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Abstract

We prove C1,α regularity for a thin obstacle problem for the p-laplace equation. Due

to the nonlinearity of the p-laplace operator we can not use the same methods used for

the Laplace case, instead we use techniques developed by E. de Giorgi.
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1 Introduction

In this article we are interested in the minimisers of, for 1 < p < ∞,

J(u) =

∫

B+
1

|∇u|pdx,

for 1 < p < ∞,over the set {u ∈ W 1,p(B+
1 ); u = f on ∂B1 and u ≥ 0 on Π}, where

Π = B1 ∩ {xn = 0}. The equality u = f on ∂B1 is understood in the trace sense and f

is assumed to be a function in C∞. Weaker assumptions on f is possible, but since we

are interested in the regularity of u in B+
1/2 so the exact assumptions on f is not of vital

importance.
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The Euler equations associated with this problem is

div(|∇u|p−2∇u) = 0 in B+
1

u = f on ∂B1 \ Π

u ≥ 0 on Π ∩ B1

∂u
∂xn

= 0 on π ∩ {u = 0}.
This problem is known as the thin obstacle problem. In the case p = 2 this problem have

been investigated by several authors, most recently in [1]. There L.A. Caffarelli and I.

Athanasopoulos proves the optimal regularity for minimisers. Using the linear structure

of the Laplace equation and monotonicity formulas they deduce that solutions are in

C1,1/2.

To the authors knowledge, nothing was known of the regularity of minimisers in the

case p 6= 2, prior to this publication. In this paper we prove that minimisers are C1,α

for some α > 0. In proving the C1,α regularity we run in to considerate difficulties and

the proofs in [1] are in general not applicable in the p-harmonic setting. Instead we use

a modification of the regularity theory of E. de Giorgi. This have enough strength to

deduce our regularity theorem. However, lacking a monotonicity formula, we have not

been able to deduce the optimal regularity. This is not very surprising since the optimal

regularity is not known in the interior for the p-laplace equation.

The theory on the interior regularity of p-harmonic functions is vast. The reader

interested in that theory is refered to [2] and [5] for the interior regularity and [6] for

regularity for the p-harmonic (thick) obstacle problem.

The structure of this paper is as follows. In the next section we prove weak regularity

results. In section 3 we work through the regularity theory of de Giorgi in our setting

and in the final section we state and prove our main regularity result.

Notation. Throughout this article we will try to follow the notation as established

in [3]. However in this section we remind the reader of the most basic notations that

we will use. x = (x1, x2, ..., xn) will denote a points in the n-dimensional space of real

numbers R
n. For an open ball centred at x0 with radius r we write Br(x

0), we will also

use Br(x
0)+ to indicate the ball intersected with the upper half space {xn > 0}. The

centre of the ball will in general not be indicated if it is given by context or if it is the

origin. W k,p(A) will denote the usual sobolev space of functions defined on A whose

distributional derivatives up to order k belongings to the usual Lebesgue space Lp(A).

2 Weak Regularity of the Solution.

In this section we prove two weak regularity results. The proof of the first lemma follows

the proof in [1].
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Lemma 2.1. Let u be a minimiser then u ∈ W 1,∞(B+
1/2).

Proof: Let w be the solution to div(|∇w|p−2∇w) = 0 and w = inf∂B1 u on ∂B1 and

w = 0 on {xn = 0} then w ∈ W 1,∞(B1/2), say |∇w| ≤ C and u ≥ w. In particular u,

reflected in {xn = 0}, is a solution to the obstacle problem with obstacle w.

That gives a bound on the growth of u from below. If x0 ∈ Π ∩ {u = 0} then

u(x) ≥ −C|x − x0|. Therefore we will have u(x) + 2Cr ≥ 0 in B2r(x
0). Also u(x0) +

2Cr = 2Cr and u is a super-solution. By the Harnack inequality it follows that u(x) +

2Cr ≤ C0(u(x0) + 2Cr) ≤ 2CC0r in Br(x
0). So u grows away from the contact set in

a Lipschitz manner. The Lemma follows by standard techniques and the known interior

C1,α regularity of u.

