
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Fast and Exact Projected Convolution of

Piecewise Linear Functions on Non-equidistant

Grids - Extended Version

(revised version: December 2006)

by

Wolfgang Hackbusch

Preprint no.: 110 2006

Fast and Exact Projected Convolution of Piecewise
Linear Functions on Non-equidistant Grids - Extended

Version

W. Hackbusch, Leipzig

Abstract

Usually, the fast evaluation of a convolution integral
∫

R
f(y)g(x − y)dy requires

that the functions f, g are discretised on an equidistant grid in order to apply the
fast Fourier transform. Here we discuss the efficient performance of the convolution in
locally refined grids. More precisely, f and g are assumed to be piecewise linear and
the convolution result is projected into the space of linear functions in a given locally
refined grid. Under certain conditions, the overall costs are still O(N log N), where
N is the sum of the dimensions of the subspaces containing f , g and the resulting
function.

AMS Subject Classifications: 44A35, 42A55
Key words: convolution integral, non-uniform grids, discrete convolution

1 Introduction

We consider the convolution integral

ωexact (x) := (f ∗ g) (x) :=

∫
R

f(y)g(x− y)dy (1.1)

for functions f, g of bounded support.
The computations are restricted to functions f, g which are piecewise linearly defined on

locally refined meshes with possible discontinuities at the grid points. A simple example of
such a locally refined mesh is depicted below:

1/20 1/4 1 (1.2a)

The mesh size 1/8 in [1/2, 1], 1/16 in [1/4, 1/2] and 1/16 in [0, 1/4] is a typical refinement
towards x = 0. The depicted mesh can be decomposed into different levels as indicated
below:

0 1/4

1/2
1

level 1

level 2

level 0

(1.2b)

1

The latter representation uses several levels, but each level � is associated with an equidistant
grid of size

h� := 2−�h (0 ≤ � ≤ L) (1.3)

(here, h = 1/8). The largest level number appearing in the grid hierarchy will be denoted
by L.

Such a refinement approach is well-known from the adaptive wavelet technique. Grids
like the depicted ones are obtainable from a first coarse grid with mesh size h at level � = 0
which is locally refined by halving certain subintervals recursively. The exact description of
the locally refined mesh will be given in Section 2.

The standard tool for convolutions is the Fast Fourier Transform (FFT), which, however,
applies only for data in a uniform grid.

In principle, one can approximate f ∗ g via Fourier transform: Also for non-equidistant
grids there are ways to approximate the Fourier transform f̂ and ĝ (see [5]) and the back
transform of f̂ · ĝ would yield an approximation of f ∗ g. A fast algorithm for a generalised
convolution is described in [6]. However, in these approaches the approximation error de-
pends on the interpolation error and we do not guarantee any smoothness of f or g. In
contrary, the use of locally refined meshes indicates a nonsmooth situation. In our approach
we avoid interpolation errors, since the quantities of interest are computed exactly.

To cover the general case, we will allow that the functions f and g involved in the
convolution belong to possibly different locally refined meshes. Also the resulting convolution
will be described by a third locally refined grid, which may be different from the grids for f
and g.

Since the locally refined meshes have the purpose to approximate some functions fexact

and gexact in an adaptive way by f and g, it is only natural to approximate ωexact also by a
piecewise linear function ω in a third given locally refined mesh. We use the L2-orthogonal
projection onto this space to obtain the final result ω from ωexact.

Therefore, the goal of the algorithm is to compute ω as the L2-orthogonal projection of
f ∗ g . Note that we compute the exact L2-orthogonal projection, i.e., there is no approxi-
mation error except the unavoidable projection error.

The computation of f ∗ g for functions from locally refined grids is also discussed in
the previous papers [2], [3], [4]. In [2, §§3-6], f, g are assumed to be piecewise constant.
The paper describes how to evaluate ωexact := f ∗ g at the grid points of the given locally
refined grid. [3] explains in general how the convolution of piecewise polynomial functions
f, g defined on locally refined grids can be projected L2-orthogonally into another piecewise
polynomial space. However, the concrete algorithm given in [3] is restricted to piecewise
constant functions, while for polynomial degree p > 0 only a general guideline is given (cf.
[3, §8]). The present paper can be considered as the concretisation of the technique for
polynomial degree p = 1. The paper [4] is also dealing with the piecewise constant case, but
describes the necessary modifications in order to obtain local mass conservation. As stated
in [4], mass conservation (without any modification of the algorithm) holds for piecewise
polynomials of at least degree 1, hence in particular for the piecewise linear ansatz discussed
here.

The organisation of this paper is as follows.
Section 2 gives a precise definition of locally refined meshes and of the corresponding

ansatz spaces Sf ,Sg which f and g belong to and of the target space Sω for the projection

2

ω of ωexact = f ∗ g. In particular, the basis functions are introduced in §2.3.
Section 3 introduces some notations and formulates the basic problem.
Section 4 introduces the γ, G, and Γ-coefficients which are essential for the representation

of the projected values. The Γ-coefficients will appear in the algorithm.
The main chapter of this paper is Section 5 which describes the algorithm. There are

three disjoint cases A, B, C which must be treated differently (see §§5.1-5.3).
In all three cases mentioned above, we have to perform a discrete convolution of sequences

by means of the FFT technique. The precise implementation of the discrete convolution is
described in [3, §6] and need not repeated here. Also the estimation of the computational
cost is contained in [3, §7]. There, under certain conditions, the bound

O (N logN)

is derived, where N describes the data size of the factors f, g and the projected convolution
ω = P (f ∗ g).

So far we have treated the case of piecewise linear but discontinuous functions. The last
Section 6 discusses the case of globally continuous piecewise linear functions and proposes
an efficient algorithm for the projected convolution.

2 Spaces

2.1 The Locally Refined Meshes

The grids depicted in (1.2b) are embedded into infinite grids M� which are defined below.
With h� from (1.3) we denote the subintervals of level � by

I�
ν := [νh�, (ν + 1) h�) for ν ∈ Z, � ∈ N0. (2.1)

This defines the meshes

M� :=
{
I�
ν : ν ∈ Z

}
for � ∈ N0. (2.2)

The (equidistant) grid points of M� are {νh� : ν ∈ Z} .
A finite and locally refined mesh M is a set of finitely many disjoint intervals from various

levels, i.e.,1

M ⊂
⋃

�∈N0

M�, all I, I ′ ∈ M with I �= I ′ are disjoint, #M <∞ . (2.3)

Definition (2.3) corresponds to the representation (1.2a), whereas (1.2b) gives rise to the
following dynamic definition. Let M′

0 ⊂ M0 be a finite part of the infinite grid M0. Certain
intervals I0

ν ∈ M′
0 are refined, i.e., I0

ν is removed from M′
0 and the resulting new subintervals

I1
2ν and I1

2ν+1 of halved size are added to M′
1 ⊂ M1 (initialised by M′

1 := ∅). Recursively,
certain I�

ν ∈ M′
� are replaced by I�+1

2ν , I�+1
2ν+1 ∈ M′

�+1. Let M′′
� be the final value of M′

� after
terminating the refinement process. Then M :=

⋃
�∈N0

M′′
� yields the set from (2.3).

1The sign # denotes the cardinality of a set.

3

2.2 The Ansatz Spaces

The piecewise linear space S corresponding to the mesh M is defined by

S = S (M) = {φ ∈ L∞(R) : φ|I linear if I ∈ M, φ(x) = 0 if x /∈ I for all I ∈ M} .

The two factors f, g of the convolution ωexact from (1.1) as well as the (projected) image
ω may be organised by three different locally refined meshes

Mf , Mg, Mω, (2.4)

which are all of the form (2.3). These meshes give rise to three spaces

Sf := S (Mf
)
, Sg := S (Mg) , Sω := S (Mω) .

