m)dino,

[LE(m), LE(n)] = o.

Let F be a module for the vertex operator algebra V¥ @ V and Y an
intertwining operator of type (,.,). In [HKI, a splitting Y¥ : (F®F) x C* —
F and a formal splitting Y}} . F® F — F{x,7} of Y are constructed.
Substituting e"°8% and e®°¢¢ for 2" and Z° in the images of F ® F' under Y7,
we obtain an analytic splitting Y, : (F ® F) x (C* x C*) — F.

One of the main result of [HK] is the following theorem:
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Theorem 1.2 Let VI and VT be vertex operator algebras satisfying the fol-
lowing conditions for a vertex operator algebra V : (i) Every C-graded L(0)-
semisimple generalized V -module is a direct sum of C-graded irreducible V -
modules. (ii) There are only finitely many inequivalent C-graded irreducible
V-modules and they are all R-graded. (iii) Every R-graded irreducible V -
module W satisfies the Ci-cofiniteness condition, that is, dim W/C1 (W) <
oo, where C1(V') is the subspace of V' spanned by elements of the form ujw
forue Ve =11, Vin and w € W. Then a conformal full field algebra over
VL@V is equivalent to a module F' for the vertex operator algebra VI @V
equipped with an intertwining operator ) of type ( FF F) and an injective module
map p: VEQVE — F, satisfying the following conditions:

1. The identity property: Y(p(1* @ 17),2) = Ip.
2. The creation property: Foru € F, lim,_oY(u,7)p(1* ® 1%) = u.

3. The associativity: For u,v,w € F and w" € F’,

<w/’ Yg}n(u7 21, Cl)Yg}n(v; 22, CQ)'LU>
= (W', Y2 (Y2 (u; 21 — 22, (1 — C2)v; 29, Co)w) (1.8)

holds when |z1| > |z2| > 0 and |¢1| > |(2] > 0.
4. The single-valuedness property:
2L (0)=LR0) [, (1.9)

5. The skew symmetry:
Y (u; 1, 1)v = X COHTEDYY (4 ¢ o)y, (1.10)
Let V' be a simple vertex operator algebra satisfying the following:

Condition 1.3 (uniqueness of vacuum) For n < 0, V{,y = 0 and V{o) =
C1 and for irreducible V-module W not isomorphic to V', W) = 0.

Condition 1.4 (complete reducibility) Every N-gradable weak VV-module
is completely reducible.



Condition 1.5 (Cy-cofiniteness) V is Cy-cofinite, that is, dim V/Cy (V) <
oo, where Cy(V) is the subspace of V' spanned by elements of the form u_yv
for u,v € V.

We now recall the construction of conformal full field algebras over V@V
in [HK].

Let A be the set of equivalence classes of irreducible V-modules. For any
a € A, we choose a representative W from a. Then there exists h, € R such
that W =11, Wiiha-

For a single-valued branch f;(z1, z2) of a multivalued analytic function in
aregion A, we use E(fi(z1, 29)) to denote the multivalued analytic extension
together with the preferred branch fi(z1, 22). Let wy = wy(z1, 22) and we =
wsy(z1, 22) be a change of variables and fy(21, 22) a branch of E(f1(z1,22)) in
a region B containing wi (21, 22) = 0 and ws(21, 22) = 0 such that AN B # ()
and f1(z1, 22) = f(21, 22) for (21,29) € AN B. Then we use

Resy, =0 we B (f1(21, 22))

to denote the coefficient of w; ! in the expansion of f5(z1, 22) as a series in
1 )
powers of w; whose coefficients are analytic functions of ws.
For ay,az,a3 € A, we, € W4, wa, € W%, wy € (WH), wy, € (WHY,

V1 €V, and Yy € Vs'fa;v Let ()1, Va)y, , € C be given by

ag
aja
Resl_zl_z2:0 | Z2(1 — 21— ZQ)_IE(<€L(1)y2(<1 — 21— ZQ)L(O)TI](/M, Zl)ﬁ)/

a’
"V (1= 21 — 20) MO0, 20)0,,))

= <w¢/11awa1><w¢/12>wa2><ylay2>vgi3a2- (111)

It was shown in [HK] that (), yQ)Vg%GQ indeed exists. Clearly, (), y2>vg.13a2 is

/
“1e . o . L. o . as [13
bilinear in ), and },. Thus we have a pairing (-, >Vaf’a2 Ve, ® Va,l o C.

The following is another main result of [HK]:

Vs

aiaz

Theorem 1.6 The pairing (-, -)yes.

al, .
: ® V.2, — C is nondegenerate.
142 172

. ahy as
In particular, Na,la,2 = Ng,,.

Recall that in [HI0], an action of S5 on the space of intertwining operators
for a vertex operator algebras was given. We choose a canonical basis of V%3

a1a2

for ay,as,a3 € A when one of aj,as,as is e: For a € A, we choose V¢ | to
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be the vertex operator Y« defining the module structure on W* and we
choose J5.; to be the intertwining operator defined using the action of o3

on choose V¢ ,, or equivalently, using the skew-symmetry in this case,

ea;1»
ge;l(wa’x)u = 012(yga;1)(wa’x)u
= 6IL(_1) ga;l(”? —ZIZ')'LUQ

= e LDYya(u, —2)w,

for u € V and w, € W? Since V' as the contragredient of the irreducible
adjoint module V' is an irreducible V-module (see [FHL] and has a nonzero
homogeneous subspace of weight 0, as a V-module it must be isomorphic to
V. So we have ¢/ = e. From [FHLJ, we know that there is a nondegenerate
invariant bilinear form (-,-) on V' such that (1,1) = 1. We choose Vg, =

yg;,;l to be the intertwining operator defined using the action of gs3 by
ys;’;l = 0-23(3}:116;1)7
that is,

(u7 y(ia’;l(wa’ x)wa’) = eﬂiha< ge;l(exL(l) (6_7rix_2)L(0)wa7 z_l)u7 wa')

foru eV, w, € W*and w, € W?. Since the actions of o5 and 93 generate
the action of S5 on V, we have

J%;le = C712(J%§aﬁl)

for any a € A.
As in [HK], for a € A, let

Fa = F(yge;l ® ys’a;l;yga;l ® yja’;l) 7& 0

and we use v/ F, to denote the square root \/|F, e of F,. For ay,aq, a3 €
A, consider the modified pairings

N
VE

a3z .
aijaz

These pairings give a nondegenerate bilinear form (-, )y on V. For any basis
{ygfm |i=...,N&@, }of V&, and any o € Ss, {a(ygf’az;i) li=...,N&,}
is a basis of o(V,,).

We have the following result from [HK]:
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Proposition 1.7 The nondegenerate bilinear form (-,-)y is invariant with
respect to the action of S3 on 'V, that is, for ai,as,a3 € A, 0 € S3, Y, € V3

and yg c V Tal
(U(y1)7 U(y2))v = (yh y2)v-

Equivalently, for ay,aq,a3 € A,

Viavtayto e ) N
alaz,z aia2
\/F“ *1<1)\/ %=1z V F‘“

is the dual basis of {0 (Vy0e, i) | 1= .., Ng2, b, where {57 . |i= ..., N3, }
is a basis of V3, and { ;,a;é.i K L NG Y is its dual basis with respect
1 3

to the pairing (-, )y,

a3
a1a2

Let
F - @aeAWG ® WCL .

! !
For we, € W, we, € W%, wy € W and wgy, € W, we define

Y((wa, ® Wa) ); 2, Z) (Way @ Wa), )

"‘1“2

a _
o Z Z yafazp Way s = )w“2 ®ya al, p(wai’z)walz'

azeA p=1

In [HK], we proved the following result:

Theorem 1.8 The quadruple (F,Y,1®1,w® 1,1 ® w) is a conformal full
field algebra over Vo V.

2 Modular invariance for intertwining oper-
ator algebras

In this section, we review the modular invariance of intertwining operator
algebras proved in [H7]. We assume in this section that V' is a simple vertex
operator algebra satisfying Conditions [l and [ and the condition that for
n <0, Vi) = 0 and Vo) = C1. Note that the last condition is weaker than
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Condition [C3 We shall use Y to denote the vertex operator maps for the
algebra V and for V-modules.
Let A;, j € Z, be the complex numbers defined by

1 , ., 0
5 log(1 + 2miy) = [ exp Z Ajy”l&—y Y.
JELy
For any V-module W, we shall denote the operator dez ;L(j) on W by
L,(A). Then
=D AL0)
Let

U(z) = (2mi) Ozt O LA ¢ (End W){z}
where (27i)L(©) = (e 2m+i3)L0O) Tt B; € Q for j € Z, be defined by
log(1+y) = | exp Z B-y’“g Y
: Y ’
JELy
Then it is easy to see that
U(z) = 2" B) (977) HO),

For any z € C, we shall denote ¢*™* by ¢, and we shall also use U(q.) to
denote the the map obtained by substituting e?7£©) for 21 in ¢(x), that
is,

U(Qz) _ (27TZ»)L(0)62m'zL(O)6—L+(A)
_ 627rizL(0)6—L+(B) (27TZ)L(O) ) (21)
For V-modules W; and W;, i =1,...,n, intertwining operators ), i =
1,...,n, of types (W W) respectively, Where we use the convention Wy = W,,,
and w; € Wi, i = ,n, we shall consider the element
(Fy,,ymy(wr, .o e 21, -0 203 Q)

= Try VuU(g:)wi, qz,) - VUG, )i, g, )g" 0723 (2.2)
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of Gyy.,|>->g.,1>0((q)), where for complex variables £y, ..., &, Gigy>..5(e,/>0
is the space of all multivalued analytic functions in &1, ..., &, defined on the
region |&;| > - -+ > |&,| > 0 with preferred branches in the simply-connected
region & > -+ > (&, > 0,0 <arg& <2m, i=1,...,n.

