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Low Rank Tuker-Type Tensor Approximationto Classial PotentialsB.N. Khoromskij and V. KhoromskaiaMax-Plank-Institute for Mathematis in the Sienes,Inselstr. 22-26, D-04103 Leipzig, Germany.fbokh; vekhg�mis.mpg.deAbstratThis paper investigates best rank-(r1; :::; rd) Tuker tensor approximation of higher-order tensors arising from the disretization of linear operators and funtions in Rd .Super-onvergene of the Tuker deomposition with respet to the relative Frobeniusnorm is proven. Dimensionality redution by the two-level Tuker-to-anonial ap-proximation is disussed. Tensor-produt representation of basi multi-linear algebraoperations are onsidered, inluding inner, outer and Hadamard produts. We alsofous on fast onvolution of higher-order tensors represented either by the Tuker orvia the anonial models. Speial versions of the orthogonal alternating least-squares(ALS) algorithm are implemented orresponding to the di�erent formats of input data.We propose and test numerially the novel mixed CT-model, whih is based on the ad-ditive splitting of a tensor as a sum of anonial and Tuker-type representations. Thismodel allows to stabilise the ALS iteration in the ase of \ill-onditioned" tensors.The orthogonal Tuker deomposition is applied to 3D tensors generated by lassialpotentials, for example 1jx�yj , e��jx�yj, e�jx�yjjx�yj and erf(jxj)jxj with x; y 2 Rd . Numerialresults for tri-linear deompositions illustrate exponential onvergene in the Tukerrank, and robustness of the orthogonal ALS iteration.AMS Subjet Classi�ation: 65F30, 65F50, 65N35, 65F10Key words: Kroneker produts, Tuker deomposition, multi-dimensional integral opera-tors, multivariate funtions, lassial potentials.1 IntrodutionNumerial tensor deomposition methods designed initially for the problems in hemomet-ris and eletronial engineering are beoming more and more attrative for appliationin large-sale numerial omputations in higher dimensions [1, 4, 5, 6℄. Indeed, numerialtensor-produt deomposition gives the possibility to onstrut fast and eonomial algo-rithms with linear or even sub-linear saling for omputations involving large higher-ordertensors. Typial examples are the equations of many-partile modelling for eletroni stru-ture alulations whih evoke rigorous omputations of multi-dimensional interations vialassial potentials. For these purposes, the key point is the eÆient approximation of fully1



populated higher-order tensors representing multivariate funtions and operators by usingertain data-sparse Kroneker produt strutures.Computational tehniques of tensor deomposition an be understood as higher-orderanalogues of standard linear algebra methods for matrix-vetor and matrix-matrix ompu-tations. In general, the eÆient multi-linear algebra (MLA) tools annot be derived via thestraightforward extension of lassial linear algebra. In fat, instead of \linear operations"suh as SVD or EVD fatorizations (�nite algorithms), we arrive at hallenging nonlinearoptimisation problems.In this paper we apply best rank-(r1; :::; rd) approximation via the Tuker model whihan be viewed as an extension of the best rank-r approximation to a matrix. This modelallows dimensionality redution via transformation of the initial large, higher-order tensorto a smaller representation oeÆients array, i.e., ore tensor, with respet to the problem-dependent orthogonal tensor-produt basis, so-alled Tuker fators or anonial fators. Wealso disuss the possible optimisation of the Tuker deomposition by applying the so-alledCANDECOMP/PARAFAC (CP) model (f. [3, 15℄) to the ore tensor (see Appendix forthe de�nition). This model was �rst rigorously analysed in [20℄.Numerial treatment of multi-dimensional operators/funtions inluding tensor-tensoroperations is usually limited by insuÆient omputational resoures for the required om-putations. As a natural remedy, tensor-produt representation provides the performane ofstandard tensor operations with asymptotially optimal omplexity.In Setion 2 we estimate the omplexity of tensor-produt implementations of the inner,outer and ontrated produts as well as the Hadamard and onvolution produts of d-thorder tensors. Then we disuss three versions of the orthogonal alternating least-squaresalgorithm (OALSA) to ompute the best rank-(r1; :::; rd) Tuker deomposition. The �rstone addresses deomposing the full-format tensor into the Tuker format (OALSA(F ! Tr)),see [5℄ for a detailed desription of the algorithm. The seond one works with the input datapresented as anonial omponents in the CP model (OALSA(CR ! Tr)) while the thirdalgorithm applies to the input data presented in the Tuker format (OALSA(TR ! Tr)).The latter an be interpreted as rank redution methods in the CP and Tuker models,respetively. We introdue the novel mixed CP-Tuker model whih allows the stabilisationof the alternating least-squares iteration in the ase of \ill-onditioned" target tensors (f.x2.4.3).Lemma 2.3 proves the super-onvergene property of the Tuker model with respet to theFrobenius norm. To optimise the numerial operator alulus, we disuss di�erent strategiesto \ompress" the ore tensor in the Tuker model:(A) Best N -term approximation of the ore tensor via element-wise trunation;(B) The CP deomposition of the ore tensor (f. the two-level Tuker model [18℄ anddimensionality redution in [6℄).Lemma 2.4 shows that the CP deomposition of a tensor represented in the Tukerformat an be redued to the CP approximation of the orresponding \small size" oretensor. Corollary 2.5 desribes an optimisation method for rank-redution in the CP model.In Setion 3, the Tuker model is applied to lassial potentials. We give a number ofnumerial examples illustrating eÆieny of the orthogonal rank-(r1; :::; rd) deompositionvia OALSA applied to a lass of tensors related to the Newton, Yukawa and Helmholtzpotentials. Furthermore, we disuss the numerial Tuker deomposition of ertain tensors2