The following proposition is a standard difference quotient proof of almost W 2,2-

regularity.

Proposition 2.2. Let u be a minimiser, then |∇u| p−2
2 ∇u ∈ W 1,2(B

+

1/2).

Proof: For each h ∈ Π and small t > 0 the function (1 − t)u(x) + tφ(x) = (1 − t)u +

tξp(uh − u), with uh(x) = u(x + h), is a competitor for minimality, here ξ ∈ C∞
0 (B3/4)

and ξ = 1 on B1/2 and |∇ξ| ≤ 8. Therefore

0 ≤
∫

B+
1

|∇u|p−2∇u · ∇φ =

∫

B+
1

ξp|∇u|p−2∇u · ∇(uh − u) + (uh − u)|∇u|p−2∇u∇φp.

Also uh is a solution to the thin obstacle problem in B+
1−h therefore we may test uh with

(1 − t)uh + tη where η = ξp(u − uh) and deduce

0 ≤
∫

B+
1

|∇uh|p−2∇uh ·∇η =

∫

B+
1

ξp|∇uh|p−2∇uh ·∇(u−uh)+(u−uh)|∇uh|p−2∇uh∇ξp.

Adding the two inequalities results and we will get the following estimate
∫

B+
1

ξp
(

|∇uh|p−2∇uh − |∇u|p−2∇u
)

· ∇(uh − u) ≤

∫

B+
1

(uh − u)
(

|∇uh|p−2∇uh − |∇u|p−2∇u
)

· ∇ξp ≤

C

∫

B+
1

|uh − u||∇ξ|
∣

∣|∇uh|
p−2
2 ∇uh − |∇u| p−2

2 ∇u
∣

∣ξ
p
2

(

|∇uh|p + |∇u|p
)

p−2
2p ξ

p−2
2 ≤

C

(
∫

B+
1

ξp
(

|∇uh|
p−2
2 ∇uh−|∇u| p−2

2 ∇u
)2

)
1
2
(

∫

B+
1

ξp
(

|∇uh|p+|∇u|p
)

)

p−2
2p

(
∫

B+
1

|uh−u|p|∇ξ|p
)

1
p

.

Rewriting the left hand side using the inequality, for p ≥ 2

||a| p−2
2 a − |b| p−2

2 b| ≤ p2

4
(|a| p−2

2 a − |b| p−2
2 b) · (a − b),
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and for 1 < p < 2

(p − 1)|a − b|(|a|2 + |b|2) p−2
2 ≤ |a|p−2a − |b|p−2b.

If we let h → 0 we will get
∫

B+
1/2

( ∂

∂h
|∇u| p−2

2 ∇u
)2 ≤ C‖∇u‖p

Lp(B1)
.

This proves the tangential derivatives of |∇u| p−2
2 ∇u are in L2. The regularity of the

n derivatives follows, by standard methods, using that u is a solution of an elliptic

equation.

3 Reminder of de Giorgi’s Regularity Theory.

In this section we remind the reader of some classical regularity Lemmas of E. de Giorgi

as well as adapt the Lemmas to our needs. Our presentation and proofs are very similar

to the ones presented in [4].

3.1 Two preliminary Lemmas.

In this sub-section we will recall two simple lemmas that will be needed in the regularity

theory.

Lemma 3.1. Let Z(t) be a bounded non negative function in [ρ, R] and assume that for

ρ ≤ t ≤ s ≤ Rwe have

Z(t) ≤ [A(s − t)−α + B(s − t)−βC] + ηZ(s) (3.1)

with A, B, C ≥ 0, α > β > 0 and 0 < η < 1. Then

Z(ρ) ≤ c[A(R − ρ)−α + B(R − ρ)−β + C],

for a constant c depending only on α and η.

Proof: Consider the sequence ti, t0 = ρ and

ti+1 − ti = (1 − λ)λi(R − ρ),

0 < λ < 1 and ηλ−α ≤ 1. Then the Lemma follows by induction using equation (3.1).

Lemma 3.2. Let α > 0 and let ti ≥ 0 such that

ti+1 ≤ CKit1+α
i ,

with C > 0 and K > 1. Then if t0 ≤ C− 1
α K− 1

α2 we have

ti ≤ K− i
α t0.

