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Pseudo-Hermitian quantum mechanical systems have been extensively investi-
gated due to some mathematical and physical considerations [1]. For PT-symmetric
systems with singular contact interactions, we have studied the classification, spec-
tra and integrability problem in [2]. The results are generalized to the case of
identical bosonic and fermionic many-body systems with PT-symmetric contact
interactions and spin-coupling interactions [3].

On the other hand, as one of the most striking features of quantum phenom-
ena [4], quantum entanglement has been identified as a key non-local resource in
quantum information processing such as quantum computation [5], quantum tele-
portation, dense coding, quantum cryptographic schemes, entanglement swapping
and remote state preparation (RSP). Nevertheless the theory of quantum entan-
glement is far from being satisfied. One of main problem in quantum entanglement
is to judge a quantum state is separable or entangled, i.e. the separability. In this
paper we study separability of Hermitian and pseudo-Hermitian systems of many
body systems with contact interactions.

We first consider contact interactions without spin coupling. A particle moving
in one dimension with point interactions at the origin can be characterized by the
non-separated1) boundary conditions imposed on the wave function ϕ at x = 0,

(

ϕ
ϕ′

)

0+

=

(

a b
c d

)(

ϕ
ϕ′

)

0−

, (1)

where a, b, c, d are some complex numbers subject to certain conditions. For
instance, if (a,b,c,d) = eiθ(a, b, c, d), with ad − bc = 1, θ, a, b, c, d ∈ IR, the system
is self-adjoint. If (b,c) = eiθ(b, c), a = eiθ

√
1 + bc eiφ, d = eiθ

√
1 + bc e−iφ, with

the real parameters b ≥ 0, c ≥ −1/b (if b 6= 0), θ, φ ∈ [0, 2π), then the system is
PT-symmetric.

∗) E-mail: fei@wiener.iam.uni-bonn.de
1) The word “separated” here in point interaction is different from the “separability” in quantum

entanglement.
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Another kind of point interaction is described by so called separated boundary
conditions of the form,

ϕ′(0+) = h+ϕ(0+) , ϕ′(0−) = h−ϕ(0−). (2)

It represents self-adjoint systems for h± ∈ IR ∪ {∞}, or h+ = h− = ∞ (Dirichlet
boundary conditions), or h+ = h− = 0 (Neumann boundary conditions). For h+ =
h1e

iθ, h− = −h1e
−iθ, with the real h1 and phase parameter θ ∈ [0, 2π) the system

is PT-symmetric.
We consider now the quantum entanglement of many body systems with con-

tact interactions described by the boundary conditions (1) and (2), when any two
particles meet together. We first consider two-particle case. For a particle with spin
s, the wave function has n = 2s + 1 components. Let H denote the spin vector
space with basis eα, α = 1, ..., n. The wave function of a two-particle system is an
n2-dimensional column vector in H⊗H and can be generally expressed as

ψ =

n
∑

α,β=1

φαβeα ⊗ eβ . (3)

The state ψ is separable (not entangled) in the spin space if it can be written as a
product vector,

n
∑

α=1

ξαeα ⊗
n

∑

β=1

ηβeβ

for some ξα, ηβ ∈ C. It is shown that ψ is separable if and only if the concurrence

C =

√

√

√

√

n

2(n − 1)

n
∑

α,β,γ,δ=1

|φαγφβδ − φαδφβγ |2 (4)

is zero[6, 7].
Let x1, x2 be the coordinates and k1, k2 the momenta of the two particles

respectively. Each particle has n-‘spin’ states designated by s1 and s2, 1 ≤ si ≤ n.
For x1 6= x2, these two particles are free. The wave functions ψ are symmetric
(resp. antisymmetric) with respect to the interchange (x1, s1) ↔ (x2, s2) if s is an
integer (resp. half integer). In the region x1 < x2, in terms of Bethe ansatz the
wave function has the following form

ψ = u12e
i(k1x1+k2x2) +u21e

i(k2x1+k1x2) = u12e
i(K12X−k12x) +u21e

i(K12X+k12x), (5)

where X = (x1 + x2)/2, x = x2 − x1 are the coordinates of the center of mass
system, K12 = k1 + k2, k12 = (k1 − k2)/2, u12 and u21 are n2-dimensional column
vectors, representing the spin part of the wave function.