We recall that f ∈ Sf and g ∈ Sg are the input data, while the result is the exact L2-
orthogonal projection of f ∗ g onto Sω.

Applications involving convolutions can be found in [2], where the underlying problem
takes the principal form df/dt = . . . + f ∗ f (here Sf = Sg = Sω is the appropriate choice
of spaces) and in [1], where a fixed point equation f = . . .+ f ∗ g is to be solved (therefore
Sf = Sω, while Sg may be chosen differently).

2.3 Basis Functions

Functions from S (M) may be discontinuous at the grid points of the mesh. This fact has
the advantage that the basis functions spanning S (M) have minimal support (the support
is just one interval of M).

Here, we consider the case of piecewise linear functions. The following basis functions of
level � are derived from the Legendre polynomials:

Φ�
i,0(x) :=

{
1/
√
h� if x ∈ I�

i ,
0 otherwise,

(2.5a)

Φ�
i,1(x) :=

{ √
12
(
x− x�

i+1/2

)
/h

3/2
� if x ∈ I�

i ,

0 otherwise,
(2.5b)

where
x�

i+1/2 := (i+ 1/2)h�

is the midpoint of the interval I�
i , which is the support of Φ�

i,α. Note that Φ�
i,α (α = 0, 1) are

orthonormal. Since the intervals I ∈ M are non-overlapping, the functions in the right-hand
side of

S (M) = span
{
Φ�

i,α : α ∈ {0, 1}, I�
i ∈ M}

form an orthonormal system of S (M) .
Let S� be the space of piecewise linear functions of level � (on the infinite mesh M� from

(2.2)):
S� := span

{
Φ�

i,α : α ∈ {0, 1}, i ∈ Z
}

(� ∈ N0) . (2.6)

4

For fixed �, the basis {
Φ�

i,α : α ∈ {0, 1}, i ∈ Z
}

is orthonormal due to the chosen scaling.
The spaces S� are nested, i.e.,

S� ⊂ S�+1.

In particular, Φ�
i,α can be represented by means of Φ�+1

i,α :

Φ�
i,0 =

1√
2

(
Φ�+1

2i,0 + Φ�+1
2i+1,0

)
, (2.7a)

Φ�
i,1 =

1

2
√

2

(
Φ�+1

2i,1 + Φ�+1
2i+1,1 +

√
3
(
Φ�+1

2i+1,0 − Φ�+1
2i,0

))
. (2.7b)

3 Notations and Definition of the Problem

3.1 Representations of f ∈ Sf and g ∈ Sg

Following the definition of Sf , we have Sf = span
{
Φ�

i : I�
i ∈ Mf

}
. We can decompose the

set Mf into different levels:

Mf =
⋃Lf

�=0
Mf

� , where Mf
� := Mf ∩M�.

This gives rise to the related index set

If
� :=

{
i ∈ Z : I�

i ∈ Mf
�

}
(3.1)

and to the corresponding decomposition

Sf =
⋃Lf

�=0
Sf

� with Sf
� = span

{
Φ�

i,α : α = 0, 1, i ∈ If
�

}
.

Here, Lf is the largest level � with Mf
� �= ∅. Similarly, Ig

� , Sg
� and Lg correspond to Mg and

Sg.
We start from the representation

f =
Lf∑
�=0

f�, f� =
∑
i∈If

�

1∑
α=0

f �
i,αΦ�

i,α ∈ Sf
� , (3.2a)

g =

Lg∑
�=0

g�, g� =
∑
i∈Ig

�

1∑
α=0

g�
i,αΦ�

i,α ∈ Sg
� , (3.2b)

of the factors f, g of the convolution. Similarly, the final L2-orthogonal projection ω of f ∗ g
will have the form

ω =
Lω∑
�=0

ω�, ω� =
∑
i∈Iω

�

1∑
α=0

ω�
i,αΦ�

i,α ∈ Sω
� . (3.2c)

5

3.2 Projections P and P�

The L2-orthogonal projection P onto Sω
� is defined by

Pϕ :=
∑
i∈Iω

�

1∑
α=0

〈
ϕ,Φ�

i,α

〉
Φ�

i,α ∈ Sω
�

with the L2-scalar product 〈ϕ, ψ〉 =
∫

R
ϕψdx. We will also use the L2-orthogonal projection

P� onto the space S� from (2.6) defined by

P� ϕ :=
∑
i∈Z

1∑
α=0

〈
ϕ,Φ�

i,α

〉
Φ�

i,α. (3.3)

3.3 Definition of the Basic Problem

We use the decomposition into scales expressed by

f =

Lf∑
�′=0

f�′ and g =

Lg∑
�=0

g� (see (3.2a,b)).

The convolution f ∗ g can be written as

f ∗ g =

Lf∑
�′=0

Lg∑
�=0

f�′ ∗ g� .

Since the convolution is symmetric, we can rewrite the sum as

f ∗ g =
∑
�′≤�

f�′ ∗ g� +
∑
�<�′

g� ∗ f�′ , (3.4)

where �′, � are restricted to the level intervals 0 ≤ �′ ≤ Lf , 0 ≤ � ≤ Lg. Hence, the basic
task is as follows.

Problem 3.1 Let �′ ≤ �, f�′ ∈ S�′ , g� ∈ S�, and �′′ ∈ N0 a further level. Then, the
projection P�′′(f�′ ∗ g�) is to be computed. More precisely, only the restriction of P�′′(f�′ ∗ g�)
to
⋃

i∈Iω
�′′
I�′′
i is needed, since only this part appears in Sω

�′′ .

Because of the splitting (3.4), we may assume �′ ≤ � without loss of generality. In the
case of the second sum one has to interchange the rôles of the symbols f and g.

Before we present the solution algorithm in Section 5, we introduce some further notations
in the next Section 4.

6

4 Auxiliary Coefficients

4.1 γ-Coefficients

For level numbers �′′, �′, � ∈ N0 and integers i, j, k ∈ Z we define

γ�′′,�′,�
(i,α),(j,β),(k,κ) :=

∫∫
Φ�′′

i,α(x) Φ�′
j,β(y) Φ�

k,κ(x− y)dxdy (4.1)

(all integrations over R). We remark that γ�′′,�′,�
(i,α),(j,β),(k,κ) =

〈
Φ�′′

i,α,Φ
�′
j,β ∗ Φ�

k,κ

〉
is the L2-scalar

product of the basis function Φ�′′
i,α and the convolution Φ�′

j,β ∗ Φ�
k,κ.

The connection to the computation of the projection

ω�′′ = P�′′ (f�′ ∗ g�) (4.2)

of the convolution f�′ ∗ g� from Problem 3.1 is as follows. ω�′′ is represented by

ω�′′ =

�∑
i∈Z

1∑
α=0

ω�′′
i,αΦ�′′

i,α,

where the coefficients ω�′′
i,α result from

ω�′′
i,α =

∫
(f�′ ∗ g�)(x) Φ�′′

i,α(x) dx (4.3)

=

∫
Φ�′′

i,α(x)

(∑
j∈Z

1∑
β=0

f �′
j,βΦ

�′
j,β ∗

∑
k∈Z

1∑
κ=0

g�
k,κΦ�

k,κ

)
(x) dx

=
∑
j,k∈Z

1∑
β,κ=0

f �′
j,β g

�
k,κ

∫∫
Φ�′′

i,α(x)Φ�′
j,β(y)Φ�

k,κ(x− y) dxdy

=
∑
j,k∈Z

1∑
β,κ=0

f �′
j,β g

�
k,κ γ

�′′,�′,�
(i,α),(j,β),(k,κ) .

The recursion formulae (2.7a,b) can be applied to all three basis functions in the inte-

grand Φ�′′
(i,α)(x) Φ�′

(j,β)(y) Φ�
(k,κ)(x − y) of γ�′′,�′,�

(i,α),(j,β),(k,κ). Some of the resulting recursions for

γ�′′,�′,�
(i,α),(j,β),(k,κ) are given in the next Remark.

