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AbstratWe onsider the linear integro-di�erential operator L de�ned by

Lu(x) =

∫

Rn

(
u(x + y) − u(x) − 1[1,2](α)1{|y|≤2}(y)y · ∇u(x)

)
k(x, y) dy .Here the kernel k(x, y) behaves like |y|−d−α, α ∈ (0, 2), for small y and isHölder-ontinuous in the �rst variable, preise de�nitions are given below. Theaim of this work is twofold. On one hand, we study the unique solvability ofthe Cauhy problem orresponding to L. On the other hand, we study themartingale problem for L. The analyti results obtained for the deterministiparaboli equation guarantee that the martingale problem is well-posed. Ourstrategy follows the lassial path of Strook-Varadhan. The assumptions allowfor ases that have not been dealt with so far.Key words: martingale problem, Cauhy problem, integro-di�erential operator,pseudodi�erential operator, Lévy-type proess, jump proessAMS-Classi�ation: 47G20, 47G30, 60J75, 60J35, 60G07, 35K99, 35B65, 47A60
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2 1 INTRODUCTION1 IntrodutionA linear operatorA : C2
0(R

n) → C(Rn) is said to satisfy the global maximum prinipleif Au(x∗) ≤ 0 for all x∗ ∈ {x ∈ Rn; u(x) ≥ u(y) ∀ y ∈ Rn}. It is well-known thatin�nitesimal generators of strongly ontinuous ontration semi-groups on C0(R
n)generating Markov proesses satisfy the global maximum priniple. Surprisingly,the global maximum priniple implies already a ertain struture of A, see [11℄.More preisely, A is the sum of a possibly degenerate ellipti di�usion operatorwith bounded oe�ients, a drift and a jump part whih we all L. Sine L alonegenerates pure jump proesses whih generalize Lévy proesses it is sometimes alleda Lévy-type operator, see [19℄, [5℄, [17℄ and [21℄ for surveys.It is the aim of this work to study important properties of the operator L whih isde�ned by

Lu(x) =

∫

Rn

(u(x+ y) − u(x) − 1B2
(y)y · ∇u(x)) k(x, y) dy (1.1)if 1 ≤ α < 2 and

Lu(x) =

∫

Rn

(u(x+ y) − u(x)) k(x, y) dy (1.2)if 0 < α < 1. Here k : Rn × (Rn \ {0}) → (0,∞) is Hölder ontinuous of order
τ ∈ (0, 1) in x ∈ Rn, measurable in y ∈ Rn \ {0} and an be deomposed as
k = k1 + k2 suh that k1(x, y) = 0 for |y| ≥ 2, k1 is (n+ 1)-times di�erentiable in y,and the following estimates are satis�ed:

‖∂β
y k1(., y)‖Cτ(Rn) ≤ C|y|−n−α−|β|, 0 < |y| ≤ 2, (1.3)

k1(x, y) ≥ c|y|−n−α, 0 < |y| ≤ 1, x ∈ R
n, (1.4)

‖k2(., y)‖Cτ(Rn) ≤ C|y|−n−α′

, 0 < |y| ≤ 1, (1.5)∫

|y|≥1

‖k2(., y)‖Cτ (Rn) dy <∞, (1.6)
lim

|y|→∞
‖k2(., y)‖Cτ(Rn) = 0 (1.7)for all β ∈ N

n
0 with |β| ≤ N := n + 1, where 0 ≤ α′ < α < 2. Moreover, we assume

k1(x,−y) = k1(x, y) if α = 1. There are many examples satisfying these assumptions,see the disussion below. A model ase is given by k(x, y) = c|y|−n−α,y 6= 0, whihleads to L = −(−∆)α/2. Other examples are given by k(x, y) = g(x, y)|y|−n−α,
y 6= 0, if g is su�iently smooth, positive and bounded from above and away fromzero. Note that g does not need to be homogeneous in y nor in x.Our main result onerning the Cauhy-Problem for L is given by the followingtheorem. In the following Cs(Rn), s > 0, denotes the Hölder-Zygmund spae and



3
Cs

0(R
n) = C∞

0 (Rn)
‖.‖Cs . For a preise de�nition of the funtion spaes we refer toSetion 2.1 below.Theorem 1.1 Let k satisfy (1.3)-(1.5), let L be de�ned as in (1.1), and let T > 0,

0 < s < τ , 0 < θ < 1. Then for every f ∈ Cθ([0, T ]; Cs
0(R

n)) with f(0) = 0 there isa unique u ∈ C1,θ([0, T ]; Cs
0(R

n)) ∩ Cθ([0, T ]; Cs+α
0 (Rn)) solving

∂tu− Lu = f in (0, T ) × R
n, (1.8)

u(0, ·) = 0 in R
n. (1.9)If f is non-negative, then u is non-negative as well.The latter theorem will be a diret onsequene of the fat that L generates ananalyti semi-group on Cs

0(R
n) with 0 < s < τ . In order to prove this we willonstrut an approximate resolvent to L using pseudodi�erential operators with non-smooth symbols.Let us state the martingale problem. By D([0,∞); Rn) we denote the spae of allàdlàg paths. We refer the reader to Setion 3 below for a preise de�nition and ashort disussion of D([0,∞); Rn). A probability measure Pµ on D([0,∞); Rn) is saidto be a solution to the martingale problem for (L,D(L)) with domain D(L) beingontained in the set of bounded funtions f : Rn → R, L de�ned as in (1.1) and µ aprobability measure on R

n if, for any φ ∈ D(L)

(
φ(Πt) − φ(Π0) −

t∫

0

(Lφ)(Πs) ds
)

t≥0is a Pµ-martingale with respet to the �ltration (σ(Πs; s ≤ t)
)

t≥0
and Pµ(Π0 = µ) =

1. Here Π is the usual oordinate proess, i.e., Π: [0,∞) × D([0,∞); Rn) → Rn,
Πt(ω) = ω(t). If for every µ there is a unique solution Pµ of the martingale problem,we say that the martingale problem for (L,D(L)) is well-posed.Our main result onerning the martingale problem reads as follows.Theorem 1.2 Let L be de�ned as above. Then the martingale problem for (L,C∞

0 (Rn))is well-posed.Studying the existene of pure jump proesses, i.e., proesses without a di�usionomponent, together with their properties is a �eld of still inreasing interest. Welist some referenes dealing with the martingale problem for non-loal operators suhas L. In the ase k(x, y) = k(y) with k as in (1.1) L is a generator of a Lévy jump