In [HT], the following result was proved:

Theorem 2.1 In the region 1 > |q.,| > -+ > |q.,

> |g.-| > 0, the series

F)}h...,yn(wla"'awn;zla"'azn;qT) (23)

is absolutely convergent and can be analytically extended to a (multivalued)
analytic function in the region given by (1) > 0 (here (1) is the imaginary
part of 7), z; # zj+ kTt +1 fori,j=1,...,n,i#j, k,l € Z.

We shall denote the (multivalued) analytic extension given in Theorem
21 by
(é(yl K& yn))(wb sy Whi 21y -5 20 QT)

Note that in [H7], this function is denoted by

Fy, oy (wi, ... wpi 21,0, 20 Gr)-

Here we change the notation to avoid confusions with notations related to
algebraic extensions or to complex conjugations and also for convenience in
later sections and for future use.

In [HT], the following genus-one duality results were proved:

Theorem 2.2 (Genus-one commutativity) Let W; and W, be V-modules
and Y; intertwining operators of types (VVVV‘;) (i=1,...,n, Wo = W,), re-
spectively.  Then for any 1 < k < n — 1, there exist V-modules Wy and

intertwining operators Yy, and Vi1 of types ( Wi ) and ( Wi-1 ), respec-

Wi Wiy Wi 1 Wy
tively, such that
Fy, oy (Wi, wny 21,00 203 Q)
and
Fyl,---7yk—1,)}k+1737k7yk+2---7yn (wl’ oy We—1, Wet1; Why Wht25 - - -5 Wn;
1y vy Rh—1y Rk41y Rky k425 - + -5 Zn; qT)
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are analytic extensions of each other, or equivalently,

((I)(yl ®"'®yn))(w17’"7wn;Z17"'7zn;T>
= (PN @ V1 QVet1 OV @ Vi2 @ -+ - @ V) (wr, .. ., wi—1,
wk‘-i—la W, wk+2a vy Wni 21y e ooy Rk—1, Zk‘-i—la 2l Zk+2a c ooy Zn; 7—)'
More generally, for any o € S, there exist V-modules W; (i=1,...,n) and
intertwining operators Y; of types ( Wi ) (i=1,....n, Wo =W, =W,),

Wo‘(i)Wi
respectively, such that
Fyl,...,yn(wla e, Wni 21y -5 R0y qT)
and
Fjl,,,,737n (w0(1)> <oy Wo(n); Ro(1)y -« + 5y Ro(n)s QT)

are analytic extensions of each other, or equivalently,

((I)(yl ® '"®yn))(w17"'7wn;217"'7zn;7>
= (V1@ @ V) (Wo(1)s - - Wo(n); Zo(1)s - - - Zo(n)i T)-

Theorem 2.3 (Genus-one associativity) Let W; and Wi fori=1,...,n

be V-modules and )Y; intertwining operators of types (VVI[//;[}) (i=1,...,n,
Wy = Wn), respectively. Then for any 1 < k < n—1, there exist a V-module

and (e ),

Wi and intertwining operators Yy, and Yes1 of types ( Wi W s

Wi, )
WiWii
respectively, such that

(P @ @Vt @ Vg1 @ Vi @ - @ Vo)) (wy, . . ., wi_1,

y(wm 2k — Zk+1)wk+17wk+2a ceey Wi 21y -0 v BE—15 Rk415 - - -5 #n; 7')
=D (N ® @ Vet ® Vi1 @ Vig2 @ -+ @ Vo)) (wr, - ., wh—1,
reR
Pr(YV(Wk, 2k — 234 1)Whi1), Whg2s -+ W3 215+ -+ 5 Bkl Zhgls - -+ 203 T)
(2.4)
is absolutely convergent when 1 > |q.,| > -+ > | | > |gz | > .. >

@2 | > |gr| > 0 and 1 > |q(z—z,,,) — 1| > 0 and is convergent to
(P11 @ @Vn)) (Wi, .oy W 21, e ey 205 T)

when 1> [q, | > - > |q.,| > |¢:| >0 and |qe 2 )] > 1> -2 ) — 1] >
0.
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Let W; be V-modules and w; € W fori =1,...,n. For any V-modules V~VZ
Wi

WW-) , respectively,

and any intertwining operators )V;, i = 1, ..., n, of types (
we have a genus-one correlation function

(P @+ @ V) Wiy ey Wy 21,5 ey 205 T).

Note that these multivalued functions actually have preferred branches in the
region 1 > |q.,| > -+ > |g.,| > |¢-| > 0 given by the intertwining operators
Vi,...,V,. Thus linear combinations of these functions make sense. For
fixed V-modules W; and w; € W; for ¢ = 1,...,n, denote the vector space
spanned by all such functions by F,, . .,. For any single valued analytic
function f(7) of 7 and any r € R, we choose a branch of the multivalued
analytic function f(7)" to be ¢"°¢/(") The following theorem is one of the
main result of [HT]:

Theorem 2.4 For any V-modules W; and any intertwining operators Y;

(i=1,...,n) of types (‘YVVV’I}), respectively, and any

< - ] ) € SL(2.7),

1 L(0) 1 L(0)

21 Zy, art+f3
YT +8 T AT +0 T+ 6

3 Genus-one correlation functions and mod-
ular invariance for conformal full field al-
gebras

Let VI and VE be simple vertex operator algebras satisfying Conditions

3 4 and [CJ Let F be a conformal full field algebra over VI @ VE.
In particular, F' is R x R-graded, that is, F' = Hr,seR F.s) where F{, ) for
r,s € R are eigenspaces for the operators L¥(0) and L#(0) with eigenvalues
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r and s, respectively. For a linear map f : F' — F, we define the ¢-g-trace of
f to be

CL C
Tl"quLL —51 qLR(O) 21 — Z Tl”p(myn)fqr_ﬂqs_ﬂ.

As in [HK], we choose the branches of the functions 2" and z* for r, s € R

rlog z slog z

to be e and e , respectively. On the other hand, for the functions

(€2™=)" and (e%”) = (e72™%)s for r, s € R, we choose their branches to be

e?™% and e~2™%% respectively. For multivalued analytic functions obtained
from these functions using products and sums, we choose their branches to

be the ones obtained from the branches we choose above using the same

operations.
Now let
uL(e2m'z> _ (QWZ)LL ( 27riz)LL(0)e—LL(A)
(QM)LL 27rzzLL(0)e—LL(A)
uR(e2m'z) _ (Qm)LR ( 27riz)LR(0)e—L§(A)
(QM)LR 27rzzLR(0)e—Lf(A)’

where LY(A) = 32, ;. A;LM(j) and LE(A) = 3, , A;L7(4). By ) and
our choice of the branches of the functions (¢?™*)" and (e%”) = (e72miz)s

above, we have

UR(Zmiz) = (e2miz)LR(0) —Li(B)(Qm')LR(O)
_ (627mz>LR(O —LL(B)(QW)LR(O)e"—iLR(O)
— (6—27rzz) _LL(B)(QW)LR(O) LR(O)
(6—27FZZ)LR e—LL(B)(2ﬂ_)LR(O) Zi LR (0) —mLR(o)

uR(e—27rzz)e—mLR(0) ]

For any u € F and z € C*, we shall call the operator

Y(UL(€2MZ)WU 627”21 e2mz) F N F

a geometrically-modified full vertex operator. Foruq,...,ux € Fand z1,..., 2, €

C satisfying |e*™*1] > ... > |e?™k| > 0, the product
Y(L{L(e2ﬂi2’1 )uR(e27rizl )ul; 62“21’ 627rizl)_

17



. Y(L{L ( 627ri2k )uR ( e2mizy, )u ¥ 627ri2k ’ e2mizy, )
_ Y(uL(e2m‘z1 )uR(e—%riEl)e—m'LR(O)ul; €2m‘zl7 6—27ri21) .

. Y(uL(e%rizk )uR(e—%riEk)e—m'LR(O)ul; e27rizk7 6—27ri2k)

of geometrically-modified full vertex operators is a linear map from F to F.
So we have the g-g-trace

TI"FY(Z/{L( 2Tz )uR(e2mzl )u 2mz1 627”21_)
( ( 2mizy )u (627r7,zk )ul e2mz1 e2mizy )qLL(O)_ %aLR(O)_ o

— TI"FY(Z/{L( 27r2z1) R(€—2mz1) —mi LT (O)U1; €2mz1’ €—2m'51) .
( ( 2miz1 )uR( —2mzk)6—7riL (0)u1; 627rizl, e—27ri2k) .

L R

.qLL(O)_Cz_q (0)_ 24 (31)

As a module for the vertex operator algebra V' ® VE F is a direct sum
of irreducible modules for V¥ @ V. Let A" (Af) be the set of equivalence
classes of irreducible modules for VL (VE). For each al € AL (a® € AR),
choose a representative W (W*") of a* (a®). Then there exist a positive
integer N and maps 7% : {1,... N} — AL rf:{1,... N} — A% such that
F is isomorphic as a VF @ VE-module to ]_[nNzl Wt @ W We now
shall identify the vector space F with this V¥ ® V®-module. Then the full
vertex operator map can be written as

rL )
rL(m)rL(n) R(m)'rR(n)

1:(1,2) ~ B (1):(1) PR(1)5(2)
Z Z Z dmn;ij yr Lm)rL(n);i ®Y rRB(m)rf(n);j (32)

I,m,n=1

where d°2) ¢ Cfor |, m,n = 1,. N,izl,...,NrL(l)

mn;ij rL(m)rLk(n)’ j
and p, ¢ any indices, and

; . rl(
{er(m)rL(n);i li=1,.. "NTL((rr)L)rL(n)}

and R(0):(2) R
r (2 . r
Wrnmrnuyg | 1= 1 Norgmyyay
for [,m,n =1,..., N are basis of V:LL((Q)T,L () and V::((:T)I,)TR(H)7 respectively.