Remark 4.1 For all �′′, �′, � ∈ N0 and all i, j, k ∈ Z we have

γ�′′,�′,�
(i,0),(j,β),(k,κ) =

1√
2

(
γ�′′+1,�′,�

(2i,0),(j,β),(k,κ) + γ�′′+1,�′,�
(2i+1,0),(j,β),(k,κ)

)
, (4.4a)

γ�′′,�′,�
(i,1),(j,β),(k,κ) =

1

2
√

2

(−√
3 γ�′′+1,�′,�

(2i,0),(j,β),(k,κ) +
√

3 γ�′′+1,�′,�
(2i+1,0),(j,β),(k,κ)

+ γ�′′+1,�′,�
(2i,1),(j,β),(k,κ) + γ�′′+1,�′,�

(2i+1,1),(j,β),(k,κ)

)
, (4.4b)

γ�′′,�′,�
(i,α),(j,0),(k,κ) =

1√
2

(
γ�′′,�′+1,�

(i,α),(2j,0),(k,κ) + γ�′′,�′+1,�
(i,α),(2j+1,0),(k,κ)

)
, (4.4c)

γ�′′,�′,�
(i,α),(j,1),(k,κ) =

1

2
√

2

(−√
3 γ�′′,�′+1,�

(i,α),(2j,0),(k,κ) +
√

3 γ�′′,�′+1,�
(i,α),(2j+1,0),(k,κ)

+ γ�′′,�′+1,�
(i,α),(2j,1),(k,κ) + γ�′′,�′+1,�

(i,α),(2j+1,1),(k,κ)

)
. (4.4d)

7

4.2 Simplified γ-Coefficients

For levels �, �′, �′′ with � ≥ max{�′, �′′} we set

γ�′′,�′,�
ν,(α,β,κ) :=

∫∫
Φ�′′

0,α(x) Φ�′
0,β(y) Φ�

ν,κ(x− y)dxdy (ν ∈ Z) , (4.5)

i.e., γ�′′,�′,�
ν,(α,β,κ) = γ�′′,�′,�

(0,α),(0,β),(k,κ) =
〈
Φ�′′

0,α,Φ
�′
0,β ∗ Φ�

ν,κ

〉
. We call these coefficients simplified γ-

coefficients, since only one subindex ν is involved instead of the triple (i, j, k) .

Under the condition � ≥ max{�′, �′′}, it suffices to use the quantities γ�′′,�′,�
ν,(α,β,κ) from (4.5)

as shown in the next Lemma whose proof is based on the shift property of the basis functions.

Lemma 4.2 Let � ≥ max{�′, �′′}. Then

γ�′′,�′,�
(i,α),(j,β),(k,κ) = γ�′′,�′,�

k−i2�−�′′+j2�−�′ ,(α,β,κ)
for any i, j, k ∈ Z, α, β,κ ∈ {0, 1} . (4.6)

Remark 4.3 The values of γ�,�,�
ν,(α,β,κ) are

γ�,�,�
0,(0,0,0) = γ�,�,�

−1,(0,0,0) =
√
h�/2,

γ�,�,�
0,(1,0,0) =

√
h�/12, γ�,�,�

−1,(1,0,0) = −
√
h�/12,

γ�,�,�
0,(0,1,0) = γ�,�,�

0,(0,0,1) = −
√
h�/12, γ�,�,�

−1,(0,1,0) = γ�,�,�
−1,(0,0,1) =

√
h�/12,

γ�,�,�
0,(1,1,0) = γ�,�,�

−1,(1,1,0) = γ�,�,�
0,(1,0,1) = γ�,�,�

−1,(1,0,1) = 0,

γ�,�,�
0,(0,1,1) = γ�,�,�

−1,(0,1,1) = 0,

γ�,�,�
0,(1,1,1) = −

√
3h�/5, γ�,�,�

−1,(1,1,1) =
√

3h�/5,

and γ�,�,�
ν,(α,β,κ) = 0 for ν /∈ {0, 1}.

Proof. First, one has to determine the convolution
∫

Φ�
0,β(y) Φ�

0,κ(x − y)dy. This function
has its support in [0, 2h�]:

β κ values in [0, h�] values in [h�, 2h�]
0 0 x/h� (1 − x/h�)

1 0
√

3 (x− h�) x/h
2
�

√
3 (h� − x) (x− 2h�) /h

2
�

0 1
√

3 (x− h�) x/h
2
�

√
3 (h� − x) (x− 2h�) /h

2
�

1 1 (3h2
� − 6h�x+ 2x2)x/h3

� (2h�x+ h2
� − 2x2) (x− 2h�) /h

3
� .

(4.7)

Integration with Φ�
0,α yields γ�,�,�

0,(α,β,κ). To obtain γ�,�,�
−1,(α,β,κ) one has to integrate with Φ�

1,α.

8

4.3 G- and Γ-Coefficients

As stated in (4.3), we have to compute
∑

j,k∈Z

∑1
β,κ=0 f

�′
j,β g

�
k,κ γ

�′′,�′,�
(i,α),(j,β),(k,κ). Performing only

the summation over k and κ, leads us to

G�′′,�′,�
(i,α),(j,β) =

∑
k∈Z

1∑
κ=0

g�
k,κ γ

�′′,�′,�
(i,α),(j,β),(k,κ). (4.8)

From G�′,�′,�
(i,α),(j,β) =

∑
k,κ g

�
k,κ γ

�′,�′,�
k−(i−j)2�−�′ ,(α,β,κ)

one concludes in the case �′′ = �′ ≤ � that

G�′,�′,�
(i,α),(j,β) = G�′,�′,�

(i−j,α),(0,β). (4.9)

Using the recursions (4.4a-d) from Remark 4.1, one proves the following result.

Remark 4.4 For all �′′, �′, � ∈ N0 and all i, j ∈ Z we have

α = 0 : G�′′,�′,�
(i,0),(j,β) = 1√

2

(
G�′′+1,�′,�

(2i,0),(j,β) +G�′′+1,�′,�
(2i+1,0),(j,β)

)
,

β = 0 : G�′′,�′,�
(i,α),(j,0) = 1√

2

(
G�′′,�′+1,�

(i,α),(2j,0) +G�′′,�′+1,�
(i,α),(2j+1,0)

)
,

α = 1 : G�′′,�′,�
(i,1),(j,β) =

1

2
√

2

(−√
3G�′′+1,�′,�

(2i,0),(j,β) +
√

3G�′′+1,�′,�
(2i+1,0),(j,β)

+G�′′+1,�′,�
(2i,1),(j,β) +G�′′+1,�′,�

(2i+1,1),(j,β)

)
,

β = 1 : G�′′,�′,�
(i,α),(j,1) =

1

2
√

2

(−√
3G�′′,�′+1,�

(i,α),(2j,0) +
√

3G�′′,�′+1,�
(i,α),(2j+1,0)

+G�′′,�′+1,�
(i,α),(2j,1) +G�′′,�′+1,�

(i,α),(2j+1,1)

)
.

