
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Approximation of Coalescence Integrals in

Population Balance Models with Local Mass

Conservation

(revised version: April 2007)

by

Wolfgang Hackbusch

Preprint no.: 111 2006





Approximation of Coalescence Integrals in Population
Balance Models with Local Mass Conservation

Wolfgang Hackbusch

Max-Planck-Institut Mathematik in den Naturwissenschaften
Inselstr. 22, D-04103 Leipzig

Abstract

The solution of population balance equations is a function f(t, r, x) describing a
population density of particles of the property x at time t and space r. For instance, the
additional independent variable x may denote the mass of the particle. The describing
equation contains additional sink and source terms involving integral operators. Since
the coordinate x adds at least one further dimension to the spatial directions and time
coordinate, an efficient numerical treatment of the integral terms is crucial. One of the
more involved integral terms appearing in population balance models is the coalescence
integral, which is of the form

∫ x
0 κ(x− y, y)f(y)f(x− y)dy. The discretisation may use

a locally refined grid. In this paper we describe an algorithm which (i) is efficient (the
cost is O(N log N), N : data size) and (ii) ensures local mass conservation.

AMS Subject Classifications: 44A35, 42A55, 45E99, 45K05, 92D25
Key words: convolution integral, non-uniform grids, discrete convolution, conservation of
mass

1 Introduction

Populations of many (small) particles of different size are described by a function f(t, r, x)
which indicates the density of particles of size x at time t and space r. In general, x might
denote also other properties than size and may also be vector valued describing several
properties. As a standard reference to population balance models, we refer to Ramkrishna
[7]. While the flow with respect to t, r, x is described by a pde1 of the form

∂

∂t
f + Df = Q(f), Df := divrA(f) + divxB(f) (1.1)

(cf. [7, (2.7.9)]), additional sink and source terms appear due to the interaction of particles.
Since the coordinate x adds at least one further dimension to the 1-3 spatial directions and
time coordinate, an efficient numerical treatment is crucial in computational engineering.

1One may also consider the ordinary integro-differential equation ∂
∂tf = Q(f) with Df := 0. In general,

divrA(f) describes convection and diffusion with respect to the spatial variable r, while divxB(f) is reponsible
for the growth of the particles. The particular form of the differential operator D is not of interest in this
paper.

1



One of the more involved integral terms appearing in population balance models is the
aggregation integral, which we consider in this paper. It describes the effect that two particles
say of mass y and x− y combine to a new particle of mass x. As can be seen from [7, §3.3.2]
or [2, p. 208], the aggregation integrals take the form2

Q = Qsource − Qsink with (1.2)

Qsource(f)(x) :=

∫ x

0

κ(x − y, y)f(y)f(x− y)dy,

Qsink(f)(x) := 2f(x)

∫ ∞

0

κ(x, y)f(y)dy.

(The space/time variables r, t of f are not written, but note that such integrals appear for
all grid points in space and time). The integral term is quadratic with respect to f and
is of convolution type (at least, concerning the part f(y)f(x − y)). The kernel function
κ(·, ·) describes the aggregation rate and depends on the particular model. In the case of
crystallisation or emulsion processes, κ is also called agglomeration or coalescence rate, but
the form (1.2) of the integral is the same.

The high computational cost of a naive treatment of the integral terms is one reason,
why the full problem (time, up to three spatial coordinates, and the characteristic coordinate
x) is not often treated numerically. A typical pessimistic statement can be found in [8]:
“(The equations) generally resist solution”, and instead the simpler method of moments is
proposed. While there are several papers on the analysis of the nature of the solution f ,
we here concentrate on the efficient algorithmic approach. The computational cost involved
by the integral term will be proportional to the number of degrees of freedom (up to a
logarithmic factor).

This problem is already treated by the author in [3]. The first basic step is to approximate
the kernel function κ(x, y) involved in (1.2) by some separable approximation

κ(x, y) ≈
k∑

ν=1

αν(x)βν(y) (1.3)

(the αν , βν may be defined piecewise, see [5]). As explained in the cited papers, the ap-
proximation error in (1.3) can be expected to decrease exponentially with k. Therefore, it is
easy to make this error smaller than the discretisation error introduced by the space/time
discretisation.

Replacing κ by the right-hand side, the integral in Qsource becomes

k∑
ν=1

∫ x

0

[βν(y)f(y)] [αν(x − y)f(x− y)] dy. (1.4)

The brackets underline that the integral is a usual convolution3 [βνf ] ∗ [ανf ]. Hence, the
computation of the integral is straightforward and efficient via FFT (fast Fourier transform),
provided that the discretisation uses a uniform mesh.

2The kernel function κ used here corresponds to κ/2 in [7, §3.3.2].
3The standard convolution integral is

∫
R

F (y)G(x−y)dy. If both functions are zero for negative arguments,
the integral becomes

∫ x

0
F (y)G(x − y)dy.

2



The second topic of [3] is the evaluation of these kinds of integrals in the presence of
refined grids. In fact, it is typical for population balance models that the grid should become
finer when the mass x approaches zero.

The evaluation in [3] is approximate, since it produced (exact) point evaluations which
can be used for approximations in the given grid. As mentioned in [3, Sect. 4], the described
discretisation does not ensure mass conservation. Only in the case of a uniform grid, a mass
conserving modification was given.

There are also other discretisation approaches like in [9]. As described in [9, §4.2],
mass conservation cannot be guaranteed exactly, but numerical experiments show a good
approximation. Finite volume methods with mass conservation are described in [1] and [6]
using a reformulation of the original equation.

While the approach of [3] aims to compute the values of [βνf ] ∗ [ανf ] at the grid points,
the algorithm in the paper [4] computes L2 orthogonal projections of convolutions onto the
approximation space. Since these projections are determined exactly, they form a basis for
methods with exact mass conservation. We will see in §4.1 that approximation by piecewise
polynomials of at least first degree implies mass conservation. However, in the standard
case of piecewise constant polynomials one has to modify the algorithm from [4]. This
modification is the major part of this article.

The rest of the paper is organised as follows.
In Section 2 we define the mass integrals and recall the global mass conservation of

coalescence integrals (before discretisation). In §2.3 we describe the properties which are
needed to guarantee that the approximation of the integral term is locally mass conserving.

In Section 3 we introduce the locally refined mesh together with the corresponding spaces
of ansatz spaces. These spaces consist of discontinuous piecewise polynomials whose degree
may be zero (piecewise constant functions; see §3.3.1) or p > 0 (see §3.3.2).

Section 4 contains the result (Theorem 4.1) that for p > 0 the approximation defined
in [4] already conserves mass locally, except in the last interval where the support of the
convolution function is truncated. This result offers a first (non-optimal) possibility to
compute a piecewise constant approximation with local mass conservation (see §4.2).

Section 5 is the core of the paper and concerns the case of piecewise constant approxima-
tions. It contains the locally mass conserving algorithm for the projected convolution (see
§§5.8-5.10). The algorithm follows the lines of the (not mass conserving) algorithm from
[4]. However, the basic quantities introduced in §5.1-5.7 are a bit different. As in [4], under
certain conditions, the overall cost is O(N log N), where N is the data size.

Section 6 discusses the treatment of the last interval which must compensate the loss of
mass associated to the truncated part of the support of f ∗ g.

Finally, the discretisation of the sink term Qsink from (1.2) is discussed in Section 7.

2 Conservation of Mass

In the following we assume that the “property” coordinate x in equation (1.1) denotes the
mass4 of the particles. Following [9], we consider the mass as an important quantities which
should be preserved by the integral term Q(f) and by its discretisation. One may consider a

4Equivalently, we may associate the volume of the particle, provided that the specific mass is constant.

3



model where only agglomeration of particles and, maybe, dispersion (splitting of one particle
into two of more smaller ones) occur. The simplest model of this kind would be

∂

∂t
f = Q(f).

The mathematical formulation of the mass conservation by Q is
∫

xQ(f)(x)dx = 0. In this
case the number of particles

∫
f(x)dx is changing, but the total mass

∫
xf(x)dx of the exact

solution is constant.
However, the picture is more involved since also the number of particles may be considered

as a quantity to be preserved. If no agglomeration and dispersion take place, the population
balance model may describe, e.g., the growth (or decrease) of the particles. In that case
the number of particles is constant, while the mass is changing. In order to retain mass
conservation, one has to take into account the mass of the surrounding nutrient component.

Here, and in the following,
∫

. . .dx denotes the integration over R. In fact, the integrands
will vanish for x < 0, since negative masses do not appear. In practice, the support of the
integrands should be bounded, since the mass of a particle cannot exceed the total mass
xmax of the system and therefore the distribution f(x) should vanish for x > xmax. The
mathematical model, however, does not necessarily imply this property5. Therefore, we
make the assumption that the support of f lies in [0, xmax) which is at least ensured by
truncating the function by zero for x > xmax.

2.1 Notation of Mass Functionals

Since f measures the number density, the integral
∫

Ω

∫ x2

x1
f(x, r, t)dxdr describes the number

of particles in the volume Ω with masses in the interval [x1, x2). Instead, the (global) mass
at a spatial point r and at time t is given by the integral

m(f) :=

∫
xf(x, r, t)dx.