related to the Hartree-Fok equation. Main observations from our numeris are the following:- Exponential onvergene of OALSA in the Tuker rank r = max` r` (f. (2.13)).- Quadrati onvergene for the relative energy (f. Lemma 2.4).- Robust onvergene of ALS iteration applied to the lassial potentials.- EÆient tensor operations in the Tuker/CP formats leading to asymptotially optimalmulti-linear algebra (MLA), see x2.3.In the Appendix we present auxiliary results desribing the Lagrange equation for the dualmaximisation problem, de�ne the anonial deomposition and disuss quadrati onvergenefor the eigenvalues in the familiar Rayleigh quotient approximation (linear algebra analogueto Lemma 2.4).2 Orthogonal Rank-(r1; :::; rd) Tuker Deomposition2.1 PreliminariesWe onsider the linear spae of real-valued d-th order tensors A = [ai1:::id℄ 2 RI , de�ned onthe produt index set I = I1 � ::: � Id. We make use of the Frobenius (L2-energy) normkAk :=phA;Ai indued by the inner produthA;Bi := X(i1;:::;id)2I ai1:::idbi1:::id with A;B 2 RI : (2.1)It orresponds to the Eulidean norm of a vetor.In the following the notation \�`" means the outer produt of vetors whih form theanonial (rank-1) tensorU � fuigi2I = b � U (1) �2 :::�d U (d) 2 RI ; b 2 R;de�ned by the entriesui1:::id = b � u(1)i1 � � � u(d)id with U (`) � fu(`)i` gi`2I` 2 RI` : (2.2)There is an alternative ommonly used notation \Æ" for the outer produt of vetors.Given A 2 RI , the rank-(r1; :::; rd) Tuker model deals with the approximation over asum of the rank-1 tensorsA(r) = r1Xk1=1 ::: rdXkd=1 bk1:::kdV (1)k1 �2 :::�d V (d)kd � A; (2.3)where the anonial fators V (`)k` 2 RI` (k` = 1; :::; r`, ` = 1; :::; d) are (real-valued) vetors ofthe respetive size n` = jI`j, r = (r1; :::; rd) (the Tuker rank) and bk1:::kd 2 R (f. Fig. 2.1visualising (2.3) for d = 3). We further assume that the vetors fV (`)k` g are orthonormal, i.e.,3
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Figure 2.1: Visualisation of the Tuker model for a third-order tensor.DV (`)k` ; V (`)m` E = Æk`;m`; k`; m` = 1; :::; r`; ` = 1; :::; d; (2.4)where Æk`;m` is Kroneker's delta (i.e., V(`) = [V (`)1 V (`)2 :::V (`)r` ℄ is an orthogonal matrix,V(`)TV(`) = I for ` = 1; :::; d). In the following, we denote the set of tensors parametrised by(2.3), (2.4) by T (n;r) (shortly T r). For A(r) 2 T r, we use the onventional onise notationA(r) = B �1 V(1) �2 V(2):::�d V(d) (2.5)with the anonial omponents V(`) 2 RI`�r` and with the ore tensor B = fbkg 2 Rr1�:::�rd.The so-alled CANDECOMP/PARAFAC (CP) deomposition is a partiular ase ofthe Tuker model (2.3) orresponding to the hoie r = r` (` = 1; :::; d), where the onlysuperdiagonal of B ontains nonzero elements (see Appendix). We denote by C(n;r) (shortlyCr) the orresponding set of the dth order tensors. Notie that eah tensor in T r an beinterpreted (highly redundant representation) as an element in Cr0 with r0 = r1 � � � rd, i.e.we have T r � Cr0:In some appliations (say, in numerial alulus of multi-dimensional operators) both theTuker and CP models an be ombined gainfully (f. the two-level Tuker model in [18℄and a dimensionality redution approah in alulation of the CP model [6℄). Hene, in thefollowing, we also disuss the two-level Tuker model T (n;r;q), whih ontains all elementsA 2 T (n;r) suh that for the orresponding ore tensor we have B 2 C(r;q). Clearly, we haveT (n;r;q) � C(n;q):Without loss of generality we an assume that q � jrj := max` r` (see the disussion in x2.3).Remark 2.1 Let r = r`, n = n` (` = 1; :::; d). Then the Tuker model requires only drnnumbers to represent the anonial omponents plus rd memory units for the ore tensor.In general, the memory onsumption is dP̀=1 r`n` + dQ̀=1 r`. Compared with the anonial repre-sentation in Kn;r, the Tuker model requires an extra memory rd � r (our numerial resultsindiate that an additional ost to save the ore tensor pays o� here in full).4



On the other hand, the two-level Tuker model T (n;r;q) has the redued memory onsump-tion dr(n + q) sine, in general, drq � rd, providing a good basis for various tensor-tensoroperations (see x2.2).2.2 Tensorisation of Basi MLA OperationsFor the sake of larity (and without loss of generality) in this setion we onsider the aser = r`, n = n` (` = 1; :::; d). If there is no onfusion, we an skip the index n. We denote byNthe omplexity of various tensor operations (say, Nh�;�i) or the related memory requirements(say, Nmem(B)). We distinguish the following standard tensor-produt operations: the innerprodut, the outer and the ontrated produts (f. [1℄) as well as the so-alled Hadamard(omponent-wise) produt.To estimate the omplexity of numerial deomposition in T r and related omputations,we take more lose look on the standard MLA operations in the Tuker format1:(I) Memory demands;(II) Frobenius and generalised L2-inner produt;(III) Various tensor-times-tensor produt operations inluding the Hadamard produt;(IV) Convolution of tensors.Usually, the numerial Tuker deomposition leads to the fully populated ore tensor, i.e.,it is represented by rd nonzero elements. However, in some ases a speial data struturean be imposed (f. [18℄) whih redues the omplexity of the orresponding MLA. In thisdisussion we assume one of the following situations:(A) B is sparsely populated, more preisely, it has only Nmem(B) � rd nonzero elements.Furthermore, we denote by S(B) a sparsity pattern of B, suh that #(S(B)) = Nmem(B);(B) B has zero o�-diagonal elements (i.e., r = (r; :::; r), A 2 Cr and Nmem(B) = r);(C) B is represented in the anonial format, B 2 Cq (two-level Tuker model T (r;q)).2.2.1 Memory RequirementsIn the ase (A), the Tuker model requires drn + Nmem(B) memory to represent a tensor,where Nmem(B) � rd. In turn, the CP model inludes the redued number of parametersdrn + r (ase(B)). The di�erene Nmem(B) � r � rd � r is negligible if d is not large (f.Remark 2.1). In the ase (C), the memory demands are dr(n+ q).2.2.2 L2- and Generalised L2-Inner ProdutFor given tensors A1 2 T r1;A2 2 T r2 represented in the form (2.5), i.e.,A1 = B �1 U(1) �2 U(2):::�d U(d); A2 = C �1 V(1) �2 V(2):::�d V(d); (2.6)the L2-inner produt (2.1) an be omputed byhA1;A2i := r1Xk=1 r2Xm=1 bk1:::kdm1:::md dỲ=1 DU (`)k` ; V (`)m` E : (2.7)1Complexity analysis of MLA in the CP model an be viewed as the partiular ase, orresponding tothe lass of tensors in T r with r = (r; :::; r) and with zero o�-diagonal terms in the ore tensor.5



