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Abstract

This paper investigates best rank-(ry, ..., 74) Tucker tensor approximation of higher-
order tensors arising from the discretization of linear operators and functions in RY.
Super-convergence of the Tucker decomposition with respect to the relative Frobenius
norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical ap-
proximation is discussed. Tensor-product representation of basic multi-linear algebra
operations are considered, including inner, outer and Hadamard products. We also
focus on fast convolution of higher-order tensors represented either by the Tucker or
via the canonical models. Special versions of the orthogonal alternating least-squares
(ALS) algorithm are implemented corresponding to the different formats of input data.
We propose and test numerically the novel mized CT-model, which is based on the ad-
ditive splitting of a tensor as a sum of canonical and Tucker-type representations. This
model allows to stabilise the ALS iteration in the case of “ill-conditioned” tensors.

The orthogonal Tucker decomposition is applied to 3D tensors generated by classical
—ale—y| e;:ﬁ‘ and erf‘g"m‘) with 2,y € RY. Numerical
results for tri-linear decompositions illustrate exponential convergence in the Tucker
rank, and robustness of the orthogonal ALS iteration.

potentials, for example ‘CI,‘]T’U" e
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1 Introduction

Numerical tensor decomposition methods designed initially for the problems in chemomet-
rics and electronical engineering are becoming more and more attractive for application
in large-scale numerical computations in higher dimensions [1, 4, 5, 6]. Indeed, numerical
tensor-product decomposition gives the possibility to construct fast and economical algo-
rithms with linear or even sub-linear scaling for computations involving large higher-order
tensors. Typical examples are the equations of many-particle modelling for electronic struc-
ture calculations which evoke rigorous computations of multi-dimensional interactions via
classical potentials. For these purposes, the key point is the efficient approximation of fully



populated higher-order tensors representing multivariate functions and operators by using
certain data-sparse Kronecker product structures.

Computational techniques of tensor decomposition can be understood as higher-order
analogues of standard linear algebra methods for matrix-vector and matrix-matrix compu-
tations. In general, the efficient multi-linear algebra (MLA) tools cannot be derived via the
straightforward extension of classical linear algebra. In fact, instead of “linear operations”
such as SVD or EVD factorizations (finite algorithms), we arrive at challenging nonlinear
optimisation problems.

In this paper we apply best rank-(rq, ..., r4) approximation via the Tucker model which
can be viewed as an extension of the best rank-r approximation to a matrix. This model
allows dimensionality reduction via transformation of the initial large, higher-order tensor
to a smaller representation coefficients array, i.e., core tensor, with respect to the problem-
dependent orthogonal tensor-product basis, so-called Tucker factors or canonical factors. We
also discuss the possible optimisation of the Tucker decomposition by applying the so-called
CANDECOMP/PARAFAC (CP) model (cf. [3, 15]) to the core tensor (see Appendix for
the definition). This model was first rigorously analysed in [20].

Numerical treatment of multi-dimensional operators/functions including tensor-tensor
operations is usually limited by insufficient computational resources for the required com-
putations. As a natural remedy, tensor-product representation provides the performance of
standard tensor operations with asymptotically optimal complexity.

In Section 2 we estimate the complexity of tensor-product implementations of the inner,
outer and contracted products as well as the Hadamard and convolution products of d-th
order tensors. Then we discuss three versions of the orthogonal alternating least-squares
algorithm (OALSA) to compute the best rank-(rq,...,ry) Tucker decomposition. The first
one addresses decomposing the full-format tensor into the Tucker format (OALSA(F — Ty)),
see [5] for a detailed description of the algorithm. The second one works with the input data
presented as canonical components in the CP model (OALSA(Cr — 7)) while the third
algorithm applies to the input data presented in the Tucker format (OALSA(7gr — 7))
The latter can be interpreted as rank reduction methods in the CP and Tucker models,
respectively. We introduce the novel mixed CP-Tucker model which allows the stabilisation
of the alternating least-squares iteration in the case of “ill-conditioned” target tensors (cf.
§2.4.3).

Lemma 2.3 proves the super-convergence property of the Tucker model with respect to the
Frobenius norm. To optimise the numerical operator calculus, we discuss different strategies
to “compress” the core tensor in the Tucker model:

(A) Best N-term approximation of the core tensor via element-wise truncation;
(B) The CP decomposition of the core tensor (cf. the two-level Tucker model [18] and
dimensionality reduction in [6]).

Lemma 2.4 shows that the CP decomposition of a tensor represented in the Tucker
format can be reduced to the CP approximation of the corresponding “small size” core
tensor. Corollary 2.5 describes an optimisation method for rank-reduction in the CP model.

In Section 3, the Tucker model is applied to classical potentials. We give a number of
numerical examples illustrating efficiency of the orthogonal rank-(rq, ...,74) decomposition
via OALSA applied to a class of tensors related to the Newton, Yukawa and Helmholtz
potentials. Furthermore, we discuss the numerical Tucker decomposition of certain tensors



related to the Hartree-Fock equation. Main observations from our numerics are the following:

Exponential convergence of OALSA in the Tucker rank r = max 7y (cf. (2.13)).

- Quadratic convergence for the relative energy (cf. Lemma 2.4).
- Robust convergence of ALS iteration applied to the classical potentials.

Efficient tensor operations in the Tucker/CP formats leading to asymptotically optimal
multi-linear algebra (MLA), see §2.3.

In the Appendix we present auxiliary results describing the Lagrange equation for the dual
maximisation problem, define the canonical decomposition and discuss quadratic convergence
for the eigenvalues in the familiar Rayleigh quotient approximation (linear algebra analogue
to Lemma 2.4).

2 Orthogonal Rank-(rq,...,7;) Tucker Decomposition

2.1 Preliminaries

We consider the linear space of real-valued d-th order tensors A = [a;, ;,] € RZ, defined on
the product index set Z = I; X ... x I;,. We make use of the Frobenius (L?*-energy) norm

IIA]| := \/(A, A) induced by the inner product

<A, B) - Z “il...idbil...id with A, B € RI. (21)

(i],...,’id)EI

It corresponds to the Euclidean norm of a vector.
In the following the notation “x,” means the outer product of vectors which form the
canonical (rank-1) tensor

U={uliez=b-UV x5 .. x,UD eRY, bheR,
defined by the entries

Wiy iy =b- uV ! with UO = {ugf)}ifg[ € R, (2.2)

i] 1q

[P

There is an alternative commonly used notation “o” for the outer product of vectors.
Given A € R%, the rank-(ry,...,r4) Tucker model deals with the approximation over a
sum of the rank-1 tensors

T1

g
A(r) = Z Z bkl---kdvlg(ll) X9 ... Xg Vk(:) ~ A, (23)

k=1  ky=1

where the canonical factors Vk(f) eR" (ky=1,...,ry,, £ =1,...,d) are (real-valued) vectors of
the respective size ny = |I;|, r = (r1,...,74) (the Tucker rank) and by, ;, € R (cf. Fig. 2.1

visualising (2.3) for d = 3). We further assume that the vectors {Vk(:)} are orthonormal, i.e.,
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Figure 2.1: Visualisation of the Tucker model for a third-order tensor.