4 1 INTRODUCTIONproess, i.e., a jump proess with independent stationary inrements. There aredi�erent and more elegant approahes than the martingale problem to the existeneof a orresponding proess, see [6℄, [37℄.The martingale problem for an operator of the formA+L where A is a non-degenerateellipti operator and L is an operator of our type has been studied �rst in [26℄, [39℄,[29℄. Sine A is a seond order operator L is a lower order perturbation of A formany questions. [27℄, [28℄ seem to be the �rst artiles treating the martingale prob-lem for pure jump proesses generated by operators like L. The main assumptionsare that k(x, y) is a perturbation of k̃(x, y) = |y|−d−α, y 6= 0, together with quitestrong regularity assumptions. More general results have been obtained in [34℄ usingtehniques from partial di�erential equations. In the latter artile k(x, y) is assumedto be twie ontinuously di�erentiable in the �rst variable.Strong results on the well-posedness have been obtained in [31℄, [32℄, [33℄. Theauthors use a setup similar to the one of the so alled Calderon-Zygmund approah inthe theory of partial di�erential equations. In [31℄, [32℄ k(x, y) is assumed to be onlyontinuous in the �rst variable but some additional homogeneity is assumed in theseond variable. To add a personal omment, these results have been underestimatedin the literature from our point of view. This is maybe due to the fat that the journalis not available easily and that the artiles are written in a somewhat dense style.Using pseudodi�erential operators and anisotropi Sobolev spaes built with ontin-uous negative de�nite funtions [14℄ proves well-posedness of the martingale problemunder assumptions like x 7→ k(x, y) ∈ C3n(Rn) but allowing for a more general de-pendene of k(x, y) on y. Moreover, the extension of L to a generator of a Fellersemi-group is disussed. See [9℄ for similar tehniques in in�nite dimensions and [35℄for related questions. In the setting of [14℄ a parametrix for the pseudodi�erentialoperator is onstruted in [10℄. These results do not apply to our setting sine weassume only Hölder regularity of the mapping x 7→ k(x, y).The results of [34℄, [31℄, [32℄, [14℄ and the ones in the present work do not implyone another but have a large region of intersetion. The assumptions on the x-dependene of k(x, y) in [34℄, [14℄, [33℄ are more restritive but the assumptionson the y-dependene are partly weaker than ours. The situation is reversed whenomparing our results to [31℄, [32℄. Our tehniques solving the Cauhy problem aredi�erent from [34℄, [14℄ and [31℄.The authors of [12℄ prove solvability of the Cauhy problem for a time dependentpseudodi�erential operator L(t) = p(t, x,Dx) where the prinipal part of the symbol
p(t, x, ξ) is homogeneous in ξ of degree α ∈ [1, 2] and uniformly Hölder ontinuousin (t, x). Their results do not apply to the uniqueness for solutions of the martingale



5problem sine su�ient regularity of solutions to the Cauhy problem is not provided.In the above list we do not mention results onerning what is sometimes alled�stable-like� ases, i.e. when k(x, y) ≈ |y|−d−α(x), y 6= 0. Well-posedness of the mar-tingale problem is proved in one spatial dimension in [4℄ when α(·) is Dini-ontinuous.Uniqueness problems for stohasti di�erential equations in similar situations but in-luding higher dimensions and also di�usion oe�ients are onsidered in [44℄. Thetehniques of [4℄ an be extended to higher dimensions and to a larger lass of prob-lems, see the forthoming PhD-thesis [16℄. See [18℄, [24℄ for results on the questionwhen the linear operators of type L extend to generators of Feller proesses in thease when the y-singularity of k(x, y) is of variable order. [15℄ provides suh a resulttogether with well-posedness of the martingale problem when x 7→ α(x) is smoothwhere α(x) is the order of di�erentiability of L.One sope of this ontribution is to present an appliation of the theory of pseu-dodi�erential operators with non-smooth oe�ients to jump proesses. We hope todraw the attention of probabilists to this method.
2 The Cauhy problem for Lévy-type Operators2.1 Preliminaries and NotationThe harateristi funtion of a set A is denoted by 1A. Furthermore, we de�ne
〈ξ〉 := (1 + |ξ|2)

1
2 for ξ ∈ Rn. Moreover, we de�ne Σδ := {z ∈ C \ {0} : | arg z| < δ}for 0 < δ ≤ π.As usual, C∞

0 (Rn) denotes the set of all smooth and ompatly supported funtions
f : Rn → R, S(Rn) denotes the spae of all smooth and rapidely dereasing funtions,and S ′(Rn) = (S(Rn))′ the spae of tempered distributions. Ck(Rn), k ∈ N, shall bethe usual Banah spae of ontinuous funtions with bounded ontinuous derivativesup to order k. By Ck

0 (Rn) we denote the losure of C∞
0 (Rn) with respet to the normof Ck(Rn). Cs(M ;X), where s ∈ (0, 1), M ⊆ Rn, M losed, and X is a Banahspae, is the spae of uniformly bounded Hölder ontinuous funtions f : M → Xof order s with uniformly bounded Hölder onstant. Moreover, Cs(M) = Cs(M ; R)and f ∈ C1,s([0, T ];X) i� f : [0, T ] → X is ontinuously di�erentiable and d

dt
f ∈

Cs([0, T ];X). Finally, if f : R
n → R, we de�ne (τhf)(x) = f(x+ h), x, h ∈ R

n, and
∆hf = τhf − f .



6 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORSFor funtions f ∈ S(Rn) the Fourier transform F and its inverse F−1 are de�ned via
F(f)(ξ) =

∫
e−ix·ξf(x) dx , F−1(f)(x) =

∫
eix·ξf(ξ) �ξ ,where �ξ = (2π)−ndξ. When there is ambiguity we use subsripts to indiate thevariables with respet to whih the Fourier transform is taken, i.e., F(f) wouldbe written as Fx 7→ξ(f). Finally, F : S ′(Rn) → S ′(Rn) is de�ned by duality and

Dxj
:= 1

i
∂xj

, j = 1, . . . , n, where ∂xj
is the usual partial derivative. Dx denotes thevetor (Dx1

, . . . , Dxn
).We use a dyadi partition of unity ϕj ∈ C∞

0 (Rn), j ∈ N0, whih satis�es suppϕ0 ⊂
B2(0) and suppϕj ⊂ {2j−1 ≤ |ξ| ≤ 2j+1} for j ∈ N. Then the Hölder-Zygmundspae Cs(Rn), s > 0, onsists of all f ∈ S ′(Rn) satisfying

‖f‖Cs = sup{2ks‖ϕk(Dx)f‖L∞ : k ∈ N0} <∞,where
ϕk(Dx)f = F−1 [ϕk(ξ)F [f ](ξ)] .Note that Cs(Rn) = Bs

∞∞(Rn), where Bs
pq(R

n), s ∈ R, 1 ≤ p, q ≤ ∞, denotes theusual Besov spae. Moreover, it is well-known that Cs(Rn) = Cs(Rn) for s ∈ R+ \N,f. [41, Appendix A℄ or Triebel [43, Setion 2.7℄.The losure of C∞
0 (Rn) in Cs(Rn) is denoted by Cs

0(R
n). We will use the followingsu�ient riterion for a funtion to belong to Cs

0(R
n):Proposition 2.1 Let 0 < s < s′ < 1. Then every f ∈ Cs′(Rn) satisfying

lim
R→∞

‖f‖Cs(Rn\BR(0)) = 0 (2.1)belongs to Cs
0(R

n).Proof: Let ϕε(x) = ε−nϕ(ε−1x), ϕ ∈ C∞
0 (Rn) with ∫ ϕ(x)dx = 1, be a standardmolli�er. Then ϕε ∗ f →ε→0 f in Cs(Rn) sine f ∈ Cs′(Rn). Moreover, (2.1) impliesthat eah ϕε ∗ f an be approximated by smooth, ompatly supported funtions upto an arbitrarily small error in Cs(Rn). This proves the proposition.