(4.10)

If the first two levels are equal: �′′ = �′ ≤ �, the coefficients are denoted by

Γ�′,�
i,(α,β) := G�′,�′,�

(0,α),(−i,β) =
∑
k∈Z

1∑
κ=0

g�
k,κ γ

�′,�′,�
k−i2�−�′ ,(α,β,κ)

. (4.11)

Lemma 4.5 a) For �′ = �, the values

Γ�,�
i,(α,β) =

1∑
κ=0

(
g�

i,κ γ
�,�,�
0,(α,β,κ) + g�

i−1,κ γ
�,�,�
−1,(α,β,κ)

)

can be computed from the γ-values given in Remark 4.3.
b) For �′ < �, one can make use of the following recursions:

Γ�′,�
i,(0,0) =

1

2
Γ�′+1,�

2i−1,(0,0) + Γ�′+1,�
2i,(0,0) +

1

2
Γ�′+1,�

2i+1,(0,0), (4.12)

Γ�′,�
i,(1,0) =

√
3

4

(
Γ�′+1,�

2i+1,(0,0) − Γ�′+1,�
2i−1,(0,0)

)
+

1

4

(
Γ�′+1,�

2i−1,(1,0) + Γ�′+1,�
2i+1,(1,0)

)
+

1

2
Γ�′+1,�

2i,(1,0),

Γ�′,�
i,(0,1) =

√
3

4

(
Γ�′+1,�

2i−1,(0,0) − Γ�′+1,�
2i+1,(0,0)

)
+

1

4

(
Γ�′+1,�

2i−1,(0,1) + Γ�′+1,�
2i+1,(0,1)

)
+

1

2
Γ�′+1,�

2i,(0,1),

Γ�′,�
i,(1,1) = −3

8

(
Γ�′+1,�

2i−1,(0,0) + Γ�′+1,�
2i+1,(0,0)

)
+

3

4
Γ�′+1,�

2i,(0,0) +
1

8

(
Γ�′+1,�

2i−1,(1,1) + Γ�′+1,�
2i+1,(1,1)

)
+

1

4
Γ�′+1,�

2i,(1,1)

+

√
3

8

(
−Γ�′+1,�

2i−1,(0,1) + Γ�′+1,�
2i+1,(0,1) + Γ�′+1,�

2i−1,(1,0) − Γ�′+1,�
2i+1,(1,0)

)
.

9

Proof of part b). Case of (α, β) = (0, 0): In order to compute Γ�′,�
i,(0,0) from Γ�′+1,�

i,(0,0), one has to

combine the first two lines of (4.10):

Γ�′,�
i,(0,0) = G�′,�′,�

(i,0),(0,0) =
(4.101)

1√
2

(
G�′+1,�′,�

(2i,0),(0,0) +G�′+1,�′,�
(2i+1,0),(0,0)

)
=

(4.102)

1√
2

(
1√
2

(
G�′+1,�′+1,�

(2i,0),(0,0) +G�′+1,�′+1,�
(2i,0),(1,0)

)
+ 1√

2

(
G�′+1,�′+1,�

(2i+1,0),(0,0) +G�′+1,�′+1,�
(2i+1,0),(1,0)

))
=

(4.9)

1√
2

(
1√
2

(
G�′+1,�′+1,�

(2i,0),(0,0) +G�′+1,�′+1,�
(2i−1,0),(0,0)

)
+ 1√

2

(
G�′+1,�′+1,�

(2i+1,0),(0,0) +G�′+1,�′+1,�
(2i,0),(0,0)

))
= G�′+1,�′+1,�

(2i,0),(0,0) +
1

2
G�′+1,�′+1,�

(2i−1,0),(0,0) +
1

2
G�′+1,�′+1,�

(2i+1,0),(0,0)

=
1

2
Γ�′+1,�

2i−1,(0,0) + Γ�′+1,�
2i,(0,0) +

1

2
Γ�′+1,�

2i+1,(0,0).

Case of (α, β) = (1, 0):

Γ�′,�
i,(1,0) = G�′,�′,�

(i,1),(0,0) =
(4.103)

1

2
√

2

(−√
3G�′+1,�′,�

(2i,0),(0,0) +
√

3G�′+1,�′,�
(2i+1,0),(0,0)

+G�′+1,�′,�
(2i,1),(0,0) +G�′+1,�′,�

(2i+1,1),(0,0)

)

=
(4.102)

1

2
√

2

⎛
⎝ −√

3 1√
2

(
G�′+1,�′+1,�

(2i,0),(0,0) +G�′+1,�′+1,�
(2i,0),(1,0)

)
+
√

3 1√
2

(
G�′+1,�′+1,�

(2i+1,0),(0,0) +G�′+1,�′+1,�
(2i+1,0),(1,0)

)
+ 1√

2

(
G�′+1,�′+1,�

(2i,1),(0,0) +G�′+1,�′+1,�
(2i,1),(1,0)

)
+ 1√

2

(
G�′+1,�′+1,�

(2i+1,1),(0,0) +G�′+1,�′+1,�
(2i+1,1),(1,0)

)
⎞
⎠

=
(4.9)

1

4

⎛
⎝ −√

3
(
G�′+1,�′+1,�

(2i,0),(0,0) +G�′+1,�′+1,�
(2i−1,0),(0,0)

)
+
√

3
(
G�′+1,�′+1,�

(2i+1,0),(0,0) +G�′+1,�′+1,�
(2i,0),(0,0)

)
+
(
G�′+1,�′+1,�

(2i,1),(0,0) +G�′+1,�′+1,�
(2i−1,1),(0,0)

)
+
(
G�′+1,�′+1,�

(2i+1,1),(0,0) +G�′+1,�′+1,�
(2i,1),(0,0)

)
⎞
⎠

=
1

4

⎛
⎝ −√

3
(
Γ�′+1,�

2i,(0,0) + Γ�′+1,�
2i−1,(0,0)

)
+
√

3
(
Γ�′+1,�

2i+1,(0,0) + Γ�′+1,�
2i,(0,0)

)
+
(
Γ�′+1,�

2i,(1,0) + Γ�′+1,�
2i−1,(1,0)

)
+
(
Γ�′+1,�

2i+1,(1,0) + Γ�′+1,�
2i,(1,0)

)
⎞
⎠ .

Case of (α, β) = (0, 1):

Γ�′,�
i,(0,1) = G�′,�′,�

(i,0),(0,1) =
(4.101)

1√
2

(
G�′+1,�′,�

(2i,0),(0,1) +G�′+1,�′,�
(2i+1,0),(0,1)

)

=
(4.104)

1√
2

⎛
⎝ 1

2
√

2

(
−√

3G�′+1,�′+1,�
(2i,0),(0,0) +

√
3G�′+1,�′+1,�

(2i,0),(1,0) +G�′+1,�′+1,�
(2i,0),(0,1) +G�′+1,�′+1,�

(2i,0),(1,1)

)
+ 1

2
√

2

(
−√

3G�′+1,�′+1,�
(2i+1,0),(0,0) +

√
3G�′+1,�′+1,�

(2i+1,0),(1,0) +G�′+1,�′+1,�
(2i+1,0),(0,1) +G�′+1,�′+1,�

(2i+1,0),(1,1)

)
⎞
⎠

=
(4.9)

1

4

(
−√

3G�′+1,�′+1,�
(2i,0),(0,0) +

√
3G�′+1,�′+1,�

(2i−1,0),(0,0) +G�′+1,�′+1,�
(2i,0),(0,1) +G�′+1,�′+1,�

(2i−1,0),(0,1)

−√
3G�′+1,�′+1,�

(2i+1,0),(0,0) +
√

3G�′+1,�′+1,�
(2i,0),(0,0) +G�′+1,�′+1,�

(2i+1,0),(0,1) +G�′+1,�′+1,�
(2i,0),(0,1)

)

=
1

4

(√
3 Γ�′+1,�

2i−1,(0,0) −
√

3 Γ�′+1,�
2i+1,(0,0) + Γ�′+1,�

2i−1,(0,1) + 2Γ�′+1,�
2i,(0,1) + Γ�′+1,�

2i+1,(0,1)

)
,

10

Case of (α, β) = (1, 1):

Γ�′,�
i,(1,1) = G�′,�′,�

(i,1),(0,1)

=
(4.103)

1

2
√

2

(
−
√

3G�′+1,�′,�
(2i,0),(0,1) +

√
3G�′+1,�′,�

(2i+1,0),(0,1) +G�′+1,�′,�
(2i,1),(0,1) +G�′+1,�′,�

(2i+1,1),(0,1)