To be precise, m(f) depends on r and t and describes the spatial mass density.∫
Ω

m(f)(r, t)dr is the mass in the volume Ω at time t. In the sequel we will suppress
the variables r, t, since the integration in (1.2) does not involve r, t.

To express the local mass in an interval [x1, x2] we introduce the characteristic function

χ[x1,x2] :=

{
1 for x ∈ [x1, x2],
0 otherwise,

and introduce the functional m[x1,x2]:

m[x1,x2](f) := m(χ[x1,x2]f) =

∫ x2

x1

xf(x)dx.

5The true distribution is such that
∫
Ω

∫ x2

x1
f(x, r, t)dxdr is a non-negative integer, the number of particles.

In the mathematical model this integral can be non-integer.

4



2.2 Global Mass Conservation of Coalescence Integrals

The partial differential equation ∂
∂t

f + Df = g does not conserve mass if g is a source term
(m(g) > 0) or sink term (m(g) < 0). No mass is added or subtracted if m(g) = 0.

The coalescence integral Q(f) from (1.2) describes that particles of mass x−y and y join
with a rate κ(x−y, y). The aggregation produces the source term Qsource(f). At the same time
this process is absorbing particles and leads to the sink term −Qsink(f). For completeness
we prove that m(Qsource) = m(Qsink), so that m(Q) = 0 implies mass conservation of the
continuous pde. Below we use that by the nature of the problem, the kernel function is
symmetric: κ(x, y) = κ(y, x). The integral

m(Qsource) = m

(∫ x

0

κ(x − y, y)f(y)f(x− y)dy

)
=

∫
x

∫ x

0

κ(x − y, y)f(y)f(x− y)dydx

=

∫∫
xκ(x − y, y)f(y)f(x− y)dxdy =

z:=x−y

∫∫
(y + z) κ(z, y)f(y)f(z)dydz

=

∫∫
yκ(z, y)f(y)f(z)dydz︸ ︷︷ ︸

interchange y and z, use symmetry

+

∫∫
zκ(z, y)f(y)f(z)dydz

= 2

∫∫
zκ(z, y)f(y)f(z)dydz

equals m(Qsink) =
∫

x · 2f(x)
∫∞
0

κ(x, y)f(y)dydx =
z↔x

2
∫∫

zκ(z, y)f(y)f(z)dydz. The proof

shows that symmetry of κ is needed. This fact leads us to the following remark.

Remark 2.1 a) The mass conservation of (1.1), (1.2) does not depend on the symmet-
ric kernel function κ. Therefore, the replacement of κ by the separable approximation
κ̃(x, y) :=

∑k
ν=1 αν(x)βν(y) in (1.3) does not violate mass conservation, provided that

κ̃(x, y) is symmetric.

b) If κ̃(x, y) is an unsymmetric approximation,
≈
κ(x, y) := [κ̃(x, y) + κ̃(y, x)] /2 is a pos-

sible symmetric separable approximation.
c) The later treatment of the factors βνf and ανf in (1.4) becomes much simpler, if the

choice of αν , βν is piecewise constant on the grid explained below in (2.1).

2.3 Local Mass Conservation of Approximations

Let q be any density distribution. We want to approximate q by q̃ where q̃ belongs to a
(finitely dimensional) function space. The precise definition of the piecewise polynomial
spaces will be given in §3.2 based on a set of grid points

0 = x0 < x1 < . . . < xN−1 < xN . (2.1)

This gives rise to the associated intervals [xi, xi+1) for 0 ≤ i < N.
If the support of q is larger than [0, xN ] (e.g., since supp(q) = [0,∞)), the approximation

q̃ in [xN−1, xN) is responsible for the part q|[xN−1,∞). In order to avoid extra notations, we

5



extend q̃ in [xN ,∞) by zero and redefine xN := ∞. Therefore, formerly, the last interval is
[xN−1,∞) , although the support of q̃ is finite. The special treatment of the “last interval”
will be discussed in Section 6.

q̃ satisfies the property of local mass conservation in [xi, xi+1), if and only if

m[xi,xi+1)(q) = m[xi,xi+1)(q̃). (2.2)

The approximation is locally mass conserving, if (2.2) holds for all intervals [xi, xi+1),
0 ≤ i < N . Obviously, local mass conservation implies global mass conservation:

m(q) = m

(
N−1∑
i=0

χ[xi,xi+1)q

)
=

N−1∑
i=0

m
(
χ[xi,xi+1)q

)
=

(2.2)

N−1∑
i=0

m
(
χ[xi,xi+1)q̃

)

= m

(
N−1∑
i=0

χ[xi,xi+1)q̃

)
= m(q̃).

The following observation states the principal difficulty. Let f be a piecewise polynomial
function and choose αν , βν according to Remark 2.1c. Then f1 := ανf and f2 := βνf belong
again to the same function space. However, the convolution ωexact := f1 ∗ f2 (one of the
terms in (1.4)) does not belong to this function space. Therefore, a new approximation ω of
ωexact is to be computed. In order to fulfil local mass conservation, ω has to satisfy

m[xi,xi+1)(ωexact) = m[xi,xi+1)(ω) (0 ≤ i ≤ N) . (2.3)

3 Approximation Spaces

3.1 Locally Refined Meshes

A simple example of a locally refined mesh is depicted below:

1/20 1/4 1 (3.1a)

The mesh size 1/8 in [1/2, 1], 1/16 in [1/4, 1/2] and 1/32 in [0, 1/4] is a typical refinement
towards x = 0. The depicted mesh can be decomposed into different levels as indicated in

0 1/4

1/2
1

level 1

level 2

level 0

(3.1b)

The latter representation uses several levels. Each level � is associated with an equidistant
grid of size

h� := 2−�h (0 ≤ � ≤ L) . (3.2)

The largest level number appearing in the grid hierarchy is denoted by L.

6



The grids depicted in (3.1b) are embedded into infinite grids M� which are defined below.
With h� from (3.2) we denote the subintervals of level � by6

I�
ν := [νh�, (ν + 1)h�) for ν ∈ N0, � ∈ N0. (3.3)

This defines the meshes

M� :=
{
I�
ν : ν ∈ N0

}
for � ∈ N0. (3.4)

The (equidistant) grid points of M� are {νh� : ν ∈ N0} .
A finite and locally refined mesh M is a set of finitely many disjoint intervals from various

levels, i.e.,7

M ⊂
⋃

�∈N0

M�, all I, I ′ ∈ M with I �= I ′ are disjoint, #M < ∞ . (3.5)

3.2 Functions Spaces

Let p ∈ N0 denote the degree of the following polynomials8. The piecewise polynomial space
S corresponding to the mesh M and the degree p is defined by

S = S (M) =

{
φ ∈ L∞(R) : φ|I�

ν
polynomial of degree p if I�

ν ∈ M,
φ(x) = 0 if x /∈ I for all I ∈ M

}
.

Note that functions from S are in general discontinuous at the grid points.
In the present application9 it makes sense to use the same approximation space S for both

factors of the convolution [βνf ] ∗ [ανf ] in (1.4) and for the approximation of [βνf ] ∗ [ανf ] .

3.3 Bases

3.3.1 Piecewise Constant Case

Define

Φ�
i(x) :=

{
1/
√

h� for x ∈ I�
i ,

0 otherwise,
(� ∈ N0, i ∈ N0) . (3.6)

Note that supp(Φ�
i) = I�

i . The approximation space S (M) has the representation

S (M) = span
{
Φ�

i : I�
i ∈ M} .

Obviously, the basis
{
Φ�

i : I�
i ∈ M} is orthonormal.

For later use we mention the recursion formula

Φ�
i =

1√
2

(
Φ�+1

2i + Φ�+1
2i+1

)
. (3.7)

6The use of N0 := N ∪ {0} (instead of Z as in [4]) in ν ∈ N0 reflects the fact that here the functions of
interest have their support in [0,∞) .

7The sign # denotes the cardinality of a set.
8More generally, we may fix different polynomial degrees p�

ν ∈ N0 for each interval I = I�
ν ∈ M.

9In [4], we considered the more general case of three different approximation spaces.

7



3.3.2 Case of degree p > 0

In this case we need p + 1 basis functions per interval. The best choice of orthonormal basis
functions {Φ�

(i,α) : i ∈ N0, 0 ≤ α ≤ p} are the Legendre polynomials ; more precisely, the

standard Legendre polynomials of degree α defined in the reference interval [−1, 1] are to be
mapped onto I�

i by an affine mapping and scaled such that
∫ |Φ�

(i,α)|2dx = 1.

Remark 3.1 In the case of p = 1, the function Φ�
(i,0) equals Φ�

i from (3.6), while

Φ�
(i,1)(x) =

√
12h−3

�

(
x − x�

i+1/2

)
,

where x�
i+1/2 = (i + 1/2)h� is the midpoint of I�

i = [ih�, (i + 1)h�) .