For 7 € H, let ¢, = €?™7. we have:
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Proposition 3.1 Foruy,...,ux € F, the q-g-trace (1) with ¢ = q, is abso-
lutely convergent when 1 > |e*™#1| > ... > |e*™3k| > |q.| > 0. Moreover, the
sum of this q-g-trace can be analytically extended to a multi-valued analytic
function of z1,&1, ..., 2k, &, T and o in the region given by z; # z; +m +nT
fori# jand m,n € Z and & # & +m +no for i # j and m,n € Z, with
the sum of the q-G-trace (1) with ¢ = q. as a preferred value at the special
points
(z21,&1 =21, -, 26, & = Zp; T, 0 = —T)

satisfying 1 > [€*™1] > -+ > |e?™#| > |q,| > 0.

Proof. This result follows immediately from (B2) and the convergence and
analytic extension properties for ¢g-g-traces of intertwining operators for the
vertex operator algebras V% and V. |

Recall from [HK] the (genus-zero) correlation functions
Mg (Upy - ooy Uk 215215 - -+ Zks ZK)
for k € Z, and uq,...,u; € F' and their analytic extensions
E(m)(ur, ... ug; 21, Cry oy 28, Gr)-
The functions

mp, (uL(627rizl )UR(6_2mzl )6—7riLR(0)u1’

. _ — _ . R . _ — . _ —
o 7Z/{L(e27rzzk )Z/IR(e 27rzzk>e mil (0)uk7 627”21’ e 27z, 7 627”%’ e 27rzzk)

P

are called geometrically-modified (genus-zero) correlation functions.

Corollary 3.2 Foruy,...,u € I,

TrFE(m)k(L{L (€2m‘z1 )uR(e—27ri51 )6—m'LR(0)u17
. uL(€27rizk )L{R(e_%’f’f )6—7riLR(0)uk; 627rizl’ 2761 :

cL R cR
LH0)-57
24
q

. . Lgy—<c—
.., efmiE 62“5’“)qu © o 2 (3.3)
1s absolutely convergent to a multi-valued analytic function of z1,&1, ..., 2k, &,
7 and o in the region given by 1 > |e*™=| ... |e*™#*| > |q.| > 0, 1 >
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2L €20k > g, > 0, 2 # 25 fori # § oand & # & for i # § and
m,n € Z. In particular, the q,-¢--trace

Trpmy, (uL (627r2'z1 )uR(e—%riEl )e—m'LR(O) uy,

. _ — _ . R . _ —
N ’uL(627rzzk )uR(e 2mzk)6 il (O)Uk, 627”21’ e 2miZ1

Y

. . L _c R _c_R
2mzk’e—27rzzk)qL (0) 2465 (0) 24 (34)

T

..,e

is absolutely convergent when 1 > |e*™=1] ... |e*™%| > |q.| > 0 and z; # 2;

fori# 7.

Proof. The terms in the series (B3) are the analytic extensions of the terms
in (BI). From Proposition B, (B is absolutely convergent and can be
analytically extended to the region given by z; # z; + m 4+ n71 for i # j
and m,n € Z and & # & +m +no for i # j and m,n € Z. We also
know that the resulting analytic extension can be expanded as a series in
powers of ¢, and ¢, in the region given by 1 > [e2™=1|, ... |e*™#| > |q,| > 0,
1> [e¥mi| . |e*™8k] > |q,| > 0, z; # 2z; for i # j and & # & for i # j and
m,n € Z. Thus the terms of this expansion must be equal to the terms in
the series (B3)). In particular, (B3) is absolutely convergent. |

We shall denote the sum of the series ([B.4]) by

mg)('llq,...,Uk;ZhEl,...,Zk,gk;’T,?), (35)

where we use the superscript (1) to indicate that this corresponds to a genus
1 surface. We have:

Proposition 3.3 For any m,ne€ Z andi=1,...k,
(1) = . . ~
my, (Ury oo Uk 21, 215 - - 5 Zim1s Zie1, 2 + M+ 0T, Z; + M+ 0T,
Zit1, Zidly -+ s Bhy 25Ty T)

:m](gl)(ula"'auk;zbzla'">Zkazk;7-7?)' (36)

Proof. Note that

mp (uL(627rizl )UR(6_2mzl )6—7riLR(0)u1’

. _ — _ . R . _ — . _ —
o 7Z/{L(e27rzzk )L{R(e 27r2zk>e mil (0)uk7 627”21’ e 27z 7 627rzzk e 27r2zk)

: o
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is a single-valued function of €*™*1 ... e*™*. Thus we see that (B8] holds
when n = 0.

Now from the permutation property for conformal full field algebras over
VI @ VL we know that

mp (uL(€27rizl )uR(e—zmzl )6—7riLR(0)u1’
. 7uL(e2m'zk )Z/{R(e—%rizk)e—m'LR(O)uk; 2min om2mE | 2miz, 6—27r2'2k)
— my, (uL(627rizl )UR(6_2mzl )6—7riLR(0)u1’
. ’uL(627rizi,1 )L{R(e_zmz“ )6—7riLR(0)ui_l’
' ’uL(e2m'zi+1)UR(e—%izm)e—mLR(o)
. ’uL(€27rizk)uR(e—2m'Ek)6—7riLR(O)uk’

uL (627'”'27; )Z/{R (6—27Ti5i>€—7riLR(0) U

Ui+1,

e27riz1’ 6—27rz'21’ o e2m’zi,1’ 6—27ri2i,1’
., e27rizi+17 6—27T7:Ei+1’ . 627'('Z'Zk7 6—27T7:Ek7 27‘(‘Z’Zi’ —27‘(‘Z’Ei> (38)
So we can assume that ¢ = k. In this case, when 1 > [e?™1] > ... > [e?™| >
l¢-| > 0, we have
m,gl)(ul, e U 21y By e e ey Zhey 2R T T)
— TI‘FY(Z/{L(€27”:Z1 )L{R(ez’”zl)ul; 627ri2:17 e27rizl) .
CL CR
Y( ( 27Tizk)uR(e27rizk)uk;627rizk’627rizk)q£L(0)_ 24 qu(O)—ﬁ
L R
_ TrFy(uL(ekrzzl)uR(egmzl)ul e2miz1 627”21) - ‘qu(O)—Cz—Alng(O)—Cﬁ .
Y(Z/{ ( 2mi(zp—T )Wuk e27r2(zk 7) m>
— TI"FY(I/{L(€27” Zk—T )Z/[R(62m(zk T))uk 627"2(% ) 627”(Zk T)) .
Y(Z/{L( 2mizy )Z/{R(e%rzzl)ul; 627”21 e27rzzl) .
,Y(uL(e2ﬂizk—l)I/{R(627rizk,1)uk 1 ’627”Zk 1 e2mz,c 1),
OO
(3.9)

When 1 > [e2™E=7)| > |e?m2] > >
side of (B) is actually equal to

(1)( s = oS Ze_1;T,T)

my Uk, Uty - - oy Ug—132k — T, 2k — T, 21,215 -5 Rk—1,Rk—1;T,T

= mlgl)(ub sy Uk Zlagla i ?, 7,?) (310)

e?™#-1| > |q,;| > 0, the right-hand
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Since the left-hand side of (B) and the right-hand side of (BI0) are deter-
mined uniquely by their values in the regions 1 > [e*™#1| > ... > |e?™%| >
|g-| > 0 and 1 > |e?™ &7 > |22 > > |e¥mi#-1| > |g.| > 0, respec-
tively, we see that the left-hand side of (B) must be equal to the right-hand
side of (BIM), proving (B8) in the case of m = 0.

Combining the cases m = 0 and n = 0, the proposition is proved. |

From this result, we obtain immediately the following:
Corollary 3.4 Foruy,...,u, € F, there exists a unique smooth function of
21, ...,z and T in the region z; — z; # m+nt for i # j and (1) > 0 such
that in the region given by 1 > [e*™#1| ... |e*™%| > |q,| > 0 and z; # z; for
i # 7, this function is equal to (31).

We shall still denote the smooth function given in this corollary by (BX).

Now we discuss the modular invariance of these functions. For any single
valued analytic function f(7) of 7 and any r € R, we choose branches of the

multivalued analytic functions f(7)" and ( (T))T to be e"1°8 /(") and erlos F()
and still denote them by f(7)" and <f(7‘)>r. In particular, for o, 3,7,d € R,

aT + ﬁ _ e log( ‘f‘y:ig)
YT+ 90

oaf+ 68\ (ar+ B\
YT 40 N YT+ 0
erlog(‘fy:i?)

and

Definition 3.5 For uy,...,u; € V, the function (BH) is invariant under the
action of

( 3 ? ) € SL(2,Z) (3.11)
if
" L NFO© ;LR 1O PO
" ((77+5) (W+5) ul""’(WM) (W+5) o
2 Z1 2 Zv aT+fp oaT+f
77‘—|—5’7?+5""’77‘—|—5’7?—|—5777‘—|—5’7?+5)
:mlgl)(ul,...,uk;zl,il,...,zk,Ek;T,?). (3.12)

22



A conformal full field algebra over V* @ V¥ is said to be invariant under the
action of BI) if for all uy,...,u, € V, (BIZ) holds. If (BH) is invariant
under the action of all elements of SL(2,Z), we say that ([B) is modular
invariant. When the function (B3) is modular invariant, we call it the genus-
one correslation function associated to uy,...,uy € V. A conformal full field
algebra over VI ® V' is said to be modular invariant if it is invariant under
the action of all elements of SL(2,C).