<Vk(f),V,££)> = Sk kg =1, 0= 1, ...,d, (2.4)
where 0y, ,,, is Kronecker’s delta (i.e., V() = [VI(Z)VQ(K)...VT(IO] is an orthogonal matrix,
vO'VO = Tfor 0 =1, .., d). In the following, we denote the set of tensors parametrised by

(2.3), (2.4) by T (nx) (shortly T;). For Ay € T, we use the conventional concise notation
A(r) =B X1 V(l) X9 V(2) Xd V(d) (25)

with the canonical components V¥ € R/e*" and with the core tensor B = {b} € R *->"d,

The so-called CANDECOMP/PARAFAC (CP) decomposition is a particular case of
the Tucker model (2.3) corresponding to the choice r = r, (¢ = 1,...,d), where the only
superdiagonal of B contains nonzero elements (see Appendix). We denote by Cn ) (shortly
C.) the corresponding set of the dth order tensors. Notice that each tensor in 7, can be
interpreted (highly redundant representation) as an element in C, with ' = ry - - -1y, ie.
we have

T.CC,.

In some applications (say, in numerical calculus of multi-dimensional operators) both the
Tucker and CP models can be combined gainfully (cf. the two-level Tucker model in [18]
and a dimensionality reduction approach in calculation of the CP model [6]). Hence, in the
following, we also discuss the two-level Tucker model T (5, 4), Which contains all elements
A € T (nr) such that for the corresponding core tensor we have B € C(, 4. Clearly, we have

T nra C Crng)-

Without loss of generality we can assume that ¢ < |r| := max g (see the discussion in §2.3).

Remark 2.1 Let r = ry, n =mny (. = 1,...,d). Then the Tucker model requires only drn

numbers to represent the canonical components plus r® memory units for the core tensor.
d d

In general, the memory consumption is Z Teng + H ry. Compared with the canonical repre-
=1 =1

sentation in Ky, the Tucker model requires an extra memory r® —r (our numerical results
indicate that an additional cost to save the core tensor pays off here in full).
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On the other hand, the two-level Tucker model T nr q) has the reduced memory consump-
tion dr(n + q) since, in general, drq < 1, providing a good basis for various tensor-tensor
operations (see §2.2).

2.2 Tensorisation of Basic MLA Operations

For the sake of clarity (and without loss of generality) in this section we consider the case
r=ry,n=ng (¢ =1,..,d). If there is no confusion, we can skip the index n. We denote by A/
the complexity of various tensor operations (say, M>) or the related memory requirements
(say, Nmem(s))- We distinguish the following standard tensor-product operations: the inner
product, the outer and the contracted products (cf. [1]) as well as the so-called Hadamard
(component-wise) product.

To estimate the complexity of numerical decomposition in 7. and related computations,

we take more close look on the standard MLA operations in the Tucker format':

(I) Memory demands;

(IT) Frobenius and generalised L*-inner product;

(ITI) Various tensor-times-tensor product operations including the Hadamard product;
(IV) Convolution of tensors.

Usually, the numerical Tucker decomposition leads to the fully populated core tensor, i.e.,
it is represented by r? nonzero elements. However, in some cases a special data structure
can be imposed (cf. [18]) which reduces the complexity of the corresponding MLA. In this
discussion we assume one of the following situations:

(A) B is sparsely populated, more precisely, it has only Nmem(g) < 7% nonzero elements.
Furthermore, we denote by S(B) a sparsity pattern of B, such that #(S(B)) = Npem(s);
(B) B has zero off-diagonal elements (i.e., r = (r,...,7), A € C, and Nyem(n) = 1);

(C) B is represented in the canonical format, B € C, (two-level Tucker model Ty q)).

2.2.1 Memory Requirements

In the case (A), the Tucker model requires drn + Nem(s memory to represent a tensor,
where Nmem([;) < r% In turn, the CP model includes the reduced number of parameters
drn + r (case(B)). The difference Nppems) — r < % — r is negligible if d is not large (cf.
Remark 2.1). In the case (C), the memory demands are dr(n + q).

2.2.2 [L%- and Generalised L2-Inner Product

For given tensors A; € Ty, Ay € T, represented in the form (2.5), i.e.,
A1:B><1 U(l) X9 U(2) Xd U(d), AQZC X1 V(l) X9 V(Q) ><d\/—(d)7 (26)

the L?-inner product (2.1) can be computed by

rp

ro d
<A1; A2> = Z Z bk1...kdcm1...md H <U]£j)7 Vn(f;)> . (27)

k=1 m=1 (=1

!Complexity analysis of MLA in the CP model can be viewed as the particular case, corresponding to
the class of tensors in T, with r = (r,...,r) and with zero off-diagonal terms in the core tensor.



We further simplify and suppose r; = ry. Then calculation in (2.7) includes dr(r + 1)/2
inner products of vectors of size n (due to the symmetry argument) plus 2#8(A;) - #8(A3)
multiplications, leading to the overall complexity

Ny = 0an™ 3D opsiay) - #5(4),

and the same for the Frobenius norm. In the case (C) the inner product can be computed
in Cq® + dr’n + dg*r operations (cf. [18], Lemma 2.8).

Let A : R” — R” be a matrix having Kronecker-product form: A = A @ ... ® A ¢
RZ*T (rank-1 tensor of order d) with A() € R**®. Then the generalised inner product

rp

ro d
(AALA) =373 by tyemm, [ (AOT) V) (2.8

k=1 m=1 (=1

has the same computational cost as above, where n is substituted by the cost of the low-
dimensional matrix-vector product in R". For example, if the components A € R"*" have
‘H-matrix (resp. Toeplitz) structure or they inherit the wavelet-based sparsity pattern, then
we have

Ny = O(dT(T%l)nlogq n+2#S(A1) - #S(Ay)).