3.4 Basic Approach

3.4.1 L2-Orthogonal Projection onto S
The factors f1 := ανf and f2 := βνf yield one of the terms f1 ∗ f2 in (1.4). Let f ∈ S.
Under the condition of Remark 2.1c, also f1, f2 ∈ S follows. However, as stated at the end
of §2.3, ωexact := f1 ∗ f2 does not belong to S (see [4, Remark 1.2] for more details). The
best approximation ω ∈ S of ωexact in the L2 sense has the representation

ω =
∑
i,�

p∑
α=0

ω�
(i,α)Φ

�
(i,α) with ω�

(i,α) :=

∫
Φ�

(i,α) ωexact dx (3.8a)

(here we exploit the orthonormality of the basis; the sum
∑

i,� is taken over all pairs (i, �)

with I�
i ∈ M).

In the piecewise constant case, (3.8a) becomes

ω =
∑
i,�

ω�
iΦ

�
i with ω�

i :=

∫
Φ�

i ωexact dx . (3.8b)

The exact and efficient computation of (3.8b) or (3.8a) is described in [4] and need not
be repeated here.

3.4.2 Mass Conservation

The intervals [xi, xi+1) from §2.3 are the elements I�
i ∈ M. By definition, as already stated

in (2.3), local mass conservation holds, if and only if

mI�
i
(ωexact) = mI�

i
(ω) for all I�

i ∈ M. (3.9)

In the following we discuss whether (3.9) holds for the solution ω of (3.8a,b) or – if (3.8b)
does not hold – how the definition of the coefficients ω�

i has to be modified and how their
fast computation can be organised.

8



4 Mass Conserving Approximation

This section contains two positive results.

4.1 Polynomial Approximation by At Least Piecewise Linear
Functions

Theorem 4.1 Let p ≥ 1. The solution ω ∈ S(M) of (3.8a) satisfies the local mass conser-
vation property (3.9) in all intervals I ∈ M, except the last one, where the correction from
Section 6 is necessary.

Proof. An equivalent formulation of (3.8a) is

ω ∈ S(M) and

∫
Φ�

(i,α) ωexact dx =

∫
Φ�

(i,α) ω dx for all I�
i ∈ M, 0 ≤ α ≤ p. (4.1)

The piecewise linear function xχI�
i

is a linear combination of Φ�
(i,0) and Φ�

(i,1). Therefore (4.1)
implies

mI�
i
(ωexact) =

∫
I�
i

xωexact dx =

∫
I�
i

xω dx = mI�
i
(ω) for all I�

i ∈ M

proving (3.9).

4.2 First Approach for Piecewise Constant Functions

The foregoing proof requires p ≥ 1. In fact, it is easy to see that for p = 0 (case of (3.8b))
the local (and even the global) masses of ωexact = f1 ∗ f2 and ω may be different.

In the following S1 denotes the function space S(M) with p = 1, while S0 is the notation
for S(M) with p = 0.

Let us assume that we have an implementation for computing the mapping

F 1 : f1, f2 ∈ S1 �−→ ω ∈ S1,

where ωexact = f1 ∗ f2 and ω satisfy (3.8a) for p = 1 (F 1 is described in [4, §8]). We want to
use F 1 in order to construct

F 0 : f1, f2 ∈ S0 �−→ ω̃ ∈ S0

with ωexact = f1 ∗ f2 and ω̃ satisfying the local mass conservation property (3.9).
In fact, since S0 ⊂ S1, the functions f1, f2 ∈ S0 may be used as input data of F 1. By

Theorem 4.1, ω = F 1(f1, f2) ∈ S1 has the same local mass as ωexact = f1 ∗ f2. Now we use
the condition (3.9) to construct ω̃ ∈ S0 such that

mI�
i
(ω) = mI�

i
(ω̃) for all I�

i ∈ M.

Let ω =
∑

i,�(ω
�
(i,0)Φ

�
(i,0) + ω�

(i,1)Φ
�
(i,1)) be the representation of ω ∈ S1. We split ω into

ω = ωI + ωII with ωI =
∑

i,� ω�
(i,0)Φ

�
(i,0) and ωII =

∑
i,� ω�

(i,1)Φ
�
(i,1). Similarly, we make the

9



ansatz ω̃ := ω̃I + ω̃II with ω̃I := ωI ∈ S0 (note that Φ�
(i,0) and Φ�

i are only different notations

for the same function). Obviously, mI�
i
(ωI) = mI�

i
(ω̃I) holds.

Using the exact representation of Φ�
(i,1) from Remark 3.1, we obtain

mI�
i
(Φ�

(i,1)) =

∫ (i+1)h�

ih�

xΦ�
(i,1)(x)dx =

√
h3

�/12, (4.2a)

while

mI�
i
(Φ�

i) =

∫ (i+1)h�

ih�

x
1√
h�

dx =
√

h� x�
i+1/2 (4.2b)

with x�
i+1/2 = (i + 1/2)h� as in Remark 3.1. Hence,

ω̃II :=
∑
i,�

ω�
(i,1)

mI�
i
(Φ�

(i,1))

mI�
i
(Φ�

i)
Φ�

i =
h�√
12

∑
i,�

ω�
(i,1)

x�
i+1/2

Φ�
i ∈ S0

satisfies mI�
i
(ωII) = mI�

i
(ω̃II).

Altogether, we have constructed a uniquely defined ω̃ ∈ S0 with the local mass conser-

vation property (3.9). The coefficients of ω̃ =
∑

i,� ω̃�
iΦ

�
i are ω̃�

i := ω�
(i,0) + h�√

12

ω�
(i,1)

x�
i+1/2

.

The necessary computational work is the performance of F 1 and O(dimS0) operation
for the computation of ω̃�

i .

5 Mass Conservation with Piecewise Constant Func-

tions

Although the previous computation is of linear logarithmic complexity (see [4] for F 1), the
algorithm is not optimal, since the input and output data of F 1 have the doubled dimension
of those of F 0. This fact should be used to simplify the algorithm. In this section we follow
the lines of the algorithm from [4] and insert the necessary modifications in order to obtain
local mass conservation.

5.1 Notations

In the following, S = S(M) denotes the locally refined space of piecewise constant functions.
So far we used the notations f1, f2 ∈ S for the factors of the convolution [βνf ] ∗ [ανf ]

which is one of the k terms in (1.4). In order to avoid the subindices, we now rename f1, f2

by f, g (this is also the notation from [4]). The precise formulation of the problem to be
solved is:

Given f, g ∈ S, compute ω ∈ S such that mI(f ∗ g) = mI(ω) for all I ∈ M. (5.1)

Besides M we have the infinite and uniform mesh M� from (3.4) with step size h�. Since
M is a union of intervals of various levels, there are non-empty intersections M∩ M� for
0 ≤ � ≤ L. Define the index sets

I� :=
{
i ∈ N0 : I�

i ∈ M∩M�

}
for 0 ≤ � ≤ L. (5.2)

10



As in (3.8b) the function f ∈ S has a representation f =
∑

i,� f �
i Φ

�
i (summation over all

(i, �) with I�
i ∈ M). We split f into the different levels:

f =

L∑
�=0

f� with f� :=
∑
i∈I�

f �
i Φ

�
i ∈ S� (5.3)

(note that f� with a subindex � is a function, whereas f �
i with a superindex � is a coefficient).

Here S� ⊂ L2(R) denotes the span of Φ�
i , i ∈ N0. Similarly, we do for g ∈ S :

g =
L∑

�=0

g� with g� :=
∑
i∈I�

g�
iΦ

�
i ∈ S�. (5.4)

Formally, we set f �
i = 0 for all i /∈ I� and consider f� :=

∑
i∈N0

f �
i Φ

�
i as a piecewise constant

function of the infinite mesh M�. Analogously, we do for g�.
Next we define the mass conserving projection Π� : V → S� (here, V is the space

{ϕ ∈ L2(0,∞) : xϕ(x) ∈ L1(0,∞)}):

Π� : ϕ ∈ V �→ ϕ� ∈ S� with ϕ� =
∑
i∈N0

ϕ�
iΦ

�
i , ϕ�

i :=
mI�

i
(ϕ)

mI�
i
(Φ�

i)
(5.5)

(the value of mI�
i
(Φ�

i) is given in (4.2b)).
The convolution f ∗ g can be written as

f ∗ g =

L∑
�′=0

L∑
�=0

f�′ ∗ g� .

Since the convolution is symmetric, we can rewrite the sum as

f ∗ g =
∑
�′≤�

f�′ ∗ g� +
∑
�<�′

g� ∗ f�′ , (5.6)

where �′, � are restricted to the level intervals 0 ≤ �′ ≤ � ≤ L. Hence, the basic task is as
follows.

Problem 5.1 Let �′ ≤ �, f�′ ∈ S�′ , g� ∈ S�, and �′′ ∈ N0 a further level. Then, the
projection Π�′′(f�′ ∗ g�) is to be computed. More precisely, only the restriction of Π�′′(f�′ ∗ g�)
to
⋃

i∈I�′′
I�′′
i is needed, since only this part appears in S = S(M).

Because of the splitting (5.6), we may assume �′ ≤ � without loss of generality. In the
case of the second sum one has to interchange the roles of the symbols f and g and to avoid
the cases � = �′.

Before we present the solution algorithm in §§5.8-5.10, we introduce some further nota-
tions.