Proof: This follows by an easy induction argument.
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3.2 de Giorgi’s Regularity Lemmas.

Taking a directional derivative, in direction η, of

div(|∇u|p−2∇u) = 0

we will get

(aij |∇u|p−2uηi)j = 0,

with

aij = δij + (p − 2)
uiuj

|∇v|2 .

In particular the directional derivatives of v solves an elliptic partial differential equation

in divergence form. Moreover this equation is uniformly elliptic whenever vη > k >

0. Therefore it is natural to investigate the Hölder theory for elliptic equations. In

this section we will work through the de Giorgi’s regularity theory for divergence type

equations in our setting. Most of the results in this section are slight variations of the

theory found in [4]

The right boundary value problem when η = ek, and v = uk, is

(aij |∇u|p−2vj)i = 0 in B+
1

v = 0 on Π ∩ Γ
∂v

∂xn
= 0 on Π ∩ Σ

(3.2)

where λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for some 0 < λ < Λ < ∞, Σ ∪ Γ = Π and Σ ∩ Γ = ∅.
We will also use the following notation;

A(k) = {x ∈ B+
1 ; v(x) ≥ k}.

Our first lemma states that the directional derivatives of a solution are in the de

Giorgi classes.

Lemma 3.3. Let v be a solution to (3.2), then for k > 0
∫

B+
ρ ∩A(k)

|∇v|2 ≤ C

k(p−2)ρ2

∫

B+
2ρ∩A(k)

(v − k)2+.

Proof: Let φ be a smooth test function vanishing on ∂B1 ∪ Γ then, using that v is a

weak solution (3.2),

0 =

∫

B+
2ρ

(|∇u|p−2aijvj)iφ = −
∫

2B+
ρ

aijvjφi +

∫

Γ

φanj |∇u|p−2vjφ.

Now we choose φ = η(v − k)+ for η ∈ C∞(B+
2ρ), η = 1 in B+

ρ , η = 0 on ∂B2
2ρ and

|∇η| ≤ 2/ρ. This gives

0 =

∫

B+
2ρ

vj |∇u|p−2aijηi(v − k)2 +

∫

B+
2ρ

vj |∇u|p−2aij(v − k)2i η =
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∫

B+
2ρ

vj |∇u|p−2aijηi(v − k)2 +

∫

B+
2ρ∩A(k)

vj |∇u|p−2aijviη.

Rewrite the above equality, using A for the matrix |∇u|p−2aij , ellipticity and that |∇u| ≥
k in A(k),

∫

B+
ρ ∩A(k)

|∇v|2 ≤ − C

kp−2

∫

B+
2ρ

(∇vA∇η)(v−k)+ ≤ C

kp−2

(
∫

B2ρ\Bρ

|∇v|2 +
((v − k)+)2

ρ2

)

.

Now we add
C

kp−2

∫

B+
ρ ∩A(k)

|∇v|2

to both sides and divide by C + 1, the result then follows from Lemma 3.1.

Next we need control over the set where a solution is large.

Lemma 3.4. If v ≤ 1, for a solution v of equation (3.2), and |A(k0)∩B+
R | ≤ γ|B+

R | for

γ < 1 then for every large constant C there exists a constant k < 1 such that

|A(k) ∩ B+
R | <

|B+
R |

C
.

Proof: To avoid unnecessary complicated notation we will assume that k0 = 1/2.

Define the following function

w =











k − h v ≥ k

u − h h < v < k

0 v ≤ h,

for two constants 1/2 < h < k < 1. Then

w = 0 in B+
R \ A(1/2)

and |B+
R \ A(1/2)| ≥ (1 − γ)|B+

R | so we may use Sobolev’s inequality and deduce

(
∫

B+
R

wn/(n−1)

)(n−1)/n

≤
∫

S

|∇w| =

∫

S

|∇v| ≤ C|S|1/2

(
∫

A(h)∩B+
R

|∇v|2
)1/2

,

where S = (A(h) \ A(k)) ∩B+
R . By the definition of w we have w = k − h on A(k) ∩B+

R

which implies

(k − h)|A(k) ∩ B+
R |(n−1)/n ≤ C|S|1/2

(
∫

A(h)∩B+
R

|∇v|2
)1/2

.