2.2.3 Outer, Contracted and Hadamard Products

For given tensors A € R™ and B € R%2, the outer product Ao B € R *22 is of size Z; x I,
with the components

(AOB)h,iQ =A; - Bi,, i1€1y, i€,

Clearly, for A;, A, € T, we are able to tensorize the outer product by

Al o) AQ = Z bk1---kdcm1mmd (U]S) 0] 75711)) X9 ... Xg (U]E;i) 0] TS{?) . (29)

1<kym,<r,£=1,....d
This leads to the memory demands
Nmem(.AoB) = O(QdTQTL + TQd)

for the naive component-wise storage. However, the implicit representation of complexity
O(2drn + r??) can be implemented if one stores only 2r components U,Ef), Vn({? for each
t=1,...d.

The contracted product of two tensors is an extension of the matrix-vector multiplication
combined with the outer product: for some portion of modes we compute the inner product
while for the remaining components we calculate the outer product with the corresponding
ordering of modes. For given tensors A € RT*7 and B € RP*M, the contracted product
along the first index Z results in a tensor Z := (A, B),, , of size J x M, given by

Z = {ij} € RJXM with Zjm = Zaijbim.
ieT



For tensors in the Tucker form we obtain

_ (1) (d) ,
<~/41; AQ)IXI - Z bk]...kdcm1...md <Uk1 7Vr£ll1)>zl T, X9 ... Xq <de ;VTSZ)

>Id XZyg
]Skfszsra =1 1"'1d

with the memory requirements
Nem((A; A)yny) = O(2dr*ngnp + r*?).

For given tensors A, B € R, the Hadamard product A ® B € R of two tensors of the same
size 7 is defined component-wise

(A@B), = A+ B;, ieT.

Hence, for A, Ay € T we tensorize the Hadamard product by

Ay © Ay = S bkl (U O VD) 50 xa (U 0 VD) (210)

1<kgme<r,£=1,....d
This leads to the memory requirements (due to the symmetry argument)

r(r+1)

Nmem(A@B) = O(d 9

n 4+ r4).

2.2.4 Multi-Dimensional Convolution Product

The multi-dimensional convolution product is one of the basic transforms in the wide range
of applications including many-particle models (e.g., see examples in §3). We consider the
discrete version of the multi-dimensional convolution transform in R? based on the Nystrém
type scheme (similar for the collocation with piecewise constant basis functions)

(f xg)(z) = g FWg(z —y)dy =~ "~ flu)glas —w), T:={1,...,n}",

ieZ

where, for the ease of presentation, the collocation points zj, y; are assumed to be located on
the same equi-distant spatial tensor-product grid of size h. The functions f, g are supposed
to have the finite support [0, R]? with R = nh.

Introducing the corresponding function generated tensors (FGTs) F = {f(z;)},G =
{g(z:)} € RY, we define their discrete convolution product by

kel

F * g = (Z fkgjk) s j = {1, ey 2n — l}d.
jeJg

For given A, Ay € T, we now tensorize the convolution product via

Avs Ay = D3 by g (U8 5 VD) 5 xa (U VD) (2.11)

k,m=1



Assuming that one-dimensional convolutions U,Ef) « V) € R™ ' can be computed in
O(nlog? n) operations, we arrive at the overall complexity estimate

B r(r+1)
N, = O(ali2

nlog?n + dn'r®?).

In our particular case of equidistant grids we obtain (by setting a = U,gf), b= Vn({? € R")

n

(U = VD) =D b gy G=1, 20— 1.
k=1

Hence, the one-dimensional convolution can be performed by FFT in O(nlogn) operations.
One-dimensional O(nlogn)-complexity convolution on non-equidistant grids is discussed in
[10]. Tt can be directly applied in (2.11).

We notice that the convolution product appears to be one of the most computationally
elaborate operations (cf. Lemma 2.3) since in general one might have #S(B;) - #S(B,) =
r2?. Significant complexity reduction is observed if one of the convolving tensors can be
represented by the CP model, where we have #S(B,)-#S(B,) = r®*!. Hence, the complexity
reduction factor is r@-1.

Below, we give numerical examples illustrating the performance of the convolution prod-
uct in the Tucker format. We use the following (rather simple) algorithm: Given the function-
generated tensors (FGTs) A, € T,,, Ay € T, with the moderate grid-size n; = ny = ... =
ng = n corresponding to the tensor-product n x ... x n grid in [0, A]? with arbitrary grid-
spacing in each spatial direction (say, adaptive grid) and with minimal grid-size h,;,. We
introduce an auxiliary equidistant grid of size N x ... x N with n < N which satifies
h:= A/N < hp, due to the approximation requirements. Let P, ,n and Py_,, be the cor-
responding 1D linear interpolation operators from the adaptive to fine grid and vice-versa,
and in each spatial direction. Then we perform the following steps:

CONV (Tyy, Try)-

Given the input tensors A; € Ty, As € To,.

Step I Using P,_,y, interpolate the canonical components to the fine grid;

Step II. Compute one-dimensional convolution products h U,Ef) * Vr%) € RN in
O(dr?N log N) operations by the FFT;

Step III: Using Py_,,, interpolate the result to the initial grid;

Step 1V: Compute the convolution product via (2.11) in O(dr?¢n?) operations.

Remark 2.2 Algorithm CONV (T, , T.,) has linear scaling in dimension d. However,
in the case of strong mesh refinement the auzxiliary dimension N may be large enough (say,
N > 10), hence the complexity of Step II, O(dr>Nlog N), might be the bottleneck of our
numerical scheme. For such situations, based on the ideas in [10], one can use the special
modification of the convolution of complexity O(nlog?n) that applies to composite refined
grids. The corresponding numerical results will be presented elsewhere.

First, we demonstrate the reduction factor 7' between the computational times t;
and top, corresponding to the cases of Tucker-Tucker and CP-Tucker convolving tensors,



respectively. In particular, the next table represents the ratios top/tor(2) and top/tor(2)
(scaled time) for different values of the Tucker rank r = 2,3, ..., 6, but with fixed parameters
n = 32,64 and N = 320, 640, respectively. Here tor(2) referes to the computational time-
unit for the CT-type convolution with r = 2 and with n = 32.

| r 2 [ 3 ] 4 [ 5 [ 6 | 7 | 8 | 9 [ 10 |
n=32[ 1 | 467 | 741 | 1578 | 30.00 | 52.22 | 85.19 [ 131.48 | 194.81
n==64| 6932222 57.41 |122.96 | 234.44 | 410.37 | 668.17 - -

| TT |n=232352[2519|11519[39222[108.19] - | - | - [ - |

cT

Note that the computational time in the full format is about 77 = 0.02,7; = 1.11,7T3 =
68.4 for n = 16, 32,64, respectively, all presented in computational time-unit tcr(10) with
n = 32 (the asymptotical complexity estimate is O(8n®)).