)

=
(4.104)

1

2
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−√
3 1

2
√

2

(−√
3G�′+1,�′+1,�

(2i,0),(0,0) +
√

3G�′+1,�′+1,�
(2i,0),(1,0)

+G�′+1,�′+1,�
(2i,0),(0,1) +G�′+1,�′+1,�

(2i,0),(1,1)

)

+
√

3 1
2
√

2

(−√
3G�′+1,�′+1,�

(2i+1,0),(0,0) +
√

3G�′+1,�′+1,�
(2i+1,0),(1,0)

+G�′+1,�′+1,�
(2i+1,0),(0,1) +G�′+1,�′+1,�

(2i+1,0),(1,1)

)

+ 1
2
√

2

(−√
3G�′+1,�′+1,�

(2i,1),(0,0) +
√

3G�′+1,�′+1,�
(2i,1),(1,0)

+G�′+1,�′+1,�
(2i,1),(0,1) +G�′+1,�′+1,�

(2i,1),(1,1)

)

+ 1
2
√

2

(−√
3G�′+1,�′+1,�

(2i+1,1),(0,0) +
√

3G�′+1,�′+1,�
(2i+1,1),(1,0)

+G�′+1,�′+1,�
(2i+1,1),(0,1) +G�′+1,�′+1,�

(2i+1,1),(1,1)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(4.9)

1

8

⎛
⎜⎜⎜⎜⎜⎝

−√
3
(
−√

3G�′+1,�′+1,�
(2i,0),(0,0) +

√
3G�′+1,�′+1,�

(2i−1,0),(0,0) +G�′+1,�′+1,�
(2i,0),(0,1) +G�′+1,�′+1,�

(2i−1,0),(0,1)

)
+
√

3
(
−√

3G�′+1,�′+1,�
(2i+1,0),(0,0) +

√
3G�′+1,�′+1,�

(2i,0),(0,0) +G�′+1,�′+1,�
(2i+1,0),(0,1) +G�′+1,�′+1,�

(2i,0),(0,1)

)
−√

3G�′+1,�′+1,�
(2i,1),(0,0) +

√
3G�′+1,�′+1,�

(2i−1,1),(0,0) +G�′+1,�′+1,�
(2i,1),(0,1) +G�′+1,�′+1,�

(2i−1,1),(0,1)

−√
3G�′+1,�′+1,�

(2i+1,1),(0,0) +
√

3G�′+1,�′+1,�
(2i,1),(0,0) +G�′+1,�′+1,�

(2i+1,1),(0,1) +G�′+1,�′+1,�
(2i,1),(0,1)

⎞
⎟⎟⎟⎟⎟⎠

=
1

8

(
−3 Γ�′+1,�

2i−1,(0,0) + 6 Γ�′+1,�
2i,(0,0) − 3 Γ�′+1,�

2i+1,(0,0) −
√

3 Γ�′+1,�
2i−1,(0,1) +

√
3 Γ�′+1,�

2i+1,(0,1)

+
√

3 Γ�′+1,�
2i−1,(1,0) −

√
3 Γ�′+1,�

2i+1,(1,0) + Γ�′+1,�
2i−1,(1,1) + 2 Γ�′+1,�

2i,(1,1) + Γ�′+1,�
2i+1,(1,1)

)
.

4.4 Notation for �2 Sequences

Let, e.g., f �
i,α be the coefficients of f� =

∑
i∈If

�

∑1
α=0 f

�
i,αΦ�

i,α. We extend these coefficients by

f �
i,α := 0 for i /∈ If

� and obtain an �2 sequence

f�,α :=
(
f �

i,α

)
i∈Z

.

We use the convention that an upper level index � indicates a coefficient, while the sequence
has a lower index �. Here α ∈ {0, 1} is a further parameter. The same pattern of notation is
used for many more sequences.

For general sequences a, b ∈ �2 (i.e, a = (ai)i∈Z
, b = (bi)i∈Z

), the discrete convolution
c := a ∗ b is defined by

ci =
∑

j∈Z

ajbi−j.

For its computation using FFT compare [3, §6].

11

5 Algorithm

In Problem 3.1 three level numbers �′′, �′, � appear. Without loss of generality �′ ≤ � holds.
Below we have to distinguish the following three cases:

(A) �′′ ≤ �′ ≤ �,
(B) �′ < �′′ ≤ �,
(C) �′ ≤ � < �′′.

(5.1)

5.1 Case A: �′′ ≤ �′ ≤ �

Case A is illustrated by the following figure.

f�′

g�

f�′ ∗ g�

ω�′′

In this figure, the difference � − �′ = 2 corresponds to the fact that g� is given on a grid of
step size h� = h�′/4. The given intervals should show the support of the functions f�′ and
g�. The convolution f�′ ∗ g� is a piecewise linear function, where the pieces correspond to the
smaller step size h�. The projection P�′′ of f�′ ∗ g� is required in two intervals. Because of
�′′ ≤ �′ ≤ � the step size h�′′ is equal or larger than the other ones. In the figure, �′′ = �′ − 1
is chosen. Note that in each interval of level �′′ the function ω�′′ is a certain average of 8
pieces of f�′ ∗ g�.

The following algorithm has to compute the projection of ω�′′ = P�′′ωexact of ωexact :=
f�′ ∗ g�. A straightforward but naive approach would be to compute ωexact first and then its
projection. The problem is that in the case �′ � �, the product f�′ ∗ g� requires too many
data (corresponding to the fine grid in the third line of the figure above). The projection
P�′′ would map the many data into few ones. The essence of the following algorithm is to
incorporate the projection before a discrete convolution is performed.

5.1.1 Computation of Γ-Coefficients (Step 1)

We start with the sequences Γ�,�,(α,β) = (Γ�,�
i,(α,β))i∈Z. Following Lemma 4.5a, we obtain

Γ�,�
i,(0,0) =

√
h�

2

(
g�

i,0 + g�
i−1,0

)
+

√
h�

12

(
g�

i−1,1 − g�
i,1

)
, (5.2a)

Γ�,�
i,(1,0) =

√
h�

12

(
g�

i,0 − g�
i−1,0

)
, (5.2b)

Γ�,�
i,(0,1) =

√
h�

12

(
g�

i−1,0 − g�
i,0

)
, (5.2c)

Γ�,�
i,(1,1) =

√
3h�

5

(
g�

i−1,1 − g�
i,1

)
(5.2d)

for all i ∈ Z. Then we compute the sequences Γ�′,�,(α,β) := (Γ�′,�
i,(α,β))i∈Z for �′ = �−1, �−2, . . . , 0

using the recursions from Lemma 4.5b.

12

5.1.2 Step 2a

Let �′ be any level in [0, �]. For each �′′ = �′, �′ − 1, . . . , 0 the projection P�′′ (f�′ ∗ g�)
is to be computed (see Problem 3.1). Following (4.2) and (4.3), the coefficients ω�′′

i,α =∑
j,k,β,κ f

�′
j,β g

�
k,κ γ

�′′,�′,�
(i,α),(j,β),(k,κ) are needed. The sequence is denoted by ω�′′,α = (ω�′′

i,α)i∈Z.

For the starting value �′′ = �′ we have

ω�′
i,α =

∑
j,k∈Z

1∑
β,κ=0

f �′
j,β g

�
k,κ γ

�′,�′,�
(i,α),(j,β),(k,κ) =

(4.6)

∑
j,k∈Z

1∑
β,κ=0

f �′
j,β g

�
k,κ γ

�′,�′,�
k−(i−j)2�−�′ ,(α,β,κ)

=
(4.11)

1∑
β=0

∑
j∈Z

f �′
j,β Γ�′,�

i−j,(α,β) for all i ∈ Z.