In the region x1 > x2,

ψ = (P 12u12)e
i(K12X+k12x) + (P 12u21)e

i(K12X−k12x), (6)
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where according to the symmetry or antisymmetry conditions, P 12 = p
12 for bosons

and P 12 = −p
12 for fermions, p12 being the operator on the n2-dimensional column

vectors that interchanges the spins of the two particles. Substituting (5) and (6)
into the boundary conditions (1) at x = 0, we get

{

u12 + u21 = aP 12(u12 + u21) + ibk12P
12(u12 − u21),

ik12(u21 − u12) = cP 12(u12 + u21) + idk12P
12(u12 − u21).

(7)

Eliminating the term P 12u12 from (7) we obtain the relation

u21 = Y 12
21 u12 , (8)

where

Y 12
21 =

2ik12(ad − bc)P 12 + ik12(a − d) + (k12)
2b + c

ik12(a + d) + (k12)2b − c
. (9)

Similarly from the interaction given by the separated boundary condition (2)
we have h+ = −h− ≡ h ∈ IR ∪ {∞} and

Y 12
21 =

ik12 + h

ik12 − h
. (10)

Comparing (5) with (3) and using (8) we have

φαβ = (u12)αβei(k1x1+k2x2) + (Y 12
21 u12)αβei(k2x1+k1x2). (11)

From (4), state (5) is separable if and only if |φαγφβδ − φαδφβγ | = 0, α, γ, β,
δ = 1, ..., n. We have, for general x1, x2, k1, k2,

(u12)αγ(u12)βδ − (u12)αδ(u12)βγ = 0, (12)

(Y 12
21 u12)αγ(Y 12

21 u12)βδ − (Y 12
21 u12)αδ(Y

12
21 u12)βγ = 0, (13)

(u12)αγ(Y 12
21 u12)βδ − (u12)αδ(Y

12
21 u12)βγ

+ (Y 12
21 u12)αγ(u12)βδ − (Y 12

21 u12)αδ(u12)βγ = 0.
(14)

The conditions (12) stands for that the vector u12 itself should be separable.
For the interactions given by the separated boundary condition (2) characterized
by the operator (10), we have that if u12 is separable, the vector Y 12

21 u12 is also
separable, and eq. (14) is satisfied as well. Hence in this case the wave function (3)
of the spin part is separable if and only if u12 is separable.

Nevertheless, associated with the boundary condition (1), the operator (9) is not
an identity one. Noting that (P 12u12)αβ = (u12)βα for bosons and (P 12u12)αβ =
−(u12)βα for fermions, we still have that the vector Y 12

21 u12 is also separable if
u12 is separable. But condition (14) is satisfied only when (P 12u12)αβ = (u12)βα.
Therefore in this case the systems is separable if and only if u12 is separable, and
(u12)αβ = (u12)βα for bosons and (u12)αβ = −(u12)βα for fermions.
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For N -body (N ≥ 3) systems, in the region x1 < x2 < ... < xN , the wave
function is given by

Ψ =
n

∑

α1,..,αN=1

φα1,...,αN
(x1, ..., xN )eα1

⊗ ... ⊗ eαN

= u12...Nei(k1x1+k2x2+...+kN xN ) + u21...Nei(k2x1+k1x2+...+kN xN )

+(N ! − 2) other terms.

(15)

The column vectors u12...N now have nN dimensions. Other vectors u are obtained
from the following relations,

uα1α2...αiαi+1...αN
= Y ii+1

αi+1αi
uα1α2...αi+1αi...αN

, (16)

where

Y ii+1
αi+1αi

=
2ikαiαi+1

(ad − bc)P ii+1 + ikαiαi+1
(a − d) + (kαiαi+1

)2b + c

ikαiαi+1
(a + d) + (kαiαi+1

)2b − c
(17)

for non-separated boundary conditions, and

Y ii+1
αi+1αi

=
ikαiαi+1

+ h

ikαiαi+1
− h

(18)

for separated boundary condition. Here kαiαi+1
= (kαi

− kαi+1
)/2, P ii+1 = p

ii+1

for bosons and P ii+1 = −p
ii+1 for fermions, with p

ii+1 the operator on the nN -
dimensional column vectors that interchanges si ↔ si+1. Due to the Yang-Baxter
equation[8], a, b, c and d have to be real and satisfy b = 0, a = d = ±1, which is
the case of both self-adjoint and PT-symmetric interactions.