We further simplify and suppose r1 = r2. Then alulation in (2.7) inludes dr(r + 1)=2inner produts of vetors of size n (due to the symmetry argument) plus 2#S(A1) �#S(A2)multipliations, leading to the overall omplexityNh�;�i = O(dnr(r + 1)2 + 2#S(A1) �#S(A2));and the same for the Frobenius norm. In the ase (C) the inner produt an be omputedin Cq2 + dr2n+ dq2r operations (f. [18℄, Lemma 2.8).Let A : RI ! RI be a matrix having Kroneker-produt form: A = A(1) 
 ::: 
A(d) 2RI�I (rank-1 tensor of order d) with A(`) 2 Rn�n . Then the generalised inner produthAA1;A2i := r1Xk=1 r2Xm=1 bk1:::kdm1:::md dỲ=1 DA(`)U (`)k` ; V (`)m` E (2.8)has the same omputational ost as above, where n is substituted by the ost of the low-dimensional matrix-vetor produt in Rn . For example, if the omponents A(`) 2 Rn�n haveH-matrix (resp. Toeplitz) struture or they inherit the wavelet-based sparsity pattern, thenwe have NhA�;�i = O(dr(r + 1)2 n logq n+ 2#S(A1) �#S(A2)):2.2.3 Outer, Contrated and Hadamard ProdutsFor given tensors A 2 RI1 and B 2 RI2 , the outer produt A Æ B 2 RI1�I2 is of size I1 � I2with the omponents (A Æ B)i1;i2 = Ai1 � Bi2; i1 2 I1; i2 2 I2:Clearly, for A1;A2 2 T r we are able to tensorize the outer produt byA1 Æ A2 := X1�k`;m`�r; `=1;:::;d bk1:::kdm1:::md �U (1)k1 Æ V (1)m1 ��2 :::�d �U (d)kd Æ V (d)md � : (2.9)This leads to the memory demandsNmem(AÆB) = O(2dr2n + r2d)for the naive omponent-wise storage. However, the impliit representation of omplexityO(2drn + r2d) an be implemented if one stores only 2r omponents U (`)k` ; V (`)m` for eah` = 1; :::; d.The ontrated produt of two tensors is an extension of the matrix-vetor multipliationombined with the outer produt: for some portion of modes we ompute the inner produtwhile for the remaining omponents we alulate the outer produt with the orrespondingordering of modes. For given tensors A 2 RI�J and B 2 RI�M , the ontrated produtalong the �rst index I results in a tensor Z := hA;BiI�I of size J �M, given byZ = fzjmg 2 RJ �M with zjm =Xi2I aijbim:6



For tensors in the Tuker form we obtainhA1;A2iI�I = X1�k`;m`�r; `=1;:::;d bk1:::kdm1:::md DU (1)k1 ; V (1)m1 EI1�I1 �2 :::�d DU (d)kd ; V (d)md EId�Idwith the memory requirementsNmem(hA1;A2iI�I) = O(2dr2nJnM + r2d):For given tensors A;B 2 RI , the Hadamard produt A� B 2 RI of two tensors of the samesize I is de�ned omponent-wise(A� B)i = Ai � Bi; i 2 I:Hene, for A1;A2 2 T r we tensorize the Hadamard produt byA1 �A2 := X1�k`;m`�r; `=1;:::;d bk1:::kdm1:::md �U (1)k1 � V (1)m1 ��2 :::�d �U (d)kd � V (d)md � : (2.10)This leads to the memory requirements (due to the symmetry argument)Nmem(A�B) = O(dr(r + 1)2 n + r2d):2.2.4 Multi-Dimensional Convolution ProdutThe multi-dimensional onvolution produt is one of the basi transforms in the wide rangeof appliations inluding many-partile models (e.g., see examples in x3). We onsider thedisrete version of the multi-dimensional onvolution transform in Rd based on the Nystr�omtype sheme (similar for the olloation with pieewise onstant basis funtions)(f � g)(x) := ZRd f(y)g(x� y)dy � hdXi2I f(yi)g(xj � yi); I := f1; :::; ngd;where, for the ease of presentation, the olloation points xj; yi are assumed to be loated onthe same equi-distant spatial tensor-produt grid of size h. The funtions f; g are supposedto have the �nite support [0; R℄d with R = nh.Introduing the orresponding funtion generated tensors (FGTs) F = ff(xi)g;G =fg(xi)g 2 RI , we de�ne their disrete onvolution produt byF � G :=  Xk2I FkGj�k!j2J ; J := f1; :::; 2n� 1gd:For given A1;A2 2 T r, we now tensorize the onvolution produt viaA1 � A2 := hd rXk;m=1 bk1:::kdm1:::md �U (1)k1 � V (1)m1 ��2 :::�d �U (d)kd � V (d)md � : (2.11)7