2.2 Pseudodi�erential Operators with Non-Smooth SymbolsIn the following, the prinipal part of the Lévy-type operator will be represented aspseudodi�erential operator with a symbol of the following kind:



2.2 Pseudodi�erential Operators with Non-Smooth Symbols 7De�nition 2.2 Let n, n′ ∈ N, N ∈ N0, m ∈ R, and let τ ∈ (0, 1). Then a funtion
p : Rn′

× Rn → C belongs to CτSm
1,0;N(Rn′

; Rn) if p(x, ξ) is Hölder ontinuous w.r.t.
x ∈ Rn′, N-times ontinuously di�erentiable w.r.t. ξ ∈ Rn and satis�es

‖∂β
ξ p(., ξ)‖Cτ (Rn) ≤ C〈ξ〉m−|β| (2.2)uniformly in ξ ∈ Rn and for all |β| ≤ N . Moreover, let

‖p‖CτSm
1,0;N

:= sup
ξ∈Rn,|β|≤N

〈ξ〉−m+|β|‖∂β
ξ p(., ξ)‖Cτ(Rn).Remark 2.3 Note that ⋂

τ>0,N∈N

CτSm
1,0;N(Rn; Rn) oinides with the lassial symbollass Sm

1,0(R
n; Rn) as de�ned in [22℄. A �rst treatment of pseudodi�erential symbolswhih are merely Hölder ontinuous in the spae variable x and the assoiated oper-ators was done by Kumano-Go and Nagase [23℄. Further results and many referenesan be found in the monographs by Taylor [41, 42℄.For a = a(x, y, ξ) ∈ CτSm

1,0;N(Rn×R
n; Rn) we de�ne the assoiated pseudodi�erentialoperator in (x, y)-form (formally) by

a(x,Dx, x)f :=

∫

Rn

∫

Rn

ei(x−y)·ξa(x, y, ξ)f(y) dy�ξ. (2.3)So far, it is not lear whether a(x,Dx, x)f in (2.3) is well-de�ned even for f ∈
C∞

0 (Rn). This will be lari�ed later in eah partiular situation we have to dealwith.Remark 2.4 In order to underline the onnetion between the operator a(x,Dx, x)and the orresponding symbol a(x, y, ξ) we write a(x, ξ, y) instead of a(x, y, ξ) in thesequel.In the speial ase that a(x, ξ, y) = p(x, ξ), p ∈ Sm
1,0;N(Rn; Rn), and f ∈ S(Rn), theoperator in (2.3) is well-de�ned as iterated integrals and oinides with

p(x,Dx)f =

∫

Rn

eix·ξp(x, ξ)f̂(ξ)�ξ,whih is a pseudodi�erential operator in x-form. The adjoints of x-form pseudodif-ferential operators are the pseudodi�erential operators in y-form, whih orrespondsto the ase a(x, ξ, y) = p(y, ξ), p ∈ Sm
1,0;N(Rn; Rn), and is (formally) given by

p(Dx, x)f := F−1

[∫

Rn

e−iy·ξp(y, ξ)f(y) dy

]
.If f ∈ S(Rn), the inner integral de�nes is a bounded ontinuous funtion in ξ ∈ R

nand p(Dx, x) is a well-de�ned operator p(Dx, x) : S(Rn) → S ′(Rn).



8 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORSRemark 2.5 Working with non-smooth symbols it is important to distinguish be-tween pseudodi�erential operators in x-form and in y-form sine the mapping proper-ties are di�erent, f. Theorem 2.6 below. The prinipal part of the operator L will bea pseudodi�erential operator in x-form; but it is important to take the approximateresolvent Qλ = qλ(Dx, x) ≈ (λ−L)−1 as an operator in y-form, not in x-form. Other-wise the mapping properties of Qλ would not �t to (λ− L)−1 : Cs
0(R

n) → Cs+α
0 (Rn)for 0 < s < τ . This tehnique was already suessfully applied to the resolventequation of the Stokes operator in suitable domains with non-smooth boundary, f.[3, 1℄. An alternative way for a parametrix onstrution is desribed in [2, Setion 6℄,where the operator is �rst redued to a zero order operator and then the parametrixis onstruted in x-form. The latter artile deals with pseudodi�erential boundaryvalue problems; but the onstrution also applies to pseudodi�erential equations on

R
n.Mapping properties of pseudodi�erential operators with non-smooth oe�ients havebeen studied by several authors starting with the pioneering work of Kumano-Go andNagase [23℄, f. Taylor [41, 42℄ and the referenes given there. For our purposes wewill use the following theorem, whih is a onsequene of the results by Marshall [30℄.Theorem 2.6 Let N > n

2
, τ ∈ (0, 1), and let p ∈ CτSm

1,0;N(Rn; Rn). Then
p(x,Dx) : Cs+m

0 (Rn) → Cs(Rn) if 0 < s < τ, s+m > 0 (2.4)and
p(Dx, x) : Cs+m

0 (Rn) → Cs(Rn) if s > 0, 0 < s+m < τ (2.5)are bounded operators. Moreover, the operator norms an be estimated by C‖p‖CτSm
1,0;N

,where C is independent of p ∈ CτSm
1,0;N(Rn; Rn).Remark 2.7 Note that for an operator p(x,Dx) in x-form the order of the rangespae Cs is limited by the smoothness of the symbol in x. For the orrespondingoperator in y-form, p(Dx, x), the order of the domain Cs+m

0 is limited by τ .Proof of Theorem 2.6: First of all, we note that the symbol lass CτSm
1,0;N(Rn; Rn)oinides with the symbol lass Sm

1,0(τ,N) de�ned in [30℄. Moreover, if f ∈ S(Rn),then p(x,Dx)f de�ned as above oinides with the de�nition in [30℄ as a limit ofoperators obtained from a symbol deomposition, f. proof of [30, Proposition 2.4℄.Hene [30, Proposition 2.4℄ implies that
‖p(x,Dx)f‖Cs(Rn) ≤ C‖f‖Cs+m(Rn)for f ∈ S(Rn) provided that 0 < s < τ and s+m > 0.



2.2 Pseudodi�erential Operators with Non-Smooth Symbols 9By our de�nition of p(Dx, x) : S(Rn) → S ′(Rn)

〈p(Dx, x)f, g〉 =

∫

Rn

∫

Rn

eix·ξp(y, ξ)f(y) dyĝ(−ξ)�ξ =

∫

Rn

f(x)q(x,Dx)g dxfor all f, g ∈ S(Rn) with q(x, ξ) = p(x,−ξ). Beause of [30, Proposition 4.3℄,
q(x,Dx)

∗ : Cs+m(Rn) → Cs(Rn) provided that 0 < s+m < τ and s > 0.Finally, it is easy to observe that all estimates done in the proof of [30, Proposi-tion 4.3℄ are uniform for all p ∈ CτSm
1,0;N(Rn; Rn) with ‖p‖CτSm

1,0;N
≤ 1, whih is noth-ing but the boundedness of the linear mapping from the symbol spae CτSm

1,0;N(Rn; Rn)into the orresponding spae of linear operators.The next important ingredient are kernel estimates of the Shwartz kernel assoiatedto a pseudodi�erential operator. We follow the presentation given in [38, Chapter 6,Paragraph 4℄. Given a ∈ CτSm
1,0;N(Rn × Rn; Rn) we de�ne for j ∈ N0

kj(x, y, z) := F−1
ξ 7→z[aj(x, ., y)], aj(x, ξ, y) := a(x, ξ, y)ϕj(ξ),where ϕj is the Dyadi partition of unity introdued above.First of all, we haveLemma 2.8 Let a ∈ CτSm

1,0;N(Rn × Rn), m ∈ R, N ∈ N0, τ ∈ (0, 1), and let
kj(x, y, z) be de�ned as above. Then

‖∂α
z kj(., ., z)‖Cτ (Rn×Rn) ≤ Cα,M‖a‖Cτ Sm

1,0;N
|z|−M2j(n+m−M+|α|) (2.6)for all α ∈ Nn

0 , M = 0, . . . , N , where Cα,M does not depend on j ∈ N0 and a ∈
CτSm

1,0;N(Rn × Rn; Rn).Proof: We start with
zγDα

z kj(x, y, z) =

∫

Rn

eiz·ξD
γ
ξ [ξαaj(x, ξ, y)]�ξfor all α, γ ∈ Nn

0 . We estimate the integral on the right hand side from above. Firstly,the integrand is supported in the ball {|ξ| ≤ 2j+1}, whih has volume bounded by amultiple of 2nj. Seondly, sine the support is also limited by the ondition 2j−1 ≤ |ξ|(when j 6= 0) and c2j ≤ 〈ξ〉 ≤ C2j on {2j−1 ≤ |ξ| ≤ 2j+1},
∣∣Dγ