The second table represents the scaled computational time ¢y /ter(1) for fixed r = 5 and
fixed n = 32,64 but for different values of N = 2Pn (p = 1,2, ...,8). Here top(1) corresponds
to the computational time for p = 1, n = 32.

L p» [ 1 ]2 [3[4]5][6 ] 7 [38 |
n=232] 1 | 1 | 1 | 1 |113] 1.85 | 450 | 15.46
W =64 713|713 | 7.20 | 7.17 | 8.07 | 1087 | 21.70| -

cT

These data indicate that FF'T on the equi-distant fine grid has negligible cost com-
pared with computing the sum (2.11), at least in the parameter domain N < 4096. Hence,
Algorithm CONYV (T,,, T,) can be applied successfully in the case of moderate mesh-
refinement such that N < 10%.

2.2.5 Resumé of the Complexity of MLA in the Tucker Model

The next Lemma collects all the previous results but now presented in the general case of a
fixed sparsity pattern of the target core tensors.

Lemma 2.3 (complezity of MLA in the Tucker model). For given tensors Ay, Ay € T with
fized sparsity patterns of the core tensors S(By), S(Bs), respectively, we have

(I) Memory requirements Nyema,) = dnr + #(S(B1)).

(I1) Complexity of L*-inner product

1
MA1,A2> = 5(177,7"(7“ + 1) + 2#8(61) : #8(82),

and the same for the Frobenius norm.
(I11) Memory requirements for the outer and Hadamard products are given by

Nmem(AloAz) = 2dr’n + #8(81) ’ #8(62)’

1
Nmem(.Al(DAz) = idT(T + 1)’/7, + #S(Bl) : #8(82))7



respectively. Complexity estimates for these operations have similar bounds.

‘ ‘ ‘ . ‘ ‘ _
(IV ) Assuming that one-dimensional convolution products U,gz) * VTSW) € R*"! can be com-
puted in O(nlog?n) operations, we obtain the complexity bound

1
Naysn, = Edr(r + 1)nlog?n + dn#S(B,) - #S(B,).

Complexity of the convolution product in the full format is estimated by O(n*?).

Proof. The proof is elementary and it goes along the line of the previous discussion. [

2.3 Some Properties of the Orthogonal Tucker Decomposition

The numerical Tucker approximation of d-th order tensors is one of the most practically
important MLA operation. This operation is, in fact, the higher order extension of the best
rank-r approximation in the linear algebra (in particular, of the truncated SVD).

Given Ay € R >**1a_its Tucker approximation can be derived by straightforward min-
imisation of the quadratic cost functional

f(A) = | A — Ag||* — min (2.12)

over all rank-r tensors A € T, which will be parametrised as in (2.3) and with the con-
straints

vOev =V, (t=1,.,d),

where V,,, .= {V € R"™" : Y'Y =T € R"™*"} is the so-called Stiefel manifold. The Appendix
discusses the existence of local minima in (2.12) and describes the Lagrange equations for
the corresponding dual problem (cf. Lemma 4.2). In general, the starting value in the
minimisation process for solving (2.12) can be computed using the so-called higher-order
SVD [4].

For a wide class of FGTs, the quality of approximation via minimisation (2.12) can
be effectively controlled by the Tucker rank. In particular, for certain analytic generating
functions we are able to prove the exponential convergence (cf. [11, 18]),

|Aw) — Aol < Ce™™ with r = maxry. (2.13)

As a consequence, the approximation error € > 0 can be achieved with r = O(|loge]).

The following LLemma proves that the relative energy error of the Tucker decomposition
Ay is estimated by the square of the relative energy norm of Ay — Ay. This result is a
reminiscence of the error bound for the Rayleigh quotient approximation to the symmetric
eigen-value problem in linear algebra (cf. (4.9) in Appendix).

Lemma 2.4 (super-convergence in energy). Let Ay € ROVl solye the minimisation
problem (2.12) over A € T . Then we have the ”quadratic” relative error bound

Mol = A _ [ = Adll®

2.14
Al S Al (2.14)

10



Proof. First part of the proof is given for the completeness (cf. [4] for a short exposition).
Letting Ay = B x4 VI %, VO x, V@ we easily obtain the identity

[ Al = 1Bl (2.15)

since orthogonal components VW € V), do not effect the Frobenius norm. Furthermore, with
fixed VI (¢ =1, ..., d), relation (2.12) is merely a linear least-square problem with respect
to B,

(Ao, Ao) — 2(A0, B x1 VI x5 .. x g VD) 4+ (B, B) — min,

hence the corresponding Lagrange equation takes the form
_<A0,6B X1 v X9 ... Xy V(d)> + <B, (SB> =0 V 0Be R *XTa

which implies
B—Ayx; VO %, x, V@I —q. (2.16)

Next we readily obtain
FOAD) = [P = 2(B 31 VI o xg VO, Ag) 4[| A2

= AP+ [ Aoll? — 2B, Ag 1 VIO ey L VO

= | A|I* = 18I,
hence it follows that (compare with 4.10)

[ Aol* = [[A]* = [l Ar — Ao]”.
The latter leads to the final estimate (clearly || Ayl > [|A:]|)
Mol =[N _ [l A= Aoll® A = Aof”

[ Aol (Al + A DI Aol = [[Aolf?

[ ]

Numerical efficiency of standard tensor operations described above depends on the data-

sparsity of the core tensor. The next lemma presents a simple but useful characterisation

of the two-level Tucker model (cf. [18]) which allows to approximate the elements in T, via

the CP decomposition applied to the small sized core tensor (cf. dimensionality reduction
in [6]).