Assuming that one-dimensional onvolutions U (`)k` � V (`)m` 2 R2n�1 an be omputed inO(n logq n) operations, we arrive at the overall omplexity estimateN��� = O(dr(r + 1)2 n logq n+ dndr2d):In our partiular ase of equidistant grids we obtain (by setting a = U (`)k` ; b = V (`)m` 2 Rn)(U (`)k` � V (`)m` )j = nXk=1 akbj�k; j = 1; :::; 2n� 1:Hene, the one-dimensional onvolution an be performed by FFT in O(n logn) operations.One-dimensional O(n logn)-omplexity onvolution on non-equidistant grids is disussed in[10℄. It an be diretly applied in (2.11).We notie that the onvolution produt appears to be one of the most omputationallyelaborate operations (f. Lemma 2.3) sine in general one might have #S(B1) �#S(B2) =r2d. Signi�ant omplexity redution is observed if one of the onvolving tensors an berepresented by the CP model, where we have #S(B1)�#S(B2) = rd+1. Hene, the omplexityredution fator is rd�1.Below, we give numerial examples illustrating the performane of the onvolution prod-ut in the Tuker format. We use the following (rather simple) algorithm: Given the funtion-generated tensors (FGTs) A1 2 T r1, A2 2 T r2 with the moderate grid-size n1 = n2 = ::: =nd = n orresponding to the tensor-produt n � ::: � n grid in [0; A℄d with arbitrary grid-spaing in eah spatial diretion (say, adaptive grid) and with minimal grid-size hmin. Weintrodue an auxiliary equidistant grid of size N � ::: � N with n � N whih sati�esh := A=N � hmin due to the approximation requirements. Let Pn!N and PN!n be the or-responding 1D linear interpolation operators from the adaptive to �ne grid and vie-versa,and in eah spatial diretion. Then we perform the following steps:CONV (T r1, T r2).Given the input tensors A1 2 T r1, A2 2 T r2.Step I: Using Pn!N , interpolate the anonial omponents to the �ne grid;Step II: Compute one-dimensional onvolution produts hU (`)k` � V (`)m` 2 R2N�1 inO(dr2N logN) operations by the FFT;Step III: Using PN!n, interpolate the result to the initial grid;Step IV: Compute the onvolution produt via (2.11) in O(dr2dnd) operations.Remark 2.2 Algorithm CONV (T r1, T r2) has linear saling in dimension d. However,in the ase of strong mesh re�nement the auxiliary dimension N may be large enough (say,N � 104), hene the omplexity of Step II, O(dr2N logN), might be the bottlenek of ournumerial sheme. For suh situations, based on the ideas in [10℄, one an use the speialmodi�ation of the onvolution of omplexity O(n logq n) that applies to omposite re�nedgrids. The orresponding numerial results will be presented elsewhere.First, we demonstrate the redution fator rd�1 between the omputational times tTTand tCT , orresponding to the ases of Tuker-Tuker and CP-Tuker onvolving tensors,8



respetively. In partiular, the next table represents the ratios tCT =tCT (2) and tTT=tCT (2)(saled time) for di�erent values of the Tuker rank r = 2; 3; :::; 6, but with �xed parametersn = 32; 64 and N = 320; 640, respetively. Here tCT (2) referes to the omputational time-unit for the CT-type onvolution with r = 2 and with n = 32.r 2 3 4 5 6 7 8 9 10n = 32 1 4:67 7:41 15:78 30:00 52:22 85:19 131:48 194:81CT n = 64 6:93 22:22 57:41 122:96 234:44 410:37 668:17 - -TT n = 32 3:52 25:19 115:19 392:22 1085:19 - - - -Note that the omputational time in the full format is about T1 = 0:02; T2 = 1:11; T3 =68:4 for n = 16; 32; 64, respetively, all presented in omputational time-unit tCT (10) withn = 32 (the asymptotial omplexity estimate is O(8n6)).The seond table represents the saled omputational time tCT=tCT (1) for �xed r = 5 and�xed n = 32; 64 but for di�erent values of N = 2pn (p = 1; 2; :::; 8). Here tCT (1) orrespondsto the omputational time for p = 1, n = 32.p 1 2 3 4 5 6 7 8n = 32 1 1 1 1 1:13 1:85 4:59 15:46CT n = 64 7:13 7:13 7:20 7:17 8:07 10:87 21:70 -These data indiate that FFT on the equi-distant �ne grid has negligible ost om-pared with omputing the sum (2.11), at least in the parameter domain N � 4096. Hene,Algorithm CONV (T r1, T r2) an be applied suessfully in the ase of moderate mesh-re�nement suh that N � 104.2.2.5 Resum�e of the Complexity of MLA in the Tuker ModelThe next Lemma ollets all the previous results but now presented in the general ase of a�xed sparsity pattern of the target ore tensors.Lemma 2.3 (omplexity of MLA in the Tuker model). For given tensors A1;A2 2 T r with�xed sparsity patterns of the ore tensors S(B1);S(B2), respetively, we have(I) Memory requirements Nmem(A1) = dnr +#(S(B1)).(II) Complexity of L2-inner produtNhA1;A2i = 12dnr(r + 1) + 2#S(B1) �#S(B2);and the same for the Frobenius norm.(III) Memory requirements for the outer and Hadamard produts are given byNmem(A1ÆA2) = 2dr2n +#S(B1) �#S(B2);Nmem(A1�A2) = 12dr(r + 1)n +#S(B1) �#S(B2));9



respetively. Complexity estimates for these operations have similar bounds.(IV) Assuming that one-dimensional onvolution produts U (`)k` � V (`)m` 2 R2n�1 an be om-puted in O(n logq n) operations, we obtain the omplexity boundNA1�A2 = 12dr(r + 1)n logq n + dnd#S(B1) �#S(B2):Complexity of the onvolution produt in the full format is estimated by O(n2d).Proof. The proof is elementary and it goes along the line of the previous disussion.2.3 Some Properties of the Orthogonal Tuker DeompositionThe numerial Tuker approximation of d-th order tensors is one of the most pratiallyimportant MLA operation. This operation is, in fat, the higher order extension of the bestrank-r approximation in the linear algebra (in partiular, of the trunated SVD).Given A0 2 RI1�:::�Id, its Tuker approximation an be derived by straightforward min-imisation of the quadrati ost funtionalf(A) := kA � A0k2 ! min (2.12)over all rank-r tensors A 2 T r, whih will be parametrised as in (2.3) and with the on-straints V(`) 2 V` := Vn`;r` (` = 1; :::; d);where Vn;r := fY 2 Rn�r : Y TY = I 2 Rr�rg is the so-alled Stiefel manifold. The Appendixdisusses the existene of loal minima in (2.12) and desribes the Lagrange equations forthe orresponding dual problem (f. Lemma 4.2). In general, the starting value in theminimisation proess for solving (2.12) an be omputed using the so-alled higher-orderSVD [4℄.For a wide lass of FGTs, the quality of approximation via minimisation (2.12) anbe e�etively ontrolled by the Tuker rank. In partiular, for ertain analyti generatingfuntions we are able to prove the exponential onvergene (f. [11, 18℄),kA(r) �A0k � Ce��r with r = max` r`: (2.13)As a onsequene, the approximation error " > 0 an be ahieved with r = O(j log "j).The following Lemma proves that the relative energy error of the Tuker deompositionA(r) is estimated by the square of the relative energy norm of A(r) � A0. This result is areminisene of the error bound for the Rayleigh quotient approximation to the symmetrieigen-value problem in linear algebra (f. (4.9) in Appendix).Lemma 2.4 (super-onvergene in energy). Let A(r) 2 RI1�:::�Id solve the minimisationproblem (2.12) over A 2 T r. Then we have the "quadrati" relative error boundkA0k � kA(r)kkA0k � kA(r) �A0k2kA0k2 : (2.14)10