ξ [ξαaj(x, ξ, y)]
∣∣ ≤ Cα,γ‖a‖Cτ Sm

1,0;N
2j(m+|α|−|γ|)



10 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORSdue to the symbol estimates of ξαaj(x, ξ, y) ∈ CτS
m+|α|
1,0;N (Rn × Rn; Rn). Hene

sup
x,y∈Rn

|zγDα
z kj(x, y, z)| ≤ Cα,γ‖a‖Cτ Sm

1,0;N
2j(n+m+|α|−M), whenever |γ| = M.Taking the supremum over all γ with |γ| = M , gives (2.6) with Cτ (Rn×Rn) replaedby C0(Rn × Rn). In order to get the same for Cτ (Rn × Rn) one simply replaes

aj(x, ξ, y) and kj(x, y, z) by aj(x, ξ, y)−aj(x
′, ξ, y′) and kj(x, y, z)−kj(x

′, y′, z), resp.,in the estimates above and uses that
∣∣Dγ

ξ [ξα(aj(x, ξ, y)− aj(x
′, ξ, y′))]

∣∣

≤ Cα,γ‖a‖Cτ Sm
1,0;N

2j(m+|α|−|γ|)(|x− x′| + |y − y′|)τ .This �nishes the proof.Using the latter lemma, we are able to prove the following kernel estimate:Theorem 2.9 Let a ∈ CτSm
1,0;N(Rn×R

n; Rn), τ ∈ (0, 1), m > −n, and N ∈ N0 suhthat N > n+m and let kj be de�ned as above. Then for every x, y, z ∈ Rn, z 6= 0,

k(x, y, z) :=

∞∑

j=0

kj(x, y, z)exists, onverges uniformly in x, y ∈ Rn, |z| ≥ ε > 0, and satis�es
‖∂α

z k(., ., z)‖Cτ (Rn×Rn) ≤

{
Cα‖a‖Cτ Sm

1,0;N
|z|−n−m−|α| for |z| ≤ 1

Cα‖a‖Cτ Sm
1,0;N

|z|−N for |z| ≥ 1uniformly in z 6= 0 for all α ∈ N0 with |α| < N − n−m, where C is independent of
a ∈ CτSm

1,0;N(Rn × Rn; Rn).Proof: First we onsider the ase when 0 < |z| ≤ 1. We brake the above suminto two parts: the �rst where 2j ≤ |z|−1, the seond where 2j > |z|−1. In order toestimate the �rst sum we use (2.6) with M = 0:
∑

2j≤|z|−1

‖∂α
z kj(., ., z)‖Cτ (Rn×Rn) ≤ C‖a‖Cτ Sm

1,0;N

∑

2j≤|z|−1

2j(n+m+|α|),where ∑

2j≤|z|−1

2j(n+m+|α|) = O(|z|−n−m−|α|)sine n +m+ |α| > 0.



2.2 Pseudodi�erential Operators with Non-Smooth Symbols 11Next, for the seond sum, we use again (2.6) with M = N and get the estimate
∑

2j>|z|−1

‖∂α
z kj(., z)‖Cτ (Rn×Rn) ≤ Cα‖a‖Cτ Sm

1,0;N
|z|−M

∑

2j>|z|−1

2j(n+m+|α|−M)

≤ C ′
α‖a‖Cτ Sm

1,0;N
|z|−n−m−|α|.Finally, we onsider the situation |z| ≥ 1. Sine N > n+m+ |α|, (2.6) shows that

∞∑

j=0

‖∂α
z kj(., z)‖Cτ (Rn×Rn) ≤ Cα|z|

−N‖a‖Cτ Sm
1,0;N

∞∑

j=0

2j(n+m−N+|α|)

≤ C ′
α‖a‖Cτ Sm

1,0;N
|z|−N .Hene the proof is omplete.The following orollary shows that (2.4) an be improved to p(x,Dx) : Cs+m

0 (Rn) →
Cs

0(R
n) under the same assumptions.Corollary 2.10 Let N > n + m, τ ∈ (0, 1), let p ∈ CτSm

1,0;N(Rn; Rn), and let
f ∈ C∞

0 (Rn). Then p(x,Dx)f ∈ Cs
0(R

n) for all 0 < s < τ with s + m > 0 and
p(Dx, x)f ∈ Cs

0(R
n) provided that 0 < s+m < τ and s > 0.Proof: For simpliity we only treat the ase of the operator in x-form. The otherase is treated in the same way.Fix 0 < s < τ with s +m > 0 and hoose s′ ∈ (s, τ). Then p(x,Dx)f ∈ Cs′(Rn) dueto Theorem 2.6. Hene, using Proposition 2.1, it is su�ient to show (2.1). Beauseof Theorem 2.9 with a(x, ξ, y) = p(x, ξ),

p(x,Dx)f =

∞∑

j=0

pj(x,Dx)f =

∞∑

j=0

∫

Rn

kj(x, x− y)f(y) dy

=

∫

Rn

k(x, x− y)f(y) dy for all x 6∈ supp f.The latter representation and the kernel estimate stated in Theorem 2.9 imply thatfor su�iently large R > 0

‖p(x,Dx)f‖Cs(Rn\BR(0))

≤ sup
z 6=0

|z|N‖k(., z)‖Cs(Rn) sup
|x|≥R

(∫

supp f

|x− y|−N dy‖f‖Cs(Rn)

)

≤ C| supp f |‖f‖∞|R|−N →R→∞ 0.



12 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORSHene (2.1) holds and therefore p(x,Dx)f ∈ Cs
0(R

n). The statement for p(Dx, x)f isproved in the same way.Reall that, if a ∈ Sm
1,0(R

n × Rn; Rn) is a smooth symbol, then by the results of thelassial theory of pseudodi�erential operators
a(x,Dx, x) = p(x,Dx) ,where p ∈ Sm

1,0(R
n × R

n; Rn) and
p(x, ξ) = a(x, ξ, x) + r(x, ξ) ,with r ∈ Sm−1

1,0 (Rn; Rn), see [22, Chapter 2, Setion 3℄. In the ase a ∈ CτSm
1,0;N(Rn×

R
n; Rn), 0 ≤ τ ≤ m, the following result an be applied to

r(x, ξ, y) = a(x, ξ, y) − a(x, ξ, x) .Proposition 2.11 Let r ∈ CτSm
1,0;N(Rn × Rn; Rn), where τ ∈ (0, 1), 0 ≤ m < τ ,and N = n + 1. Moreover, we assume that r(x, ξ, x) = 0. Then

r(x,Dx, x) :=
∞∑

j=0

rj(x,Dx, x)onverges absolutely in L(Cs(Rn)) for eah 0 < s < τ −m and satis�es
‖r(x,Dx, x)‖L(Cs

0(Rn)) ≤ C‖r‖CτSm
1,0;N

, (2.7)where C does not depend on r ∈ CτSm
1,0;N(Rn ×R

n; Rn). Moreover, r(x,Dx, x) maps
Cs

0(R
n) into itself.Proof: First we denote

rM(x,Dx, x)f :=

M∑

j=0

rj(x,Dx, x)f.Using that
rj(x,Dx, x) =

∫

Rn

∫

Rn

kj(x, y, x− y)f(y) dy, f ∈ S(Rn),we have
rM(x,Dx, x) =

∫

Rn

kM(x, y, x− y)f(y) dy, f ∈ S(Rn),



2.2 Pseudodi�erential Operators with Non-Smooth Symbols 13with kM(x, y, z) :=
∑M

j=0 kj(x, y, z). Note that kM(x, x, z) = kj(x, x, z) = 0 sine
r(x, ξ, x) = 0. By the proof of Theorem 2.9 it is obvious that