11



5.2 Coarsening Π� : S�+1 → S� and ω̂-Coefficients

Let ω�+1 =
∑

i ω
�+1
i Φ�+1

i ∈ S�+1 be a piecewise constant function at level � + 1. We want
to replace it by Π�ω�+1 =: ω� =

∑
i ω

�
iΦ

�
i . The interval I�

i is the union I�+1
2i ∪ I�+1

2i+1 so that
mI�

i
(ω�+1) = mI�+1

2i
(ω�+1) + mI�+1

2i+1
(ω�+1). Using the values (4.2b), we rewrite mI�

i
(ω�+1) =

mI�
i
(ω�) as

ω�
i

√
h� x�

i+1/2 = ω�+1
2i

√
h�+1 x�+1

2i+1/2 + ω�+1
2i+1

√
h�+1 x�+1

2i+3/2,

leading to the solution

ω�
i =

ω�+1
2i

√
h�+1 x�+1

2i+1/2 + ω�+1
2i+1

√
h�+1 x�+1

2i+3/2√
h� x�

i+1/2

=
1√
2

ω�+1
2i x�+1

2i+1/2 + ω�+1
2i+1x

�+1
2i+3/2

x�
i+1/2

.

This formula is obviously not translation invariant. It is advantageous for the computations
to introduce the auxiliary coefficients

ω̂�
i := ω�

ix
�
i+1/2 (i ∈ N0, x�

i+1/2 = (i + 1/2)h�). (5.7)

Then the relation between ω̂�
i and ω̂�+1

i is much simpler:

ω̂�
i =

1√
2

(
ω̂�+1

2i + ω̂�+1
2i+1

)
. (5.8)

5.3 General Coarsening

The previous result gives rise to the following more general question. Let f ∈ V be some
function and consider the two projections

Π�+1 (f) =
∞∑
i=0

ϕ�+1
i Φ�+1

i , Π� (f) =
∞∑
i=0

ϕ�
iΦ

�
i (5.9)

into the fine grid of step size h�+1 and the coarse one of step size h�. Is there a simple method
to compute the coefficients ϕ�

i from ϕ�+1
i ?

For a formalisation we form the following sequences in R
N0 :

ϕ� :=
(
ϕ�

i

)∞
i=0

, ϕ�+1 :=
(
ϕ�+1

i

)∞
i=0

. (5.10)

Next, we define two operations acting on sequences. The first one is the diagonal operator
Ξ� with

Ξ� :
(
ϕ�

i

)∞
i=0

�→ (
x�

i+1/2 ϕ�
i

)∞
i=0

,

where x�
i+1/2 = (i + 1/2)h�. The second operator R is independent of �:

R : (ai)
∞
i=0 �→

(
1√
2
(a2i + a2i+1)

)∞
i=0

for any a ∈ R
N0.

The answer to the question from above is given by the following theorem.

12



Theorem 5.2 Let the sequences (5.10) be defined by (5.9). Then

ϕ� = Ξ−1
� R Ξ�+1 ϕ�+1 (5.11)

holds.

Proof. The coefficient ϕ�
i is defined in (5.5) by

ϕ�
i =

mI�
i
(f)

mI�
i
(Φ�

i)
=

mI�
i
(f)√

h� x�
i+1/2

=
1√

h� x�
i+1/2

∫ (i+1)h�

ih�

xf(x)dx.

Setting F �
i :=

∫ (i+1)h�

ih�
xf(x)dx and F� :=

(
F �

i

)∞
i=0

, we can reformulate the last equation as

ϕ� =
1√
h�

Ξ−1
� F� (5.12a)

Analogously, we have

ϕ�+1 =
1√
h�+1

Ξ−1
�+1F�+1. (5.12b)

Since

F �
i =

∫ (i+1)h�

ih�

xf(x)dx =

∫ 2(i+1)h�+1

2ih�+1

xf(x)dx

=

∫ (2i+1)h�+1

2ih�+1

xf(x)dx +

∫ (2i+2)h�+1

(2i+1)h�+1

xf(x)dx = F �+1
2i + F �+1

2i+1,

the sequences F� and F�+1 are related by

F� =
√

2RF�+1. (5.12c)

Combining (5.12a-c), we get ϕ� = 1√
h�

Ξ−1
�

√
2R
√

h�+1Ξ�+1ϕ�+1. Since
√

2
√

h�+1/
√

h� = 1,
the assertion is proved.

5.4 µ-Coefficients

The mapping f�′ ∈ S�′ , g� ∈ S� �→ ω�′′ := Π�′′ (f�′ ∗ g�) is linear in both arguments
f�′ and g�. Hence, the function Π�′′

(
Φ�′

j ∗ Φ�
k

)
is of interest. Its ith component is∫

Φ�′′
i (x) Π�′′

(
Φ�′

j ∗ Φ�
k

)
(x)dx and denoted by

µ�′′,�′,�
i,j,k :=

∫
Φ�′′

i (x) Π�′′
(
Φ�′

j ∗ Φ�
k

)
(x)dx. (5.13)

Formally the projected convolution Π�′′(f�′ ∗ g�) of f�′ =
∑

j∈N0
f �′

j Φ�′
j ∈ S�′ and g�′ =∑

k∈N0
g�

kΦ
�
k ∈ S� can be represented by

Π�′′(f�′ ∗ g�) =
∑
i∈N0

ω�′′
i Φ�′′

i with ω�′′
i =

∑
j,k∈N0

f �′
j g�

kµ
�′′,�′,�
i,j,k . (5.14)

13



As we will see, it suffices to know the concrete values of µ�′′,�′,�
i,j,k for �′′ = �′ = �. The product

Φ�
j ∗ Φ�

k is the piecewise linear hat function with support in [(j + k) h�, (j + k + 2)h�] and

value 1 at (j + k + 1)h�. Hence, µ�,�,�
i,j,k is non-zero only for i = j + k and i = j + k + 1:

µ�,�,�
i,j,k :=

⎧⎪⎨
⎪⎩

1
2

√
h� + 1

12
h

3/2
� /x�

i+1/2 for i = j + k,
1
2

√
h� − 1

12
h

3/2
� /x�

i+1/2 for i = j + k + 1,

0 otherwise.

(5.15)

Proof. We consider only the case i = j +k. The mass mI�
i
(Φ�

j ∗Φ�
k) equals

∫ (i+1)h�

ih�

x−ih�

h�
xdx =

1
2
(i + 1/2)h2

� + 1
12

h2
� = h�

2
x�

i+1/2 + 1
12

h2
� . Division by mI�

i
(Φ�

i) =
√

h� x�
i+1/2 (cf. (4.2b)) yields

the ith coefficient of Π�(Φ
�
j ∗ Φ�

k) = µ�,�,�
i,j,k (cf. (5.5)).

For later use we mention two recursion properties of the µ-coefficients.

Lemma 5.3 The following recursions hold:

µ�′′,�′,�
i,j,k =

1√
2

(
µ�′′,�′+1,�

i,2j,k + µ�′′,�′+1,�
i,2j+1,k

)
, (5.16)

µ�′′,�′,�
i,j,k =

1√
2

(
µ�′′,�′,�+1

i,j,2k + µ�′′,�′,�+1
i,j,2k+1

)
.

Proof. Since Π�′′ is linear, (3.7) implies

µ�′′,�′−1,�
i,j,k =

∫
Φ�′′

i (x) Π�′′
(
Φ�′−1

j ∗ Φ�
k

)
(x)dx

=

∫
Φ�′′

i (x) Π�′′

(
1√
2

[
Φ�′

2j + Φ�′
2j+1

]
∗ Φ�

k

)
(x)dx =

1√
2

(
µ�′′,�′,�

i,2j,k + µ�′′,�′,�
i,2j+1,k

)
.

The proof of the second identity is analogous.

5.5 Type A and Type B Coefficients

As in [4], the plan is to perform the sum
∑

k∈N0
g�

kµ
�′′,�′,�
i,j,k by some cheap recursions and to

perform the j-summation with the help of FFT. Here, FFT is used to compute a discrete
convolution

∑
j ajbi−j of two sequences a, b ∈ R

N0. To reach the form of the discrete con-

volution we need a certain shift invariance property of the coefficients µ�′′,�′,�
i,j,k . In [4], the

corresponding coefficient named γ�′′,�′,�
i,j,k has the property γ�′′,�′,�

i,j,k = γ�′′,�′,�
0,0,k−i2�−�′′+j2�−�′ , provided

that � ≥ max{�′, �′′}. However, different from [4], the quantities µ�′′,�′,�
i,j,k appearing here are

not translation invariant because of m(Φ�
i) �= m(Φ�

i′) for i �= i′. This makes the construction

of the algorithm more involved. Coefficients like µ�′′,�′,�
i,j,k are to be split into a “Type A” and

a “Type B” part. These types are defined next.