Proof. First part of the proof is given for the ompleteness (f. [4℄ for a short exposition).Letting A(r) = B �1 V(1) �2 V(2) : : :�d V(d), we easily obtain the identitykA(r)k = kBk; (2.15)sine orthogonal omponents V(`) 2 V` do not e�et the Frobenius norm. Furthermore, with�xed V(`) (` = 1; :::; d), relation (2.12) is merely a linear least-square problem with respetto B, hA0;A0i � 2hA0;B �1 V(1) �2 : : :�d V(d)i+ hB;Bi ! min;hene the orresponding Lagrange equation takes the form�hA0; ÆB �1 V(1) �2 : : :�d V(d)i+ hB; ÆBi = 0 8 ÆB 2 Rr1�:::�rd;whih implies B �A0 �1 V(1)T �2 : : :�d V(d)T = 0: (2.16)Next we readily obtainf(Ar) = kArk2 � 2hB �1 V(1) �2 : : :�d V(d);A0i+ kA0k2= kArk2 + kA0k2 � 2hB;A0 �1 V(1)T �2 : : :�d V(d)T i= kA0k2 � kBk2;hene it follows that (ompare with 4.10)kA0k2 � kArk2 = kAr �A0k2:The latter leads to the �nal estimate (learly kA0k � kArk)kA0k � kArkkA0k = kAr �A0k2(kArk+ kA0k)kA0k � kAr �A0k2kA0k2 :Numerial eÆieny of standard tensor operations desribed above depends on the data-sparsity of the ore tensor. The next lemma presents a simple but useful haraterisationof the two-level Tuker model (f. [18℄) whih allows to approximate the elements in T r viathe CP deomposition applied to the small sized ore tensor (f. dimensionality redutionin [6℄).Lemma 2.5 (two-level Tuker-to-CP approximation). Let the target tensor A0 2 T (n;r)in the minimisation problem (4.6) have the form A0 = B0 �1 V(1) �2 V(2)::: �d V(d) withomponents V(`) 2 RI`�r` in the Stiefel manifold, and with the ore tensor B0 2 Rr1�:::�rd.Then, for a given q � jrj, minA2C(n;q) kA �A0k2 = minB2C(r;q) kB � B0k2: (2.17)Moreover, the optimal rank-q CP approximation A(q) 2 C(n;q) of A0 (if existing) and theoptimal rank-q CP approximation B(q) 2 C(r;q) of B0 are related byA(q) = B(q) �1 V(1) �2 V(2):::�d V(d): (2.18)11



Proof. Notie that the anonial omponents Y(`) of any test elementA = qXk=1 �k �1 Y (1)k �2 :::�d Y (d)k (2.19)in the left-hand side of (2.17) an be hosen in spanfV(`)g (` = 1; :::; d), i.e.,Y (`)k = rX̀m=1�(`)k;mV (`)m ; k = 1; :::; r; ` = 1; :::; d: (2.20)Indeed, assuming Y (`)k = rX̀m=1 �(`)k;mV (`)m + E(`)k with E(`)k ?spanfV(`)g;we onlude that E(`)k does not e�et the ost funtion in (2.17) beause of the orthogonalityof V(`). Hene, setting E(`)k = 0, and substituting (2.20) into (2.19), we arrive at the desiredTuker deomposition A = B �1 V(1) �2 V(2):::�d V(d) with the respetive ore tensorB = qXk=1 bk �1 U (1)k �2 :::�d U (d)k 2 C(r;q);where bk = �k, U (`)k = f�(`)k;m`grm̀`=1 2 Rr` , obtained fromA = qXk=1 �k �1 Y (1)k �2 :::�d Y (d)k= qXk=1 �k �1 ( r1Xm1=1�(1)k;m1V (1)m1 )�2 :::�d ( rdXmd=1�(d)k;mdV (d)md )= r1Xm1=1 ::: rdXmd=1( qXk=1 �k dỲ=1 �(`)k;m`)�1 V (1)m1 �2 :::�d V (d)md :Now the relation (2.17) follows sine the `-mode multipliation with orthogonal ompo-nents V(`) does not hange the ost funtion. Similar arguments justify (2.18).Lemma 2.5 suggests a two-level dimensionality redution approah that leads to a betterdata struture ompared with the standard Tuker model. Though A(q) 2 C(n;q) an berepresented in the CP format, its eÆient storage depends on the representation of theanonial omponents V(`). In fat, if V(`) are obtained via the Tuker deomposition, it isbetter to store A(q) in the CP format of the omplexity rdn (adaptive two-level model [18℄).However, if V(`) are represented in a �xed basis (say, sin- or a wavelet basis) then one anstore the ore tensor only in the CP format, whih leads to substantial memory redutionto qdr (no dependeny on the data-size n).The next statement is a diret onsequene of the previous lemma.12