The four sums
∑

j∈Z
f �′

j,β Γ�′,�
i−j,(α,β) for all combinations of α, β ∈ {0, 1} describe the discrete

convolution of the two sequences f�′,β := (f �′
j,β)j∈Z and Γ�′,�,(α,β) := (Γ�′,�

k,(α,β))k∈Z. Concerning
the performance of the discrete convolutions in

ω�′,α =

1∑
β=0

f�′,β ∗ Γ�′,�,(α,β) (α = 0, 1; 0 ≤ �′ ≤ �) (5.3)

we refer to [3, §6].

5.1.3 Step 2b

Given ω�′,α from (5.3), we compute ω�′′,α for �′′ = �′ − 1, . . . , 0 by the following recursions.

Lemma 5.1 The recursions

ω�′′
i,0 =

1√
2

(
ω�′′+1

2i,0 + ω�′′+1
2i+1,0

)
, (5.4a)

ω�′′
i,1 =

√
3

2
√

2

(
ω�′′+1

2i+1,0 − ω�′′+1
2i,0

)
+

1

2
√

2

(
ω�′′+1

2i,1 + ω�′′+1
2i+1,1

)
(5.4b)

holds for all i ∈ Z and for all 0 ≤ �′′ ≤ �′.

Proof. Use ω�′′
i,0 =

∑
j,k,β,κ f

�′
j,β g

�
k,κ γ

�′′,�′,�
(i,0),(j,β),(k,κ) and apply (4.4a):

ω�′′
i,0 =

1√
2

∑
j,k,β,κ

f �′
j,β g

�
k,κ

(
γ�′′+1,�′,�

(2i,0),(j,β),(k,κ) + γ�′′+1,�′,�
(2i+1,0),(j,β),(k,κ)

)
=

1√
2

(
ω�′′+1

2i,0 + ω�′′+1
2i+1,0

)
.

Similarly,

ω�′′
i,1 =

∑
j,k,β,κ

f �′
j,β g

�
k,κ γ

�′′,�′,�
(i,1),(j,β),(k,κ)

=
(4.4b)

1

2
√

2

∑
j,k,β,κ

f �′
j,β g

�
k,κ

(−√
3 γ�′′+1,�′,�

(2i,0),(j,β),(k,κ) +
√

3 γ�′′+1,�′,�
(2i+1,0),(j,β),(k,κ)

+ γ�′′+1,�′,�
(2i,1),(j,β),(k,κ) + γ�′′+1,�′,�

(2i+1,1),(j,β),(k,κ)

)

yields the result for ω�′′
i,1.

13

5.1.4 Intertwining the Computations for all �′′ ≤ �′ ≤ �

The superindex � in Γ�′,�
i,(α,β) indicates that this sequence at level �′ is originating from the

data g�,κ. Since the further treatment of Γ�′,�
i,(α,β) does not depend on �, we can gather all

Γ�′,�
i,(α,β) into

Γ�′
i,(α,β) :=

Lg∑
�=�′

Γ�′,�
i,(α,β) (0 ≤ �′ ≤ Lg) . (5.5)

Hence, their computation is performed by the loop2

for �′ := Lg downto 0 do explanations:
begin if �′ = Lg then ΓLg

i,(α,β) := 0 starting values,

else compute Γ�′
i,(α,β) from Γ�′+1

i,(α,β) using (4.12); see Lemma 4.5b

Γ�′
i,(α,β) := Γ�′

i,(α,β) + Γ�′,�′
i,(α,β) Γ�′,�′

i,(α,β) defined in (5.2a-d),

end; all Γ�′
i,(α,β) defined.

(5.6)

Having available Γ�′
i,(α,β) for all 0 ≤ �′ ≤ Lg, we can compute ω�′,α for any �′ (cf. (5.3)).

For a moment, we use the symbols ω�′,�′,α, ω�′−1,�′,α, . . ., ω�′′,�′,α for the quantities computed
in Step 2a,b. Here, the additional second index �′ expresses the fact that the data stem from
f�′ at level �′ (see (5.3)).

The coarsening ω�′,�′,α �→ ω�′−1,�′,α �→ . . . �→ ω�′′,�′,α can again be done jointly for the
different �′, i.e., we form3

ω�′′,α :=
Lg∑

�′=�′′
ω�′′,�′,α

(
0 ≤ �′′ ≤ min{Lω, Lf , Lg}) .

The algorithmic form is

for �′′ := min{Lf , Lg} downto 0 do explanations:
begin if �′′ = min{Lf , Lg} then ω�′′,α := 0 starting values,

else compute ω�′′
i,α from ω�′′+1

i,α via (5.4a,b); see Lemma 5.1,
ω�′′,α := ω�′′,α + ω�′′,�′′,α ω�′′,�′′,α defined in (5.3),

end; all ω0, . . . , ωmin{Lf ,Lg} defined.

(5.7)

Note that this algorithm yields

ω�′′ = P�′′

(
Lg∑

�=�′′

�∑
�′=�′′

f�′ ∗ g�

) (
0 ≤ �′′ ≤ min{Lω, Lf , Lg})

involving all combinations of indices with �′′ ≤ �′ ≤ �.

2In this notation, Γ�′
i,(α,β) stands for the whole sequence Γ�′,(α,β) = (Γ�′

i,(α,β))i∈Z and all combinations of
the indices α, β ∈ {0, 1} , i.e., the loop over i, α, β is not explicitly written. More precisely, the i-loop is to
be performed for all i belonging to the support of Γ�′,(α,β).

3The restriction �′′ ≤ min{Lω, Lf , Lg} follows from �′′ ≤ �′ ≤ �, since �′ ≤ Lf , � ≤ Lg, and �′′ ≤ Lω.

14

5.2 Case B: �′ < �′′ ≤ �

In Case B the step size h�′′ used by the projection P�′′ is smaller than the step size h�′ but
larger than h�.

5.2.1 Explanations for �′′ = �′ + 1

We will use a loop of �′′ from �′ + 1 to �. Here we discuss the first value �′′ = �′ + 1 and
assume �′ + 1 ≤ �.

We recall that S�′ ⊂ S�′+1 (see end of §2.3). The function f�′ =
∑

j,β f
�′
j,βΦ

�′
j,β ∈ S�′ can be

rewritten as a function of level �′ + 1 by using (2.7a,b):

f�′ =

1∑
β=0

∑
j

f̂ �′+1
j,β Φ�′+1

j,β with (5.8)

f̂ �′+1
2j,0 := 1√

2
f �′

j,0 −
√

3
2
√

2
f �′

j,1, f̂ �′+1
2j+1,0 := 1√

2
f �′

j,0 +
√

3
2
√

2
f �′

j,1,

f̂ �′+1
2j,1 := 1

2
√

2
f �′

j,1, f̂ �′+1
2j+1,1 := 1

2
√

2
f �′

j,1.

Let f̂�′+1,β := (f̂ �′+1
j,β)j∈Z be the sequences of the newly defined coefficients. Since �′′ =

�′ + 1 ≤ �, the three level numbers �′′, �′ + 1, � satisfy the inequalities of Case A. As in
Step 2a of Case A (see §5.1.2) the desired coefficients of the projection at level �′′ = �′+1 are

ω�′+1
i,α =

∑
j,β f̂

�′+1
j,β Γ�′+1,�

i−j,(α,β), i.e., discrete convolutions f̂�′+1,β ∗ Γ�′+1,�,β are to be performed.