Lemma 2.5 (two-level Tucker-to-CP approzimation). Let the target tensor Ay € T (ar)
in the minimisation problem (4.6) have the form Ay = By x1 VU xo V@ x; V@ with
components VO € RI*7e in the Stiefel manifold, and with the core tensor By € R *+*Ta,
Then, for a given q < |r|,

min ||A — A|> = min [|B— By|*. (2.17)

AeCay) Bel (v,

Moreover, the optimal rank-¢ CP approzimation A € Cmg of Ao (if existing) and the
optimal rank-q CP approzimation By € C(vq) of By are related by

Ay = By x1 VD %, VO L VO, (2.18)

11



Proof. Notice that the canonical components Y of any test element
q
A:Z)\k X1 Yk(l) X9 ... Xg Yk(d) (219)
in the left-hand side of (2.17) can be chosen in span{V®} (¢ =1,....d), i.e.,

Ty
O SUN, h =t =1 o0
=1

Indeed, assuming

T¢

we conclude that E does not effect the cost function in (2.17) because of the orthogonality

of V(. Hence, setting E,g) = 0, and substituting (2.20) into (2.19), we arrive at the desired
Tucker decomposition A = B x; VI x, V@ x, V(@ with the respective core tensor

q
B = Zbk X1 UIE]) X9 ... Xg U]Ed) S C(r’q),
where by, = X\, U, ' = { 1y, m/}mf | € R, obtained from
q
- Z)\k 1 VY %o o xq VI

Td
- Z)\k X1 Z M’C M1 ml X2 o Xd ( Z Ml(c(?nd‘/;v(li))

mi1=1 mg=1
_ Z Z {Z)\ H“km} x1 V) %o xg Vn(%‘fl).
mi=1 mg=1 k=1 =

Now the relation (2.17) follows since the ¢-mode multiplication with orthogonal compo-
nents V) does not change the cost function. Similar arguments justify (2.18). ]

Lemma 2.5 suggests a two-level dimensionality reduction approach that leads to a better
data structure compared with the standard Tucker model. Though Ay € C(nq) can be
represented in the CP format, its efficient storage depends on the representation of the
canonical components V. In fact, if V() are obtained via the Tucker decomposition, it is
better to store A, in the CP format of the complexity rdn (adaptive two-level model [18]).
However, if V) are represented in a fixed basis (say, sinc- or a wavelet basis) then one can
store the core tensor only in the CP format, which leads to substantial memory reduction
to gdr (no dependency on the data-size n).

The next statement is a direct consequence of the previous lemma.
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Corollary 2.6 (two-level CP-to-CP approzimation). Let the target tensor Ay € C(nr) with
r = (r,...,r) in the minimisation problem (4.6) have the canonical form Ay = Dy x1 UM x,
U®?... x4 U with normalised components UY € R™" (we ignore the orthogonality re-
quirements), and with the superdiagonal core tensor Dy € R™*". Introduce the equivalent
representation Ay = By x1 VI xo V@ 5, V@ with components VO € R**" in the Stiefel
manifold (say, computed by the QR-decomposition of each component U® ).

Then, for a given q <,

min ||A — A|> = min [|B— By|*. (2.21)
AeC i g Beb g

Moreover, the optimal rank-¢ CP approzimation A € Cmg of Ao (if existing) and the
optimal rank-q CP approzimation By € C(q) of the core tensor By are related by (2.18).

Corollary 2.6 indicates that the rank reduction in the CP model can be performed via
the CP approximation of a “small size” core tensor arising from the component-wise orthog-
onalisation in the target data-array (the complexity bound is O(dr?n)).

2.4 Numerical Algorithms

There is a number of algorithms in the literature to compute the CP and the Tucker models
(see, e.g., [5, 6, 23, 1]). Based on Lemmata 4.1, 4.2 a rank-(rq, ..., r4) approximation can be
calculated by the Newton-type methods.

2.4.1 General Input Data

Our current MATLAB implementation of the orthogonal ALS algorithm (OALSA) in the
general case of full-format input tensors is based on the method described in [5] (see also
implementation in [1]). It contains the following steps.

OALSA (F = T.).

Given the input tensor Ay € R™ **" and a rank-parameter r = (ry,...,r4) € N

Step I Compute the initial guess for canonical components.

Step II: For each (m = 1,...,d) the ALS iteration optimises the canonical component
V(™) while the other matrix-components are kept constant (equivalent to solving the
equation number m in the system (4.3) (resp. (4.4)).

Termination criterion: fixed number of iterations or control the current increment.

Step III: Compute the core tensor via convolution (2.16).

Steps II and III are standard, while the method of choice in step I depends on the par-
ticular application. We distinguish three particular versions of OALSA (F — T,) adapted
to different classes of input tensors:

(F) full-format F (initial guess: truncated higher-order SVD (cf. [5]), approximation with
smaller Tucker rank or multi-way ACA algorithm as proposed in [22]);

(C) type Cg with some R > |r| (may correspond to an analytic approximation via sinc-
quadratures or exponential fitting). Initial guess: ) R-decomposition with truncated higher-
order SVD;
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(T) type Tr (may correspond to an analytic approximation via tensor-product interpola-
tion).

Initial guess: QQR-decomposition with truncated higher-order SVD, or approximation with
smaller Tucker rank accomplished with best rank-1 approximation to the initial increment;

2.4.2 Canonical-to-Tucker and Tucker-to-Tucker Decompositions

The efficient implementation in the cases (C) and (T) is based on MLA performed in special
tensor formats described above. In fact, if the initial guess has data-type Tgr or Cp with
moderate |R|, then truncated higher-order SVD can be performed with lower cost compared
with the case of full-format input data as in the case (F). Hence, we specify the corresponding
versions of the general algorithm: OALSA(Cr — T,) and OALSA(Tgr — T:).

To perform the truncated higher-order SVD in Step I of OALSA (Cr — T ), we notice
that for each ¢ = 1,...,d the “matrix unfolding” A to the input-tensor A, of dimension
IpxTpy x...oxIgx...x Iy x..x1I, 1, can be represented as a rank-R matrix. For example,
for / =1, we have

A(]) = [(](]) ) ] — [a‘ilig...id] c R™ X(nzmnd)‘

21 (ZQ...ld)

We introduce the ”"single hole” product and related dimension parameter n,
—0 1 -1 041 d
V]E ) :Vk() X9 oo Xy ‘/;c( ) X P41 Vk(+) Xd Vk( ), Ng =M1 "Ny 1Nypy1 - Ny, (222)

and represent the rank-R matrix unfolding in the form Ay, = A,Bf with 4, € R"*¥,
B, € R"*® given by
A, =VUD with D =diag{bs, ..., bz} (2.23)

and with
By =V 9. v, (2.24)

where Vk(J) is the vector unfolding to V,Efl). Then the algorithm reads as follows.

OALSA (Cp — T+)

Given the input tensor Ay € Cg in the form (4.5).