Corollary 2.6 (two-level CP-to-CP approximation). Let the target tensor A0 2 C(n;r) withr = (r; :::; r) in the minimisation problem (4.6) have the anonial form A0 = D0�1U(1) �2U(2)::: �d U(d) with normalised omponents U(`) 2 Rn�r (we ignore the orthogonality re-quirements), and with the superdiagonal ore tensor D0 2 Rr�:::�r . Introdue the equivalentrepresentation A0 = B0�1V(1)�2V(2):::�dV(d) with omponents V(`) 2 Rn�r in the Stiefelmanifold (say, omputed by the QR-deomposition of eah omponent U(`)).Then, for a given q � r,minA2C(n;q) kA �A0k2 = minB2C(r;q) kB � B0k2: (2.21)Moreover, the optimal rank-q CP approximation A(q) 2 C(n;q) of A0 (if existing) and theoptimal rank-q CP approximation B(q) 2 C(r;q) of the ore tensor B0 are related by (2.18).Corollary 2.6 indiates that the rank redution in the CP model an be performed viathe CP approximation of a \small size" ore tensor arising from the omponent-wise orthog-onalisation in the target data-array (the omplexity bound is O(dr2n)).2.4 Numerial AlgorithmsThere is a number of algorithms in the literature to ompute the CP and the Tuker models(see, e.g., [5, 6, 23, 1℄). Based on Lemmata 4.1, 4.2 a rank-(r1; :::; rd) approximation an bealulated by the Newton-type methods.2.4.1 General Input DataOur urrent MATLAB implementation of the orthogonal ALS algorithm (OALSA) in thegeneral ase of full-format input tensors is based on the method desribed in [5℄ (see alsoimplementation in [1℄). It ontains the following steps.OALSA (F ! T r).Given the input tensor A0 2 Rn1�:::�nd and a rank-parameter r = (r1; :::; rd) 2 Nd .Step I: Compute the initial guess for anonial omponents.Step II: For eah (m = 1; :::; d) the ALS iteration optimises the anonial omponentV(m), while the other matrix-omponents are kept onstant (equivalent to solving theequation number m in the system (4.3) (resp. (4.4)).Termination riterion: �xed number of iterations or ontrol the urrent inrement.Step III: Compute the ore tensor via onvolution (2.16).Steps II and III are standard, while the method of hoie in step I depends on the par-tiular appliation. We distinguish three partiular versions of OALSA (F ! T r) adaptedto di�erent lasses of input tensors:(F) full-format F (initial guess: trunated higher-order SVD (f. [5℄), approximation withsmaller Tuker rank or multi-way ACA algorithm as proposed in [22℄);(C) type CR with some R > jrj (may orrespond to an analyti approximation via sin-quadratures or exponential �tting). Initial guess: QR-deomposition with trunated higher-order SVD; 13



(T) type T R (may orrespond to an analyti approximation via tensor-produt interpola-tion).Initial guess: QR-deomposition with trunated higher-order SVD, or approximation withsmaller Tuker rank aomplished with best rank-1 approximation to the initial inrement;2.4.2 Canonial-to-Tuker and Tuker-to-Tuker DeompositionsThe eÆient implementation in the ases (C) and (T) is based on MLA performed in speialtensor formats desribed above. In fat, if the initial guess has data-type T R or CR withmoderate jRj, then trunated higher-order SVD an be performed with lower ost omparedwith the ase of full-format input data as in the ase (F). Hene, we speify the orrespondingversions of the general algorithm: OALSA(CR ! T r) and OALSA(T R ! T r).To perform the trunated higher-order SVD in Step I of OALSA (CR ! T r), we notiethat for eah ` = 1; :::; d the \matrix unfolding" A(`) to the input-tensor A0, of dimensionI`� I`+1� :::� Id � :::� I1� :::� I`�1, an be represented as a rank-R matrix. For example,for ` = 1, we have A(1) = [a(1)i1(i2:::id)℄ = [ai1i2:::id℄ 2 Rn1�(n2���nd):We introdue the "single hole" produt and related dimension parameter n`V(�`)k = V (1)k �2 :::�`�1 V (`�1)k �`+1 V (`+1)k :::�d V (d)k ; n` = n1 � � � n`�1n`+1 � � � nd; (2.22)and represent the rank-R matrix unfolding in the form A(`) = A`BT̀ with A` 2 Rn`�R,B` 2 Rn`�R given by A` = V(`)D with D = diagfb1; :::; bRg (2.23)and with B` = [V (�`)1 ; :::; V (�`)r ℄; (2.24)where V (�`)k is the vetor unfolding to V(�`)k . Then the algorithm reads as follows.OALSA (CR ! T r)Given the input tensor A0 2 CR in the form (4.5).Step I: For eah ` = 1; :::; d perform1. QR-deomposition of A` and B` (f. (2.23) and (2.24), respetively) in the form,A` = Q(`)A R(`)A , B` = Q(`)B R(`)B ;2. SVD of a matrix S` = R(`)A R(`)B T 2 RR�R in the form S` = W`D`V`;3. Trunation of S` to rank r` matrix ~W` ~D` ~V` with ~W` 2 RR�r` ;4. Compute the anonial omponents U(`) = Q(`)A ~W`.Starting with initial valuesU(`), ` = 1; :::; d, proeed with Steps II and III as in the generalversion of OALSA.EÆient implementation of Step I in OALSA (T R ! T r) is based on the observationthat for eah ` = 1; :::; d the \matrix unfolding" A(`) to A0 2 T R, an be represented asa rank-R` matrix. In fat, it is a diret onsequene of representation (2.3). Step I of theorresponding algorithm then an be designed similar to those in OALSA (CR ! T r). Theresulting algorithm reads as follows. 14