14



5.5.1 Type A Coefficients

This is the case of perfect translation invariance.
If a family of coefficients a�′′,�′,�

i,j,k is dependent on three pairs (i, �′′) , (j, �′) , (k, �) , we say

that a�′′,�′,�
i,j,k is of Type A if

a�′′,�′,�
i,j,k = a�′′,�′,�

0,0,k−i2�−�′′+j2�−�′ for � ≥ max{�′, �′′} and i, j, k ∈ N0. (5.17)

After summation over k, we get coefficients a�′′,�′
i,j depending only on (i, �′′) , (j, �′) . Then

Type A is defined by

a�′′,�′
i,j = a�′′,�′

0,j−i2�′−�′′ for �′′ ≤ �′ and i, j, k ∈ N0,

a�′′,�′
i,j = a�′′,�′

i−j2�′′−�′ ,0 for �′′ ≥ �′ and i, j, k ∈ N0.
(5.18)

5.5.2 Type B Coefficients

The three indices i, j, k of a�′′,�′,�
i,j,k can be interpreted as follows: i ∈ N0 is the principal index,

while j and k are fixed parameters. Then a�′′,�′,�
∗,j,k :=

(
a�′′,�′,�

i,j,k

)∞
i=0

∈ R
N0 is a sequence with

additional dependence on j, k. Applying the operator Ξ�′′ from above, we form the sequence
â�′′,�′,�
∗,j,k := Ξ�′′a

�′′,�′,�
∗,j,k , i.e.,

â�′′,�′,�
i,j,k = x�′′

i+1/2a
�′′,�′,�
i,j,k .

Then a�′′,�′,�
i,j,k is said to be of Type B, if â�′′,�′,�

i,j,k is of Type A.

In the case of a�′′,�′
i,j we define analogously

â�′′,�′
i,j = x�′′

i+1/2a
�′′,�′
i,j .

Again a�′′,�′
i,j is said to be of Type B, if â�′′,�′

i,j is of Type A.
An example of a splitting into the types A,B will be given in §5.5.4. The translation

invariance with respect to the indices j, k is discussed next.

5.5.3 Translation Invariance in j, k

It is trivial to see that Φ�′
j ∗Φ�

k and Φ�′
j′ ∗Φ�

k′ with jh�′ + kh� = j′h�′ + k′h� are equal. Hence,

also µ�′′,�′,�
i,j,k = µ�′′,�′,�

i,j′,k′ holds.

Let � ≥ �′. Then jh�′ + kh� = j′h�′ + k′h� becomes j2�−�′ + k = j′2�−�′ + k′. The choice
j′ = 0 leads to

µ�′′,�′,�
i,j,k = µ�′′,�′,�

i,0,k+j2�−�′ .

15



5.5.4 Inspection of µ�,�,�
i,j,k

We split µ�,�,�
i,j,k from (5.15) into

µ�,�,�
i,j,k = Aµ�,�,�

i,j,k + Bµ�,�,�
i,j,k with (5.19)

Aµ�,�,�
i,j,k :=

{
1
2

√
h� for j + k ≤ i ≤ j + k + 1,

0 otherwise,

Bµ̂�,�,�
i,j,k :=

⎧⎨
⎩

+ 1
12

h
3/2
� for i = j + k,

− 1
12

h
3/2
� for i = j + k + 1,

0 otherwise.,

⎫⎬
⎭ , Bµ�,�,�

i,j,k := Bµ̂�,�,�
i,j,k /x�

i+1/2

Obviously, the coefficients Aµ�,�,�
i,j,k are of Type A, while Bµ�,�,�

i,j,k is of Type B.

5.6 Condensation of Type A and Type B Coefficients

Let a�′′,�′,�
i,j,k be of Type A. Condensation from level �′′ to �′′ − 1 is described in (5.11) by

a�′′−1,�′,�
∗,j,k = Ξ−1

�′′−1R Ξ�′′ a
�′′,�′,�
∗,j,k ,

where a�′′,�′,�
∗,j,k :=

(
a�′′,�′,�

i,j,k

)∞
i=0

represents the sequence in the first index and where the operators

Ξ−1
�′′−1, R, Ξ�′′ act on this index. The componentwise formulation of this relation is

a�′′−1,�′,�
i,j,k =

1√
2

a�′′,�′,�
2i,j,k x�′′

2i+1/2 + a�′′,�′,�
2i+1,j,kx

�′′
2i+3/2

x�′′−1
i+1/2

. (5.20)

Using the identities
x�′′
2i+1/2

x�′′−1
i+1/2

= 1 − h�′′/4

x�′′−1
i+1/2

and
x�′′
2i+1/2

x�′′−1
i+1/2

= 1 +
h�′′/4

x�′′−1
i+1/2

, we get

a�′′−1,�′,�
i,j,k =

1√
2

(
a�′′,�′,�

2i,j,k + a�′′,�′,�
2i+1,j,k

)
+

h�′′

4
√

2

a�′′,�′,�
2i+1,j,k − a�′′,�′,�

2i,j,k

x�′′−1
i+1/2

. (5.21)

This suggests the splitting

a�′′−1,�′,�
i,j,k = Aa�′′−1,�′,�

i,j,k + Ba�′′−1,�′,�
i,j,k with (5.22)

Aa�′′−1,�′,�
i,j,k :=

1√
2

(
a�′′,�′,�

2i,j,k + a�′′,�′,�
2i+1,j,k

)
,

B â�′′−1,�′,�
i,j,k :=

h�′′

4
√

2

(
a�′′,�′,�

2i+1,j,k − a�′′,�′,�
2i,j,k

)
, Ba�′′−1,�′,�

i,j,k := B â�′′−1,�′,�
i,j,k /x�′′−1

i+1/2 .

Lemma 5.4 Let a�′′,�′,�
i,j,k be of Type A. Then Aa�′′−1,�′,�

i,j,k is of Type A, while Ba�′′−1,�′,�
i,j,k is of

Type B.

16



Proof. Let � ≥ max{�′, �′′}. In a�′′,�′,�
2i,j,k + a�′′,�′,�

2i+1,j,k we use the Type A property of a�′′,�′,�
i,j,k :

Aa�′′−1,�′,�
i,j,k =

1√
2

(
a�′′,�′,�

2i,j,k + a�′′,�′,�
2i+1,j,k

)
=

1√
2

(
a�′′,�′,�

0,0,k−(2i)2�−�′′+j2�−�′ + a�′′,�′,�
0,0,k−(2i+1)2�−�′′+j2�−�′

)
(cf. (5.17)). Similarly,

Aa�′′−1,�′,�
0,0,k−i2�−(�′′−1)+j2�−�′ =

1√
2

(
a�′′,�′,�

0,0,k−i2�−(�′′−1)+j2�−�′ + a�′′,�′,�
1,0,k−i2�−(�′′−1)+j2�−�′

)
=

1√
2

(
a�′′,�′,�

0,0,k−(2i)2�−�′′+j2�−�′ + a�′′,�′,�
1,0,k−(2i+1)2�−�′′+j2�−�′

)
follows and proves Aa�′′−1,�′,�

i,j,k = Aa�′′−1,�′,�
0,0,k−i2�−(�′′−1)+j2�−�′ , which is (5.17) for Aa�′′−1,�′,�

i,j,k .

Next, we have to show that Bâ�′′−1,�′,�
i,j,k is of Type A. In fact,

Bâ�′′−1,�′,�
i,j,k =

h�′′

4
√

2

(
a�′′,�′,�

0,0,k−(2i+1)2�−�′′+j2�−�′ − a�′′,�′,�
0,0,k−(2i)2�−�′′+j2�−�′

)
= B â�′′−1,�′,�

0,0,k−i2�−(�′′−1)+j2�−�′

follows as above.

In the second part we assume that a�′′,�′,�
i,j,k be of Type B. Note that the “hat coefficients”

â�′′,�′,�
i,j,k := a�′′,�′,�

i,j,k x�′′
i+1/2 simplify the representation (5.20):

â�′′−1,�′,�
i,j,k =

1√
2

(
â�′′,�′,�

2i,j,k + â�′′,�′,�
2i+1,j,k

)
. (5.23)

Lemma 5.5 Let a�′′,�′,�
i,j,k be of Type B. Then a�′′−1,�′,�

i,j,k is also of Type B.

Proof. Again the representation (5.20) is valid, which should be written as (5.23). Since

a�′′,�′,�
i,j,k is of Type B, â�′′,�′,�

i,j,k is of Type A. Hence,

â�′′−1,�′,�
i,j,k =

1√
2

(
â�′′,�′,�

2i,j,k + â�′′,�′,�
2i+1,j,k

)
=

1√
2

(
â�′′,�′,�

0,0,k−(2i)2�−�′′+j2�−�′ + â�′′,�′,�
0,0,k−(2i+1)2�−�′′+j2�−�′

)
= â�′′−1,�′,�

0,0,k−i2�−(�′′−1)+j2�−�′

follows as the previous parts, proving the Type A property of â�′′−1,�′,�
i,j,k and therefore the

Type B property of a�′′−1,�′,�
i,j,k .

The case of coefficients a�′′,�′
i,j need not be discussed since Lemmata 5.4 and 5.5 can easily

be reformulated for this case.

5.7 G-Coefficients

Equation (5.14) contains the summation

G�′′,�′
i,j :=

∑
k∈N0

g�
kµ

�′′,�′,�
i,j,k , (5.24)

which defines the G-coefficients. As mentioned in Problem 5.1, �′ ≤ � holds without loss of
generality. Furthermore, we assume �′′ ≤ �.