In the given formulation, the reinterpretation of f�′ as a function of level �′ + 1 seems
dangerous, since by (5.8) the number of coefficients is doubled. If we repeat this procedure
up to level L, the number of coefficients would be multiplied by 2L−�′. A remedy is a
restriction of (5.8) to those coefficients f̂ �′+1

j which are really needed. The coefficients ω�′+1
i,α

are required only for i ∈ Iω
� (cf. (3.1)), say for i ∈ {iω1 , . . . , iω2 } . Let the nonzero coefficients

Γ�′+1,�
j,(α,β) lie in iΓ1 ≤ j ≤ iΓ2 . The sum in ω�′+1

i,α =
∑

j,β f̂
�′+1
j,β Γ�′+1,�

i−j,(α,β) for i ∈ {iω1 , . . . , iω2} involves

only f̂ �′+1
j,β -coefficients with iω1 − iΓ2 ≤ j ≤ iω2 − iΓ1 . Hence, the number of f̂ �′+1

j,β -coefficients is

bounded by iω2 − iω1 + iΓ2 − iΓ1 + 1. A similar number appears for later levels.
Since in the further recursions also ω�′′

i,α for �′′ = �′ + 2, . . . ,min{Lω, Lg} are to be deter-
mined, the interval [iω1 , i

ω
2] from above is to be increased a bit (using the notation of [3, §6.1],

we have to replace Sc(ω�′+1) by Scc(ω�′+1)).

5.2.2 Complete Recursion

Step 1 in Case A has already produced the coefficients Γ�′
j,(α,β) gathering all Γ�′,�

j,(α,β) (� ≥ �′,
cf. (5.5)). For �′′ = �′ + 1, �′ + 2, . . . , � we represent the function f�′ at these levels �′′ by
computing the coefficients f̂ �′′

j,β as in (5.8):

f̂ �′
j,β := f �′

j,β (starting value), (5.9a)

compute f̂ �′′
j,β from f̂ �′′−1

j,β via (5.8) (�′ + 1 ≤ �′′ ≤ �) . (5.9b)

15

Note, however, that only those coefficients are to be determined which are really needed in
the next step, which are four discrete convolutions

ω�′′,α =
1∑

β=0

f̂�′′,β ∗ Γ�′′,(α,β) (�′ + 1 ≤ �′′ ≤ �) (5.9c)

of the sequences f̂�′′,β := (f̂ �′′
j,β)j∈Z with Γ�′′,(α,β).

5.2.3 Combined Computations for all �′ < �′′ ≤ �

The resulting algorithm is

f̂ 0
j := 0; explanations:

for �′′ := 1 to min{Lω, Lg} do

begin f̂ �′′−1
j,β := f̂ �′′−1

j,β + f �′′−1
j,β ; starting value (5.9a),

compute f̂ �′′
j,β from f̂ �′′−1

j,β via (5.8); see (5.9b),

ω�′′,α :=
∑1

β=0 f̂�′′,β ∗ Γ�′′,(α,β) see (5.9c)

end;

(5.10)

The limitation by �′′ ≤ min{Lω, Lg} in line 2 is caused by the fact that for �′′ > Lω no ω�′′

are required, while for �′′ > Lg the sequence Γ�′′ is not defined (i.e., formally Γ�′′ = 0).

The sum f̂ �′′−1
j,β + f �′′−1

j,β in the third line defines f̂ �′′−1
j,β as coefficients of

∑�′′−1
�′=0 f�′ =∑

j,β f̂
�′′−1
j,β Φ�′′−1

j,β . Therefore the next two lines consider all combinations of �′ < �′′. Since Γ�′′

contains all contributions from � ≥ �′′, ω�′′ is the projection P�′′(
∑

�′,� with �′<�′′≤� f�′ ∗ g�).

5.3 Case C: �′ ≤ � < �′′

Now the step size h�′′ used in the projection is smaller than h�′ and h�.

5.3.1 Explanations

The exact convolution ωexact(x) :=
∫
f�′(y)g�(x − y)dy (x ∈ R) is a piecewise cubic and

globally continuous function with possible jumps of the derivative at the grid points νh�

(ν ∈ Z) of the grid at level �. The projection P�′′ωexact =
∑

i,α ω
�′′
i,αΦ�′′

i,α involves all scalar
products

ω�′′
i,α =

∫
Φ�′′

i,α(x)ωexact(x)dx.

Note that the whole support of Φ�′′
i,α belongs to one of the intervals [νh�, (ν + 1)h�], where

ωexact(x) is a cubic function.
We define the point values and one-sided derivatives

δ�
ν := ωexact(νh�), δ�

ν,+ := ω′
exact(νh� + 0), δ�

ν,− := ω′
exact(νh� − 0).

16

Then ωexact can be represented in the interval I�
i ∈ M by the cubic polynomial

δ�
i + (x− ih�)

δ�
i+1 − δ�

i

h�
(5.11)

− (x− ih�) (x− (i+ 1)h�)

h�

(
δ�
i,+ − (x− ih�)

δ�
i,+ + δ�

i+1,−
h�

+
2x− (2i+ 1)h�

h�

δ�
i+1 − δ�

i

h�

)

Its values at the midpoint x�
i+1/2 := (i+ 1/2)h� are

ωexact(x
�
i+1/2) = 1

2

(
δ�
i + δ�

i+1

)
+ h�

8

(
δ�
i,+ − δ�

i+1,−
)
,

ω′
exact(x

�
i+1/2 ± 0) = 3

2h�

(
δ�
i+1 − δ�

i

)− 1
4

(
δ�
i,+ + δ�

i+1,−
)
.

(5.12)

5.3.2 Pointwise Evaluations

Let ωexact be described in I�
ν by the data δ�

ν , δ
�
ν+1, δ

�
ν,+, δ�

ν+1,− (cf. (5.11)). Then

ω�
i,α =

∫
Φ�

i,α(x)ωexact(x)dx =

{√
h�

2

(
δ�
ν + δ�

ν+1

)
+

h
3/2
�

12

(
δ�
ν,+ − δ�

ν+1,−
)

for α = 0,
√

3h�

5

(
δ�
ν+1−δ�

ν

)− √
3h

3/2
�

60

(
δ�
i,++δ�

i+1,−
)

for α = 1,
(5.13)

yields the coefficients of the projection. It remains to determine the values δ�
ν , δ

�
ν,±.

5.3.3 Computation of δ, δ±

We define new γ-coefficients

0γ�
i,(j,β),(k,κ) :=

∫
Φ�

j,β(y)Φ
�
k,κ(ih� − y)dy (i, j, k ∈ Z, β,κ ∈ {0, 1})

involving only one level �. Simple substitutions yield

0γ�
i,(j,β),(k,κ) = 0γ�

k−i+j,(β,κ)

for the “simplified” γ-coefficient 0γ�
ν,(β,κ) := 0γ�

ν,(0,β),(0,κ) .
The δ-values of f� ∗ g� are

δ�
i = (f� ∗ g�) (ih�) =

∑
j,k∈Z

1∑
β,κ=0

f �
j,β g

�
k,κ

∫
Φ�

j,β(y)Φ�
k,κ(ih� − y)dy

=
∑
j,k∈Z

1∑
β,κ=0

f �
j,β g

�
k,κ

0γ�
i,(j,β),(k,κ) =

∑
j,k∈Z

1∑
β,κ=0

f �
j,β g

�
k,κ

0γ�
k−i+j,(β,κ) (5.14a)

=
1∑

β=0

∑
j∈Z

f �
j,β

0Γ�
i−j,β , where 0Γ�

i,β :=
1∑

κ=0

∑
k∈Z

g�
k,κ

0γ�
k−i,(β,κ) .