‖kM(., z)‖Cτ (Rn×Rn) ≤

{
C‖r‖CτSm

1,0;N
|z|−n−m if |z| ≤ 1

C‖r‖CτSm
1,0;N

|z|−n−1 if |z| ≥ 1,uniformly in z 6= 0 and M ∈ N. But this implies
|kM(x, y, x− y)| = |kM(x, y, x− y) − kM (x, x, x− y)|

≤ C‖r‖CτSm
1,0;N

|x− y|−n−m+τ(1 + |x− y|)m−1. (2.8)Hene Lebesgue's theorem on dominated onvergene implies that
r(x,Dx, x)f = lim

M→∞
rM(x,Dx, x)f =

∫

Rn

k(x, y, x− y)f(y) dyexists for every x ∈ Rn and f ∈ L∞(Rn). Moreover, sine (2.8) holds for k(x, y, x−y)as well, we onlude
‖r(x,Dx, x)‖L(L∞(Rn)) ≤ C‖r‖CτSm

1,0;N
. (2.9)In order to prove (2.7), we use the relation

∆hr(x,Dx, x)f = r(x,Dx, x)(∆hf) +

∫

Rn

kh(x, y, x− y)f(y + h) dy,where (∆hf)(x) = f(x+ h) − f(x), h ∈ Rn, and
kh(x, y, z) = k(x+ h, y + h, z) − k(x, y, z).Moreover, kh(x, y, z) is the kernel belonging to rh(x,Dx, x) with rh(x, ξ, y) = r(x+

h, ξ, y + h) − r(x, ξ, y) and it is easy to prove that
‖rh‖Cτ−sSm

1,0;N
≤ C|h|s‖rh‖Cτ Sm

1,0;Nuniformly in h ∈ Rn for eah 0 < s < τ . Hene using (2.9) for r and rh, we onludethat
‖∆hr(x,Dx, x)f‖L∞ ≤ C‖r‖CτSm

1,0;N
‖∆hf‖L∞ + C‖rh‖Cτ−sSm

1,0;N
‖f‖L∞

≤ C‖r‖CτSm
1,0;N

‖f‖Cs(Rn)|h|
sfor 0 < s < τ − m. This �nishes the proof of (2.7). The last statement is provedby showing that r(x,Dx, x)f ∈ Cs

0(R
n) for f ∈ C∞

0 (Rn). This an be done in thesame way as in Corollary 2.10 using the deay of the kernel k(x, y, z) as |z| → ∞and Proposition 2.1.



14 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORS2.3 Appliation to the Resolvent EquationsIn this setion we onstrut an approximate resolvent Qλ to a Lévy-type operator
L as introdued in (1.1),(1.2). Here Qλ = qλ(Dx, x) is a pseudodi�erential operatorobtained by inverting the symbol of the prinipal part of λ− L.More preisely, beause of the assumption on the kernel, we have a deomposition

Lu(x) = L1u(x) + L2u(x), u ∈ S(Rn),where Lj denotes the same kind of operator with kernel kj, j = 1, 2. Here L1 an beonsidered as priniple part and L2 is of lower order in the following sense:Lemma 2.12 Let L2 be as above. Then L2 extends to a bounded operator L2 : Cs+α′′

0 (Rn) →
Cs

0(R
n) for any α′′ > α′ and 0 < s < τ provided that s+ α′′ > 1 if α ≥ 1.Proof: First of all, if u ∈ Cs′(Rn) and 1 < s′ < 2, then

|u(x+ y) − u(x) − y · ∇u(x)| ≤ C‖u‖Cs′(Rn)|y|
s′, |y| ≤ 1. (2.10)First we assume that 1 ≤ α′ < α < 2. Then (2.10) with s′ = α′′ yields

‖L2u‖L∞(Rn)

≤ C

(
sup

x∈Rn,|y|≤1

|y|n+α′

|k2(x, y)| +

∫

|y|≥1

‖k2(., y)‖∞ dy

)
‖u‖Cα′′(Rn) (2.11)with a onstant C independent of k2. Moreover,

∆h(L
2u) = L2(∆hu) + L2

h(τhu), (2.12)where L2
h is the Lévy-type operator with kernel k2

h(x, y) := k2(x + h, y) − k2(x, y).By the assumptions on the kernel,
sup

x∈Rn,|y|≤1

|y|n+α′

|k2
h(x, y)| +

∫

|y|≥1

‖k2
h(., y)‖∞ dy ≤ C|h|suniformly in h ∈ Rn. Therefore using (2.11) with L2 replaed by holds for L2

h and
k2 replaed by k2

h we onlude
‖L2

h(τhu)‖L∞(Rn) ≤ C|h|s‖u‖Cα′′(Rn).Hene, using the inequality above, (2.12), and (2.11), we onlude
‖∆h(L

2u)‖L∞(Rn) ≤ C
(
‖∆hu‖Cα′′(Rn) + |h|s‖u‖Cα′′(Rn)

)
≤ Chs‖u‖Cs+α′′(Rn),



2.3 Appliation to the Resolvent Equations 15where we have used ‖∆hu‖Cα′′(Rn) ≤ C|h|s‖u‖Cs+α′′(Rn). The latter inequality an beeasily proved by �rst proving the ases s = 0, 1 and then using interpolation. Hene
L2 : Cs+α′′

(Rn) → Cs(Rn).Seondly, if 0 < α < 1, then the proof above is easily modi�ed using
|u(x+ y) − u(x)| ≤ C‖u‖Cs′(Rn)|y|

s′, |y| ≤ 1,for u ∈ Cs′(Rn) and s′ ∈ (0, 1) instead of (2.10).It remains to onsider the ase 0 ≤ α′ < 1 ≤ α. Using (2.10) with s′ = s+α′′ ∈ (1, 2)we onlude as before
‖L2u‖L∞(Rn)

≤ C

(
sup

x∈Rn,|y|≤1

|y|n+α′

|k2(x, y)| +

∫

|y|≥1

‖k2(., y)‖∞ dy

)
‖u‖Cs+α′′(Rn) (2.13)with a onstant C independent of k2. We use again (2.12). The seond term an beestimated in the same manner as before to obtain

‖L2
h(τhu)‖L∞(Rn) ≤ C|h|s‖u‖Cs+α′′(Rn).But the �rst term in (2.12) has to be estimated di�erently: Using (2.10) with ureplaed by ∆hu, we have on one hand

|∆hu(x+ y) − ∆hu(x) − y · ∇∆hu(x)|

≤ C‖∆hu‖Cs+α′′(Rn)|y|
s+α′′

≤ C ′‖u‖Cs+α′′(Rn)|y|
s+α′′

, |y| ≤ 1.On the other hand
|∆hu(x+ y) − ∆hu(x) − y · ∇∆hu(x)|

≤ C‖∆hu‖C1(Rn)|y| ≤ C ′|y||h|s+α′′−1‖u‖Cs+α′′(Rn), |y|, |h| ≤ 1.Interpolation of both inequalities yields
|∆hu(x+ y) − ∆hu(x) − y · ∇∆hu(x)| ≤ C|h|s|y|α

′′

‖u‖Cs+α′′(Rn)uniformly in |h|, |y| ≤ 1. With this inequality
‖L2∆hu‖L∞(Rn) ≤ C|h|s‖u‖Cs+α′′(Rn), |h| ≤ 1,is proved in the same way as before.Finally, if f ∈ C∞

0 (Rn), one easily proves L2f ∈ Cs
0(R

n) with the aid of Proposi-tion 2.1 and (1.7).