Step I: For each ¢ =1, ..., d perform

1. QR-decomposition of A, and B, (cf. (2.23) and (2.24), respectively) in the form,
A= QURO. B, = QURY

2. SVD of a matrix Sy = RORY" € RF*R in the form S, = W,D,Vi;

3. Truncation of S, to rank r, matrix W, D,V, W1th W, € REx7e.

4. Compute the canonical (‘omponentq U Q Wg

Starting with initial values U, ¢ =1, ..., d, proceed with Steps IT and III as in the general
version of OALSA.

Efficient implementation of Step I in OALSA (Tr — T.) is based on the observation
that for each ¢ = 1,...,d the “matrix unfolding” A to Ay € Tr, can be represented as
a rank-R, matrix. In fact, it is a direct consequence of representation (2.3). Step I of the
corresponding algorithm then can be designed similar to those in OALSA (Cr — 7). The
resulting algorithm reads as follows.
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OALSA (Tr — T=)
Given the input tensor A, € Tg in the form (2.3).

Step I. For each ¢ =1, ...,d compute
1. Components A, and By in representation Ay = AgB, , and perform
2. QR-decomposition of A, and By in the form, A, = QA A , By = QB

R ‘)Rg) € Rf¥*% in the form S, = W,D,V,;
RRXT‘(:

3. SVD of the matrix S, =
4. Truncation of Sy to a rank r, matrix W/D,V/ Wlth Wp

5. Compute the canonical components u® Q W,
Starting with initial values U, ¢ =1, ..., d, proceed with Steps IT and III as in the general

version of OALSA.

2.4.3 Combination of the Tucker and CP Formats

In some quantum chemistry applications the target tensor may contain canonical components
having different scales of amplitudes and decay rates. In this case we can observe nonstable
convergence of the ALS iteration, likely, due to large variation in elements of the core tensor.

Similar to the matrix case, we call this phenomenon as ill-conditioning of a tensor.
In such cases, to stabilize the convergence of the ALS iteration (without destroying the

approximation power), we introduce the mized model denoted by M ¢y, 7r,). We say that

A€ M((jrhTr2) if
A= .A] +A2 with .A] € Crl, ./42 € Trz-

We assume that the dominating component in A can be well approximated via the CP model
A; € C,,, while the residual (which is better conditioned) can be further approximated in the
Tucker format, A; € T,. To approximate the given tensor A by the M ¢y, 7r,) model, we

combined CT decomposition , AR=10, n = 65

Tucker decomposition, AR=10, n = 65

error

I
1
1
'
1
S 10° !
= ]
o) v, 1
N,
10° * :
Vo [ :
B = < ' ——Epy ¥
107 v
— Ern N ' -v-Eee —“\z 4
-v-Fee ®. : E Vo
10 o Ec Ve b et \
n ! i i i L Ve o n n i i i i ; -
2 4 6 8 10 12 ] 16 2 4 6 8 10 12 14 16 18
Tucker rank Tucker rank

Figure 2.2: Convergence history for the Tucker (left) and mixed CT (right) approximations
for the tri-Slater potential (2.25).

M1 X...XNg
€ R ,

apply the following iterative (heuristic) algorithm: Given the input tensor Aj

1. Compute its CP approximation Cj in C,,;
2. Compute the Tucker decomposition 7y of Ay — Cy with Ty € T3
3. If || Ag — Co — Tol| < 401 then stop, otherwise go to Step 1 with Ay substituted by Ay — 7.
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We give numerical example for the mixed tri-linear approximation of the FG'T corre-
sponding to
g(z) = Cre~lel 4 Cyeazli=azl | Oyemanlo—asl (2.25)

in R* with 0 < Cy,C5 < C4, 0 < a9, a3 < ;. This function has similar features with the
case of HyO-molecule. For this example, the first component can be well approximated via
the rank-1 tensor, hence we use A; € C;.

Figure 2.2 corresponds to the choice Cy = 150, Cy = 30, C5 = 20, oy = 5000, a0 = a3 = 1
and zo = (AR/6,0, AR/5); 23 = (AR/6,0, —AR/5). Pictures illustrate a stable exponential
convergence in the Tucker rank for the mixed CT model, which allows to achieve a given
accuracy up to the machine precision.

3 Application to Classical Potentials

Here we discuss the Tucker decomposition of 3D tensors arising as discretization of classical
potentials. Let Hd € R? be a uniform or adaptively refined tensor-product grid indexed by
I, x ... x I;. For a given function ¢ : Q — R, with Q C R? and with Hd € (), we introduce
the collocation-type function-generated tensor (FGT) of order d by
Ao = A(g) = |ai,..q,) € RV with a4 = g(x(l), . ,x(d)),

where (xl(ll), o ,:cl(;i)) € Hd € R? are grid collocation points. We are interested in the validity
and the rank-dependence of the above tensor decomposition algorithms for approximating
the 3D FGT generated by the Newton potential, Slater-type functions, the Yukawa and the
Helmholtz potentials.

The initial tensor Ay is decomposed by the Tucker model of the rank r = (r,...,r),
where the rank-parameter r increases from r = 1, 2, ... to some predefined value. Canonical
components and the core tensor of the size r x r x r are then used for the reconstruction of
the approximating tensor Ay ~ Aq, which is used for estimating approximation properties

of the tensor decomposition with the given rank. For every rank r Tucker decomposition,
we compute the relative energy-norm (Frobenius norm) as in (2.1)

|40 — Al
EFN = T a0
|| Aol
the relative Ls-energy
[ Aoll — I Al
EFE = ’
|| Aol

as well as the maximum (Chebyshev) norm

maX;ecz |a0,7: — Oy

EC =

maX;ez |a'0,z'|
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3.1 Newton Potential

We apply the Tucker decomposition algorithm with r = (r,...,r) for approximating the

Newton potential
1

r)=—, z€R
9(x) o TER
in the cube [0, AR]* (AR = 10) on the cell-centred uniform grid with n = 64. Here and in
the following |z| denotes the Euclidean norm of x € R?. Figure 3.1 shows the convergence
of the relative energy- and Chebyshev norms as well as of the relative energy with respect
to the Tucker rank up to » = 12. The canonical components U,El) are given for k =1,...,6.
It is clearly seen the exponential convergence in the Tucker rank r.