Since the modular group SL(2,Z) is generated by the elements

= (50)
r=(4 1)

to see whether a conformal full field algebra over VI ® V¥ is modular invari-
ant, we need only discuss the invariance under these two particular elements.
For the element 7', we have:

and

Proposition 3.6 A conformal full field algebra over VF @ V® is invariant
under the action of T if and only if c* = ¢ mod 24.

Proof. In the region 1 > |e*™=1] ... |e*™| > |q,| > 0 and 2; # z; for i # j,
for uq,...,ur € V, we have

1 _ _ _
m,i)(ul,...,uk;zl,zl,...,zk,zk;T—l—1,7'—1—1)

= Trpmy, (uL(€27rizl )uR(e—zmzl )e—m'LR(O)ul’
o 7Z/{L(ezm'zk )uR(e—znizk)e—mLR(o)uk;
L

omiz1 | —2miz1 omiz,  —2mizpy LT (0)= Sy LT (0)— %4
e ,e ,...,€ ,e )Gri1 Trin

= Trpmy (uL (627r2'z1 )uR(e—%riEl )e—m'LR(O)ul’
o 7Z/{L(ezm'zk )uR(e—znizk)e—mLR(o)uk;
627ri21’ 6—27Ti517 o e27rizk’ e—27ri5k) .
24
= Trpmy (uL(e2m‘z1 )uR(e—%riEl)e—m'LR(O)ul’

o ’uL(e2mzk)uR(e—%izk)e—me(O)uk;

L2mi(T (L (0)— £)6_27T’i(?+1)(LR(O)—£)
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e27rizl —2mizZ1

2mwizy  —2mWiZy
,e .., € ,e ) -

_627riT(LL(O)—C2—4)e

= Trpmy (uL (627riz1 )uR(e—%riEl )e—ﬂ'ZL (O)Uh
., uL(e2nizk)uR(e—2mEk)6—7riLR(0)uk;

2mizy  —2mWiz1 2miz,  —2mZg
e e ,...,e ,e ) -

—2miF(LE(0)— ) 1) p2mi(LH(0)—L (0))62“6L216R

L R
LHO)= 57 _LRO) =55 omict e

Gr Gr et

R
(1) O = . =) 2SS
=y (Upy ooy URS 215 21y - - ey 2y 23 Ty T)E LI e (3.13)

where we have used ([C3). On the other hand, F' is invariant under 7" means
m,gl)(ul,...,uk;zl,il,...,zk,ik;T—l— 1,7+ 1)

:mg)(ul,...,uk;zl,El,...,zk,Ek;T,?) (3.14)

From (BI3) and (BI4) and the fact that [BH) are not all 0 (for example, it

is not 0 when u; = -+ = u = 1, we see that F is invariant under 7" if and

27rz

_R
only if e?™ 21~ = 0, or equivalently, c* = ¢ mod 24. |

The invariance under S is the most important. We need to first intro-
duce matrix elements associated to the actions of S on the chiral genus-one

a . (IL
correlation functions. For a” c A", let Vi, 1’(1 | i=1,...,N} .} and
a (11
a [lL . o .
R ’(2 \ i=1,...,N 1 L} be basis of the spaces V of of intertwining oper-
L
ators of types ( WWa ) and for aft € AR let {Ya1 ’(1 li=1,. aRaR}

{Y“l 1(2) li=1,. 5 R} be basis of the space V }% R of intertwining opera-
Ry a aj aray

o
tors of types (W%W“f‘)' From Theorem 24, we know that for a” € A”, there
L

a CLL' . CLL B a
exist S( g;jj)l;y E;(z)) for af,ay € A*,i=1,...,N} L= 1,...,N

a L

L
a~ay

R
and for a®® € AR, there exist S()}“;;R);y“g;;j) for al,agz € AR | =

a a

R
1,.. ’NaRaR’ 7=1,. NaéaR’ such that
2
L (0)
ak;(1) 1 oz 1
@) (( ) w5
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L
a
2
N7 L

< a a’ ) 1 a. 72 (IL; 2
Z Z S(Y al () aia( )j)(QJ(yaZa(QL?j))(waL,z;T) (3.15)
abeAl j=1

for w,r € We" and

L*(0)
afs) yy (L Lz 1
(@(yaﬂ»a{{;i)) (( 7_) waR7 7_7 T
R
NR R
a 112
aR; CLR; CLR;
= Sk Vit V@ Va ) (wans 2:7) - (3.16)
affeAlr j=1

We need:

Lemma 3.7 For w,r € W“R,

R
aff;(1) —miL(0) 1\ .
((I)(yaRaf;i)) € I waR7

RINIRSY
S =
\/

T
N2
aRa
ai®;(1) all:(2 all:(2 —milL R’ _ —
Z all?a( ya;a(g;)j)(q)(ya;a(g;)j»(e L (O)waR; —Zz, _7—>7

(3.17)

CLR' CLR' . .
where S—l(ya;j;;)i; ya;;(g?j) are the matriz elements of the inverse of the ac-

tion of S, that 1s,

R
‘12

(1, (IR; aR; aR,
3 ZS i Vebin VS (Vek e Visinh) = Sumandin.

aRa ;07 Y allakl;j altafl;j’ Y a
afe AR j=1

Proof. From (B.I6), we see that the action of S maps (cb(y“f;(”.))(wam 2;7T)

afaft;j

L (0)
alt: (1 1 z 1
(@) ((—;) won; = —;> .

to



alt-
So the inverse of the action of S maps ®(Y ;’g?j)(waa; 2;T) to
a'tag;

T T

alt; 1
@O (¢ O 51,
1

Thus we have

al 7(1 logTLR . i _l
R
a a 2 77-’ T

NS
aRa
ai*;(1) all:(2 all:(2
Z VI VRSN @IS ) (wer; 2:7), (3.18)

Note that when 7 is in the upper half plane, so is —7. So we can substitute
—7 for 7 in (BIR) above. We also substitute —z for z and e~ ™=@,z for
wyr in (BIF). We obtain

(@(y“ﬁ%(;),)) (6—log(—?)LR(o)e—mLR(o)w . z, 1)
‘a7t ats ?; =

a

N
H,Rllg
_ af:(1 all:(2 all: (2 —milLR _ —
- S (Vb Vet V@V (€7 Oy —2; 7).
a?EAR Jj=1
(3.19)

Note that e ™L"(0) commutes with e~ 10870 Since 0 < argr < m,
we have m < arg7 < 2m, 0 < arg—7 < 7w and 0 < arg—% < m. So

— . R
arg —% = arg —7. Then by our convention, on W | we have

e~ log(-F)LR(0) _ (= log|-T|—iarg(—7))L"(0)
pllog |7 |—iarg(=1))L7(0)

plos(= HLE(0)

; (é) no (3.20)

Changing the order of e~ 10870 and =L (O) and then using B20), we
see that (BI9) gives (BI1). |

We now have:
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Theorem 3.8 A conformal full field algebra over VFQVE is invariant under
the action of S if and only if

rL(n) R (n)
rL(m)rL(n) = rBm)rR(n)

n;(1,1) rL(n);(1) C~als(2)
Z Z Z dmn;ij S(er(m)rL(n);i7 er(m)aL;k)'
(y R :; YyrB(n);5° yaR(r(j alt; l)
2,2
= > dfni;,m) (3.21)

pe(rt)=Hak)N(rF)~*(a®)

al R

formzl, NCL G.AL a E.AR ]f_l 5 TL(m)aL;lzla--'7 ﬁR(m)aR

Proof. From the convergence property of the correlation function maps (see
Definition [[TT]), we see that all the functions of the form (BX) are invariant
under the action of S if and only if all the functions of the form (B3) with
k = 1 are invariant under the action of S. We now show that all the functions
of the form (BX) with £ = 1 are invariant under the action of S if and only

if (B21) holds.
If (BZ]) holds, then from (B2), the definition of ¢-g-trace of a map from

F to F, (BI5) and ([BI7), we have

(1><< 1)“(0) < 1)”’(0) 2oz 1 1)
my - wTL(m)® = WrR(m), == 7 =: — ) T =
T T T T T T

= 1 L*(0)
= TTFY(Z/{L( —2miZ )Z/{R( 2#1;) (__) er(m)
r
R
1 L (0) .z -z L _i R _ﬁ
® <_%) er(mﬁ6_27”;,627”?)(]5%(0) 24 qi 0)—53

L R
(1) (1)
N
N rL (m)'rL(n) 'rR(m)rR(n)



LEO0)=5¢ LH0)-5¢

'q_l 24 q; 24
0 P
N rL(m)rL(n) R(m)rR(n)
_§ : } : 2 : n;(L,1)
- dmn;ij ((TIWT'L(7L)
n=1 =1 7j=1

L
T7(n); P 2 1 L (0) -z L _i
oo <uL( o2mis) (__) . 6‘2’”?)qff°) 24)

T

rL P
rL(m)rL(n) " rR(m)rR(n)

N
DD )
n=1

i=1 j=1

LE(0)
PP (m)3(1) 1 1
((q)(er(m)rL(n)J))(< 7_) WrL(m); T 7_)

L*(0) —
" —mirho) (1 z 1
D@V ) (O (<2) i i

oL oF
rE(myal " rE(m)aR

R IEP VY

=1 ale AL aRec AR
rE@) By
( N rL(m)rL(n) " rE(m)rf(n)

n;(1,1) rin) (1) yeki2) 1)) ()
dmn;ij S(er(m)rL(n)'i7er(m)aL;k)S (yrR(m)rR(n);j’ rR(m)aR;l)) )