The state Ψ is separable if and only if the generalized concurrence [7]

CN =

√

√

√

√

N

2(N − 1)(2M−1 − 1)

∑

p

N
∑

{α,α′,β,β′}

|φαβφα′β′ − φαβ′φα′β |2 = 0 , (19)

where α and β, as well as α′ and β′ are two subsets of the sub-index of φ in (15),
such that they together span the whole index space, α and α′, as well as β and β′

have the same number of indices,
∑

p

stands for the summation over all possible

combinations of the indices of α, β, α′ and β′. From (15) we have

φα1,...,αN
= (u12...N )α1,...,αN

ei(k1x1+k2x2+...+kN xN )

+(Y 12
21 u12...N )α1,...,αN

ei(k2x1+k1x2+...+kN xN ) + (N ! − 2) terms.

For contact interactions associated with the boundary condition (2), CN = 0 is
satisfied if u12...N is separable. For those associated with the boundary condition
(1), the systems is separable if and only if
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i) u12...N is separable;
ii) piju12...N = u12...N for bosons, i 6= j = 1, ..., N ;
iii) piju12...N = −u12...N for fermions, i 6= j = 1, ..., N .
We consider now two particles with contact interactions and spin-coupling in-

teractions. Corresponding to the non-separated case, a general boundary condition
described in the center of mass coordinate system has a form:

(

ϕ
ϕ′

)

0+

=

(

A B
C D

)(

ϕ
ϕ′

)

0−

, (20)

where ϕ and ϕ′ are n2-dimensional column vectors, A,B, C and D are n2 × n2

matrices. Corresponding to the separated boundary condition (2) one has

ϕ′(0+) = Fϕ(0+), ϕ′(0−) = Gϕ(0−). (21)

For the self-adjoint point interactions, G and F are just n2 × n2 Hermitian matri-
ces. For PT-symmetric interactions, G = −F ∗. The integrability and separability
for general case are quite complicated. To elucidate the problem we consider the
separated boundary condition (21) in the following. For a many-body system with
contact interactions described by (21), the wave function (15) is no longer separable
if and only if u12...N is separable.

In stead of (18), we have

Y jj+1
αj+1αj

= [ikαjαj+1
− Fjj+1]

−1[ikαjαj+1
+ Fjj+1], (22)

where Fjj+1 stands for the application of the operator F to the j-th and (j + 1)-th
particles. F is a real n2 ×n2 matrix that commutes with the permutation operator
p. For the case of spin s = 1/2 (i.e. n = 2), F is generally of the form

F =









a e1 e1 c
e3 f g e2

e3 g f e2

d e4 e4 b









, (23)

where a, b, c, d, f, g, e1, e2, e3, e4 ∈ IR. By straightforward calculations one can show
that if ei = 0, i = 1, ..., 4, a = b = f + g, then the state (15) is separable (CN = 0)
if and only if conditions i)-iii) above are satisfied.

For general spin values, we can show that (15) could be separable if F = f +gp,
f, g ∈ IR, where f is understood as multiplied by an n2 × n2 identity matrix. Since
in this case, Y jj+1

αj+1αj
in (22) has the form

Y jj+1
αj+1αj

=
−g(g2 − f2 − k2

αjαj+1
+ 2igkαjαj+1

p
jj+1)

(ikαjαj+1
− f)2 − g2

. (24)

Therefore as long as the conditions i)-iii) are satisfied, (15) is separable. Here the
contact interaction system described by the operator F = f +gp is both self-adjoint
and PT-symmetric.
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We have studied the quantum separability of identical bosonic or fermionic
particles with point interactions. The separability conditions depend on the Y -
operators. For the separated boundary condition (2), the Y operator (18) is just an
identity one. Hence the many-body state is separable if one of the u vectors in (15) is
separable. For general no-separated boundary condition (1) or separated boundary
condition with spin-couplings (21), the Y operators (17), (24) are proportional to
the permutation operator p. (15) is then separable if the conditions i)-iii) are satis-
fied. One may also study the separability of systems characterized by the boundary
condition (20) as well, according to detailed A, B, C, D for the requirement of
self-adjointness or PT-symmetry, though it could be quite complicated.
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