Newton potential, AR=10, n = 64

Canonical components L=1 r=12

0.8

0.6k Newton potential, AR=10, n = 64
0.4*\
0.2t k\.\ ]
—
NS

O,
——Ery Yoo -0.2}
-v-Ere AN
- \A -0.4y
107 o E¢ <
‘ ‘ ‘ ‘ v 06 L
2 4 6 8 10 12 0O 10 20 30 40 50 60
Tucker rank grid points
. . . 1
Figure 3.1: Convergence history (left) and the canonical components U,g ), k=1,...,6,

(right) for the Tucker approximation to the Newton potential.

The particular Eq-error distribution is represented in Figure (3.2).

Initial Newton potential, z=1 Reconstrruction error for the Newton potentia, z=1

Figure 3.2: A plane section of the 3D Newton potential on the level 2z = 33: The initial
function (left), the Ec-error for the same z-coordinate level with » = 12 (right).
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3.2 Functions Related to the Hartree-Fock Equation

The Hartree-Fock equation for the N-electrons density function reads as the system of non-
linear eigenvalue problems

Foi(z) = N\ ¢pi(z), for i=1,..,N/2 (3.1)

with z € R3. Here the solution-dependent Fock operator is defined by

Folw) = —5A0(a) — Vila) 9la) + (T9) (a) + (K9) (¢), @ € R,

where with the given density matrix p(z,y), the Hartree and exchange potentials are defined

by
70) () = [ 29:9) 40), (Ke) (a) = — [y 2 y) o,

|z — y| 2 T e -y

K
correspondingly. Furthermore, the nuclei potential is given by V.(z) = ‘wf—“R‘, where R,
a=1 “

and Z, describe the positions and charges of nuclei, respectively. With given eigen-functions
¢, the density matriz is defined by the corresponding spectral projection

N/2

plz,y) = 22 i (2)9i(y)

with exponential decay p(x,y) ~ exp(—A|z — y|) for nonmetallic systems. The problem
consists of a tensor-product representation of the density functions p(z,y) and p(x,z) as
well as of the Hartree and exchange potentials involved. Along with the Newton potential
discussed above, in the following we consider some simple examples of the density function.
Notice that computation of the Hartree potential can be performed via direct evaluation of
the convolution product between the Newton potential and density p(z, ) represented in the
Tucker format (cf. §2.2.4). In this case the Newton potential is supposed to be approximated
by the CP model (see [12],[18] for more details).

Slater potential, AR=10, n = 64 Canonical components L=1 r=12
0.5

Slater potential, AR=10, n = 64

error

-
|

E /
107 - v-Bee S }

o Eg

2 4 6 8 10 12 0 10 20 30 40 50 60

Tucker rank grid points
Figure 3.3: Convergence history and canonical components for the Slater potential.
The Slater function given by

g(x) = exp(—alz|) with 2= (2,29, 23)" € R?
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presents the electron “orbital” (o = 1) and the electron density function (o = 2) correspond-
ing to the Hydrogen atom. In this case g(x) satisfies the one-particle Hartree-Fock equation
which takes the form

SAG(r) ;as(m) _ (), TER, de H'(R).

We apply the orthogonal Tucker decomposition to the FGT defined on the grid H3 with
AR = 10. Figure 3.4 presents the slices of the 9 x 9 x 9 3D core tensor, where the numbers
indicate the maximum values at the given slice of B. Figure shows that the energy of the
decomposed function is concentrated in several upper slices of the core tensor. It exposes
the potential data compression abilities of the Tucker approximation due to the sparsity of
thresholded B. However, our numerical experiments show that the dominating entries in B
are compactly concentrated in its “upper left corner” which indicates that the core tensor
truncation may have, in fact, the similar effect as just a decomposition with a smaller Tucker
rank.

Slater potential, AR=10, n = 64

Figure 3.4: Slices of the 9 x 9 x 9 core tensor for the Tucker approximation of the Slater
potential. Numbers indicate maximum values in B for the given slice.

Since the Hartree-Fock equation contains the product ﬁ¢(r) with ¢(z) = e 1#l (the
so-called Yukawa potential) it is interesting to compute the tensor decomposition of the
Hadamard product of the discrete Newton and Slater potentials. The convergence results for
the Tucker approximation are presented in Fig. 3.8. Next, we consider a radially-symmetric
potential generated by the modified erf-function given by

o) )

1] with 2 = (z1, 29, 73)" € R,
x
which frequently arises in quantum chemistry computations. Here we define

erf(2) ::/ e #dt, 2> 0.
0
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erf-function potential, AR=10, n = 64

0
10° gz
¥. =z -~
‘V\\ """ ~
-5 "W oy
10 . \\ . -, < 4
. Ve > 1
e h
s AN
<
" v
-10 '~
10 r ~
——Epy A
E A
-v-"FE .
E
=0-C \\

Tucker rank

erf(z)
ERE

Figure 3.5: Approximation error for the function

Behaviour of the approximation errors for the 3D Tucker decomposition of erf-function is
shown in Figure 3.5. Computations were performed on the n x n x n grid with n = 64, for
the interval AR = 10. Rank-r approximation exhibits a good convergence rate already for
the Tucker rank r = 8, the corresponding Frobenius norm error is of the order 106.

Slater-multi potential, AR=10, n = 32

——E(FN)
-v-E(FE)

error
]
’

Tucker rank

Figure 3.6: A slice nxnx2 of a 3D multi-centred Slater potential (left) and the corresponding
approximation error vs. the Tucker rank (right).

Finally, we analyse the “multi-centred Slater potential“ obtained by displacing a single
Slater potential with respect to the m x m x m spatial grid of size H > 0 with randomly
perturbed centres,

_ Xm: Xm: zm: efa\/(ml72'H)2+(I2*_7'H)2+(5L‘3*kﬂ)2_

i=1 j=1 k=1

Figure 3.6 shows the multi-centered Slater potential for m = 4, H = 3, o = 2 approximated
in the cube [0, AR]* with AR = 10 on the n x n x n grid with n = 64, the surface level
corresponds to z = 2.
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Slater-Mult-Rand 1% , AR=10, n = 64 Slater-Mult-Rand 0.1% , AR=10, n = 64

Slater-Mult-Rand 0.01% , AR=10, n = 64

10° E E|

B relative energy—norm
1072k relative-energy-nornj S

relative energy

relative energy—norm

error
error

relative enel

relative energy

3 35 4 1 2 5 6 1 2 4
Tucker rank

25 3 4
Tucker rank Tucker rank

Figure 3.7: Convergence history for the multi-centred randomly perturbed Slater potential.