(@ 0 D) (Wi g 257)
ST >><e-“L O 1y 5 =7)))

s a
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oL oft
rL(m)al N, rB(m)aR

PO IRD MDD

=1 alec AL qRec AR

0 R
rL(m)rL(n) = rB@m)rR(n)

(zzz

D) b)) el R )
i S (Y iVt )S T (Vermyrs (g rR(m)aR;z))‘

mn;ij rL(m)rl(n);i? r

L TiZ Tz LE(0 e
'((TrWaL (m aL k(uL( 2 )er(m)7€2 )qT (0) 24)

_ . _ Rigy_c®
® (TrW“R yaR(r(j alt;l (L{R(6_27”2)6_7”LR(0)'LU7~R(771)a 6_27”2) qf? © 24 ))

L o

rL(m)al " rR(m)al
= Z Z > D > dhil

=1 GLEAL IIREAR pE(T ) 1([1[/)0(7.12)71(&1?)

al; Tz Tz LE(0 y
'((TrWaL (m aLk(uL( 2 )er(m)7€2 )qT (0) 24)

— . — Ry
® <T1"WaR yaR(g aR: l <I/{R(6_2T(2Z)6_7”LR(O)wTR(m)’ 6—27”2) qf? (0) 24 ) )

oL
rL(m)al m)alR

R
R N
- Z Z pkz '
k=1 = p=1

A Tr Ler(p) UL (™ i, €272 LE(0) -5
We= L (m)rL(p);k rL(m), qr

—2miz\ ,—mi L' _oriz \ LE(O <
®<T1"Wa yR(m rR(p (UR( 2 Je LR(O)er(m),e 2 )q_T() 24))

- mgl) (wT’L(m) ® WyrR(m); <, 25T, ?)- (322)

Conversely, the calculation (B22) also shows that if ' is modular invari-
ant, then (B2Z1]) holds. |
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4 S-matrices associated to irreducible mod-
ules

We assume that V' is a vertex operator algebra satisfying Conditions [[3], [C4]
and [L3 We shall continue to use the notations in the preceding sections, in
particular, those in Section 2.

For ay,a; € A and ) an intertwining operator of type (
consider

weai

W“2Wa1)7 we

v): [[w* - Gu
acA
we = V() (we;T)

for a € A and w, € W*, where for w, € W?,
U(Y)(we;7) =0
when a # ay and
V() (way;7) = P(V)(Way; 25 7)
= E(Trwa YU(E ) wg,, &7)gr )
when a = ay, and Gy,; is the space spanned by functions of 7 of the form

U (Y)(wgy; T) for a, ar, as € Aand Y an intertwining operator of type (WZZ;:M).

Here we use the notation W())(wg; 7) instead of W(Y)(wg; z;7) because it
was shown in the proof of Theorem 7.3 in [H7] that U())(w,,;7) is indeed
independent of z. Let Fj; be the space of all maps of the form ¥()) for

ai,as € A and Y an intertwining operator of type (WZZ;M).

Let Gi.2 be the space of all single-valued analytic functions on the uni-
versal covering M? of

M? ={(z1,2,7) €C® | 21 # 20 +pr +qforp,q € Z, T € H}
spanned by functions of the form
(D1 @ Vo)) (Ways Wag; 21, 225 )

for ay, as,as,a4 € A, wy, € W, w,, € W and ), and ), intertwining
operators of types (WZYV;GS) and (WZ[Q/VSQ 4), respectively. This space is also
spanned by the analytic extensions

) ) L(0)— <
E(Tryas Vs (U (™ ) Vu(wa,, 21 — 22)Way, €27%2)qr (0) i) (4.1)
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to the region given by 7 > 0, 21 # 2o + k7 + [ for k,l € Z, of functions of
the form

iz T2 L(0
Tryyas Vs (U (™) Vi(wWay, 21 — 22)Way, € 2)C_IT()

for ay, as,as,a4 € A, wy, € W, w,, € W and Y5 and )Y, intertwining
operators of types (W‘LV;/%M) and (Wa‘ﬁ;/@), respectively. For az € A, let
Gi% be the space of all single-valued analytic functions on the universal
covering M2 of M2 spanned by functions of the form @) for aj, as, as € A,
We, € W4 w,, € W*, and Y5 and ), intertwining operators of types
( W ) and ( wes ), respectively.

WasWwe4 WeairWwea2

Now for a1, as, a3 € A, let {y;’faglz |i=1,...,N,} and {y;’fafz | i =
1,. ’ ,INg2,.} be basis of the space Vg3, of intertwmmg operators of type
(W}ZV;%). We need the following result proved in [H6):

Proposition 4.1 For a;,as € A, the maps from W @ W to Gy given
by

Way @ Wy —
a4; Tz T2 as; Tz T2 L(0
B(Trypo, Vo) U2 Yy, 7 Voi O U255 Y, €272) g7 731,

ag,ay € A, i = 1,..., N3, j = 1,...,Ng3,. , are linearly independent.

a2a4’

Similarly, for aq,as € .A the maps fmm VVC”1 ® W to G2 given by

' ; S (1)
Way ® Way E(TI‘Wa4 yggﬁk( (627T2Z2)ygl3éu(241;3 (wa1> 21— Z2)wa2a 62MZ2)(]T( )=2 ),

ag,a, € A, k=1,...,N® [ =1,...,N%  are linearly independent.

asza4’ aiaz’

For a € A and intertwining operators ), and ); of types for intertwining

operators of types (W‘f;/lal) and (WLV;,GIQ), respectively, we consider the maps

T e [[Wweews — G

as€A

Was ® wa’3 — (q](yl & y2))<wa3 ® waé; 21, 225 T)

foraj,aa € A,i=1,..., N2l ,j=1,...,N¢ ,, where

aza;

(gj(yl ® y2))<wa3 ®waé;21722;7') =0

31



when a3 # a, and

(\Ij(yl ® yQ))(wag ® Wal; 215 225 ’7‘)
= E(TrWal yl(z/{(e2ﬂi22>y2(wa2’ 21— Z2)wa/27 627Ti22)q.£(0)_ﬂ)_

For a € A, let F{, be the space spanned by linear maps of the form
V(Y1 ® o) for ay, as € A and for intertwining operators ), and Vs of types
(WZV;;%) and (Waz/wa ) respectively. For a € A, we also let F7'5 be the space
spanned by linear maps of the form W(); ® ),) for ay,as,a3 € A, a3 # a,
and for intertwining operators ); and ), of types (WZZGV;%) and (WZZ;GIQ),
respectively. Let Fi.o be the sum of Fio for a € A. We have:

Proposition 4.2 For a € A, the intersection of Fi, and Fi'§ is 0. In
particular,

Fio :fla;g ©®

and there exists a projection m : Fi.9 — Fis.

Proof. By Proposition 1], ‘I/(y;l;l " ®y§3’ ) foray,az,a3 € A k=1,... N®

azal
and [ =1,..., Ng;a,z are linearly mdependent. Thus the intersection of the
space spanned by \I/(ygél ” ya o l) for aj,a0 € A,k =1,..., NG, | =
1,..., N;’za,z, and the space spanned by m(yj;;l 5 @ :)7523; l) for ay, as, a3 € A,
az#a, k=1,...,Ngi, and [ =1,.. ~>N523a'2 are 0. |
In the remaining part of this section, {ygfa(j’z | i =1,...,N3,} for

p = 1,2,3,4,5,6 are basis of the space of intertwining operators of type

wes
(Wa1wa2)a ai, ag, a3 € A.
We have the following lemma which is a generalization of Lemma 4.2 in

[HT0]:
Lemma 4.3 For ay,as,a € A, w,, € W and wg, € W, we have

(V2D @ VD V) (way @ way; 21,20 — 157)

aga q

NO1 N“3 N,
a a a a a a2a
243 4 1

3035 35 35 3 SR

aceA i=1 j=1 a4€A k=1 I=1

) @ Vi Vs © Vil

azab;q’ a5a1; ])
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F(ya17(3 ® ya37(4 yali

® ya41 )
a2a3;t asal _7’ asqal; k

a2a2
B (Tewa VoL U=

agay;k

a4;(6) 2mizgy  L(0)— 37
.yazalz;l (wa27 Zl - Z2)wa/2? € )qT

(4.2)
and

(T @ yst

a2a; J))(waz ® Way; 21, 22 + T3 T)

azas “2“1 a4a3 “2a2

30303530 30 3L

azc€A i=1 j=1 aycA k=1

(ygéiyp ®ya2a _7’ (y 3’

a2;(4)
aza} Z) ( ahay; ])) ’

azal, l
a3;(5) 2Tz a47(6) 271z L(O)—ﬁ
'E(TIIWGB a4a3;k(u(e 2)ya2a/2;l (wa2? Zl - 22)wal2? € 2)qT .

(4.3)
In particular, for any ay,ay € A, the maps from []

azeA W3 ® W9 to the
space of single-valued analytic functions on M? given by

Way @ Wway = (VYD) @ Vo) ) (way @ wayi 21,20 — 157),

Way @ wey = (W(Voritd) @ Vi) ) (way @ ways 21,2 +757)

/ .
for we, € W and w,, € W are in Fi,o.