17



Lemma 5.6 For �′′ = �′ = �, the G-coefficients are given by

G�,�
i,j = g�

i−jµ
�,�,�
i,j,i−j + g�

i−j−1µ
�,�,�
i,j,i−j−1 = AG�,�

i,j + BG�,�
i,j with (5.25a)

AG�,�
i,j :=

√
h�

2

(
g�

i−j + g�
i−j−1

)
, (5.25b)

BĜ�,�
i,j :=

h
3/2
�

12

(
g�

i−j − g�
i−j−1

)
and BG�,�

i,j := BĜ�,�
i,j /x�

i+1/2. (5.25c)

The part AG�,�
i,j is of Type A, while BG�,�

i,j is of Type B.

Proof. In the sum (5.24) only two µ-coefficients are non-zero (see (5.15)). The type properties
are obvious.

Next, we want to obtain a recursion formula which computes G�−1,�−1
i,j from G�,�

i,j . First,
we prove

G�,�′−1
i,j =

1√
2

(
G�,�′

i,2j + G�,�′
i,2j+1

)
. (5.26)

Proof. G�,�′−1
i,j =

∑
k∈N0

g�
kµ

�,�′−1,�
i,j,k =

(5.16)

∑
k∈N0

g�
k

1√
2

(
µ�,�′,�

i,2j,k + µ�,�′,�
i,2j+1,k

)
= 1√

2

(
G�,�′

i,2j + G�,�′
i,2j+1

)
.

Using the splitting G�,�
i,j = AG�,�

i,j + BG�,�
i,j , we perform equation (5.26) separately for both

parts:

AG�,�−1
i,j =

1√
2

(
AG�,�

i,2j + AG�,�
i,2j+1

)
, BG�,�−1

i,j =
1√
2

(
BG�,�

i,2j + BG�,�
i,2j+1

)
.

Obviously, AG�,�−1
i,j is of Type A and BG�,�−1

i,j of Type B. Note that the second equation can
also be written as

BĜ�,�−1
i,j =

1√
2

(
BĜ�,�

i,2j + BĜ�,�
i,2j+1

)
using BĜ�,�′

i,j := BG�,�′
i,j x�

i+1/2.

G�,�−1
i,j can be interpreted as the coefficients of Π�(Φ

�−1
j ∗ g�) =

∑
i G

�,�−1
i,j Φ�

i , since

Π�(Φ
�−1
j ∗ g�) = Π�(Φ

�−1
j ∗

∑
k∈N0

g�
kΦ

�
k) =

∑
k∈N0

g�
kΠ�(Φ

�−1
j ∗ Φ�

k) =
∑
k∈N0

g�
kµ

�,�−1,�
i,j,k = G�,�−1

i,j .

Condensation from the fine mesh of level � to the coarser at level �−1 is described by (5.20)
and defines G�−1,�−1

i,j . We apply this formula separately to AG�,�−1
i,j and BG�,�−1

i,j . The term
AG�,�−1

i,j yields AAG�−1,�−1
i,j + BAG�−1,�−1

i,j with

AAG�−1,�−1
i,j =

1√
2

(
AG�,�−1

2i,j + AG�,�−1
2i+1,j

)
,

BAĜ�−1,�−1
i,j =

h�

4
√

2

(
AG�,�−1

2i+1,j,k − AG�,�−1
2i,j,k

)
, BAG�−1,�−1

i,j = BAĜ�−1,�−1
i,j /x�−1

i+1/2

(cf. (5.22)). The Type B term BG�,�−1
i,j yields BBG�−1,�−1

i,j which should be expressed by
BBĜ�−1,�−1

i,j = x�−1
i+1/2

BBG�−1,�−1
i,j :

BBĜ�−1,�−1
i,j =

1√
2

(
BĜ�,�−1

2i,j + BĜ�,�−1
2i+1,j

)
18



(cf. (5.23)).
Gathering the different parts of G�−1,�−1

i,j , we get

G�−1,�−1
i,j = AG�−1,�−1

i,j + BG�−1,�−1
i,j with (5.27a)

AG�−1,�−1
i,j =

1√
2

(
AG�,�−1

2i,j + AG�,�−1
2i+1,j

)
, (5.27b)

BĜ�−1,�−1
i,j =

h�

4
√

2

(
AG�,�−1

2i+1,j − AG�,�−1
2i,j

)
+

1√
2

(
BĜ�,�−1

2i,j + BĜ�,�−1
2i+1,j

)
. (5.27c)

As can be seen from this formulae, the implementation should use the quantities AG�−1,�−1
i,j

and BĜ�−1,�−1
i,j (instead of BG�−1,�−1

i,j = BĜ�−1,�−1
i,j /x�−1

i+1/2).

Combining the steps G�,�
i,j �→ G�,�−1

i,j from (5.26) and G�,�−1
i,j �→ G�−1,�−1

i,j from (5.27a-c), we
obtain the following final result.

Lemma 5.7 Let � > 0. The coefficients G�−1,�−1
i,j = AG�−1,�−1

i,j + BG�−1,�−1
i,j can be computed

from G�,�
i,j = AG�,�

i,j + BG�,�
i,j by

AG�−1,�−1
i,j = AG�,�

2i,2j +
1

2

(
AG�,�

2i,2j+1 + AG�,�
2i+1,2j

)
, (5.28a)

BĜ�−1,�−1
i,j =

h�

8

(
AG�,�

2i,2j+1 − AG�,�
2i+1,2j

)
+ BĜ�,�

2i,2j +
1

2

(
BĜ�,�

2i,2j+1 + BĜ�,�
2i+1,2j

)
. (5.28b)

AG�−1,�−1
i,j is of Type A, while BG�−1,�−1

i,j is of Type B.

Proof. Substitution of (5.26) into (5.27b) yields

AG�−1,�−1
i,j =

1

2

(
AG�,�

2i,2j + AG�,�
2i,2j+1 + AG�,�

2i+1,2j + AG�,�
2i+1,2j+1

)
.

Since AG�,�
i,j is of Type A, AG�,�

2i+1,2j+1 = AG�,�
0,(2j+1)−(2i+1) = AG�,�

0,2j−2i = AG�,�
2i,2j holds and

allows the simplification in (5.28a).
Similarly, we first get

BĜ�−1,�−1
i,j =

h�

8

(
AG�,�

2i,2j + AG�,�
2i,2j+1 − AG�,�

2i+1,2j − AG�,�
2i+1,2j+1

)
+

1

2

(
BĜ�,�

2i,2j + BĜ�,�
2i,2j+1 + BĜ�,�

2i+1,2j + BĜ�,�
2i+1,2j+1

)
and use AG�,�

2i,2j = AG�,�
2i+1,2j+1 and BĜ�,�

2i,2j = BĜ�,�
2i+1,2j+1 .

5.8 Algorithm for Π�′′(f�′ ∗ g�) in the Case �′′ ≤ �′ ≤ �

As stated in Problem 5.1, f ∗ g is split into convolutions f�′ ∗ g� of f�′ ∈ S�′ and g� ∈ S�,
where �′ ≤ � can be assumed. The exact result ωexact := f�′ ∗ g� is to be mapped into
ω�′′ := Π�′′ωexact. More precisely, the components of ω�′′ =

∑
i ω

�′′
i Φ�′′

i for i ∈ I�′′ are needed.
By definition of Π�′′ we have local mass conservation in all intervals I�′′

i (i ∈ I�′′).
The case �′′ ≤ �′ ≤ � considered here, was called Case A in [4]. The algorithm has a

starting phase (Step 1), a first recursion from level � down to �′ + 1 (Step 2) and another
recursion from level �′ down to �′′ + 1 (Step 3).

19



5.8.1 Step 1

Using the coefficients of g� =
∑

i g
�
iΦ

�
i , define

AG�,�
i,0 :=

√
h�

2

(
g�

i + g�
i−1

)
, BĜ�,�

i,0 :=
h

3/2
�

12

(
g�

i − g�
i−1

)
. (5.29)

Formally, the index i takes all values in N0. In practice, i must be restricted to a convex
integer interval containing the support of

(
g�

i

)∞
i=0

(see details in [4]). Note that (5.29) is a

reformulation of (5.25b,c) with i − j replaced by i and makes use of AG�,�
i,j = AG�,�

i−j,0 etc.

5.8.2 Step 2

For λ := �, � − 1, . . . , �′ + 1 perform

AGλ−1,λ−1
i,0 = AGλ,λ

2i,0 +
1

2

(
AGλ,λ

2i−1,0 + AGλ,λ
2i+1,0

)
, (5.30)

BĜλ−1,λ−1
i,0 =

hλ

8

(
AGλ,λ

2i−1,0 − AGλ,λ
2i+1,0

)
+ BĜλ,λ

2i,0 +
1

2

(
BĜλ,λ

2i−1,0 + BĜλ,λ
2i+1,0

)
.

Finally, AG�′,�′
i,0 and BĜ�′,�′

i,0 are computed10.

Next, we want to compute the coefficients ω�′
i of Π�′(f�′ ∗ g�) =

∑
i ω

�′
i Φ�′

i . They are
represented by

ω�′
i =

∑
j,k∈N0

f �′
j g�

kµ
�′,�′,�
i,j,k =

∑
j∈N0

f �′
j G�′,�′

i,j .