OALSA (T R ! T r)Given the input tensor A0 2 T R in the form (2.3).Step I: For eah ` = 1; :::; d ompute1. Components A` and B` in representation A(`) = A`BT̀ , and perform2. QR-deomposition of A` and B` in the form, A` = Q(`)A R(`)A , B` = Q(`)B R(`)B ;3. SVD of the matrix S` = R(`)A R(`)B T 2 RR�R in the form S` =W`D`V`;4. Trunation of S` to a rank r` matrix ~W` ~D` ~V` with ~W` 2 RR�r` ;5. Compute the anonial omponents U(`) = Q(`)A ~W`.Starting with initial valuesU(`), ` = 1; :::; d, proeed with Steps II and III as in the generalversion of OALSA.2.4.3 Combination of the Tuker and CP FormatsIn some quantum hemistry appliations the target tensor may ontain anonial omponentshaving di�erent sales of amplitudes and deay rates. In this ase we an observe nonstableonvergene of the ALS iteration, likely, due to large variation in elements of the ore tensor.Similar to the matrix ase, we all this phenomenon as ill-onditioning of a tensor.In suh ases, to stabilize the onvergene of the ALS iteration (without destroying theapproximation power), we introdue the mixed model denoted by M(Cr1;Tr2). We say thatA 2M(Cr1;Tr2) if A := A1 +A2 with A1 2 Cr1 ; A2 2 T r2:We assume that the dominating omponent inA an be well approximated via the CP model,A1 2 Cr1, while the residual (whih is better onditioned) an be further approximated in theTuker format, A2 2 T r2. To approximate the given tensor A0 by theM(Cr1;Tr2) model, we
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We give numerial example for the mixed tri-linear approximation of the FGT orre-sponding to g(x) = C1e��1jxj + C2e��2jx�x2j + C3e��3jx�x3j (2.25)in R3 with 0 < C2; C3 � C1, 0 < �2; �3 � �1. This funtion has similar features with thease of H2O-moleule. For this example, the �rst omponent an be well approximated viathe rank-1 tensor, hene we use A1 2 C1.Figure 2.2 orresponds to the hoie C1 = 150; C2 = 30; C3 = 20, �1 = 5000; �2 = �3 = 1and x2 = (AR=6; 0; AR=5); x3 = (AR=6; 0;�AR=5). Pitures illustrate a stable exponentialonvergene in the Tuker rank for the mixed CT model, whih allows to ahieve a givenauray up to the mahine preision.3 Appliation to Classial PotentialsHere we disuss the Tuker deomposition of 3D tensors arising as disretization of lassialpotentials. Let Qd 2 Rd be a uniform or adaptively re�ned tensor-produt grid indexed byI1 � : : :� Id. For a given funtion g : 
! R, with 
 � Rd and with Qd 2 
, we introduethe olloation-type funtion-generated tensor (FGT) of order d byA0 � A(g) := [ai1:::id℄ 2 RI1�:::�Id with ai1:::id := g(x(1)i1 ; : : : ; x(d)id );where (x(1)i1 ; : : : ; x(d)id ) 2Qd 2 Rd are grid olloation points. We are interested in the validityand the rank-dependene of the above tensor deomposition algorithms for approximatingthe 3D FGT generated by the Newton potential, Slater-type funtions, the Yukawa and theHelmholtz potentials.The initial tensor A0 is deomposed by the Tuker model of the rank r = (r; :::; r),where the rank-parameter r inreases from r = 1; 2; ::: to some prede�ned value. Canonialomponents and the ore tensor of the size r� r� r are then used for the reonstrution ofthe approximating tensor A(r) � A0, whih is used for estimating approximation propertiesof the tensor deomposition with the given rank. For every rank r Tuker deomposition,we ompute the relative energy-norm (Frobenius norm) as in (2.1)EFN = kA0 � A(r)kjjA0jj ;the relative L2-energy EFE = kA0k � kA(r)kjjA0jj ;as well as the maximum (Chebyshev) normEC := maxi2I ja0;i � ar;ijmaxi2I ja0;ij :
16



3.1 Newton PotentialWe apply the Tuker deomposition algorithm with r = (r; :::; r) for approximating theNewton potential g(x) = 1jxj ; x 2 R3 ;in the ube [0; AR℄3 (AR = 10) on the ell-entred uniform grid with n = 64. Here and inthe following jxj denotes the Eulidean norm of x 2 Rd . Figure 3.1 shows the onvergeneof the relative energy- and Chebyshev norms as well as of the relative energy with respetto the Tuker rank up to r = 12. The anonial omponents U (1)k are given for k = 1; : : : ; 6.It is learly seen the exponential onvergene in the Tuker rank r.
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3.2 Funtions Related to the Hartree-Fok EquationThe Hartree-Fok equation for the N -eletrons density funtion reads as the system of non-linear eigenvalue problemsF�i(x) = �i �i(x); for i = 1; :::; N=2 (3.1)with x 2 R3 . Here the solution-dependent Fok operator is de�ned byF�(x) := �12��(x)� V(x)�(x) + (J �) (x) + (K�) (x); x 2 R3 ;where with the given density matrix �(x; y), the Hartree and exhange potentials are de�nedby (J �) (x) := Z d3y �(y; y)jx� yj �(x); (K�) (x) := �12 Z d3y �(x; y)jx� yj �(y);orrespondingly. Furthermore, the nulei potential is given by V(x) = KPa=1 Zajx�Raj , where Raand Za desribe the positions and harges of nulei, respetively. With given eigen-funtions�i, the density matrix is de�ned by the orresponding spetral projetion�(x; y) = 2 N=2Xi=1 ��i (x)�i(y)with exponential deay �(x; y) � exp(��jx � yj) for nonmetalli systems. The problemonsists of a tensor-produt representation of the density funtions �(x; y) and �(x; x) aswell as of the Hartree and exhange potentials involved. Along with the Newton potentialdisussed above, in the following we onsider some simple examples of the density funtion.Notie that omputation of the Hartree potential an be performed via diret evaluation ofthe onvolution produt between the Newton potential and density �(x; x) represented in theTuker format (f. x2.2.4). In this ase the Newton potential is supposed to be approximatedby the CP model (see [12℄,[18℄ for more details).
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presents the eletron \orbital" (� = 1) and the eletron density funtion (� = 2) orrespond-ing to the Hydrogen atom. In this ase g(x) satis�es the one-partile Hartree-Fok equationwhih takes the form�12��(x)� 1jxj�(x) = ��(x); x 2 R3 ; � 2 H1(R3):We apply the orthogonal Tuker deomposition to the FGT de�ned on the grid Q3 withAR = 10. Figure 3.4 presents the slies of the 9� 9� 9 3D ore tensor, where the numbersindiate the maximum values at the given slie of B. Figure shows that the energy of thedeomposed funtion is onentrated in several upper slies of the ore tensor. It exposesthe potential data ompression abilities of the Tuker approximation due to the sparsity ofthresholded B. However, our numerial experiments show that the dominating entries in Bare ompatly onentrated in its "upper left orner" whih indiates that the ore tensortrunation may have, in fat, the similar e�et as just a deomposition with a smaller Tukerrank.
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grid pointsFigure 3.9: Convergene history (left) and anonial omponents Uk, k = 1; : : : ; 6, (right)for the Tuker approximation of the Helmholtz potential.4 Appendix4.1 Lagrange Equation for the Dual Maximisation ProblemFor given omponents V(`) = [V (`)1 V (`)2 :::V (`)r` ℄, we de�ne the \single hole" tensorB(:m) = A0 �1 V(1)T :::�m�1 V(m�1)T �m+1 V(m+1)T :::�d V(d)Tand let B(:m) 2 Rnm�rm be the orresponding matrix representation, where rm is de�ned in(2.22). The following lemma redues the minimisation of the original quadrati funtional tothe dual maximisation problem thus eliminating the ore tensor B from the solution proess.Lemma 4.1 ([5℄) For given A0 2 RI1�:::�Id, the minimisation problem (2.12) on T r isequivalent to the dual maximisation problemg(V(1); :::;V(d)) := A0 �1 V(1)T �2 :::�d V(d)T2 ! max (4.1)over a set V(`) 2 RjI` j�r` from the Stiefel manifold, i.e., V(`) 2 V` (` = 1; :::; d). For givenmatries V(m) (m = 1; :::; d), the tensor B minimising (2.12) is represented byB = A0 �1 V(1)T �2 :::�d V(d)T 2 Rr1�:::�rd: (4.2)The following lemma provides the expliit Lagrange equations for the dual maximisationproblem.Lemma 4.2 ([18℄) The problem (4.1) has at least one global maximum. At eah extremalpoint the orresponding Lagrange equations read as2(I�V(m)V(m)T ) �B(:m) �B(:m)T �V(m) = 0 (1 � m � d): (4.3)Under the ompatibility ondition rm � rm (1 � m � d) equation (4.3) is solvable for anym = 1; :::; d. 22