Proof. Using the definition of W( azi(1)

pr ®ym q) the genus-one associativity
properties ((2.9) and (2.10) in [HI0]) and

y(wal, ZL’)wa2 c A pyas ij x_l]],

(4.4)
where

A(y) = h'a3 - ha1 - haza
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we obtain

(T (V) & Vi

aga iq

= B(Trya Vi, U(e270)

))(wa2 & Way; 21, 22 — 1;7)

2mi(z2—1)y, L(0) =33
Vi ig(Waz, 21 — (22 — 1))wgy, € Tzl g TR
Ngzla3 Zsa'l
— Z - 1(ya1,(1 ®ya(2 .yaly ®ya3y )
- aay; azaly;q’ ¥ aza3;i ahai;j
az€A 1= j=1

1
B (Trum VAU iy, )

a3;(4 (22— (22— L(0)— o3
Vo U D)y, 220 O )

ahai;j
5a1
_ —1/va1;(1) a; (2 . v01;5( a3z;(
- Z F (yaél(p ® y ya2a3y ® ya 5a1; ]) )

azaly;q’

1
B (T VU Y 275).

az;(4) —omi 2mizo —omi 2mizoy L(0)—5
'yagal;j U(e™ e 2wy, e e )qr

a
N"‘l N /3
agaz 4291

_ —27i(has—h a al,(3 a3;(4)
— Z Ze milhas —ha) Pl (Y @ Yo nayias Vasazii @ Varars) -

<]
w
m
b
~.
Il

1
E( o VLU 275

.yas;(4)‘ (u(e27riz2 )wa’z : 627Ti22 >Q£(O)_ 37 >

P
aya13]

azagzy
_ —27i(has —haq) a a1;(3) az;(4)
- Z Z € (hog ~her) (ya31p® asal, q7ya2a3, ®ya2a1 J)

Ngi% N“2a/2
a1;(3) a3;(4) . yjyar;( a4;(6)
Z F(yaz%, ®ya a1]7ya4a1k®y2a l>
as€A k=1 I=1
a1;(5) 2miz
B (Trwas Vi) U(e™2) -

.ya4;(6)

omize  L(0)— 37
aga’z;l (wa2721 - ZQ)wa/27 € ) )

qr
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proving (E2).

The proof of (E3) is more complicated. Using the definition of W( 3&;(4,) ®
Yo ), the genus-one associativity properties ((2.9) and (2.10) in [HI0]), the

a2a4;4q

L(0)-conjugation property, the property of traces, and (4,
( (yg;i(#l) ®ya2a 1q

= B(Toym Yoy ()

VO (1, 21 — (22 + 7)) W, 62”(22”))(]5(0)_%)

) (Way @ Way; 21,22 + T35 7)

azab;q
N1 Vot ”
a3 (4
=2 PVl @ Vil om (V) © o (V)
azeA i=1 j=1
B (Trives oo (V) U Yt 2707
VU g, i) O )
NS 4:(3) (4)
Aq, ;
- Z F 1(3;:11(; Y ® yaga q7 3(ya23a’1;i) ® Ul3(y§§a1;j)) ’
azeA i=1 j=1
B (Trwn g (V) U i, €750
; ; oy L(0)— &
(V) U™ g g™ )gr O F)
Nadas ;1’23(11
; 33(3) ;4
=2 FAOm @ Ve® om(Veid) @ oY)
azeA i=1 j=1
B (Toms s V) QU Yy, 275).
L(0)— =& . .
_qT( ) 24 013(3}3;(;(1%)(u(62W2Z2)wa’2a e2ng)>
N:lelaS N;lsal , (3) ( )
as; (4
- Z F 1 yséip ®ya2a q7 (yaggall;i) ®013( :;’32@1;_7')) '
az€A =1 j=1
E Tyyas 0'13 Zgj(;(ﬁ;-)(Z/{(ezﬂz'm)walz’ e27riZ2) .

s (VDU Yy, 52)g7 7). (4.5)

azai;i
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Using (2.22) in [HI0], the relations 02, = 1, 093013 = 0123 and the genus-
one associativity, we have

E (TI‘Wa3 013 (y 2;(4 ) (u(627rizz )waé ’ e2m’zz ) X

a: alJ

aza;i

093 (yaé?(lg)' ) (u(e2m'21 )wa2 ’ 627riz1 )Q£(O)_ 24 >

= F <T1~Wa3 053 (013( az;(4)‘)> (u(e27riz2 )waé : e27riz2) .

ajai;j

093 (y“é;(/?f} YU g, , 275 )QTL(O)_ 3 )

azai;i

/yag;(?;} (Z/{(ezmzl)emuo)wa?, e—27rizl> )

WY azal ;i

— p—2mihay E(Tr

T2 T —2miz L(0)— =<
ooV (U)o ) O
—27ihg E(T a%;(3) —omiz il (0 Comis
‘ ’ < rWagy " <U(6 1)6 ( )wa2,6 1) .

azal ;i

a2; —2miza\ i —27iz L0)—=<
0123( a’32¢71(14;;')<u(6 miza) il O)y, 2 2>qT(> 24>
(4.6)

We now prove
B <Trwaé yals;(/?))' (u(e—27riz1 )eﬂ'iL(O) Way e—27riz1) .

azai;i

ajai;j
N4
Ngfag) a2a’2 ) ( ) ( ) (
_ a3;3 ag;(4 . a3’ a4,6
= E F(yazall;i ® 0123( aé“l;j)7 ya4a k: ® yawz )

E(Tr ag)}aly(?C <u(e—27rizg)ya4§g62 <€7riL(0)'an2, 6“(2’1 . 22)> X

agab;
i — 97 L(O)—L
‘QWZL(O)'UJQ/Q , € 27”22) qr 4 .

(4.7)

To prove (L), we need only prove the restrictions of both sides to a subregion
of M? are equal. So we need only prove that

a3;(3) —2miz1 \ T —2miz
Tro o) 2 -(U(e 2mizn) omil(0)gy o2 1).

WY azal;i
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: ‘ ‘ ; L(0)— &
.0'123( ;1/2&(142) <Z/{(e—27r222)67r2L(0)wal2’ e—27r122>qT( )— 51

N“4

a2a2

_ a3, a2;(4) y . ~ya535(5 a4;(6)

- Z aza K 123(ya’3a1;j)7ya4a ik ® yagaQ, )
a4€ k=1 =1

'TrWag ij;SL <U(6_27ri22)ya4;€(3 <67riL(0)'an2, em'(zl . 22)> )

azas;

CA?

a
a

(&

_67riL(0)u}a,2 : e—27ri22> Q£(O)_ ﬁ)
(4.8)

holds when |¢;| < |e™2™%2| < |e72™*1| < 1 and 0 < |e*™(~51+22) — 1| < 1.
From the genus-one associativity ((2.9) in [HI0]), we see that in this region
the left-hand side of (L) is equal to

Nll4ll3 a2 ll2

a, az;(4)\ . ~ya5;(5 a4,(6
24 ; Z a23a i 123(ya’3a1;j)7yaja ik ®y azal l)
as€ =
Te o, i) (u( g2 i© ( Oy (=2 + Z2)> .

W3 asas;k a20l;
. o L(0)— &
_67rzL(O)u}a,2 e 27rzzg> gr 24

(4.9)

Now in this region, because |e™2™%2| < |e72™31| the imaginary part of 2
must be bigger than the imaginary part of z5. Thus z; — 25 is in the upper
half plane. This means that arg(z; — z3) < 7 and arg(z; — z3) + 7 < 27.
So we have arg(—(z; — 22)) = arg(z; — 22) + 7. Now for any n € C, by our
convention,

(=21 4+ 29)" = enlos(=atz)

—  enlog(=(z1-22))

_ onllog|—(z1—22) |+ arg(~ (21 -22))
orlog |(z1—22) | +i arg(z1 —22)+i)

en(log(zl —z9)+mi)

= (e"(z — 2))™
This shows that indeed when |g¢,| < |e™2™=2| < |e7?™*1| < 1 and 0 <

|e2mi(==1t22) _ 1| < 1, [ET) is equal to the right-hand side of ([EX) and (EX)
holds. Consequently, we obtain (ET).
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Using (2.22) in [HI0] and the L(0)-conjugation formula, we have

E <TrWa’3 ya,gQ(/E).) (u(e—27riz2 )ya4§(l6.3 <e7riL(O),uJa2 ’ eﬂi(zl o Z2)> .

aqay;k a2ak;
e™LO) 6—2m22>qL(0) )
(% T

_ 7rzha4E(Tr a3y;13 ;(5) < (627riz2)e—m'L(0) .

asz;k

a1;(6) [ miL(0 i i L(0 omize \ L(0)—37
-ya2a,2,l <e ( )waz,e (z1 — 22)>e ( )wazz, e Gr

a, T2 a4; T2 L(0)—57
= " B (T VU )Y s, 21 = g, 752)g ).
(4.10)

Combining (EH), (EG), D) and [ETID), we obtain E3)). |

For ay,as,a € A, we define

(PN @YD N [[weews - G (4.11)
a3€.A
BELD @it ) [T W= ews - G (4.12)
a3€.A
by
<<<xap®xﬁg»w%®mg
_ (\I]( afllp ®ya2a q))(waz®waé§zlaz2_1§7—) az = ag,
0 as # a
WHWM®%&MMwWQ
— (\:[](y ® yaza q))(wle ® wa Zl? Z2 + T3 T) a3 = a27
0 as # as

for az € A, wa, € W* and wy;, € we'
Proposition 4.4 For a,,as € A, we have

a(T(Vm) @ y= )

azah;q
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a

N =,
a4a1 @209

—27rzha2 § E

as€A k=1 I=1
(B (012(Vaily) ® 012(Van ) o1 Vinasa) © oo (Vo)) -

a2a4;q azay;l
(WYl © Vi) (wa, @ way; 21,205 7) (4.13)
and
a 2)
BU (V) @ Vo))
a2a3 azal a4a3 ”'2”'2