Splitting ω�′
i into Aω�′

i + Bω�′
i and using AG�′,�′

i,j = AG�′,�′
i−j,0 and BĜ�′,�′

i,j = BĜ�′,�′
i−j,0 , we get the

relations
Aω�′

i =
∑
j∈N0

f �′
j

AG�′,�′
i−j,0 , Bω̂�′

i =
∑
j∈N0

f �′
j

BĜ�′,�′
i−j,0 . (5.31a)

The sums in (5.31a) are discrete convolutions of the sequence
(
f �′

j

)∞
j=0

with
(

AG�′,�′
i,0

)∞
i=0

or(
BĜ�′,�′

i,0

)∞
i=0

, respectively. Here, the fast Fourier transform can be used. For important

remarks concerning the sizes of the supports of the sequences we refer to [4, Sect. 6].
Next, we convert the Type A coefficients into Aω̂�′

i = Aω�′
i x�′

i+1/2 and compute

ω̂�′
i = Aω�′

i x�′
i+1/2 + Bω̂�′

i . (5.31b)

5.8.3 Step 3

For λ := �′, �′ − 1, . . . , �′′ + 1 we condense Πλ(f�′ ∗ g�) into Πλ−1(f�′ ∗ g�):

ω̂λ−1
i =

1√
2

(
ω̂λ

2i + ω̂λ
2i+1

)
. (5.32a)

This is the application of (5.8). Finally, ω̂�′′
i is computed. It can be converted into

ω�′′
i := ω̂�′′

i /x�′′
i+1/2. (5.32b)

This yields the desired coefficients of Π�′′(f�′ ∗ g�).

10These equations follow similarly from (5.28a,b). Note that because of the type A property, i.e.,
AGλ−1,λ−1

i−j,0 = AGλ−1,λ−1
i,j , only a sequence AGλ−1,λ−1

i,0 with one index needs to be computed and stored.

20



5.8.4 Intertwining the Computations for all �′′ ≤ �′ ≤ �

In §5.7 the level � containing the data g� is fixed. The coefficient G�,�
i,j defined in (5.25a)

originates from g�, while G�−1,�−1
i,j from (5.27a) is obtained from G�,�

i,j . In the final algorithm

we include a loop over � (renamed λ). When considering G�−1,�−1
i,j from (5.27a), we can add a

new contribution from g�−1 (that is (5.25a) with � replaced by �−1). Hence, the computation
of the AG�,�

i,j = AG�,�
i−j,0 and BĜ�,�

i,j = BĜ�,�
i−j,0 contributions is performed by the loop

for λ := L downto 0 do

begin if λ = L then AGL,L
i,0 := BĜL,L

i,0 := 0 else

begin AGλ,λ
i,0 := AGλ+1,λ+1

2i,0 + 1
2

(
AGλ+1,λ+1

2i−1,0 + AGλ+1,λ+1
2i+1,0

)
;

BĜλ,λ
i,0 :=

hλ+1

8

(
AGλ+1,λ+1

2i−1,0 − AGλ+1,λ+1
2i+1,0

)
+ BĜλ+1,λ+1

2i,0 + 1
2

(
BĜλ+1,λ+1

2i−1,0 + BĜλ+1,λ+1
2i+1,0

)
end;

AGλ,λ
i,0 := AGλ,λ

i,0 +
√

hλ

2

(
gλ

i + gλ
i−1

)
; BĜλ,λ

i,0 := BĜλ,λ
i,0 +

h
3/2
λ

12

(
gλ

i − gλ
i−1

)
end;

(5.33)

Line 7 adds the contributions (5.25b,c) involving gλ
i from level λ.

The coefficients AGλ,λ
i,0 and BĜλ,λ

i,0 produced by (5.33) are needed in line 3 of the following

algorithm, where the convolution of these coefficients with f�′ yields Aω�′
i , Bω̂�′

i . Note that
Aω�′

i , Bω̂�′
i contain all contributions from f�′ ∗ g� for the actual level �′ and all �′ ≤ � ≤ L.

Hence, ω̂�′
i from line 4 would yield ω�′

i = ω̂�′
i /x�′

i+1/2 = Π�′(f�′ ∗ g�) (cf. (5.31b)). The addition

of (ω̂�′+1
2i + ω̂�′+1

2i+1)/
√

2 in line 5 (cf. (5.32a)) produces updates ω̂�′
i with the property that ω�′

i

from line 6 equals
∑

λ,� with �′≤λ≤� Π�′(fλ ∗ g�) (cf. (5.32b)).

for �′ := L downto 0 do
begin

compute Aω�′
i , Bω̂�′

i by the discrete convolutions (5.31a);
ω̂�′

i := Aω�′
i x�′

i+1/2 + Bω̂�′
i ;

if �′ < L then ω̂�′
i := ω̂�′

i + 1√
2

(
ω̂�′+1

2i + ω̂�′+1
2i+1

)
;

ω�′
i := ω̂�′

i /x�′
i+1/2

end;

(5.34)

Note that a similiar procedure must be repeated with f and g interchanged, because of
the second sum in (5.6). A slight modification is necessary to avoid � = �′.

5.9 Algorithm for Π�′′(f�′ ∗ g�) in the Case �′ < �′′ ≤ �

While �′ ≤ � can be assumed without loss of generality, �′′ can take all values between 0 and
L. After the first case �′′ ≥ �′ in §5.8, we now consider �′ < �′′ ≤ �. It corresponds to Case B
in [4].

21



5.9.1 Explanations for �′′ = �′ + 1

We will use a loop of �′′ from �′ + 1 to �. Here we discuss the first value �′′ = �′ + 1 and
assume �′ + 1 ≤ �.

The function f�′ =
∑

j f �′
j Φ�′

j can be transformed into a function of level �′ + 1 by using
(3.7):

f�′ =
∑

j

f̂ �′+1
j Φ�′+1

j with f̂ �′+1
2j := f̂ �′+1

2j+1 :=
1√
2
f �′

j . (5.35)

Let f̂�′+1 :=
(
f̂ �′+1

j

)
j∈Z

be the sequence of the newly defined coefficients. Since �′′ = �′+1 ≤ �,

the three level numbers �′′, �′ + 1, � satisfy the inequalities of Case A. As in Step 2 of Case
A (see §5.8.2) the desired coefficients of the projection at level �′′ = �′ + 1 are obtainable by
(5.31a).

5.9.2 Complete Recursion

Step 1 in Case A has already produced the coefficients AG�,�
i,0,

BĜ�,�
i,0. For �′′ = �′+1, �′+2, . . . , �

we represent the function f�′ at these levels �′′ by computing the coefficients f̂ �′′
j as in (5.35):

f̂ �′
j := f �′

j (starting value), (5.36a)

f̂ �′′
2j := f̂ �′′

2j+1 :=
1√
2
f̂ �′′−1

j (�′ + 1 ≤ �′′ ≤ �) . (5.36b)

Note, however, that only those coefficients are to be determined which are really needed in
the next step, which are the discrete convolutions

Aω�′′
i =

∑
j∈N0

f �′′
j

AG�′′,�′′
i−j,0 , Bω̂�′′

i =
∑
j∈N0

f �′′
j

BĜ�′′,�′′
i−j,0 (�′ + 1 ≤ �′′ ≤ �) (5.36c)

of the sequence f̂�′′ := (f̂ �′′
j )j∈Z with

(
AG�′,�′

i,0

)∞
i=0

and
(

BĜ�′,�′
i,0

)∞
i=0

.

5.9.3 Combined Computations for all �′ < �′′ ≤ �

The algorithm is

f̂ 0
j := 0; explanations:

for �′′ := 1 to L do

begin f̂ �′′−1
j := f̂ �′′−1

j + f �′′−1
j ; start value (5.36a),

f̂ �′′
2j := f̂ �′′

2j+1 := f̂ �′′−1
j /

√
2; see (5.36b),

compute Aω�′′
i , Bω̂�′′

i by the discrete convolutions (5.36c); see (5.36c),
ω�′′

i := Aω�′′
i + Bω̂�′′

i /x�′′
i+1/2 see (5.31b), (5.32b).

end;

(5.37)

The sum f̂ �′′−1
j + f �′′−1

j in the third line defines f̂ �′′−1
j as coefficients of

∑�′′−1
�′=0 f�′ =∑

j f̂ �′′−1
j Φ�′′−1

j . Therefore the next two lines consider all combinations of �′ < �′′. Since
AG�′′,�′′

i,0 and BĜ�′′,�′′
i,0 contain all contributions from � ≥ �′′, ω�′′ from line 6 is the projection

Π�′′
(∑

�′,� with �′<�′′≤� f�′ ∗ g�

)
.

22



5.10 Algorithm for Π�′′(f�′ ∗ g�) in the Case �′ ≤ � < �′′

Now the step size h�′′ used by the projection Π�′′ is smaller than both h�′ and h�.
The exact convolution ωexact := f�′ ∗ g� is globally continuous and piecewise linear in the

intervals I�
j = [jh�, (j + 1)h�). Note that the intervals I�′′

i lie completely in one of the I�
i

intervals.
The cheapest approach is to compute first the evaluations δ�

j of ωexact at the grid points
jh�, i.e.,

δ�
j := (f�′ ∗ g�) (jh�). (5.38)

Then the coefficients of Π�′′ωexact =
∑

i∈N0
ω�′′

i Φ�′′
i follow from the explicit formula

ω�′′
i =

(h�′′)
3/2

6x�′′
i+1/2

{(
3 (2i + 1)

[
(j + 1) δ�

j − jδ�
j+1

])
+

2h�′′

h�

(
1 + 3i + 3i2

) (
δ�
j+1 − δ�

j

)}
.