16 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORSFor the prinipal part L1, we use
u(x+ y) − u(x) − y · ∇u(x) = F−1

ξ 7→x

[(
eiy·ξ − 1 − iξ · y

)
û(ξ)

]
,

u(x+ y) − u(x) = F−1
ξ 7→x

[(
eiy·ξ − 1

)
û(ξ)

]
.Hene L1 an be represented as a pseudodi�erential operator

L1u(x) =

∫

Rn

eix·ξp(x, ξ)û(ξ)�ξ,where
p(x, ξ) :=

∫

Rn

(
eiy·ξ − 1 − iξ · y

)
k1(x, y) dy if α ∈ [1, 2),

p(x, ξ) :=

∫

Rn

(
eiy·ξ − 1

)
k1(x, y) dy if α ∈ (0, 1).Note that in the borderline ase α = 1 we also have

p(x, ξ) =

∫

Rn

(
eiy·ξ − 1

)
k1(x, y) dysine k1(x,−y) = k1(x, y) by the assumptions.The following lemma shows that p is a symbol in the lass studied above.Lemma 2.13 Let k1 : Rn ×Rn → R be N-times di�erentiable w.r.t the seond vari-able satisfying

‖∂β
y k1(., y)‖Cτ(Rn) ≤ C|y|−n−α−|β| (2.14)for all 0 < |y| ≤ 2 and |β| ≤ N and k1(x, y) = 0 for |y| ≥ 2 and k1(x,−y) = k1(x, y)if α = 1. Then p ∈ CτSα

1,0;N(Rn; Rn) where p is de�ned as above.Proof: We denote f(s) = eis − 1− is, s ∈ R, if α ∈ [1, 2) and f(s) = eis − 1, s ∈ R,if α ∈ (0, 1). Let γ, β ∈ N
n
0 with m = |γ| = |β| ≤ N . Then

∂
β
ξ (ξγf(y · ξ)) = ∂

β
ξ

(
∂γ

yF
m(y · ξ)

)
= ∂γ

y

(
∂

β
ξ F

m(y · ξ)
)

= ∂γ
y

(
yβf(y · ξ)

)where Fm denotes the m-th primitive of f . Therefore
∂

β
ξ (ξγp(x, ξ)) =

∫

Rn

∂γ
y

(
yβf(y · ξ)

)
k1(x, y) dy

= (−1)m

∫

Rn

yβf(y · ξ)∂γ
yk1(x, y) dy

= (−1)m|ξ|−n−m

∫

Rn

zβf

(
z ·

ξ

|ξ|

)
(∂γ

y k1)

(
x,

z

|ξ|

)
dz
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∥∥∥∂β
ξ (ξγp(., ξ))

∥∥∥
Cτ (Rn)

≤ C|ξ|−n−m

∫

Rn

|z|m
|z|j

1 + |z|

∣∣∣∣
z

|ξ|

∣∣∣∣
−n−α−m

dz

≤ C ′|ξ|α,where j = 2 if α ≥ 1 and j = 1 else. Moreover, if α = 1, we use that
∂

β
ξ (ξγp(x, ξ)) = (−1)m|ξ|−n−m

∫

|z|≤1

zβf

(
z ·

ξ

|ξ|

)
(∂γ

yk1)

(
x,

z

|ξ|

)
dz

+(−1)m|ξ|−n−m

∫

|z|>1

zβ
(
e

z· ξ

|ξ| − 1
)

(∂γ
yk1)

(
x,

z

|ξ|

)
dzsine k1(x,−y) = k1(x, y) by assumption. Therefore

∥∥∥∂β
ξ (ξγp(., ξ))

∥∥∥
Cτ (Rn)

≤ C|ξ|−n−m

∫

Rn

|z|m
|z|2

1 + |z|2

∣∣∣∣
z

|ξ|

∣∣∣∣
−n−α−m

dz

≤ C ′|ξ|α,also in the ase α = 1.Sine β, γ ∈ Nn
0 with |β| = |γ| ≤ N are arbitrary, the latter estimate implies

∥∥∥ξγ∂
β
ξ p(., ξ)

∥∥∥
Cτ (Rn)

≤ C|ξ|αfor all |β| = |γ| ≤ N , whih is easy to prove by indution. Hene
∥∥∥∂β

ξ p(., ξ)
∥∥∥

Cτ (Rn)
≤ C|ξ|α−|β|sine γ ∈ Nn

0 with |γ| = |β| is arbitrary.Hene (1.3), Lemma 2.13, Theorem 2.6, and Corollary 2.10 imply that
p(x,Dx) : Cs+α

0 (Rn) → Cα
0 (Rn)for all 0 < s < τ . Moreover, (1.4) implies

−Re p(x, ξ) =

∫

Rn

(1 − cos y · ξ)k1(x, y) dy ≥ c

∫

B2(0)

(1 − cos y · ξ)|y|−n−α dy ≥ C|ξ|αfor all |ξ| ≥ 1 and −Re p(x, ξ) ≥ 0 for all ξ ∈ Rn. Sine |p(x, ξ)| ≤ C〈ξ〉α, weonlude that ∣∣∣∣
Im p(x, ξ)

Re p(x, ξ)

∣∣∣∣ ≤M



18 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORSuniformly in |ξ| ≥ 1. Thus p(x, ξ) ∈ C \ Σδ for δ := π − arctanM > π
2
and for all

|ξ| ≥ 1.Hene, we an de�ne
qλ(y, ξ) := (λ− p(y, ξ))−1, y, ξ ∈ R

n, λ ∈ Σδ′ , |λ| ≥ R,for 0 < δ′ < δ and R > supx∈Rn,|ξ|≤1 |p(x, ξ)|.Sine p ∈ CτSα
1,0;N(Rn; Rn), we have qλ ∈ CτS−α

1,0;N(Rn; Rn). More preisely, thefollowing lemma holds:Lemma 2.14 Let qλ, δ be de�ned as above and λ ∈ Σδ′ where δ′ ∈ (0, δ) is arbitrary.Then there is some R > 0 suh that qλ ∈ CτS−α
1,0;N for all λ ∈ Σδ′ with |λ| ≥ R.Moreover, for eah α′ ∈ [0, α]

‖qλ‖Cτ S−α′

1,0;N

≤ Cδ′(1 + |λ|)−
α−α′

αuniformly in λ ∈ Σδ′ with |λ| ≥ R.Proof: First of all, by a simple geometri observation
|λ− z| ≥ cδ′ max{|λ|, |z|} if λ ∈ Σδ′ , z ∈ C \ Σδprovided that 0 < δ′ < δ. As seen above p(x, ξ) ∈ C \Σδ for |ξ| ≥ 1 and some δ > π

2and |p(x, ξ)| ≥ c|ξ|α for |ξ| ≥ 1. Hene
|λ− p(x, ξ)| ≥ cδ′ max{|λ|, |ξ|α} (2.15)for all |ξ| ≥ 1 and λ ∈ Σδ′ with 0 < δ′ < δ arbitrary. Moreover, sine |p(x, ξ)| ≤ Cfor all |ξ| ≤ 1 and x ∈ Rn, we onlude that (2.15) holds for all ξ ∈ Rn and λ ∈ Σδ′with |λ| ≥ R for some R > 0 su�iently large. Using this, p ∈ CτSα