3.3 Yukawa and Helmholtz Potentials

In the next example, we consider a trilinear Tucker decomposition of the third-order function-
related tensor generated by the Yukawa potential
ei‘lr‘

g(x) = —— with = (21,29, 25)" € R,
T

We consider the FGT with cell-centred collocation points with respect to the n x n x n-grid
over [0, AR]® with AR = 10. Figure 3.8 shows the convergence history and the canonical

o Yukawa potential, AR=10, n = 64 Canonical components L=1 r=12
0.6
0.4} Yukawa potential, AR=10, n = 64
0.2

%\\

f A
‘ /k\/

error

-0.2
—— EFN N % -0.41
N
107 | -v-Eee ‘v — _0.6t
E N :

-0- E¢ *® .

: : : : : -0.8 ‘ ‘ ‘ ‘ : :

2 4 6 8 10 12 0 10 20 30 40 50 60

Tucker rank grid points

Figure 3.8: Convergence history for the Tucker approximation of the Yukawa potential and
example of the canonical components.

components for the Tucker decomposition of the Yukawa potential given on uniform grids
with n = 32,64, 128, and with the core tensor of size 6 x 6 x 6. These components represent
the “optimal” adaptive basis which has a tendency to reproduce shapes similar to the Sinc-
functions. In almost all cases the ALS method requires not more than 5 iterations indicating
robust convergence in the considered applications.

Computations for the Helmholtz function given by

g(z) =

provide the results from Fig. 3.9.

COS |T

= with 2 = (z1, 19, 23)" € R?
x

21



Helmholz potential, AR=6.2832, n = 64

Canonical components L=3 r=12
10 : o, T 0.6 T T T T T

0.41 Helmholz potential, AR=2*m, n = 64

10 -
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Figure 3.9: Convergence history (left) and canonical components Uy, k = 1,...,6, (right)
for the Tucker approximation of the Helmholtz potential.

4 Appendix

4.1 Lagrange Equation for the Dual Maximisation Problem

For given components V(¥ = [V'](E)VQ(Z)...‘/}(P], we define the “single hole” tensor
BC™ — Ay x, VIO %, vt X1 vt y@!

and let BO™) ¢ R*»*™m he the corresponding matrix representation, where 7, is defined in
(2.22). The following lemma reduces the minimisation of the original quadratic functional to
the dual maximisation problem thus eliminating the core tensor B from the solution process.

Lemma 4.1 ([5]) For given Ay € R">*Ta the minimisation problem (2.12) on T, is
equivalent to the dual mazximisation problem

2
g(VO, V@) = HAO <, VO 5y %, V(d)TH — mazx (4.1)

over a set VO € RIeXe from the Stiefel manifold, i.e., VO € V, (( = 1,...,d). For given
matrices VU™ (m =1,...,d), the tensor B minimising (2.12) is represented by

B = ./40 X1 V(])T X9 ... Xg V(d)T € R X --xrd, (42)

The following lemma provides the explicit Lagrange equations for the dual maximisation
problem.

Lemma 4.2 ([18]) The problem (4.1) has at least one global mazimum. At each extremal
point the corresponding Lagrange equations read as

)T )"

2(1 — VmymTy . gm . gmt o yim — o (1 < m < d). (4.3)

Under the compatibility condition r,, < Tm, (1 < m < d) equation (4.3) is solvable for any
m=1,...4d.
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It is readily seen that in the case of a rank-1 approximation (i.e., r = (1, ..., 1)) the system
of a Lagrange equations (4.3) combined with (4.2) can be written in the form

Ay x VOT s ym=DT o pmaT oy @ — g pm), (4.4)
Ay %1 v’ Xo .. Xg y@’ — by,
V=1 (1<m<d)

with by € R (cf. [5]). These equations explicitly represent the numerical scheme of the ALS
iteration for computing the best rank-1 approximation.

4.2 Canonical Tensor Decomposition

The CP model is a simplified version of a general Tucker decomposition (2.3) defined by

A(r) = Zbk X1 Vk(]) X9 ... Xg ‘/}c(d) =~ A, bk S (Ca (45)
k=1

where the Kronecker factors Vk(l) € C* are unit-norm vectors. Indeed, the decomposition

(4.5) can be viewed as a special case of the Tucker model (2.3), where r = ry = ... = r; and

bk, ..k, = 0 unless ky = ky = ... = kg, i.e., only the super-diagonal of B = {bx} is non-zero.
The trilinear CP-decomposition is visualised in Fig. 4.1. The minimal number r in the

3 ® ®
Ve Ve V!

WS w W

2 2)
V) Vo 4 s

2)
V2

(6 (6} (6]
r

Figure 4.1: Visualisation of the CP-decomposition for a third-order tensor.

representation (4.5) is called the Kronecker rank of a given tensor A;). Under moderate
assumptions, the CP decomposition with rank r is unique. We denote by C, the set of
component-wise normalised tensors parametrised by (4.5). Given A, € R >*-*/a its CP
approximation can be derived by minimisation of the quadratic cost functional

f(A) == ||A = A||* = min (4.6)

over all rank-r tensors A € C,. Simple methods to construct the CP approximation which
avoid solving the minimisation problem (4.6) can be based on greedy algorithms (cf. [25]).

4.3 Rayleigh Quotient Approximation

For a given symmetric matrix A € V = R"*" the so-called Rayleigh quotient

(Au, u)

(u,uy ’

23

u e R?

R(u) =



is known to have the fundamental property, that

A= min R(u) and v = argmin R(u 4.7
ueV,u#0 () ue\g/,u7£0 () ( )

appear to be the minimal eigen-value and the corresponding eigen-vector of A,

Av = Jwv.

Proposition 4.3 Assume that we have an approzimation to A (resp to v) via minimisation
on a certain subspace V, C V with dim(V,) =r < n,

A= min R(u) and v, = argmin R(u). (4.8)

u€Vr, u#0 UE Vi, u0
Then one obtains the quadratic error estimate for the eigen-value A,
A — A< ||A = M||o]|v — v, || (4.9)
Proof. The proof is instructive. Supposing that (v, v) = (v,,v,) = 1, we obtain (cf. [24])

(A(v —v,),v —v,) = (Av,v) — 2(Av, v,.) + (Av,, v,.)
=)= 2(v,v.) + A,
=AM2—2(v,v.)) + A — A
=MNv— v, 0 —0v) + A\ — A,

which implies

A= A=((A—A)(v—v.),v— v). (4.10)

Then (4.9) follows.
]
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