DI DD IO IS E: €T

as€A 1=1 j=1 aqeA k=1 =

Foup(V2®) @ o520y 3<y“3’< ) @ 0132 (V2D -

az2ay37] a2ay;t azai;j

PV @ ous (Vi) Vesiih @ Veei)) -

aza’;i aal,] » Y agaz;k 2a ;1

(TVEE @ VIO (Way ® Way; 21, 22 7) (4.14)

azal;l

Proof. Using the definitions of o and

(T @ YED ) (way © way; 21, 2257,

a20aq;q

(#2) and Proposition 3.1 in [HI0], we have

)))(wa2 ® wa 215 225 T)

(T} @ Vo

aza 3q
a 2
= (Vi) @ VD ) (Way @ ways 21,20 — 1;7)
a3 Na4
a2a3 al 201 a4a1 a2a

S35 35 35 3 3 ST

aeA i=1 j=1 as€eA k=1 I=1

FL(yml) @ yutd) -ysggg, ® YWy,

za q? a2a1 3]
_F(ya1,(3 ® ya3, _yaL ® ya47(6 ) -
aza3;i asai;j’ v asan; k azag;l

B (Trwo Vi U(™) -

a4;(6) 2mizoy  L(0)— 57
.yazaé;l (Way, 21 — 22)Way, €7 *)qr
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aq
a2a3 a2a1 a a2a2

Sy Sy

aEA21]1a4EAk1

=
F (oY) @ o1 (Ve )i 012(Vimaod) ® o1a(Veras)) -
—2mi(hag —ha; —hay) |

1

e
F o) @ 01 (VD) 01V @ 01219 -

ahay;j azay;l

'E<T1"W Yo U(em=2)

as5(6 omizey LO)— 5
VO gy, 2 — )Wy, € ) gy

2a27l
N,
a4a1 agal,
—27rzh¢12 § : § § :

as€A k=1 =

_ a a1;(5 aq;(6
(B©Y)2(0ys <ya;;<.;, ) @ 00a(Ve®) )i 01a(Veli)) @ o1a (Vi) -
(PO @ VIO (wo, @ way; 21, 22:7),

azag;l
proving ([EI3).
Using the definitions of 3,

\Il(yg;i(;) ®ya2a 1q
and (3), we have

(/8( (ygéip ®ya(2 ))(waz®waé;zla22;7_)))(wa2>wa/2;21722;7_)

) (Way ® Way; 21, 223 T),

a2ah;q
5(1) a;(2) . .
= \Il(ygé1(p ® yazi q>>(wa2 ® wa’ jR1,22 T T)
N©
a2a3 ‘12‘11 a4a3 “2“2

30303530 30 3L

az€A 1=1 j=1 ay€A k=1 I=1

(yg;ip ®y2a ]7 <ya23¢; z> ( a 301; ]))

[7'37(3) a27(4) . a‘37(5 a41
'F(yaza i ® 01 3<ya’ al;j>’ ya4a ik ® yaza )
as;(5) 2 aq;(6 2 L(0)—
BTt VW U2 E) (0 21— 22y, )
Ng%aa N‘Z“l Ngfaa NZ;‘llz

D3P0 35 30 3D 3

az€A =1 j=1 ay€A k=1 I=1
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F(on(Y20) @ 015 (V52 ); 012V D) @ 0150 (V220)) -

azalsj azal;i alars)
F ® om0 Vol © Vi)
(WO © Vo)) (o, © w43 21, 20 7),
proving (EET4). n
By Proposition 2.2 in [H10], fix any basis {ya;;% =1,...,N3 } and
i) e =1, N},
(PO © Vi) (way ® wayi 21, 22:7)

for a;,a2,a € A, p=1,...,Ngi and ¢ =1,.. .,Ngwé form a basis of Fi.o.
We use
(WG @ Vi ) Y Oidh © Vi)
aai;p aza 3q aqas;k aza

and

B (V) @ Vel ) WD) @ Vi)

azag;l
to denote the matrix elements of a and (3, respectively, under the basis
(1) a;(2)
(ygél(,p ® ya2a2 q>
and .
b 5 )
V(Y ® Vari)):

Corollary 4.5 The matriz elements of a and 3 are given by

a(T(Vmi) @ yE0 ) w (Ve @ yuiy)

a2ay;q 205 l
_ 5a3a16 2mihagy |
_ an: ay1;(5 aq4;(6
'(B( 1))2(012(37[1;{(;;)) ® o1 (ya;z q) (yaiag;gc) ® Ulz(ya;agg;g))
(4.15)
and
a as;(5) a4;
ﬁ( (yaéi(,;) ® yaza q) (yflja(?) ik ® ya;a l))

a3
a; N
Nagag ~ alhaq

— 6—27T’iha2 Z e7riha4 .
i=1 j=1
Flon(Vi) © ma(Vig, ) oY) © om(Vii) -
FO5D © 0y(V20); Y50yt (4.16)

azal;i asa1;j a4a azag;l
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Proof. This corollary follows directly from the definitions of the matrix el-
ements and the formulas [{I13) and [@I4). n

For a € A, we define an action of modular transformation S on Fi.; as
follows: Fora; € A, k=1,...,N* and w, € W, let

aal

S (weir) = W) ((_1)”‘” wa;_1>

T T
. 1\ L© . .
= TrWaly <U(e—27rl;) (_;) We, e—27rz; Qf(f) 21

Here we have used our convention

L(0)
(J) _ Gllos(=1)L(0)

T

Note that by the modular invariance of genus-one one-point functions proved

in [H7] (see Theorem ), S(W(Y)(u; 7)) is indeed in Fi.;. Thus we do obtain
maps S : Fiq — Fia.

For a € A, this action of S on Fj,; can be extended to an action of S on

1.9- For intertwining operators J; and ), of types for intertwining operators

of types ( wel ) and (

Wawal , respectively, we define

Wa
Wazwalz)
(ST V1 @ V2)))(Was wars 21, 22;7) = 0

when a # ay and

((S(V (V1 @ V2)))(Way, Way; 21, 225 7)
1\
- E(TrWalyl (u(e—m?) (_;) .

o2\ L(0)— <
Vo (Way, 21 — Z2)Way, € Q’r“)q =

= E(TrWa1 821 (U(e‘z’”%) :

1\ L 1 1 1\ 2@ 2
.y2 <<__) waQ, __Zl N <__Z2) ) <__) waé’e_zﬂ-l% '
T T T T
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£74)
1\ 1\ 1 1 1
= ‘I’(yl ® y2) <<—;) Wq, <—;) Wy, —;217 —;22; —; .

We have:
Proposition 4.6 We have the following formula:
Sa = (8. (4.17)
Proof. We have

(BS(PYV2Y @ YD ) (way @ way; 21, 225 7)

a2a5;q

= (S(U) @ Vi) ) (wey @ way; 21, 22 +757)

azal;q

L(0)
—7riZ7+T 1
- ot (1)

T

zo47 L(0)—%
Vi 21 = (22 + 7)) 757 )Y )

T

=F (Tl"Wal ygéup (u(e%i(_?_l)) .

T T T
(1) ) 1 L(0) 1 L(0)
-0 e g (((-5) ) ((5) )
1 1 1)
——R1, ——R2; ——
T T T

= (S(a( Wy, .0))) (Way, Wass 21, 225 7).
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Thus we obtain (E17). |

alx

For fixed a € A, we know that (V%)) for a; € A form a basis of Fia

and there exist unique S(Vea'h: ygjﬁ )in C foraj,ap € A, p=1,..., N2
and k=1,..., N? such that
5 y LV aas

aa2
SUED) = 30N S@ub vt emE®). (4.18)

a2€A k=1
Clearly we also have

aa3
a1; E E ar; a i(3) as; a;(2)
S(\I](yaél(;p a2a q S 051(117 ) ags ik >\Il<ya23 ik ® yaza q)

ascA k=1

for ay, as, a3 € A.
The following theorem is a generalization of Theorem 4.6 in [HI0]:

Theorem 4.7 For ai,as, a3 € A, we have

a
Najay

> SV Vel
k=1
_ al: ; a1; aq;(4
(B (01a(Veti) © o (Vo) 1o (Vi) ® o1 (Vi)

“5

a a N
agaﬁ Na26a5 al a6

=D > D s Vesl) -

ag€A r=1 =1 j=1

F(015(Y250)) © 015 (P25, m(yj;;fi)@algg(ngﬁi-))-

azal;q
.F(yaga( 2 o 23( 5/52[;(68’;)7 ya4a’ -k ® yg;;(él ) (419)
Proof. This follows from {I7), ([ETH) and @I6) immediately. |

Corollary 4.8 For ay,as,a3 € A, we have

SeH BTV (012(Vetil)) © 010 (Vesi); Vit © Vegana))

azay;q
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Na3a2

= 3 S o).
r=1

F(onp(Ve®) @ oY) Ve @ Ve ) -

aga q
F(y:;ga’z;l ® yZ’je;l;yeee;l ® yaga’z;l)‘ (420)
Proof. This follows immediately from (ETI9) by taking ay = a5 = e. |

Lemma 4.9 For anya € A,
F(ycem’;l ® yg’/e;l; yeee;l ® ysa’;l) =L

Proof. Note that Yg,; =Y is the vertex operator map for the vertex oper-
ator algebra and ), ,; = Y. is the vertex operator map for the V-module
We. Foru,v € V, w, € W* and wy € W, we have

(U ee; l(ysa’ l(wm <1 )wa’7 Z2>U)
= (u, Y(yaa, 1(Way 21 — 29)War, 22)0)
= (e2FWy, Y (v, —29) Va1 (Wa, 21 — 22)War) (4.21)

in the region |z > |21 — 22| > 0. Since Vg, ., is an intertwining operator,
we know that the product of Y and Vg, satisfy commutativity. Thus the
analytic extension of the right-hand side of ([ZI]) to the region |z; — 25| >
|22] > 0 is equal to
(e2EWy, e, l(wa,zl 22) Yo (U, —22) W)
= (u, 2D ye 3 (Wa, 21 — 20)Yipar (v, —22)War ). (4.22)
Using the L(—1)-conjugation formula for intertwining operators and the def-
inition of the intertwining operator yg,’e;l, we see that in the region given by
|21 — 22| > |22] > 0 and |21]| > |22] > 0, the right-hand side of [E22)) is equal
to
(u,ysa,;l(wa, zl)e'Z?L(_l)Ywa (v, —29)War)
= (0, Vi (w00, 2) Vi (w0 22)0). (4.23)