Now we use Lemma 3.3 and deduce

(k−h)|A(k)∩B+
R |(n−1)/n ≤ C

|S|1/2

R

(
∫

A(h)∩B+
R

((v−k)+)2
)1/2

≤ C|S|1/2R(n−1)/2(1−h).

(3.3)
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Substitute h = hi = 1 − 2−i and k = ki = 1 − 2−i−1 in equation (3.3) and we get (with

Si being the S corresponding to our choice of hi and ki)

|A(1 − 2−i−1) ∩ B+
R |n−1

n ≤ C|Si|R
n−1

2 . (3.4)

We finish this proof by an argument of contradiction. If the Lemma is false then, for

all i,

|A(1 − 2−i−1) ∩ B+
R | >

Rn

C0
,

where C0 is a large constant to be determined later. Insert this in equation (3.4),

Rn−1

C0
≤ C|Si|R

n−2
n .

That is
Rn

(CC0)2
≤ |Si|.

But by the definition of |Si| we have ∪iSi ⊂ B+
R this gives our contradiction since the

last sum in the next equation diverges

|B+
R | ≥

∞
∑

i=1

|Si| ≥
∞
∑

i=1

Rn

(CC0)2
.

The final contribution we need is an estimate controlling the supremum of a solution

to (3.2).

Lemma 3.5. Let v be a solution of (3.2), then for k0 ≥ 1/2

supB+
ρ/2

v ≤ C

(

1

ρn

∫

B+
ρ

((v − k0)
+)2

)1/2( |A(k0) ∩ B+
ρ |

ρn

)
α
2

+ k0,

where α2 + α = 2/n.

Proof: Assume that ρ = 1, k0 = 0 and let 1/2 < σ < τ < 1, also set w = η(u−k)+ for

k > 0, with η ∈ C∞(B+
(σ+τ)/2), η = 1 in B+

σ , η = 0 on ∂B(σ+τ)/2 and |∇η| ≤ 4/(τ − σ),

then
∫

A(k)∩B+
σ

((v − k)+)2 ≤
∫

A(k)∩B+
(σ+τ)/2

w2 ≤

(
∫

A(k)∩B+
(σ+τ)/2

w
2n

n−2

)

n−2
n

|A(k)∩B+
(σ+τ)/2|

2
n ≤

(
∫

A(k)∩B+
(σ+τ)/2

|∇w|2
)

|A(k)∩B+
(σ+τ)/2|

2
n .

Using the definition of w and Lemma 3.3 we may deduce

∫

A(k)∩B+
σ

((v − k)+)2 ≤
C|A(k) ∩ B+

(σ+τ)/2|
2
n

(τ − σ)2

∫

A(k)∩B+
(σ+τ)/2

(v − k)2. (3.5)
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To continue we need to estimate the term |A(k) ∩ B+
τ | 2

n from above;

|A(k) ∩ B+
τ | ≤ 1

(k − h)2

∫

A(h)∩B+
τ

(v − h)2,

for h < k. Taking this to the power α, to be determined later, and multiplying this

inequality with the respective sides of equation 3.5 we will get;

|A(k) ∩ B+
τ |α

∫

A(k)∩B+
σ

((v − k)+)2 ≤ C|A(k) ∩ B+
τ | 2

n

(τ − σ)2

(
∫

A(h)∩B+
τ

(v − h)2
)1+α

. (3.6)

To conclude the proof we choose, for a d to be determined later,

ki = 2d(1 − 2−i−1),

σi =
1

2
(1 + 2−i).

Then equation (3.6) implies, with σ = σi+1, τ = σi, k = ki+1, h = ki, α2 + α = 2/n and

Ψi = |A(ki+1 ∩ Bσi |α
∫

A(ki+1)∩B+
σi

(u − ki+1)
2,

that

Ψi+1 ≤ C22iΨ
n+2

n

i .

If we choose, for a large constant C,

d ≥ CΨ
1
2
0

then we can apply Lemma 3.2 and deduce

lim
i→∞

Ψi = 0.