Analogously, we set

±γ�
i,(j,β),(k,κ) = lim

ε↘0

d

dx

∫
Φ�

j,β(y)Φ�
k,κ(ih� ± ε− y)dy

17

and obtain

δ�
i,± =

1∑
β=0

∑
j∈Z

f �
j,β

±Γ�
i−j,β, where ±Γ�

i−j,β :=

1∑
κ=0

∑
k∈Z

g�
k,κ

±γ�
k−i+j,(β,κ). (5.14b)

Remark 5.2 Coefficients not indicated below are zero:

0γ�
−1,(0,0) = 1,

0γ�
k,(1,0) = 0γ�

k,(0,1) = 0 for all k ∈ Z,
0γ�

−1,(1,1) = −1,

+γ�
0,(0,0) = 1/h�,

+γ�
−1,(0,0) = −1/h�,

+γ�
0,(1,0) = +γ�

0,(0,1) = −√
3/h�,

+γ�
−1,(1,0) = +γ�

−1,(0,1) =
√

3/h�,
+γ�

0,(1,1) = +γ�
−1,(1,1) = 3/h�,

−γ�
−1,(0,0) = 1/h�,

−γ�
−2,(0,0) = −1/h�,

−γ�
−1,(1,0) = −γ�

−1,(0,1) =
√

3/h�,
−γ�

−2,(1,0) = −γ�
−2,(0,1) = −√

3/h�,
−γ�

−1,(1,1) = −γ�
−2,(1,1) = −3/h�.

Proof. Use the descriptions of the functions Φ�
0,β ∗ Φ�

0,κ in (4.7).

Conclusion 5.3 Remark 5.2 implies

0Γ�
i,0 = g�

i−1,0,
0Γ�

i,1 = −g�
i−1,0 ,

+Γ�
i,0 = 1

h�

(
g�

i,0 − g�
i−1,0 +

√
3
(
g�

i−1,1 − g�
i,1

))
,

+Γ�
i,1 = 1

h�

(√
3
(
g�

i−1,0 − g�
i,0

)
+ 3

(
g�

i−1,1 + g�
i,1

))
,

−Γ�
i,0 = 1

h�

(
g�

i−1,0 − g�
i−2,0 +

√
3
(
g�

i−1,1 − g�
i−2,1

))
,

−Γ�
i,1 = 1

h�

(√
3
(
g�

i−1,0 − g�
i−2,0

)− 3
(
g�

i−1,1 + g�
i−2,1

))
.

Since f� ∗ g� is cubic in I�
i = [ih�, (i+ 1)h�), the recursions derived from (5.12) are

δ�′′
2i = δ�′′−1

i , δ�′′
2i+1 = 1

2

(
δ�′′−1
i + δ�′′−1

i+1

)
+

h�′′−1

8

(
δ�′′−1
i,+ − δ�′′−1

i+1,−
)
,

δ�′′
2i,± = δ�′′−1

i,± , δ�′′
2i+1,± = 3

2h�′′−1

(
δ�′′−1
i+1 − δ�′′−1

i

)
− 1

4

(
δ�′′−1
i,+ + δ�′′−1

i+1,−
) (5.15)

for �′′ > �.

18

5.3.4 Combined Computations for all �′ ≤ � < �′′

The data f̂ �
i,α have the same meaning as in Case B. Similarly, δ̂�

i , δ̂
�
i,± collect all δ-data from

�′ < �.

f̂ 0
i,α := 0; δ̂0

i := δ̂0
i,± := 0;

for � := 0 to Lω do
begin if � > 0 then

begin compute f̂ �
i,α from f̂ �−1

i,α by (5.8);

compute δ̂�
i , δ̂

�
i,± from δ̂�−1

i , δ̂�−1
i,± by (5.15);

compute ω�
i,α from δ̂�

i by (5.13)
end;

if � ≤ min{Lf , Lω − 1} then f̂ �
i,α := f̂ �

i,α + f �
i,α ;

if � ≤ min{Lg, Lω − 1} then
begin compute δ�

i , δ
�
i,± by the convolutions (5.14a,b);

δ̂�
i := δ̂�

i + δ�
i ; δ̂

�
i,± := δ̂�

i,± + δ�
i,±

end end;

(5.16)

The quantities f̂ �
i,α used in the lines 4-6 are the coefficients of

∑�−1
�′=0 f�′ =

∑
i,α f̂

�
i,αΦ�

i,α. The
convolutions in (5.15) called at line 5 involve the Γ-sequences defined in Conclusion 5.3. The

coefficients ω�
i,α in line 6 belong to the projection P�′′

(∑
�′,λ with 0≤�′≤λ≤� f�′ ∗ gλ

)
at level �′′,

where �′′ is the actual value � of the loop index.

5.4 Range of Products

In the previous subsections we have reduced the problem to a number of specific discrete con-
volutions (the first example is (5.3)). The resulting products are infinite sequences (cν)ν∈Z

.
The first reasonable reduction would be to determine (cν)

ν2

ν=ν1
only in the support [ν1, ν2]∩Z

of the sequence. But it is essential to go a step further. Even if we need the function f�′ ∗ g�

(see (3.4)) in the whole support S := supp(f�′ ∗g�), the projections P�′′(f�′ ∗g�) are required in
disjoint subsets S�′′ ⊂ S. In terms of the sequences (cν)ν∈Z

this means that we are interested
in the components cν in an index interval [ν ′1, ν

′
2] ∩ Z which is possibly much smaller than

the support [ν1, ν2]. The restriction to the minimal range of the discrete convolution is an
essential part of the algorithm. The appropriate treatment of the fast discrete convolution
is explained in [3].

6 Globally Continuous and Piecewise Linear Case

The space S = S(M) consists of discontinuous piecewise linear functions. An alternative is
the subspace

S1 := S(M) ∩ C0(R)

of globally continuous and piecewise linear functions. Next we consider the projection ωS1

of the convolution ωexact := f ∗ g into the space S1. The direct computation of ωS1 ∈ S1

19

cannot follow the same lines as before, since the standard basis functions of S1 (the usual
hat functions) are not orthogonal and any orthonormal basis has a larger support.

Nevertheless, there is a simple indirect way of computing ωS1
. The inclusions

S1 ⊂ S ⊂ L2(R)

allow the following statement: Let PS : L2(R) → S be the L2-orthogonal projection onto S
and PS1 : S → S1 the L2-orthogonal projection onto S1. Then the product

P := PS1 ◦ PS : L2(R) → S1

is the L2-orthogonal projection onto S1. This leads to the following algorithm.
Step 1: Let f, g ∈ S1. Because of S1 ⊂ S, the data f, g can be used as input of the

algorithm described in the previous part. The result is the projection ω = PS (f ∗ g) ∈ S.
Step 2: The projection ω �→ ωS1

= PS1ω ∈ S1 can be computed by solving a tridiagonal
system (the system matrix is the Gram matrix

(∫
bibjdx

)
i,j=1,...,n

generated by the piecewise

linear hat functions bi).

References

[1] M.V. Fedorov, H.-J. Flad, L. Grasedyck, and B.N. Khoromskij: Low-rank wavelet solver
for the Ornstein-Zernike integral equation. Max-Planck-Institut für Mathematik in den
Naturwissenschaften. Preprint 59/2005, Leipzig 2005.

[2] W. Hackbusch: On the efficient evaluation of coalescence integrals in population balance
models. Computing 78 (2006) 145-172.

[3] W. Hackbusch: Fast and exact projected convolution for non-equidistant grids. Comput-
ing (submitted) - Extended version. Max-Planck-Institut für Mathematik in den Natur-
wissenschaften. Preprint 102/2006, Leipzig 2006.

[4] W. Hackbusch: Approximation of coalescence integrals in population balance models with
local mass conservation. Numer. Math (submitted).

[5] D. Potts: Schnelle Fourier-Transformationen für nichtäquidistante Daten und Anwen-
dungen. Habilitation thesis, Universität zu Lübeck, 2003.

[6] D. Potts, G. Steidl, and A. Nieslony: Fast convolution with radial kernels at nonequispaced
knots. Numer. Math. 98 (2004) 329-351.

Wolfgang Hackbusch
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstrasse 22-26
D-04103 Leipzig, Germany
email: wh@mis.mpg.de

20