Thus we see that the left-hand side of (E2]]) can be analytically extended
to the right-hand side of ([E23)). Since the left-hand side of ([EZI]) and the
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right-hand side of ([L2Z3) are well defined in the regions |z5| > |23 — 22| > 0
and |z1| > |z2| > 0, respectively, they are equal in the intersection |z >
|z2| > |21 — 22| > 0. By the definition of the fusing matrix element F'(Vg, ., ®

A\ ei15 Vee1 ® Va1 ), We see that it is equal to 1. |

We also have:

Lemma 4.10 For any as, a3 € A, we have

F(oua(Vizi) @012 (Vooin): Ver,a®Viapn) = (0102(Vi2i)), 012(Vasi ) oy
a2a2

Proof. This follows directly from (3.3) in [HK]. |

For aq,as,a3 € A, let

(.7.) ag —= —Y ° val3<,’,>va3 ,
Vaias Fal\/Fiag ajag

where (-, )vala is the bilinear form constructed in [HK]. Then Proposition
3.7 in [HK] actually says that (-,-)yes, s invariant under the action of 5.

Now for as, az € A, we choose

yag;(,z} = Ulg(ylgraé/;.(ﬁ))

a2a5;t az3a5;t

for i = 1,...,N%, where { M =1, Ns,lga,z} is the dual basis of

(13(12
Vs li=1,..., N33, } with respect to the bllinear form (-, '>V§fa2‘
The following result generalizes (5.15) in [HI0], which, as was shown in
[HT1T], is equivalent to the nondegeneracy of the semisimple ribbon (tensor)

category of modules for V:

Theorem 4.11 For ay,as,a3 € A, we have

SVl Vazl)
Fa3 Se (=1)32 a1;(1) ";a;(6)
(B ) (0-12();[13&1;;,,) ®O-132(yaga’2;r );yalel ®ya2a2;1).

(4.24)
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Proof. By Lemma 10, we have

F(on(VEl) @ on(Ves? ),y @ Vezai1)

0«2f1 d

= <0132(y5§;§fl), 012(37[13 (/2) ) o

a2a4;q v 3
(L2a2
\V4 ag \/ Fa’
2 /
/Fa’ ; azal;q Y3
3 agal

o1 (Vi) o12(Visi))
VEFu,\/Fu ,
= R (s Vi),

\V/ Fa’3 ' 2 ; Zé;ag
_ a2;(6) "1a%;(6)
-V (013 Vigazir): 713V g )>Va§az
_ Viuyite

Qe Vi e,
Py /Faé Fur
\/F’a’3 \/Fag\/Faz
:\/Fag\/Faz \/Fll2
\/Fa3 \/Fag\/Faz

F,,
— 26,
Fy,

Using Lemma B9, (221, the formula

(6 ';a5;(6)
<yg§a(2;2’7 / 2’- >Va2

azay;q agag

(6 ';a5;(6)
<yg§a(2;2’7 / 2’ >Va2

azaa;q agag

SCLl — €
€
Fa,

and (E220), we obtain (E24]).

Lemma 4.12 For ay,as, a3 € A, we have
5(0’23();331(;1(11;)) (yggza(fr)) - S( gglal D) yggzag 3’)
Proof. By [IR) and the definition of ¥* _  we have

ai,as’

VAR RN 2\ Lo-=
Trwalyg;t;zgl;; u(e_%l;) (__) wasve_zm; q_1 “

T —
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(4.26)



a3a2
ai; az;(6) a; 2miz omizy  L(0)—
- Z Z ya;im,p? ya32a(2 r)TrW ya:fag, (u(e " )wa37 " )qT

aseA r=1

(4.27)

On the other hand, we have

s 1\ @ iz L0)— &
TrWalygalzzgl;J)D u(e_%l;) <__) wasve_%Z; q_1 “

-
. 2 1\ . L(0)— &
= ooy Ol (e (<1) et )
= Tryaryoos (V) | U7 )e ™ HO) (—;> e
a3a2
= > > Slomaih)ion i) -
aseA r=1
a2;(6) —2miz\ ,—7iL(0) —2omizy L(0)—37
'Tr(Wa2)'0-23(ya3a2;r> (Z/{(e )6 Wez, € )qT
NaZa,
= > > SlonVailh)ionVii)
aseA r=1

Ty Ve U gy, ) g7

From ([27) and [@28), we obtain [20). |

The following result is a generalization of Theorem 5.6 in [HI0]:

(4.28)

Theorem 4.13 For ay,as,as € A, we have

S ynl)y = S(yai); i), (429)

)
3[12,7‘ 113[11,])

Proof. From ([EZ24l), we obtain

S(y’ﬂ’g%((i) . ylﬂlﬁ/%(l))

a3a2,r ’ agal,p
F, 5S¢
_ Fade ey a0 a15(0) .
FalFa’z(B ) (0-12( ahab;r )®U Z(yaglalp) yael®ya1al )

(4.30)
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Using (3.1), (3.5), (3.12) in [HIO], the relations 0%, = 0193 = 012093,
0123012 = 0132023, 0120132012 = 0123, 0120123012 = 0132 and h, = hy for
a € A, we obtain

(B(_l))2(012( a’ ;7(7“)) ® 0’132(3}331(71(1113) ya e;l ® yalap )

N%% N“2
a2a1 ll4ll

(1 ) ) al; a: ) a/4y
= Z Z Z 012 al [12 or ) ® 0-132(ya;a1 p) yaja ya hat; k) ’
as€A k=1 =

—2m(ha —h_1 —haq) ab;(3) ag;(4) | ~yab e
€ b VET (ya2 ® ya hat; k> ya’;e;l ® yala/ﬁl)

4al

a4 Naz
a2a1 11411

_ Z Z Z —2m(ha4—h/ hal).

as€A k=1 I=
F(algz(ygg&(ll,p) ® o123(012(Y, ;;(f)))? ‘7123(3}54(;(1 P © 013 (ygja(lgg)) '
~F(012(37§f¢;( 2) ® o1a( ?fic) 012(ya e 1> ® 012(y§1a5;1))

ayq “’2
a’a a, (ll
271 49

ag€A k=1 I=1
ai; "1a5;(6) . aq;(4 a5;(3)
F(o ya;al p) ® o123(012(Y,) ;2 )5 o123 ( aga(l;ag) ® 0132(yaja/1;l)) :
ah; (3
F(o132(01( ai’fl L)) ® 0123(012(37[1;&(/13));

0135(012 (V5 1y:1)) @ 0132(012(Vi)))

_ Z o 2may Ty —hay)
=1

F (073 yg;&(llp) ® 0123(012( a’ j;(f)));ffus( Z4a(1 ) ®0132(y52;(/3-)))'

4a17l

F 1(012(0132(0'12( fo;(ﬁi)))®012(0123(0'12(3752;(3))»%

4a17l

012(0123(012(3}51@/1;1))) & 012(0132(012(37556;1))))

o~ g
2
<)
o~

Q
—
Q
'S
Q
_

= Z F(alg(agg(ya;[l(l ;,)) ® 132(023( aaaz;(ﬁ))%
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1s( g:*j ") ® o1 (VD)) -

4‘117[
o 2l ~hay haz) |

F o3 (V) © i (Vi) Vi @3)% )

asay;k aga’;l
= (BT)(012(02s(Va2il)) @ 015023 (Vi ))s Vit © Vi)
(4.31)

Substituting the right-hand side of (E3]) into the right-hand side of (E30)
and then using ({24 and (EZZG), we obtain

S(y’ﬂ’z%((j) . y,ﬂ/ll%(l))

3a5;T )Y ajal;p

F,S¢ i .
= ~F JF/ (BY) (012(023(3}@31&(1 1)0)) ® o132(023(Y,, az;(f))) diei1 Vasa; 1)
= S(o2 3(37@3@(11;,) 023(3735&2 1)

5 Modular invariance

We now prove the modular invariance of the conformal full field algebras over
V @V constructed in [HK] (see Section 2) for V' satisfying the conditions in
the preceding two sections.

Theorem 5.1 The conformal full field algebra over V@V given in Theorem
[8 is modular invariant.

Proof. By Theorem B¥, we need only verify (BZI). In this case, A =
AR = A and we can identify the set {1,..., N} with A. The map r’ as a
map from A to A is the identity map and the map # as a map from A to A is
the map ’. Using the basis of the intertwining operators that we choose in the

construction of the conformal full field algebra over V @ V | for ai,as € A,
we have @) — d;. So in this case the left-hand side of (B:Z[]) is equal to

a1,a2;t,j

alN,,

a,a,l

. —1yi L
Z Z Z 51]5 aa1 1 aag k)S (ya’la’l;j7ya’3a’3;l)

a1€A i=1 j=1
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a
NI

a R B N N
- Z Z S(ya?aé%k’ yallall%i)S (ya’la/ﬁi’ ya’sa:’;;l)
a1€A =1
= 6a’2a’35kl

- 5(12(13 6kl

= > Okt (5.1)

as€(rt) =1 (a2)N(r) =1 (a3)

which is indeed equal to the right-hand side of (B21]). By Theorem B, the

conformal full field algebra over V ® V' is modular invariant. |
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