This proves the Lemma for k0 = 0, the general case follows by considering v − k0.

4 The Main Regularity Theorem.

In the previous section we laid the foundation of the regularity proof, however we need

some more information on the set where the partial derivatives are small to use Lemma 3.4

and 3.5. This can not be done without using the particular structure of our minimisation

problem. As a matter of fact, solutions of (3.2) will not have any apriori Hölder estimates

without any information on Γ. We establish control of the measure of the sets where the

partial derivatives are small in the next Lemma.
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Lemma 4.1. Assume that we have a minimiser in B+
1 and that supB+

1
|∇u| = 1 and that

the origin is a boundary point of the contact set, that is 0 ∈ ∂(Π ∩ {u = 0}). Then if

supui = Mi ≥ 1/
√

n for i = 1...n there exists a constant ǫ > 0 such that
∫

B+
1

|ui − Mi|2 ≥ ǫ.

The same result is true for −u.

Proof: Let us first prove the statement in the case when i = 1...n−1. If the statement

is not true then there exists a sequence of solutions uj , with the origin at the boundary

of the contact set, such that for at least one i = 1...n − 1

∂uj

∂xi
= M j

i ≥ 1√
n

and
∫

B+
1

∣

∣

∣

∂uj

∂xi
− M j

i

∣

∣

∣

2

→ 0.

Using the weak regularity theory in section 2 we can conclude that, for a subsequence,

uj → u0 in W 1,q (for any q < ∞), M j
i → M0

i , and that

∂u0

∂xi
= M0

i .

The Lipschitz regularity, the possitivity of u on Π, and that the origin is a contact

point contradicts this. Thus no such sequence exists and the result follows, in the case

i = 1...n − 1.

To prove the statement in the case i = n we argue similarly. Let ∂uj/∂xn ≥ 1/
√

n

and
∫

B+
1

∣

∣

∣

∂uj

∂xn
− supB+

1

∂uj

∂xn

∣

∣

∣

2

→ 0.

Then from the weak regularity theory of section 2 it follows that, for a subsequence,

uj → u0 in W 1,q (q < ∞) and that

|∇uj |(p−2)/2 ∂uj

∂xn
⇀ |∇u0|(p−2)/2 ∂u0

∂xn

in W 1,2, also
∂u0

∂xn
= M ≥ 1√

n
. (4.7)

Therefore u0 = 0 on Π, in particular u0 = −xn. So, by the uniform convergence |uj +

xn| ≤ δ << 1 when j is large, but this contradicts that the origin is on the boundary of

the contact set. To see this we only need to consider the solution with boundary data

−xn + δ as barrier.

The same proof can be used for −u.
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Theorem 4.2. If u is a minimiser then u ∈ C1,α(B+
1/2) for some α > 0 depending only

on p, ‖u‖L∞(B+
1 ) and n.

Proof: We will show that if we have a solution in B+
1 with the origin on the boundary

of the contact set and with supB+
1
|∇u| = 1 then supB+

1/2
ui ≤ (1 − λ)supB+

1
ui for all i

such that supB+
1

ui ≥ 1/
√

n. The theorem follows by rescaling and renormalising.

Assume that supB+
1

ui ≥ 1/
√

n, then by Lemma 4.1 we have

∫

B+
1

|ui − Mi|2 ≥ ǫ.

Therefore |A(k0)| ≤ γ|B+
1 | for γ and k0 close enough to 1 and Mi respectively. By Lemma

3.4 there is a k such that |A(k, ui)| ≤ |B+
1 |/C0 for a large constant C0 to be chosen soon,

here we have indicated that A(k) is taken with respect to ui. Finally by Lemma 3.5 we

have

supB+
1/2

ui ≤ C

(
∫

B+
1

(ui − k)2
)1/2

|A(k) ∩ B+
1 |α

2 + k.

If C0 is chosen large enough (which changes k, however k < 1 for all C0) we may deduce

supB1/2
ui ≤

C

C
α
2
0

(Mi − k) + k ≤ (1 − λ)Mi,

for a universal λ > 0. The theorem follows by iterating this process, see for instance

[2].
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