It is readily seen that in the ase of a rank-1 approximation (i.e., r = (1; :::; 1)) the systemof a Lagrange equations (4.3) ombined with (4.2) an be written in the formA0 �1 V (1)T :::�m�1 V (m�1)T �m+1 V (m+1)T :::�d V (d)T = b1 V (m); (4.4)A0 �1 V (1)T �2 :::�d V (d)T = b1;kV (m)k = 1 (1 � m � d)with b1 2 R (f. [5℄). These equations expliitly represent the numerial sheme of the ALSiteration for omputing the best rank-1 approximation.4.2 Canonial Tensor DeompositionThe CP model is a simpli�ed version of a general Tuker deomposition (2.3) de�ned byA(r) = rXk=1 bk �1 V (1)k �2 :::�d V (d)k � A; bk 2 C ; (4.5)where the Kroneker fators V (`)k 2 C I` are unit-norm vetors. Indeed, the deomposition(4.5) an be viewed as a speial ase of the Tuker model (2.3), where r = r1 = ::: = rd andbk1:::kd = 0 unless k1 = k2 = ::: = kd, i.e., only the super-diagonal of B = fbkg is non-zero.The trilinear CP-deomposition is visualised in Fig. 4.1. The minimal number r in the
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Figure 4.1: Visualisation of the CP-deomposition for a third-order tensor.representation (4.5) is alled the Kroneker rank of a given tensor A(r). Under moderateassumptions, the CP deomposition with rank r is unique. We denote by Cr the set ofomponent-wise normalised tensors parametrised by (4.5). Given A0 2 RI1�:::�Id, its CPapproximation an be derived by minimisation of the quadrati ost funtionalf(A) := kA � A0k2 ! min (4.6)over all rank-r tensors A 2 Cr. Simple methods to onstrut the CP approximation whihavoid solving the minimisation problem (4.6) an be based on greedy algorithms (f. [25℄).4.3 Rayleigh Quotient ApproximationFor a given symmetri matrix A 2 V = Rn�n , the so-alled Rayleigh quotientR(u) := hAu; uihu; ui ; u 2 Rn23



is known to have the fundamental property, that� = minu2V; u6=0R(u) and v = argminu2V; u6=0R(u) (4.7)appear to be the minimal eigen-value and the orresponding eigen-vetor of A,Av = �v:Proposition 4.3 Assume that we have an approximation to � (resp to v) via minimisationon a ertain subspae Vr � V with dim(Vr) = r < n,�r = minu2Vr; u6=0R(u) and vr = argminu2Vr; u6=0R(u): (4.8)Then one obtains the quadrati error estimate for the eigen-value �r�r � � � kA� �Ik2kv � vrk2: (4.9)Proof. The proof is instrutive. Supposing that hv; vi = hvr; vri = 1, we obtain (f. [24℄)hA(v � vr); v � vri = hAv; vi � 2hAv; vri+ hAvr; vri= �� 2hv; vri+ �r= �(2� 2hv; vri) + �r � �= �hv � vr; v � vri+ �r � �;whih implies �r � � = h(A� �I)(v � vr); v � vri: (4.10)Then (4.9) follows.Aknowledgements. Numerous helpful suggestions by Prof. W. Hakbush are grate-fully aknowledged.Referenes[1℄ B.W. Bader and T.G. Kolda: MATLAB Tensor Classes for Fast Algorithm Prototyping.SANDIA Report, SAND2004-5187, Sandia National Laboratories, 2004.[2℄ G. Beylkin, M. M. Mohlenkamp: Numerial operator alulus in higher dimensions,PNAS, Vol. 99, no. 16, 2002, 10246{10251.[3℄ J.D. Carrol and J. Chang: Analysis of individual di�erenes in multidimensional salingvia an N -way generalization of 'Ekart-Young' deomposition, Psyhometrika 35 (1970),283-319.[4℄ L. De Lathauwer, B. De Moor, J. Vandewalle: A multilinear singular value deomposi-tion, SIAM J. Matrix Anal. Appl., Vol. 21, no. 4, 2000, 1253{1278.24
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