1,0;N(Rn; Rn),and the hain rule, one derives in a straight-forward manner that
‖∂β

ξ qλ(., ξ)‖Cτ (Rn) ≤ Cδ′
〈ξ〉−|β|

|λ| + |ξ|α
≤ Cδ′ |λ|

−α−α′

α 〈ξ〉−α′−|β|uniformly in ξ ∈ Rn and λ ∈ Σδ′ , |λ| ≥ R > 0 and for all |β| ≤ N , whih proves thestatement.Appliation of Theorem 2.6, Corollary 2.10 and the lemma above gives:



2.3 Appliation to the Resolvent Equations 19Corollary 2.15 Let qλ, δ, δ′ be as above and let 0 < s < τ . Then qλ(Dx, x) : Cs
0(R

n) →
Cs+α

0 (Rn) is a bounded linear operator, whih satis�es
‖qλ(Dx, x)‖L(Cs

0
(Rn),Cs+α′

0
(Rn))

≤ Cδ′ |λ|
−α−α′

α for all λ ∈ Σδ‘, |λ| ≥ R,for all 0 ≤ α′ ≤ α with some su�iently large R > 0.Now we are in the position to prove the following key lemma.Lemma 2.16 Let qλ, δ, δ′ be as above and let 0 < s < τ . Then
(λ− p(x,Dx))qλ(Dx, x) = I − Rλwith

‖Rλ‖L(Cs
0(Rn)) ≤ Cδ′ |λ|

−εuniformly in λ ∈ Σδ′ with |λ| ≥ M for su�iently large M > 0 and some ε > 0depending on s, τ .Proof: First of all, for eah f ∈ C∞
0 (Rn), qλ(Dx, x)f ∈ Cs′+α(Rn) with s < s′ < τ .We onlude

N∑

j=0

ϕj(Dx)qλ(Dx, x)f → qλ(Dx, x)f in Cs+α(Rn) as N → ∞.Therefore
qλ(Dx, x)f =

∞∑

j=0

ϕj(Dx)qλ(Dx, x)f =
∞∑

j=0

qλ,j(Dx, x)fwhere qλ,j(ξ, y) = qλ(ξ, y)ϕj(ξ). Hene
(λ− p(x,Dx))qλ(Dx, x)f =

∞∑

j=0

(λ− p(x,Dx))qλ,j(Dx, x)f

= f +

∞∑

j=0

aλ,j(x,Dx, x)f,where aλ,j(x, y, ξ) = aλ(x, ξ, y)ϕj(ξ) and
aλ(x, y, ξ) =

λ− p(x, ξ)

λ− p(y, ξ)
− 1 = (p(y, ξ)− p(x, ξ))qλ(y, ξ).Using Lemma 2.14, we onlude

‖aλ‖Cτ Sα−α′

1,0;N

≤ C‖p‖CτSα
1,0;N

‖qλ‖CτS−α′

1,0;N

≤ Cδ′(1 + |λ|)−
α−α′

α .



20 2 THE CAUCHY PROBLEM FOR LÉVY-TYPE OPERATORSSine aλ(x, ξ, x) = 0, we an use Proposition 2.11 to onlude that
aλ(x,Dx, x) =

∞∑

j=0

aλ,j(x,Dx, x)is well-de�ned as limit in L(Cs
0(R

n)) and satis�es
‖aλ(x,Dx, x)‖L(Cs

0(Rn)) ≤ C‖aλ‖CτSα−α′

1,0;N

≤ Cδ′(1 + |λ|)−
α−α′

αfor eah 0 < α′ < α with α− α′ < τ − s.Reall that an unbounded operator A : D(A) ⊆ X → X generates an analyti semi-group on a Banah spae X if and only if A is losed, D(A) is dense, and there aresome δ > π
2
, ω ∈ R, and M ≥ 1 suh that (λ − A)−1 exists for all λ ∈ ω + Σδ andsatis�es

‖(λ−A)−1‖L(X) ≤
M

|λ− ω|
for all λ ∈ ω + Σδ, (2.16)f. [36℄.Corollary 2.17 Let 0 < s < τ . Then p(x,Dx) and L generate an analyti semi-group on Cs

0(R
n) with domains D(L) = D(p(x,Dx)) = Cs+α

0 (Rn). Moreover, if A =
p(x,Dx) or A = L, then

‖(λ− A)−1‖
L(Cs

0(Rn),Cs+α′

0 (Rn))
≤ Cδ′ |λ|

−α−α′

α for all λ ∈ Σδ‘, |λ| ≥ R,for all 0 ≤ α′ ≤ α with some su�iently large R > 0 and some δ′ > π
2
.Proof: By a standard Neumann series argument Lemma 2.16 yields that

(λ− p(x,Dx))
−1 : Cs

0(R
n) → Cs+α

0 (Rn)exists for all λ ∈ Σδ′ with |λ| ≥ R for some R > 0 and satis�es
‖(λ− p(x,Dx))

−1‖L(Cs
0(Rn)) ≤ 2‖qλ(Dx, x)‖L(Cs

0(Rn)) ≤ C|λ|−1.This implies (2.16) for a suitable hoie of ω. Hene p(x,Dx) generates an analytisemi-group on Cs
0(R

n) with domain D(p(x,Dx)) = Cs+α
0 (Rn).Similarly,

(λ− L)qλ(Dx, x) = I − Rλ + L2qλ(Dx, x),where
‖L2qλ(Dx, x)‖L(Cs

0(Rn)) ≤ C‖qλ(Dx, x)‖L(Cs
0(Rn),Cs+α′′

0 (Rn))
≤ Cδ,δ′,α′′ |λ|−

α−α′′

α



21uniformly in λ ∈ Σδ′ , |λ| ≥ R, with arbitrary α′ < α′′ < α. Thus the same argumentsas before show that L generates an analyti semi-group.Finally, the uniform estimate of (λ−A)−1 easily follows from Corollary 2.15.Proof of Theorem 1.1: Beause of Corollary 2.17, well-known results from semi-group theory imply the existene of a unique lassial solution u ∈ C1,θ([0, T ]; Cs
0(R

n))∩
Cθ([0, T ];D(L)) of (1.8)-(1.9), f. [36, Chapter 4, Theorem 3.5℄. Finally, sine
(λ − L)−1 : Cs

0(R
n) → Cs+α

0 (Rn) is a bounded operator for λ = R, the graph normon D(L), i.e., ‖u‖Cs + ‖Lu‖Cs, is equivalent to the norm of Cs+α(Rn). That u in-herits the non-negativity from f is easily established using the maximum priniple.
3 The Martingale ProblemThe standard referene for the martingale problem for di�usion operators is [40℄.Sine the paths of jump proesses are not ontinuous by nature we have to set upthe martingale problem for the path spae D([0,∞); Rn) of all àdlàg paths. Goodsoures for this spae are [8℄, [13℄, [20℄, the �rst edition [7℄ is su�ient for manypurposes. The standard referene for the martingale problem on D([0,∞); Rn) is[13℄.We denote by D([0,∞); Rn) the set of all funtions ω : [0,∞) → Rn satisfying for all
t ≥ 0

lim
s→t+

ω(s) = ω(t) , ∃ω(t−) = lim
s→t−

ω(s) .A basi fat about D([0,∞); Rn) is that any ω ∈ D([0,∞); Rn) has at most ountablymany points of disontinuity. As on the spae of ontinuous funtions the mapping
duc de�ned by

duc(ω1, ω2) =
∑

k∈N

2−k min
{
1, sup

t≤k
|ω1(t) − ω2(t)|

}de�nes a metri. The spae (D([0,∞); Rn), duc

) is a omplete metri spae but,di�erent from the ase of ontinuous funtions, it is not separable. To see this,onsider
M :=

{
ωs ∈ D([0,∞); Rn);ωs(t) = 1[s,∞)(t), s ∈ [0, 1)

}
.There annot be a ountable dense subset A to the unountable setM sine duc(ωs, ωt) =

1
2
as along as s 6= t. The set A would need to be unountable right away.