In particular for �′′ = � + 1 (i.e., h�′′ = h�/2), we have

ω�+1
i =

⎧⎪⎪⎨
⎪⎪⎩

h
3/2
�+1

6x�+1
i+1/2

(
(2 + 9j) δ�

j + (1 + 3j) δ�
j+1

)
for i = 2j,

h
3/2
�+1

6x�+1
i+1/2

(
(2 + 3j) δ�

j + (7 + 9j) δ�
j+1

)
for i = 2j + 1.

(5.39)

It remains to compute the point values δ�
j from (5.38). This problem is already discussed

in [4, §5.3.2]. We repeat the algorithm [4, (5.16)]:

for � := 0 to L − 1 do

begin if � = 0 then begin f̂ 0
i := 0; δ̂0

i := 0 end else

begin compute f̂ �
i from f̂ �−1

i by (5.36b);
δ�
2i := δ�−1

i ; δ�
2i+1 := 1

2

(
δ�−1
i + δ�−1

i+1

)
end;

f̂ �
i := f̂ �

i + f �
i ;

compute δ�
i by the convolution

∑
j∈Z

f̂ �
j g�

i−j−1;

δ̂�
i := δ̂�

i + δ�
i ;

compute ω�+1
i from δ̂�

i by (5.39)
end;

(5.40)

Line 4 is the linear interpolation of the data from level � − 1 at level �. Note that lines 3-5
are performed only for � > 0.

5.11 Cost

Because of the splitting in Type A and Type B coefficients, the algorithm is a little more
involved than the algorithm for the L2 projection of f ∗ g discussed in [4], but the cost of
the present algorithm is only increased by a constant factor. Therefore, under the same
assumptions as in [4] the overall cost is O(kN log N), where N is the data size of factors
f, g ∈ S. The factor k is the number of terms in (1.3).

23



6 Treatment of the Last Interval

6.1 General Explanations

As discussed in the beginning of Section 2, the support of f lies in [0, xmax] , which implies
that all intervals I ∈ M are contained in [0, xmax) with xmax := sup{x ∈ I : I ∈ M}.
Moreover there is a “last interval” Ilast = [xmax−h�, xmax) ∈ M. In the following, we assume
that11 � = 0, i.e., Ilast belongs to level 0.

Since functions f, g ∈ S = S(M) with support in [0, xmax] yield a convolution ωexact =
f ∗ g with support in [0, 2xmax] , the projection ωexact �→ ω ∈ S must include the truncation
ω|[xmax,2xmax] := 0. In the case of an L2 orthogonal projection, the local replacement of
ω|[xmax,2xmax] by zero describes the projection into the zero space. This, however, does not
conserve mass. The necessary corrections are discussed next.

6.1.1 Case of p = 0

We extend the mesh M by

M̄ := M∪ {[jh0, (j + 1) h0) : jmax ≤ j ≤ 2jmax − 1} ,

where jmax := xmax/h0 ∈ N. Note that M̄ covers the interval [0, 2xmax) . The function space
corresponding to M̄ is

S̄ := S (M̄) .
As discussed before, f ∗ g for f, g ∈ S have a support which is completely covered by M̄.
Therefore, ω = Π (f ∗ g) can be computed in S̄ by the algorithm from §§5.8-5.10.

The mass connected with the intervals in M̄\M is

m[xmax,2xmax)(ω) =

2jmax−1∑
j=jmax

mI0
j
(ω) =

2jmax−1∑
j=jmax

√
h0 x0

j+1/2 ω0
j ,

where ω0
j are the coefficients in the representation ω|[xmax,2xmax] =

∑2jmax−1
j=jmax

ω0
j Φ

0
j . Hence,

mass conservation requires a correction

ω0
jmax−1 := ω0

jmax−1 +
1

x0
jmax−1/2

2jmax−1∑
j=jmax

x0
j+1/2 ω0

j ,

ω0
j := 0 for j ≥ jmax.

The coefficient ω0
jmax−1 belongs to the last interval Ilast = I0

jmax−1, while ω0
j := 0 for j ≥ jmax

is another writing for ω|[xmax,2xmax] := 0.

11It makes no sense to use smaller intervals in a region where the function is expected to be so small that
it can be approximated by zero. However, Ilast ∈ M� for � > 0 can be treated similarly.

24



6.1.2 Case of p > 0

A correction is also required for p > 0. Again, ω = Π (f ∗ g) ∈ S̄ is to be computed
in S̄ = S (M̄) using the extended mesh. Let ω0

(j,0) and ω0
(j,1) be the coefficients of the

representation

ω|[xmax,2xmax] =

2jmax−1∑
j=jmax

p∑
α=0

ω0
(j,α)Φ

0
(j,α)

(in fact, one should avoid the computation of ω0
(j,α) (j ≥ jmax, α ≥ 2) , since these coefficients

are not needed).
From (4.2a,b) we conclude that12

mI0
j
(ω) =

√
h0 x0

j+1/2 ω0
(j,0) +

h
3/2
0√
12

ω0
(j,1).

Therefore the correction in the last interval is

ω0
(jmax−1,0) := ω0

(jmax−1,0) +
1

x0
jmax−1/2

2jmax−1∑
j=jmax

(
x0

j+1/2 ω0
(j,0) +

h0√
12

ω0
(j,1)

)
.

Note that only the coefficient ω0
(jmax−1,0) is changed, but not ω0

(jmax−1,1), since this choice

corrects the mass with the smallest change in the L2 norm of ω|[0,xmax].

7 Discretisation of the Sink Integral

We recall the integral Qsink(f)(x) = 2f(x)
∫∞
0

κ(x, y)f(y)dy from (1.1) and (1.2). We replace

the kernel κ by the same approximation
∑k

ν=1 αν(x)βν(y) (cf. (1.3)) as we did before. Then
the sink term becomes

2f(x)

k∑
ν=1

αν(x)

∫ ∞

0

βν(y)f(y)dy. (7.1)

According to Remark 2.1c, αν and βν are assumed to be piecewise constant. Let f ∈ S be an
ansatz function which is piecewise polynomial of degree p. Then the same statement holds
for ανf and βνf. The integrations∫

I�
i

βν(y)f(y)dy =

∫ (i+1)h�

ih�

βν(y)f(y)dy for I�
i ∈ M

can be performed exactly, since the integrand is a polynomial of degree p. Therefore, the
sink integral (7.1) is evaluated exactly and has again values in S, so that no projections are
required:

2f(x)

k∑
ν=1

αν(x)
∑
I∈M

∫
I�
i

βν(y)f(y)dy ∈ S.

The required computational work is proportional to k (p + 1)N.

12Here we use that Φ�
(j,α) (α ≥ 2) is orthogonal to x, i.e., m(Φ�

(j,α)) = 0.

25



If, different from Remark 2.1c, αν and βν are piecewise polynomials of degree q > 0,

the integrand of
∫ (i+1)h�

ih�
βν(y)f(y)dy is now a polynomial of degree p + q and can again be

evaluated exactly, whereas ανf does not belong to S and needs a projection back into S. If
p > 0, the L2 orthogonal projection conserves mass, while for p = 0 one must use the mass
conserving projection ανf �−→ F ∈ S with the property mI(ανf) = mI(F ).

References

[1] F. Filbet and Ph. Laurençot: Numerical simulation of the Smoluchowski coagulation equa-
tion. SIAM J. Sci. Comput. 25 (2004) 2004-2028.

[2] S.K. Friedlander: Smoke, dust, and haze. Fundamentals of aerosol dynamics. 2nd edition.
Oxford University Press, New York, 2000.

[3] W. Hackbusch: On the efficient evaluation of coalescence integrals in population balance
models. Computing 78 (2006) 145-172.

[4] W. Hackbusch: Fast and exact projected convolution for non-equidistant grids. Comput-
ing 2007 (to appear).

[5] J. Koch, W. Hackbusch, and K. Sundmacher: H-matrix methods for linear and quasi-
linear integral operators appearing in population balances. Computers Chem. Engng. 31
(2007) 745-759.

[6] S. Qamar and G. Warnecke.: Solving population balance equation for two-component
aggregation by a finite volume scheme. Chem. Eng. Sci. 62 (2006) 679-693.

[7] D. Ramkrishna: Population balances. Theory and applications to particulate systems in
engineering. Academic Press, San Diego, 2000.

[8] D.J. Smit, M.J. Hounslow, and W.R. Paterson: Aggregation and gelation - I. analytical
solutions for cst and batch operation. Chem. Eng. Sci. 49 (1994) 1025-1035.

[9] H. Struchtrup, M. Luskin, and M.R. Zachariah: A model for kinetically controlled internal
phase segregation during aerosol coagulation. J. Aerosol Science 32 (2001) 1479-1504.

26