22 3 THE MARTINGALE PROBLEMNevertheless, there exists a metrizable topology on D([0,∞); Rn) suh that it be-omes a omplete, separable metri spae. We summarize the main results on thisspae in the following theorem. Sine the spae D([0,∞); Rn) is not too well knownamong analysts we inlude many details in this theorem. It is almost idential toTheorem VI.1.14 in [20℄.Theorem 3.1 (1) There exists a metrizable topology on D([0,∞); Rn), alled theSkohorod topology for whih the spae is omplete and separable. Denote the metriby d. Then d(ωn, ω) → 0 is equivalent to the existene of a sequene of stritlyinreasing funtions λn : [0,∞) → [0,∞), satisfying λn(0) = 0, λn(t) ր ∞ for
t→ ∞ and at the same time






sup
s≥0

|λn(s) − s| → 0 as n→ ∞ ,
(

sup
s≤k

|ωn(λn(s)) − ω(s)| → 0 as n→ ∞
)

∀ k ∈ N .(2) A set M ⊂ D([0,∞); Rn) is relatively ompat for the Skohorod topology if andonly if




sup
ω∈M

sup
s≤k

|ω(s)| <∞ ∀k ∈ N ,

lim
ρ→0+

sup
ω∈M

γk(ω, ρ) = 0 ∀ k ∈ N .where γk(ω, t) is a generalized modulus of ontinuity, de�ned via
γk(ω, ρ) = inf

{
max
i≤L

γ(ω; [ti−1, ti)) : 0 = t0 < . . . < tL = k, inf
i<L

(ti − ti−1) ≥ ρ
}
,where γ(ω; I) is the usual modulus of ontinuity for ω on the interval I ⊂ R.(3) For given t ≥ 0 let us denote by Πt the projetion D([0,∞); Rn) → Rn, ω 7→

ω(t) = Πt(ω). With this notation the Borel σ-�eld B(D([0,∞); Rn), d
) equals σ(Πt; t ≥

0).(4) The vetor spae (D([0,∞); Rn), d
) is not a topologial vetor spae sine additionof two elements is not ontinuous with respet to this topology.A stohasti proess X with paths in D([0,∞); Rn) an be interpreted as a randomvariable

X : (Ω,F ,P) → D([0,∞); Rn)with Xt(ω) = ω(t) where (Ω,F ,P) is an abstrat probability spae. Given a family
(Xα)α∈A of suh proesses we say that (Xα)α∈A is relatively ompat if the family
(PXα)α∈A of image measures PXα = P ◦ (Xα)−1 is relatively ompat whih, due toProkhorov's theorem, amounts to saying that (PXα)α∈A is tight.



23Usually, well-posedness of the martingale problem is muh harder to be proved thanmere solvability. A key feature that we use in order to show uniqueness of thesolutions is formulated in the following lemma. It says that �nite-dimensional dis-tributions form a onvergene determining lass, see Theorem 3.7.8. in [13℄.Lemma 3.2 Suppose that (Xn)n∈N is a relative ompat family of stohasti pro-esses Xn : (Ω,F ,P) → D([0,∞); Rn) suh as X and there is a dense subset
J ⊂ [0,∞) suh that

(
Xn(t1), . . .X

n(tN)
) d
⇒
(
X(t1), . . .X(tN)

)or, equivalently P(
Xn(t1),...Xn(tN )

) → P(
X(t1),...X(tN )

) weaklyfor all �nite subsets {t1, . . . , tN} ⊂ J . Then Xn d
⇒ X or, equivalently PXn → PXweakly.The situation turns out to be even better for solutions to the martingale problem.The following universal result says that even one-dimensional distributions determinethe measure provided they agree for all initial distributions µ, see Theorem 4.4.2 in[13℄.Lemma 3.3 Consider the linear operator (L,D(L)) with L de�ned as in (1.1). As-sume that for any initial distribution µ and any two orresponding solutions Pµ, Qµto the martingale problem Pµ

Πt
= Qµ

Πt
∀ t ≥ 0 ,then there exists at most one solution to the martingale problem for any initial dis-tribution µ.The key to the proof is to show that regular onditional probabilities solve themartingale problem. Finally, we an prove Theorem 1.2.Proof of Theorem 1.2: The existene of a solution Pµ for a given distribution µ on

Rn has been established by several authors, see Theorem 2.2 in [39℄, Theorem IX.2.31in [20℄ and Theorem 3.2 in [14℄. Note that these papers establish existene for a lasswhih is muh larger than the lass for whih uniqueness is shown. Beause of theseresults, is is su�ient for us to study the question of uniqueness. Uniqueness followsfrom solvability of the deterministi paraboli equation (1.9). This is the strategyworked out in [40℄ for the ase of di�usions. It applies to our situation without manyhanges.Assume that there are two solutions Pµ, Qµ to the martingale problem for a givendistribution µ. A key step is to show that, for any T > 0 the stohasti proess



24 3 THE MARTINGALE PROBLEM
M = (Mt)t∈[0,T ] de�ned via

Mt = v(t,Πt) −

t∫

0

( ∂
∂s

+ L
)
v(s,Πs) ds (3.1)is aPµ-martingale and thus also aQµ-martingale for any funtion v ∈ C1,θ([0, T ]; Cs

0(R
n))

∩ Cθ([0, T ]; Cs+α
0 (Rn)) with s, θ ∈ (0, 1). This is proved exatly as in Theorem 4.2.1.�(i)⇒(ii)� of [40℄. Note that L is a bounded operator from Cs+α

0 (Rn) to Cs
0(R

n) whihis what we need. The onlusion �(i)⇒(ii)� does not depend on the loal strutureof the di�erential operator or another spei� property.The main result follows one the following equality
T∫

0

φ(s)EPµ

(
ψ(Πs)

)
ds =

T∫

0

φ(s)EQµ

(
ψ(Πs)

)
ds (3.2)is established for any T > 0 and any hoie of φ ∈ C∞

0 ((0, T )), ψ ∈ C∞
0 (Rn).Here, EPµ and EQµ denote the expetation with respet to Pµ and Qµ respetively.Equality (3.2) proves the equality of one-dimensional distributions, i.e. Pµ

Πt
= Qµ

Πtfor all t > 0, whih in light of Lemma 3.3 proves the desired uniqueness result.Equality (3.2) is proved as follows.Setting f(t, x) = φ(t)ψ(x), Theorem 1.1 proves that there is a funtion v belongingto C1,θ([0, T ]; Cs
0(R

n)) ∩ Cθ([0, T ]; Cs+α
0 (Rn)) and solving

∂tv + Lv = f in (0, T ) × R
n,

v(T, ·) = 0 in R
n.Thus

−

T∫

0

φ(s)EPµ

(
ψ(Πs)

)
ds = −EPµ

T∫

0

f(s,Πs) ds = EPµ

(
MT

)
= EPµ

(
M0

)

= EPµ

(
v(0,Π0)

)
=

∫

D([0,∞);Rn)

v(0,Π0(ω))Pµ(dω) =

∫

Rn

v(0, x)µ(dx) .Sine the same line with the same right-hand side holds true when Pµ is replaed byQµ equality (3.2) is established. The theorem is proved.
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